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Abstract

Let k > 2 be an integer and let A be a set of nonnegative integers. The representation function R4 x(n) for
the set A is the number of representations of a nonnegative integer n as the sum of k terms from A. Let A(n)
denote the counting function of A. Bell and Shallit [ ‘Counterexamples to a conjecture of Dombi in additive
number theory’, Acta Math. Hung., to appear] recently gave a counterexample for a conjecture of Dombi
and proved that if A(n) = o(n*=2/¥=€) for some € > 0, then Ry\44(n) is eventually strictly increasing. We
improve this result to A(n) = O(n*=2/*=Dy We also give an example to show that this bound is best
possible.
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Keywords and phrases: additive number theory, additive representation function, monotonicity.

1. Introduction

Let N be the set of nonnegative integers and let A be a subset of nonnegative integers.
We use A” to denote the Cartesian product of n sets A, that is,

A" ={(ay,a,...,a,) : ay,as,...,a, €A}
Let

k.
Rax(n) =l{(ar,az,...,ar) €A” :ay + ax + -+~ + ar = nj,
k
R;k(n)z|{(a|,a2,...,ak)€A raytay+--tag=n,a; <day<--- <ap}l,

Rjk(n)=I{(al,az,...ak)eAk:a1+a2+---+ak=n,a1 <ap <o Zall,

where | - | denotes the cardinality of a finite set. We say that Ry x(n) is monotonically
increasing in n from a certain point on (or eventually monotone increasing) if there
exists an integer np such that Ry x(n + 1) > R4 x(n) for all integers n > ny. We define
the monotonicity of the other two representation functions thk(n) and Rik(n) in
the same way.
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We denote the counting function of the set A by

An) = Z 1.

asn
We define the lower asymptotic density of a set A of natural numbers by

lim inflM

n—co n

and the asymptotic density by

lim M

n—oo n

whenever the limit exists. The generating function of a set A of natural numbers is

denoted by
Galx) = ) x".

acA

Obviously, if N \ A is finite, then each of the functions RA,Z(n),RZz(n) and Riz(n)
is eventually monotone increasing. In [4, 5], Erdds et al. investigated whether there
exists a set A for which N \ A is infinite and the representation functions are monotone
increasing from a certain point on. They proved the following theorems.

THEOREM A. The function Rs(n) is monotonically increasing from a certain point
on if and only if the sequence A contains all the integers from a certain point on, that
is, there exists an integer ny with

Anf{n,n+1Ln +2,...}={n,n+Ln +2,...}.

THEOREM B. There exists an infinite set A C N such that A(n) < n — cn'’® for n > ng
and R} ,(n) is monotone increasing from a certain point on.

THEOREM C. If

A(n)=0( " ),

logn

then the functions RZ,Z(H) and Riz(n) cannot be monotonically increasing in n from a
certain point on.

THEOREM D. IfA C N is an infinite set with

. n—A(n)
lim ———— =
n—co  logn

then R/f ,(n) cannot be monotone increasing from a certain point on.

The last theorem was proved independently by Balasubramanian [1]. Very little
is known when k > 2. The following result was proved many years ago in [8] and
independently in [6].
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THEOREM E. If k is an integer with k> 2, A CN and Ra(n) is monotonically
increasing in n from a certain point on, then

2k
=
" =X Gognpt
cannot hold.

Dombi [3] constructed sets A of asymptotic density % such that for k > 4, the
function R4 4(n) is monotone increasing from a certain point on. His constructions
are based on the Rudin—Shapiro sets and Thue—Morse sequences. However, Dombi
gave the following conjecture.

DOMBI’S CONJECTURE. If N\ A is infinite, then R4 x(7) cannot be strictly increasing.

For k > 3, Bell and Shallit [2] recently gave a counterexample of Dombi’s conjec-
ture by applying tools from automata theory and logic. They also proved the following
result.

THEOREM F. Let k be an integer with k > 3 and let F C N with 0 ¢ F. If F(n) = o(n®)
fora < (k—2)/kand A = N\ F, then Ry x(n) is eventually strictly increasing.

In this paper, we improve this result in the following theorem.

