ON MONOTONE INCREASING REPRESENTATION FUNCTIONS

SÁNDOR Z. KISS[®], CSABA SÁNDOR[®] and QUAN-HUI YANG[®]

(Received 30 March 2023; accepted 31 May 2023; first published online 17 July 2023)

Abstract

Let $k \ge 2$ be an integer and let A be a set of nonnegative integers. The representation function $R_{A,k}(n)$ for the set A is the number of representations of a nonnegative integer n as the sum of k terms from A. Let A(n) denote the counting function of A. Bell and Shallit ['Counterexamples to a conjecture of Dombi in additive number theory', A cta A ath. A thung., to appear] recently gave a counterexample for a conjecture of Dombi and proved that if $A(n) = o(n^{(k-2)/(k-1)})$ for some $\epsilon > 0$, then $R_{\mathbb{N}\setminus A,k}(n)$ is eventually strictly increasing. We improve this result to $A(n) = O(n^{(k-2)/(k-1)})$. We also give an example to show that this bound is best possible.

2020 Mathematics subject classification: primary 11B34.

Keywords and phrases: additive number theory, additive representation function, monotonicity.

1. Introduction

Let \mathbb{N} be the set of nonnegative integers and let A be a subset of nonnegative integers. We use A^n to denote the Cartesian product of n sets A, that is,

$$A^n = \{(a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n \in A\}.$$

Let

$$R_{A,k}(n) = |\{(a_1, a_2, \dots, a_k) \in A^k : a_1 + a_2 + \dots + a_k = n\}|,$$

$$R_{A,k}^{<}(n) = |\{(a_1, a_2, \dots, a_k) \in A^k : a_1 + a_2 + \dots + a_k = n, a_1 < a_2 < \dots < a_k\}|,$$

$$R_{A,k}^{\leq}(n) = |\{(a_1, a_2, \dots a_k) \in A^k : a_1 + a_2 + \dots + a_k = n, a_1 \leq a_2 \leq \dots \leq a_k\}|,$$

where $|\cdot|$ denotes the cardinality of a finite set. We say that $R_{A,k}(n)$ is monotonically increasing in n from a certain point on (or eventually monotone increasing) if there exists an integer n_0 such that $R_{A,k}(n+1) \ge R_{A,k}(n)$ for all integers $n \ge n_0$. We define the monotonicity of the other two representation functions $R_{A,k}^{<}(n)$ and $R_{A,k}^{\leq}(n)$ in the same way.

The first author was supported by the NKFIH Grant No. K129335; the second author was supported by the NKFIH Grant No. K129335.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

We denote the counting function of the set A by

$$A(n) = \sum_{\substack{a \in A \\ a \le n}} 1.$$

We define the lower asymptotic density of a set A of natural numbers by

$$\liminf_{n\to\infty}\frac{A(n)}{n}$$

and the asymptotic density by

$$\lim_{n\to\infty}\frac{A(n)}{n}$$

whenever the limit exists. The generating function of a set A of natural numbers is denoted by

$$G_A(x) = \sum_{a \in A} x^a.$$

Obviously, if $\mathbb{N} \setminus A$ is finite, then each of the functions $R_{A,2}(n)$, $R_{A,2}^{<}(n)$ and $R_{A,2}^{\leq}(n)$ is eventually monotone increasing. In [4, 5], Erdős *et al.* investigated whether there exists a set A for which $\mathbb{N} \setminus A$ is infinite and the representation functions are monotone increasing from a certain point on. They proved the following theorems.

THEOREM A. The function $R_{A,2}(n)$ is monotonically increasing from a certain point on if and only if the sequence A contains all the integers from a certain point on, that is, there exists an integer n_1 with

$$A \cap \{n_1, n_1 + 1, n_1 + 2, \dots\} = \{n_1, n_1 + 1, n_1 + 2, \dots\}.$$

THEOREM B. There exists an infinite set $A \subseteq \mathbb{N}$ such that $A(n) < n - cn^{1/3}$ for $n > n_0$ and $R_{A,2}^{<}(n)$ is monotone increasing from a certain point on.

