
J. Fluid Mech. (2025), vol. 1010, A57, doi:10.1017/jfm.2025.279

Spectral solver for the oscillatory Stokes
frequency-based equation in doubly periodic
confined domains

Raúl P. Peláez
1
, Pablo Palacios-Alonso

1
and Rafael Delgado-Buscalioni

1,2

1Departamento de Física Teorica del la Materia Condensada, Universidad Autónoma de Madrid, Madrid
E-28049, Spain
2Condensed Matter Physics Center, IFIMAC, Universidad Autónoma de Madrid, Madrid E-28049, Spain
Corresponding author: Rafael Delgado-Buscalioni, rafael.delgado@uam.es

(Received 15 November 2024; revised 13 February 2025; accepted 2 March 2025)

Oscillatory flows induced by a monochromatic forcing frequency ω close to a
planar surface are present in many applications involving fluid–matter interaction such
as ultrasound, vibrational spectra by microscopic pulsating cantilevers, nanoparticle
oscillatory magnetometry, quartz crystal microbalance and more. Numerical solution of
these flows using standard time-stepping solvers in finite domains present important
drawbacks. First, hydrodynamic finite-size effects scale as 1/L2‖ close to the surface and
extend several times the penetration length δ ∼ ω−1/2 in the normal z direction and second,
they demand rather long transient times O(L2

z ) to allow vorticity to diffuse over the
computational domain. We present a new frequency-based scheme for doubly periodic
(DP) domains in free or confined spaces which uses spectral-accurate solvers based on fast
Fourier transform in the periodic (xy) plane and Chebyshev polynomials in the aperiodic
z direction. Following the ideas developed for the steady Stokes solver (Hashemi et al.
J. Chem. Phys. vol. 158, 2023, p. 154101), the computational system is decomposed into
an ‘inner’ domain (where forces are imposed) and an outer domain (where the flow is
solved analytically using plane-wave expansions). Matching conditions leads to a solvable
boundary value problem. Solving the equations in the frequency domain using complex
phasor fields avoids time-stepping and permits a strong reduction in computational time.
The spectral scheme is validated against analytical results for mutual and self-mobility
tensors, including the in-plane Fourier transform of the Green function. Hydrodynamic
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couplings are investigated as a function of the periodic lattice length. Applications are
finally discussed.

Key words: particle/fluid flow, low-reynolds-number flows

1. Introduction
Jean Baptiste Fourier offered an incredibly useful tool to describe intricate phenomena
in the dual frequency space. Fourier analysis is the basis of a huge list of experimental
techniques, either based on spectral analyses (arising from either thermal or chaotic
signals) or on the system response to an oscillatory force with monochromatic frequency.
The latter approach allows tracking the phase delay between the external forcing F(t)
and the system’s response V (t) whose relation generally involves a memory integral
V (t) = ∫

χ(t − t ′)F(t ′)dt ′. The convolution theorem elegantly expresses this relation in
the dual space using (complex) phasor quantities V (ω) = χ(ω)F(ω) to unveil the elastic
(in-phase, Re[χ ]) and dissipative response (out-of-phase, Im[χ ]) encoded in the complex
susceptibility χ(ω). While this route is generally applicable (provided linear response),
the susceptibility function gathers all possible (elastic and inelastic) mechanisms able
to propagate forces to the system. This introduces a serious handicap in experimental
analyses of soft matter (in general) and bio-matter (in particular), because these objects
naturally exist in liquid environments. Thus, to unveil the intrinsic susceptibility of
soft objects in liquid, one first necessarily needs to evaluate the fluid contribution and
then to extract it from the total one χ(ω) measured in experiments. Yet, the analytical
evaluation of the fluid contribution to χ(ω) under oscillatory regimes is a complicated
hydrodynamic problem (particularly when boundaries are present), which has been studied
by various generations of leading experts over at least the last 50 years (see Mazur,
Bedeaux & Mazur 1974b; Pozrikidis 1989; Felderhof 2005; Simha, Mo & Morrison
2018; Fouxon & Leshansky 2018; Fouxon, Rubinstein & Leshansky 2023). This handicap
is currently hampering and significantly blurring the interpretation of many techniques
designed to study the mechanical response of soft biological samples. Some examples are
quartz crystal microbalance (QCM) (Vázquez-Quesada et al. 2020; Schofield & Delgado-
Buscalioni 2021), vibrational spectra from atomic force microscopy (AFM) (de Beer
et al. 2008), AC magnetometry (HAC) and AC susceptibility (ACS) analysis (Zhong
et al. 2019), electrochemical impedance spectroscopy (e.g. of DNA) in liquids, and other
techniques where nonlinear oscillatory hydrodynamics create the driving forces, such as in
ultrasound manipulation (Marmottant & Hilgenfeldt 2003; Bruus 2012) and viscoelastic
response of deformable objects (e.g. vesicles) under oscillatory electric fields (Dimova
et al. 2009; Vlahovska 2015), amongst others. The relevance of hydrodynamics in some of
these experimental devices has attracted the attention of theoretical and simulation groups,
which have proven the dominant contribution of the solute-induced perturbative flows in
QCM (see Meléndez-Schofield et al. 2020; Fouxon et al. 2023; Delgado-Buscalioni 2024),
some of them being able to reproduce experimental results without fitting parameters
(Vázquez-Quesada et al. 2020; Delgado-Buscalioni 2024). Other theoretical analyses have
focused on liquid atomic force microscopy (AFM) (Clarke et al. 2005; Kabarowski &
Khair 2020), ultrasound (Bruus 2012; Balboa Usabiaga & Delgado-Buscalioni 2013) and
optical spectroscopy of pinned elastic membranes (Janeš et al. 2019), to mention a few.
In this contribution, we tackle this problem by presenting a fast and accurate (spectral)
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scheme to solve arbitrary oscillatory flows, more precisely, to calculate the velocity field
arising from arbitrary force field distributions in the fluid.