THEOREM 1.1. Let k be an integer with k > 3. If A C N satisfies
nk=2)/(k=1)

- -2
Yk =2)!

for all sufficiently large integers n, then Ry\a x(n) is eventually strictly increasing.

A(n) <

In particular, for k = 3, this gives the following corollary.

COROLLARY 1.2. IfA C N satisfies A(n) < \n — 2 for all sufficiently large integers n,
then Ry\a3(n) is eventually strictly increasing.

After we uploaded our paper to arXiv, we were informed that Mihalis Kolountzakis
proved in an unpublished note that if A C N satisfies A(n) < cvn for a sufficiently
small positive constant ¢, then Ry 3(n) is eventually strictly increasing. We improve
the constant factor in the following result.

THEOREM 1.3. If A C N satisfies A(n) < (2/N3)\n — 2 for all sufficiently large inte-
gers n, then Rya3(n) is eventually strictly increasing.

It turns out from the next theorem that the upper bound for the counting function of
A in Theorem 1.1 is tight up to a constant factor.

THEOREM L1.4. Suppose that f(n) is a function satisfying f(n) — oo as n — oo. Then
there is a set A CN such that A(n) < Vk — 1 - n®2/%D 4 £(n) for all sufficiently
large integers n and Ry 1 (n) < Raax(n — 1) for infinitely many positive integers n.

Shallit [7] recently constructed a set A with positive lower asymptotic density such
that the function Ry\43(n) is strictly increasing.
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2. Proofs

The proofs of the theorems are based on the next lemma, coming from Bell and
Shallit’s paper [2] although not explicitly stated there.

LEMMA 2.1. For any positive integers n and k with k > 3,

k-2 Sk (L k—i-2
Rusai(n) = Rinaxln = 1) = (" s ) Y (l.)<—1)’( D (’”;_ - )RA,i(n - m))

i=1 m=0
+ (=D kR o1 () + (1D (Rax(n) — Rax(n — 1)),
PROOF. Observe that

(1 = x)(Gaax))t = Z Rinax(n)x" — Z Rynax(m)x"*!
n=0 n=0

= R x(0) + Z(RN\A,k(n) — Raax(n = 1)x".

n=1

However,

5 (k) (=1)
(1= (Grn@) = (1 -0 = - Gaw) ‘<1‘X>Z(l) =
i=0

1 Sy =y
> ( ,)—.GA(x)i + (=D RGA@ ! + (DR = 0Ga ).
~i\i)(1

T e

It is well known that

1 N (n+m-—1
= X"
1 —=xym ;( m—1 )
It follows that

Ripax(0) + Z(RN\A,k(n) = Rinax(n = 1)x"

S RSB )

m=0

+(-1*"k Z Ra k1 (M + (=1 Rai(0) + (= D! 3" (Rasln) = Ry = )",
n=0 n=0
By comparing the coefficient of x" on both sides of this equation, Lemma 2.1 follows
immediately. ]

PROOF OF THEOREM 1.1. Clearly,
Rai(n) = l{(ar, a2, ...,a) €A tay +ap + -+ +a; = nl

i-1 . -1
<W(ai,az,...,ai-1) €A tay,az,...,ai-1 <}l =Am)" .
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By Lemma 2.1, there exist constants cy, ¢, ¢3, ¢4 only depending on k such that

Rywa () — Ryax(n—1)

(T B S )

i=1 m=0

- (—l)k‘lkRA k-1(1) + (=D¥(Rax(n) = Rax(n — 1))

k-
(k 2)! Z Z(m+ )A( )7 = kRaj-1(n) = A

k—2

+k 1
zkA i—1 n
= k-2 Z o ( 1—2)
(l’l(k 2)/(k 1) )k 2 (n(k 2)/(k—1) )k—l

4 e
&k =2)! Nk =2)!

) k=2 n*=2?/(=1)

>————c; » A 'nT -k —
(k—2)! Z‘ ((k — 2)! )k=2/Gk=1)

( k2 =27/ (k=1)

\(k-2)! (k= 2)HE /& F 2

k2 3 n*=2/G=1)

Zh- 9" T k((k —2)1 k=27
n2 (k= Dpk-P 0D
- ((k "1 (k= 2))ED/k=D)
B k=2
T (k= 2)!)k=2)/(k=1)

(k=2)*/(k=1) _ c4nk—3 )

Hence, Riax(n) — Ryax(n — 1) > 0 when n is large enough.