THEOREM C. If

$$A(n) = o\left(\frac{n}{\log n}\right),$$

then the functions $R_{A,2}^{<}(n)$ and $R_{A,2}^{\leq}(n)$ cannot be monotonically increasing in n from a certain point on.

THEOREM D. If $A \subseteq \mathbb{N}$ is an infinite set with

$$\lim_{n\to\infty}\frac{n-A(n)}{\log n}=\infty,$$

then $R_{A,2}^{\leq}(n)$ cannot be monotone increasing from a certain point on.

The last theorem was proved independently by Balasubramanian [1]. Very little is known when k > 2. The following result was proved many years ago in [8] and independently in [6].

THEOREM E. If k is an integer with k > 2, $A \subseteq \mathbb{N}$ and $R_{A,k}(n)$ is monotonically increasing in n from a certain point on, then

$$A(n) = o\left(\frac{n^{2/k}}{(\log n)^{2/k}}\right)$$

cannot hold.

Dombi [3] constructed sets A of asymptotic density $\frac{1}{2}$ such that for k > 4, the function $R_{A,k}(n)$ is monotone increasing from a certain point on. His constructions are based on the Rudin–Shapiro sets and Thue–Morse sequences. However, Dombi gave the following conjecture.

DOMBI'S CONJECTURE. If $\mathbb{N} \setminus A$ is infinite, then $R_{A,k}(n)$ cannot be strictly increasing.

For $k \ge 3$, Bell and Shallit [2] recently gave a counterexample of Dombi's conjecture by applying tools from automata theory and logic. They also proved the following result.

THEOREM F. Let k be an integer with $k \ge 3$ and let $F \subseteq \mathbb{N}$ with $0 \notin F$. If $F(n) = o(n^{\alpha})$ for $\alpha < (k-2)/k$ and $A = \mathbb{N} \setminus F$, then $R_{A,k}(n)$ is eventually strictly increasing.

In this paper, we improve this result in the following theorem.

THEOREM 1.1. Let k be an integer with $k \geq 3$. If $A \subseteq \mathbb{N}$ satisfies

$$A(n) \le \frac{n^{(k-2)/(k-1)}}{\sqrt[k-1]{(k-2)!}} - 2$$

for all sufficiently large integers n, then $R_{\mathbb{N}\setminus A,k}(n)$ is eventually strictly increasing.

In particular, for k = 3, this gives the following corollary.

COROLLARY 1.2. If $A \subseteq \mathbb{N}$ satisfies $A(n) \leq \sqrt{n} - 2$ for all sufficiently large integers n, then $R_{\mathbb{N} \setminus A, 3}(n)$ is eventually strictly increasing.

After we uploaded our paper to arXiv, we were informed that Mihalis Kolountzakis proved in an unpublished note that if $A \subseteq \mathbb{N}$ satisfies $A(n) \le c\sqrt{n}$ for a sufficiently small positive constant c, then $R_{\mathbb{N}\backslash A,3}(n)$ is eventually strictly increasing. We improve the constant factor in the following result.

THEOREM 1.3. If $A \subseteq \mathbb{N}$ satisfies $A(n) \leq (2/\sqrt{3})\sqrt{n} - 2$ for all sufficiently large integers n, then $R_{\mathbb{N}\setminus A,3}(n)$ is eventually strictly increasing.

It turns out from the next theorem that the upper bound for the counting function of *A* in Theorem 1.1 is tight up to a constant factor.

THEOREM 1.4. Suppose that f(n) is a function satisfying $f(n) \to \infty$ as $n \to \infty$. Then there is a set $A \subseteq \mathbb{N}$ such that $A(n) < \sqrt[k-1]{k-1} \cdot n^{(k-2)/(k-1)} + f(n)$ for all sufficiently large integers n and $R_{\mathbb{N}\setminus A,k}(n) < R_{\mathbb{N}\setminus A,k}(n-1)$ for infinitely many positive integers n.