The Green function for oscillatory force propagation in the free space was analytically
derived a long time ago (Pozrikidis 1989; Kim & Karilla 1991) and Mazur et al. (1974b)
derived exact analytical extensions for the self-mobility of an oscillating rigid sphere of
radius a in incompressible fluids and in compressible fluids (Mazur et al. 1974a). However,
the boundary presence significantly complicates both analytical approaches (Pozrikidis
1989; Fouxon et al. 2023) and numerical solutions, due to the formation of small boundary
layers where the flow is governed by exponential corrections to the dominant potential flow
outside (Fouxon et al. 2023). Felderhof (2005) (see also Felderhof 2009, 2012) offered
important contributions to this problem by analytically deriving an exact expression for
the in-plane Fourier transform of the semi-bounded Green (phasor) tensor. Felderhof used
this result to derive the self-mobility of a point particle at some distance h from the wall,
by including the flow reflected from the wall in the so-called reaction field tensor. The
height-dependent particle mobility results in a diagonal tensor, with different in-plane
and normal-to-plane components. Around a boundary oscillating at angular frequency
ω, momentum spreads exponentially up to a characteristic distance δ = (2ν/ω)1/2 called
the penetration length (here, ν is the kinetic viscosity of the fluid). Simha et al. (2018)
discussed Felderhof’s point-particle approximation and warned about the existence of two
different non-dimensional length scales δ/a and h/a (here, a is the particle radius) whose
smallness might induce the invalidation of the point-particle limit. Indeed, as a finite
particle (large enough a/δ) approaches the wall, the lack of symmetry in the normal-
to-wall direction induces translational–rotational couplings which alter the self-mobility
tensor of a spherical particle (Fouxon et al. 2023). These are absent in free-space (Mazur
et al. 1974b). Notably, the Green tensor of a slippery surface coincides with that of a no-slip
wall if the particle is far enough from the boundary (Fouxon & Leshansky 2018). However,
close to the wall, the no-slip boundary condition introduces higher-order reflections,
ultimately leading to a peculiar oscillatory lubrication regime to be further studied (see
Fouxon et al. 2023; Delgado-Buscalioni 2024). Nevertheless, the wall presence induces
a z-dependent flow which changes in distances of order δ, and thus, for small enough
values of h/a, even the monopole approximation to the self-mobility (averaging the
fluid velocity over the particle volume) differs from the point-particle limit, as we show
here. As explained by Pozrikidis (1989), the Green function in real space cannot be
solved analytically, which precludes a closed solution for the self-mobility and makes
even more difficult the analysis of two-particle mobility tensor (which depends on both
particles’ heights). Despite this limitation, several theoretical contributions have analysed
finite-particles in oscillatory flows under certain asymptotic limits (small particle, long
distance from wall, low frequency) (Fouxon & Leshansky 2018; Fouxon et al. 2023; Zhang
et al. 2023). Recently, Leshansky’s group used the Lorentz reciprocal theorem to derive
relevant analytical relations in several asymptotic regimes, and applied their analysis to
hydrodynamic effects in the QCM response of suspended and adsorbed particles (Fouxon
et al. 2023; Leshansky et al. 2024), which were also explored by some of us (Schofield &
Delgado-Buscalioni 2021; Delgado-Buscalioni 2024). In the temporal realm, and even in
the free-space case, the difficulty to treat memory kernels makes intractable the use of the
Green function formalism to solve the unsteady Stokes equation. Most standard numerical
schemes have solved the oscillatory Stokes equations in the real space and time domains.
QCM studies have been reported using lattice Boltzmann with fixed obstacles (Gillissen
et al. 2018; Gopalakrishna et al. 2021) and using the immersed boundary method for