2k —1) ¢ n(k—zxk—3>/(k—1>)

‘e n(k—2><k—3>/<k—1>)

O

LEMMA 2.2. For any set A of natural numbers and for any natural number n, one has
Ry3(n) < %A(n)2 + {%A(n)z}, where {x} denotes the fractional part of x.

Note that Lemma 2.2 is sharp: if A = {0, 1,...,m}, then

o) A

where |y] denotes the maximal integer not greater than y.

h

PROOF OF LEMMA 2.2. Fix a natural number n. Let A N [1,n] =
andA={n-a,<n—au,.1 <---<n-a}.Fori=1,2,...,m, we define

Ai={ai+a <a;+ar <- - <a;+auy1—i <Aig1 + Quy1—; < -+
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Clearly,

Ras(m) = " 1A; NA| < " min{2m = 2i+ 1,m)
i=1 i=1
lm/2] m

:Zm+ Z Qm=2i+1)
i=1 i=lm/2]+1
2 2
R R A

PROOF OF THEOREM 1.3. Applying Lemma 2.1 for k = 3,
Rawaz(n) — Riwas(n—1)

=n+1-3%" Rai(n=m)+3Ras(n) = (Ra3(n) = Raz(n— 1))

m=0

=n+1- 3A(l’l) + 3RA,2(I’Z) - (RA’3(71) - RA’3(I’1 — 1))
Hence, by Lemma 2.2,

Ryu3(m) — Riaz(n—1)2n+1-3A0) — Ry3(n)

2 2 21
Zn+1—3(—\/r_1—2)—§(—\/r_1—2)——=—5>O,

\V3 4\\3 4 4
which completes the proof. ]
PROOF OF THEOREM 1.4. We may suppose that f(n) < Vk—1-n*2/E=D We
define an infinite sequence of natural numbers N, N,,... by induction. Let N} =

100k*. Assume that Ny, ... ,N; are already defined. Let N;,; be an even number with
Njsi > 1001(41\/]{“1 and f(n) > (k— DNE2 + -+ + N]{“Z) for every n > Nj,;. We define
the set A by

A=| JIN,2N;,3N;,..., (k- 1)Nf-1},

j=

First, we give an upper estimation for A(n). Let n > 100k*. Then there exists an
index j such that N; < n < Nj,;. Define [ as the largest integer with [ < (k — I)Nf‘2 and
IN; < n. Then,

A(n) = Vi = In*2/6=D
< (k= D2+ + N2 + 1= Vi = TN 2/
= (k= DIVE? 4+ 4 NE2) 4 (60D UG g -y E=2/6D)
< f(n),
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which implies that
A(n) < V=1 - n®DIED 4 £y,

Next, we shall prove that there exist infinitely many positive integers n such that
Riwnai(n) < Ryax(n—1). To prove this, we divide into two cases according to the
parity of k.

Suppose that & is an odd integer. For j = 1,2,..., we define

wj = (k= DN +100(k — 2)(k — 1)°Nf 2.

Now, we show that Ry x(#;) < Rmax(uj — 1) when j is large enough.
Since all the elements of A are even and u; — 1 is odd, it follows that Ry x(u; — 1) = 0.
By Lemma 2.1,

Rana k() — Rnax(u — 1)

u+k=2\ Sk o (mrk—i-2
) S e

i=1 m=l

+ (=D kR 41 () + (=D (Rax(u;) — Rax(u; — 1))

w+ k-2 L (m+k—4
S(]k_z )+k2(Z;J( k—d )RA,Z(uj_m))

k=2 uj .
SN (m+k—i-2 .
+ Z; 2 Z;)( ‘io )A(uj)' U kRagi () — Rax(uy). (2.1

Next we shall give a bound for each term of the right-hand side of (2.1). There exists
a constant cs5 only depending on k such that