Shallit [7] recently constructed a set A with positive lower asymptotic density such that the function $R_{\mathbb{N}\setminus A,3}(n)$ is strictly increasing.

2. Proofs

The proofs of the theorems are based on the next lemma, coming from Bell and Shallit's paper [2] although not explicitly stated there.

LEMMA 2.1. For any positive integers n and k with $k \ge 3$,

$$R_{\mathbb{N}\backslash A,k}(n) - R_{\mathbb{N}\backslash A,k}(n-1) = \binom{n+k-2}{k-2} + \sum_{i=1}^{k-2} \binom{k}{i} (-1)^i \left(\sum_{m=0}^n \binom{m+k-i-2}{k-i-2} R_{A,i}(n-m) \right) + (-1)^{k-1} k R_{A,k-1}(n) + (-1)^k (R_{A,k}(n) - R_{A,k}(n-1)).$$

PROOF. Observe that

$$(1-x)(G_{\mathbb{N}\backslash A}(x))^k = \sum_{n=0}^{\infty} R_{\mathbb{N}\backslash A,k}(n)x^n - \sum_{n=0}^{\infty} R_{\mathbb{N}\backslash A,k}(n)x^{n+1}$$
$$= R_{\mathbb{N}\backslash A,k}(0) + \sum_{n=1}^{\infty} (R_{\mathbb{N}\backslash A,k}(n) - R_{\mathbb{N}\backslash A,k}(n-1))x^n.$$

However,

$$(1-x)((G_{\mathbb{N}\backslash A})(x))^{k} = (1-x)\left(\frac{1}{1-x} - G_{A}(x)\right)^{k} = (1-x)\sum_{i=0}^{k} \binom{k}{i} \frac{(-1)^{i}}{(1-x)^{k-i}} G_{A}(x)^{i}$$

$$= \frac{1}{(1-x)^{k-1}} + \sum_{i=1}^{k-2} \binom{k}{i} \frac{(-1)^{i}}{(1-x)^{k-i-1}} G_{A}(x)^{i} + (-1)^{k-1} k G_{A}(x)^{k-1} + (-1)^{k} (1-x) G_{A}(x)^{k}.$$

It is well known that

$$\frac{1}{(1-x)^m} = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} x^n.$$

It follows that

$$\begin{split} R_{\mathbb{N}\backslash A,k}(0) &+ \sum_{n=1}^{\infty} (R_{\mathbb{N}\backslash A,k}(n) - R_{\mathbb{N}\backslash A,k}(n-1))x^{n} \\ &= \sum_{n=0}^{\infty} \binom{n+k-2}{k-2} x^{n} + \sum_{i=1}^{k-2} (-1)^{i} \binom{k}{i} \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{m+k-i-2}{k-i-2} R_{A,i}(n-m) \right) x^{n} \\ &+ (-1)^{k-1} k \sum_{n=0}^{\infty} R_{A,k-1}(n)x^{n} + (-1)^{k} R_{A,k}(0) + (-1)^{k} \sum_{n=0}^{\infty} (R_{A,k}(n) - R_{A,k}(n-1))x^{n}. \end{split}$$

By comparing the coefficient of x^n on both sides of this equation, Lemma 2.1 follows immediately.