flexible moving structures (Vázquez-Quesada et al. 2020). Working in the time domain
requires waiting long transient times L2/ν to solve vorticity diffusion over the box and
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reach the homogeneous oscillatory response. The idea of working in the frequency domain
is then quite appropiate and has been used for QCM applications (Gopalakrishna et al.
2021). In the spatial domain though, standard schemes (based on finite boxes closed
in vertical direction) have to pay a large computational cost arising from physical and
practical reasons. First, one needs to solve the exponentially small boundary layer (size
δ) very close to the wall or the moving boundary (while adapted grids are useful (Zhang
et al. 2023), they restrict the generality of the scheme). Second, flow disturbances are
propagated at long distances, both in the in-plane direction (as 1/L2‖ as we shall later see)
and in the normal-to-wall direction (exponentially decaying as e−z/δ). These two facts
conspire to complicate the calculations, imposing the use of small grids to resolve the flow
near obstacles and long boxes to avoid finite-size effects. These facts significantly increase
the computational time required to accurately solve unsteady Stokes dynamics near walls
and obstacles, particularly when many parameters need to be explored (Vázquez-Quesada
et al. 2020). Practical applications (e.g. QCM) introduce an even worse problem: the small
size a of the adsorbed analytes (proteins, viruses) studied in experiments introduce a severe
limiting factor for standard computational methods based on closed boxes (see Gillissen
et al. 2018; Gopalakrishna et al. 2021; Vázquez-Quesada et al. 2020; Zhang et al. 2023). To
resolve the obstacle, one requires a small mesh size hgrid ∼ 0.1 a, but also one needs tall
boxes of at least Lz > 4δ to avoid finite-size hydrodynamic effects. For proteins, a ∼ 5 nm
while δ ∼ 100 nm so both conditions cannot not be rationally satisfied (Lz/hgrid ∼ 103).
Ideally, one would like to restrict the mesh to the interest region (a layer of height H ∼ a
adjacent to the wall) and treat this computational domain as an open portion of a semi-
infinite domain. In the present work, we develop an alternative scheme which addresses
both spatial and temporal complications. We solve the oscillatory Stokes equation using
a spectral scheme for doubly periodic (DP) domains in free or semi-confined spaces.
In the periodic (xy) plane, equations are discretised in the reciprocal space using the
Fourier transform, while for the non-periodic z direction, we use Chebyshev collocation
points. Borrowing ideas from the work by Hashemi et al. (2023) for DP solvers of the
steady Stokes equation, the system is decomposed into an inner ‘open’ domain, where
forces are applied, coupled to the outer domain, which is solved analytically using plane-
wave expansions. Concerning the temporal question, we avoid using time-stepping by
working in the frequency domain using complex phasor fields. While this approach is
limited to linear response, it allows for a huge reduction in computational time compared
with time-stepping. Extensions to deal with nonlinear contributions are suggested in § 7.
Here, we focus on the description of the fluid solver and its validation against available
exact analytical relations for the mobility and the Green tensor in the reciprocal space.
Coupling hydrodynamic fields with the dynamics of viscoelastic matter will be the subject
of another contribution. We will present the computational scheme in § 3, then in § 6,
we test its accuracy by comparison with the exact Felderhof analytical relations for the
Fourier transform of the Green tensor (Felderhof 2005) (collected in Appendix H) and
analyse the mutual mobility, the self mobility of spherical objects in free and bounded
space, analysing the validity of the reaction-field point-particle approximation (Felderhof
2005) and the scaling of hydrodynamic finite size effects due to image interactions in the
DP system.