(u, k- 2) 3 (k = DF2NF 362 4 100(k — 2)2(k — 1FNE =30+ 4 ¢sNE =3k

22
k=2 (k- 2)! 2
and
S (m+k—4 SO (m+k—4
kg‘)( ‘4 )RAg(uj—m)Sk Z:;)( o4 JA@=m

< Z]: (m +i€ - 4)A(kNJk_1) <1 d (m ;—f“—- 4)2 k—\l/k_—l(k]\];{_l)(k—Z)/(k—l)

m=0

- kZZ(m+k_4)2kN;“2 _ 2k3N;(_2(uj +k—3)

- o k—4 k-3
kN -1 24k 5
3aTk—2 J k=—3k+1
<26°N| (k—3)s(k—3)!Nf . (2.3)
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Furthermore,
k=2 u;
sz ! (m+k—z— )A( §-1
k J
i= m=0
2 S k-
< k k—1\(k=2)/(k=1)\i—1
Sco) 2 Z( AP )((N ) )
i=3 m=0
= m+k i
k (k=2)(i-1) -t
N
X (i
= ui+k—i—1
_ 2kN(/< -1
06; k—i—1
k=2 k=2
<ec; N(k 2)(i-1) N(k Dk=i=1) _ Z ij[c2—3k—i+3 <cg Nl{cz—3k, (2.4)
i=3 i=3

where cg, ¢7 and cg are constants only depending on k. Moreover,

Rajo1(u)) < Aup) 2 < A(kNj(c—l)k—z

< 2 V= TN E2/yee2 o 2N, 2.5)
Obviously,
Rax(uj)
k
> {(xl,...,xk) €@ Y 3= w Ny | xx < (k= DNE for = lk}‘
t=1
k
"
= {(Yh-..,)’k) VAN Zyt = ]ij,yt < (k- 1)]\/]{‘72 for ¢ = lk}‘
k 0
— +yk . -
=fon e @) D= N

'{(y],...,yk)e(Z+)k Zy, 2, 30> (= DN/ for some r € {1,.. ,k}}‘.

]

We see that
U
‘{(yly.-,yk)E(Z+)k.y1+..-+yk=]71}
J
uj/Nj -1 1\/}62—3k+2 + 100(k _ 2)(k _ 1)k+2]\/;c2—3k+1 + 691\/]{62_3]C
= >
( k-1 )_ *k=1)! ’
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where ¢y is a constant only depending on k, and

‘{(yl,...,yk)e(Z+ Zy, =y y,>(k—1)Nk 2 for some £ € {1, ...,k}}'
= kl{(z1,...,2%) € (Z*)k D2y 2 = 100k — 2)(k — 1 NE)|
< k(100(k — 2)(k — 1 )3)’<N;<2—3’<.
The last equality holds because if y; + -+ + yx = u;/N; with y, > (k - l)N}“l, then
Vit v+ G = (k= DN+ yer + -+ 35 = 1000k = 2)(k = DN,

where every term is positive. Furthermore, if z; + - -+ + zx = 100(k — 2)(k — 1)31\/}“3,
z; € Z*, then one can create k different sums of the form y; +--- + y, = u;/N; with
yi=ziifi#tandy; =z, + (k- l)N;“z. Therefore,

(k _ l)k—ll\jj[cz—3k+2 + IOO(k _ 2)(k _ 1)k+21\6k2—3k+1 + clolvj{cz—3k

Rap(uy) > "1 ,  (2.6)
where ¢ is a constant. In view of (2.1)—(2.6),
Ry k(1) — R — 1)
(k= DF2NFE 362 4 100(k — 2)2(k — 1FNE=3k+1 4 o NE -3
<
- (k-2)!
2kk 2
Nk “3k+ | . Nk YA 2N(k 2)
( =3 (2k)
(k _ l)k—llvj(cz—Sk+2 + 100(k _ 2)(k _ 1)k+21\]]{<2—3k+1 + Clo]vj[cz—3k
- (k—1)!
2k (k - 1) k2 =3k+1 k=2 np(k=2)? K> 3k
—((k_3)!—100(k 3)')1\1 +QONED e N
where ¢y is a constant. Thus, we have Ryax(#)) < Raax(u; —1) when j is large
enough.
If k is even, then the same argument shows that Ry x(4; + 1) < Ryax(u;) when j is
large enough. ]
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