PROOF OF THEOREM 1.1. Clearly,

$$R_{A,i}(n) = |\{(a_1, a_2, \dots, a_i) \in A^i : a_1 + a_2 + \dots + a_i = n\}|$$

$$\leq |\{(a_1, a_2, \dots, a_{i-1}) \in A^{i-1} : a_1, a_2, \dots, a_{i-1} \leq n\}| = A(n)^{i-1}.$$

By Lemma 2.1, there exist constants c_1, c_2, c_3, c_4 only depending on k such that

$$\begin{split} R_{\mathbb{N}\backslash A,k}(n) - R_{\mathbb{N}\backslash A,k}(n-1) \\ &= \binom{n+k-2}{k-2} + \sum_{i=1}^{k-2} \binom{k}{i} (-1)^i \left(\sum_{m=0}^n \binom{m+k-i-2}{k-i-2} R_{A,i}(n-m) \right) \\ &+ (-1)^{k-1} k R_{A,k-1}(n) + (-1)^k (R_{A,k}(n) - R_{A,k}(n-1)) \\ &\geq \frac{n^{k-2}}{(k-2)!} - \sum_{i=1}^{k-2} 2^k \sum_{m=0}^n \binom{m+k-i-2}{k-i-2} A(n)^{i-1} - k R_{A,k-1}(n) - A(n)^{k-1} \\ &\geq \frac{n^{k-2}}{(k-2)!} - \sum_{i=1}^{k-2} 2^k A(n)^{i-1} \binom{n+k-i-1}{k-i-2} \\ &- k \left(\frac{n^{(k-2)/(k-1)}}{\frac{k-1}{\sqrt{(k-2)!}}} \right)^{k-2} - \left(\frac{n^{(k-2)/(k-1)}}{\frac{k-1}{\sqrt{(k-2)!}}} - 2 \right)^{k-1} \\ &\geq \frac{n^{k-2}}{(k-2)!} - c_1 \sum_{i=1}^{k-2} A(n)^{i-1} n^{k-i-2} - k \cdot \frac{n^{(k-2)^2/(k-1)}}{((k-2)!)^{(k-2)/(k-1)}} \\ &- \left(\frac{n^{k-2}}{(k-2)!} - 2(k-1) \frac{n^{(k-2)^2/(k-1)}}{((k-2)!)^{(k-2)/(k-1)}} + c_2 n^{(k-2)(k-3)/(k-1)} \right) \\ &\geq \frac{n^{k-2}}{(k-2)!} - c_3 n^{k-3} - k \frac{n^{(k-2)^2/(k-1)}}{((k-2)!)^{(k-2)/(k-1)}} + c_2 n^{(k-2)(k-3)/(k-1)} \right) \\ &= \frac{k-2}{((k-2)!)^{(k-2)/(k-1)}} \cdot n^{(k-2)^2/(k-1)} - c_4 n^{k-3}. \end{split}$$

Hence, $R_{\mathbb{N}\backslash A,k}(n) - R_{\mathbb{N}\backslash A,k}(n-1) > 0$ when *n* is large enough.

LEMMA 2.2. For any set A of natural numbers and for any natural number n, one has $R_{A,3}(n) \le \frac{3}{4}A(n)^2 + \{\frac{1}{4}A(n)^2\}$, where $\{x\}$ denotes the fractional part of x.

Note that Lemma 2.2 is sharp: if $A = \{0, 1, \dots, m\}$, then

$$R_{A,3}\left(\left\lfloor \frac{3m}{2}\right\rfloor\right) = \frac{3}{4}A\left(\left\lfloor \frac{3m}{2}\right\rfloor\right)^2 + \left\{\frac{A(\lfloor 3m/2\rfloor)^2}{4}\right\},\,$$

where $\lfloor y \rfloor$ denotes the maximal integer not greater than y.

PROOF OF LEMMA 2.2. Fix a natural number n. Let $A \cap [1, n] = \{a_1 < a_2 < \dots < a_m\}$ and $\overline{A} = \{n - a_m < n - a_{m-1} < \dots < n - a_1\}$. For $i = 1, 2, \dots, m$, we define

$$A_i = \{a_i + a_1 < a_i + a_2 < \dots < a_i + a_{m+1-i} < a_{i+1} + a_{m+1-i} < \dots < a_m + a_{m+1-i}\}.$$

Clearly,

$$R_{A,3}(n) = \sum_{i=1}^{m} |A_i \cap \overline{A}| \le \sum_{i=1}^{m} \min\{2m - 2i + 1, m\}$$

$$= \sum_{i=1}^{\lfloor m/2 \rfloor} m + \sum_{i=\lfloor m/2 \rfloor + 1}^{m} (2m - 2i + 1)$$

$$= m \left\lfloor \frac{m}{2} \right\rfloor + \left(m - \left\lfloor \frac{m}{2} \right\rfloor \right)^2 = \frac{3}{4} m^2 + \left\{ \frac{m^2}{4} \right\}.$$

PROOF OF THEOREM 1.3. Applying Lemma 2.1 for k = 3,

$$R_{\mathbb{N}\backslash A,3}(n) - R_{\mathbb{N}\backslash A,3}(n-1)$$

$$= n+1-3\sum_{m=0}^{n} R_{A,1}(n-m) + 3R_{A,2}(n) - (R_{A,3}(n) - R_{A,3}(n-1))$$

$$= n+1-3A(n) + 3R_{A,2}(n) - (R_{A,3}(n) - R_{A,3}(n-1)).$$

Hence, by Lemma 2.2,

$$R_{\mathbb{N}\backslash A,3}(n) - R_{\mathbb{N}\backslash A,3}(n-1) \ge n+1-3A(n) - R_{A,3}(n)$$

$$\ge n+1-3\left(\frac{2}{\sqrt{3}}\sqrt{n}-2\right) - \frac{3}{4}\left(\frac{2}{\sqrt{3}}\sqrt{n}-2\right)^2 - \frac{1}{4} = \frac{15}{4} > 0,$$

which completes the proof.

PROOF OF THEOREM 1.4. We may suppose that $f(n) < \sqrt[k-1]{k-1} \cdot n^{(k-2)/(k-1)}$. We define an infinite sequence of natural numbers N_1, N_2, \ldots by induction. Let $N_1 = 100k^4$. Assume that N_1, \ldots, N_j are already defined. Let N_{j+1} be an even number with $N_{j+1} > 100k^4N_j^{k-1}$ and $f(n) > (k-1)(N_1^{k-2} + \cdots + N_j^{k-2})$ for every $n \ge N_{j+1}$. We define the set A by

$$A = \bigcup_{j=1}^{\infty} \{N_j, 2N_j, 3N_j, \dots, (k-1)N_j^{k-1}\}.$$

First, we give an upper estimation for A(n). Let $n \ge 100k^4$. Then there exists an index j such that $N_j \le n < N_{j+1}$. Define l as the largest integer with $l \le (k-1)N_j^{k-2}$ and $lN_j \le n$. Then,

$$\begin{split} &A(n) - \sqrt[k-1]{k-1} n^{(k-2)/(k-1)} \\ &\leq (k-1)(N_1^{k-2} + \dots + N_j^{k-2}) + l - \sqrt[k-1]{k-1} (lN_j)^{(k-2)/(k-1)} \\ &= (k-1)(N_1^{k-2} + \dots + N_j^{k-2}) + l^{(k-2)/(k-1)} (l^{1/(k-1)} - (k-1)^{1/(k-1)} N_j^{(k-2)/(k-1)}) \\ &\leq f(n), \end{split}$$

which implies that

$$A(n) < \sqrt[k-1]{k-1} \cdot n^{(k-2)/(k-1)} + f(n).$$

Next, we shall prove that there exist infinitely many positive integers n such that $R_{\mathbb{N}\backslash A,k}(n) < R_{\mathbb{N}\backslash A,k}(n-1)$. To prove this, we divide into two cases according to the parity of k.

Suppose that k is an odd integer. For j = 1, 2, ..., we define

$$u_j = (k-1)N_j^{k-1} + 100(k-2)(k-1)^3 N_j^{k-2}.$$

Now, we show that $R_{\mathbb{N}\setminus A,k}(u_j) < R_{\mathbb{N}\setminus A,k}(u_j-1)$ when *j* is large enough.

Since all the elements of *A* are even and $u_j - 1$ is odd, it follows that $R_{A,k}(u_j - 1) = 0$. By Lemma 2.1,

$$R_{\mathbb{N}\backslash A,k}(u_{j}) - R_{\mathbb{N}\backslash A,k}(u_{j} - 1)$$

$$= \binom{u_{j} + k - 2}{k - 2} + \sum_{i=1}^{k-2} \binom{k}{i} (-1)^{i} \left(\sum_{m=0}^{u_{j}} \binom{m + k - i - 2}{k - i - 2} \right) R_{A,i}(u_{j} - m) \right)$$

$$+ (-1)^{k-1} k R_{A,k-1}(u_{j}) + (-1)^{k} (R_{A,k}(u_{j}) - R_{A,k}(u_{j} - 1))$$

$$\leq \binom{u_{j} + k - 2}{k - 2} + k^{2} \left(\sum_{m=0}^{u_{j}} \binom{m + k - 4}{k - 4} R_{A,2}(u_{j} - m) \right)$$

$$+ \sum_{i=3}^{k-2} 2^{k} \sum_{m=0}^{u_{j}} \binom{m + k - i - 2}{k - i - 2} A(u_{j})^{i-1} + k R_{A,k-1}(u_{j}) - R_{A,k}(u_{j}). \tag{2.1}$$

Next we shall give a bound for each term of the right-hand side of (2.1). There exists a constant c_5 only depending on k such that

$$\binom{u_j + k - 2}{k - 2} \le \frac{(k - 1)^{k - 2} N_j^{k^2 - 3k + 2} + 100(k - 2)^2 (k - 1)^k N_j^{k^2 - 3k + 1} + c_5 N_j^{k^2 - 3k}}{(k - 2)!}$$
(2.2)

and

$$k^{2} \sum_{m=0}^{u_{j}} {m+k-4 \choose k-4} R_{A,2}(u_{j}-m) \leq k^{2} \sum_{m=0}^{u_{j}} {m+k-4 \choose k-4} A(u_{j}-m)$$

$$\leq k^{2} \sum_{m=0}^{u_{j}} {m+k-4 \choose k-4} A(kN_{j}^{k-1}) \leq k^{2} \sum_{m=0}^{u_{j}} {m+k-4 \choose k-4} 2^{k-1} \sqrt{k-1} (kN_{j}^{k-1})^{(k-2)/(k-1)}$$

$$\leq k^{2} \sum_{m=0}^{u_{j}} {m+k-4 \choose k-4} 2kN_{j}^{k-2} = 2k^{3}N_{j}^{k-2} {u_{j}+k-3 \choose k-3}$$

$$\leq 2k^{3}N_{j}^{k-2} {kN_{j}^{k-1} \choose k-3} \leq \frac{2k^{k}}{(k-3)!} N_{j}^{k^{2}-3k+1}. \tag{2.3}$$

Furthermore,

$$\sum_{i=3}^{k-2} 2^k \sum_{m=0}^{u_j} {m+k-i-2 \choose k-i-2} A(u_j)^{i-1}
\leq c_6 \sum_{i=3}^{k-2} 2^k \sum_{m=0}^{u_j} {m+k-i-2 \choose k-i-2} ((N_j^{k-1})^{(k-2)/(k-1)})^{i-1}
\leq c_6 \sum_{i=3}^{k-2} 2^k N_j^{(k-2)(i-1)} \sum_{m=0}^{u_j} {m+k-i-2 \choose k-i-2}
= c_6 \sum_{i=3}^{k-2} 2^k N_j^{(k-2)(i-1)} {u_j+k-i-1 \choose k-i-1}
\leq c_7 \sum_{i=3}^{k-2} N_j^{(k-2)(i-1)} \cdot N_j^{(k-1)(k-i-1)} = c_7 \sum_{i=3}^{k-2} N_j^{k^2-3k-i+3} \leq c_8 N_i^{k^2-3k}, \quad (2.4)$$

where c_6 , c_7 and c_8 are constants only depending on k. Moreover,

$$R_{A,k-1}(u_j)) \le A(u_j)^{k-2} \le A(kN_j^{k-1})^{k-2}$$

$$\le (2^{k-1}\sqrt{k-1}(kN_j^{k-1})^{(k-2)/(k-1)})^{k-2} \le (2k)^{k-2}N_j^{(k-2)^2}.$$
(2.5)

Obviously,

$$R_{A,k}(u_i)$$

$$\geq \left| \left\{ (x_1, \dots, x_k) \in (\mathbb{Z}^+)^k : \sum_{t=1}^k x_t = u_j, N_j \mid x_t, x_t \le (k-1)N_j^{k-1} \text{ for } t = 1, \dots, k \right\} \right|$$

$$= \left| \left\{ (y_1, \dots, y_k) \in (\mathbb{Z}^+)^k : \sum_{t=1}^k y_t = \frac{u_j}{N_j}, y_t \le (k-1)N_j^{k-2} \text{ for } t = 1, \dots, k \right\} \right|$$

$$= \left| \left\{ (y_1, \dots, y_k) \in (\mathbb{Z}^+)^k : \sum_{t=1}^k y_t = \frac{u_j}{N_j} \right\} \right|$$

$$- \left| \left\{ (y_1, \dots, y_k) \in (\mathbb{Z}^+)^k : \sum_{t=1}^k y_t = \frac{u_j}{N_j}, y_t > (k-1)N_j^{k-2} \text{ for some } t \in \{1, \dots, k\} \right\} \right|.$$

We see that

$$\left| \left\{ (y_1, \dots, y_k) \in (\mathbb{Z}^+)^k : y_1 + \dots + y_k = \frac{u_j}{N_j} \right\} \right|$$

$$= \binom{u_j/N_j - 1}{k - 1} \ge \frac{N_j^{k^2 - 3k + 2} + 100(k - 2)(k - 1)^{k + 2}N_j^{k^2 - 3k + 1} + c_9N_j^{k^2 - 3k}}{(k - 1)!},$$

where c_9 is a constant only depending on k, and

$$\left| \left\{ (y_1, \dots, y_k) \in (\mathbb{Z}^+)^k : \sum_{t=1}^k y_t = \frac{u_j}{N_j}, \ y_t > (k-1)N_j^{k-2} \text{ for some } t \in \{1, \dots, k\} \right\} \right|$$

$$= k |\{(z_1, \dots, z_k) \in (\mathbb{Z}^+)^k : z_1 + \dots + z_k = 100(k-2)(k-1)^3 N_j^{k-3}\}|$$

$$\leq k (100(k-2)(k-1)^3)^k N_i^{k^2 - 3k}.$$

The last equality holds because if $y_1 + \cdots + y_k = u_j/N_j$ with $y_t > (k-1)N_i^{k-1}$, then

$$y_1 + \dots + y_{t-1} + (y_t - (k-1)N_j^{k-2}) + y_{t+1} + \dots + y_k = 100(k-2)(k-1)^3 N_j^{k-3},$$

where every term is positive. Furthermore, if $z_1 + \cdots + z_k = 100(k-2)(k-1)^3 N_j^{k-3}$, $z_i \in \mathbb{Z}^+$, then one can create k different sums of the form $y_1 + \cdots + y_k = u_j/N_j$ with $y_i = z_i$ if $i \neq t$ and $y_t = z_t + (k-1)N_j^{k-2}$. Therefore,

$$R_{A,k}(u_j) \ge \frac{(k-1)^{k-1} N_j^{k^2 - 3k + 2} + 100(k-2)(k-1)^{k+2} N_j^{k^2 - 3k + 1} + c_{10} N_j^{k^2 - 3k}}{(k-1)!},$$
(2.6)

where c_{10} is a constant. In view of (2.1)–(2.6),

$$\begin{split} R_{\mathbb{N}\backslash A,k}(u_{j}) - R_{\mathbb{N}\backslash A,k}(u_{j}-1) \\ & \leq \frac{(k-1)^{k-2}N_{j}^{k^{2}-3k+2} + 100(k-2)^{2}(k-1)^{k}N_{j}^{k^{2}-3k+1} + c_{5}N_{j}^{k^{2}-3k}}{(k-2)!} \\ & + \frac{2k^{k}}{(k-3)!}N_{j}^{k^{2}-3k+1} + c_{8}N_{i}^{k^{2}-3k} + (2k)^{k-2}N_{j}^{(k-2)^{2}} \\ & - \frac{(k-1)^{k-1}N_{j}^{k^{2}-3k+2} + 100(k-2)(k-1)^{k+2}N_{j}^{k^{2}-3k+1} + c_{10}N_{j}^{k^{2}-3k}}{(k-1)!} \\ & = \left(\frac{2k^{k}}{(k-3)!} - 100\frac{(k-1)^{k}}{(k-3)!}\right)N_{j}^{k^{2}-3k+1} + (2k)^{k-2}N_{j}^{(k-2)^{2}} + c_{11}N_{j}^{k^{2}-3k}, \end{split}$$

where c_{11} is a constant. Thus, we have $R_{\mathbb{N}\setminus A,k}(u_j) < R_{\mathbb{N}\setminus A,k}(u_j-1)$ when j is large enough.

If k is even, then the same argument shows that $R_{\mathbb{N}\backslash A,k}(u_j+1) < R_{\mathbb{N}\backslash A,k}(u_j)$ when j is large enough.

References

- [1] B. Balasubramanian, 'A note on a result of Erdős, Sárközy and Sós', Acta Arith. 49 (1987), 45-53.
- [2] J. P. Bell and J. Shallit, 'Counterexamples to a conjecture of Dombi in additive number theory', Acta Math. Hungar. 169 (2023), 562–565.
- [3] G. Dombi, 'Additive properties of certain sets', *Acta Arith.* **49** (1987), 45–53.
- [4] P. Erdős, A. Sárközy and V. T. Sós, 'Problems and results on additive properties of general sequences IV', in: *Number Theory: Proceedings, Ootacamund, India, 1984*, Lecture Notes in Mathematics, 1122 (ed. K. Alladi) (Springer-Verlag, Berlin–Heidelberg, 1985), 85–104.

- [5] P. Erdős, A. Sárközy and V. T. Sós, 'Problems and results on additive properties of general sequences V', Monatsh. Math. 102 (1986), 183–197.
- [6] S. Z. Kiss, 'On the monotonicity of an additive representation function', *Publ. Math. Debrecen* 73 (2008), 489–495.
- [7] J. Shallit, 'A Dombi counterexample with positive lower density', Preprint, 2023, arXiv:2302.02138.
- [8] M. Tang, 'Some extensions of additive properties of general sequences', *Bull. Aust. Math. Soc.* **73** (2006), 139–146.

SÁNDOR Z. KISS, Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary e-mail: ksandor@math.bme.hu

CSABA SÁNDOR, Department of Stochastics,
Institute of Mathematics, Budapest University of Technology and Economics,
Műegyetem rkp. 3., H-1111 Budapest, Hungary;
Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,
Műegyetem rkp. 3., H-1111 Budapest, Hungary;
MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH,
Műegyetem rkp. 3., H-1111 Budapest, Hungary
e-mail: csandor@math.bme.hu

QUAN-HUI YANG, School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, PR China

e-mail: yangquanhui01@163.com