2. System set-up and oscillatory Stokes equations
The system geometry is illustrated in figure 1. It is periodic in x and y directions with
lengths given by Lx and L y , respectively (we use square boxes and denote L‖ = Lx = L y).
The domain of interest (inner domain) where numerical discretisation is applied (in the
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f (r)

Lx

Ly

z = H

z = –H

2H

vwall cos (ωt)

η, ρ

Figure 1. Diagram of the problem geometry. A fluid-filled three-dimensional domain is defined with periodic
boundary conditions in the x and y directions (of lengths Lx , L y , respectively). The domain is open in the
positive z direction with an open boundary at z = H and walled at z = −H . The wall oscillates at frequency
ω and with amplitude vwall . An arbitrary oscillatory fluid force density with phasor f (r) and frequency ω is
contained inside the domain, i.e. f (x, y, |z|� H) = 0.

reciprocal space for xy and in the real space for z) is a layer of height 2H which might be
either open at z = ±H (open slit) or present a rigid wall at z = −H .

We solve the unsteady Stokes equations, corresponding to the zero Reynolds limit of the
momentum equation for an incompressible fluid,

ρ∂t v − η ∇2v = −∇ p + f, (2.1)

∇ · v = 0, (2.2)

where η is the fluid viscosity, ρ is the fluid density, p(r, t) is the hydrodynamic pressure,
v(r, t) is the fluid velocity field and f (r, t) is a time dependent force distribution.
Oscillatory flows are forced by a monochromatic oscillation of the sources and/or the
wall’s velocity at frequency ω. Introducing the Fourier transform in time, v(r, ω) =∫ ∞
−∞ exp[−iωt]v(r, t)dt , one gets a set of equations for the (complex) phasor fields. To

simplify the notation (unless otherwise indicated), we use v(r) to indicate the phasor field
and its dependence on ω is not explicitly indicated. Fourier transform in time leads to

η[α2 − ∇2]v = −∇ p + f, (2.3)

∇ · v = 0, (2.4)

where α ≡ (1 − i) δ−1 and δ ≡ [2η/(ρω)]1/2 is the penetration length determining the
width of the fluid layer where momentum diffusion balances the oscillatory momentum.

The external (oscillatory) force distribution f(r) is restricted to the inner domain z ∈
(−H, H) so that f(|z| > H) = 0. The open slit configuration (or ‘free space’) corresponds
to an open layer connected to the exterior domain, solved by plane-wave expansions.
The semi-bounded domain corresponds to a no-slip rigid boundary at z = −H and open
conditions at z = H . In the semi-bounded set-up, the bottom wall is allowed to move so
that v(z = −H) = vwall and the flow vanishes far away from the boundary, v → 0 and
p → 0 for |z| → ∞.
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3. Numerical method
Following Hashemi et al. (2023), we decompose the solution of (2.3) and (2.2) as

v = vdp + vc, (3.1)

p = vdp + pc, (3.2)

where vdp and pdp are the velocity and pressure fields in free space using doubly periodic
boundaries, and vc and pc are correction fields imposed to satisfy the desired boundary
conditions (BCs) at z = ±H .

The free-space solution for the doubly periodic system satisfies

η
[
α2 − ∇2

]
vdp = −∇ pdp + f at z ∈ [−H, H ], (3.3)

η
[
α2 − ∇2

]
vdp = −∇ pdp at z /∈ [−H, H ], (3.4)

∇ · vdp = 0, (3.5)

vdp(|z| = ∞) = pdp(|z| = ∞) = 0. (3.6)

This sub-problem is solved for a given set of sources f(r). We use a spectral method which
applies a Fourier transform in the xy plane, leading to independent equations for a discrete
set of wavevectors k = 2π (nx/Lx , ny/L y) (with nx and ny integers) and Chebyshev
transforms in z ∈ [−H, H ]. The solution for the outer domain |z| > H , expressed as plane
waves, is matched with the inner solution, providing the boundary conditions at the borders
of the inner domain z = ±H . Once the free-space flow vdp and pdp are obtained, the
correction flow can be derived analytically. As all sources have already been imposed in
the free-space flow, the correction flow satisfies a homogeneous equation,

η
[
α2 − ∇2

]
vc = −∇ pc at z ∈ [−H, H ], (3.7)

∇ · vc = 0, (3.8)

and, in this case, we need to impose the boundary conditions for the velocity v at
z = ±H . In the most general case, the present method allows the imposition of boundary
conditions in the reciprocal space B[v](k) = Bwall(k), where B is a linear operator. The
flow decomposition in (3.1) leads to

B±H [vc] = Bwall −B±H [vdp]. (3.9)

Here, we consider B = 1 and Bwall(k) = 0 for any k 
= 0, while Bwall(k = 0) = vwall
corresponds to an oscillating no-slip rigid wall. Each wavevector is solved independently
due to linearity; however, we see that the k = 0 mode leads to a different set of equations
providing the overall current at each z due to the net force

∫
f(r) dxdy.

3.1. Free-space solver
We first deal with the free-space solver, so that vc = 0 and pc = 0.

3.1.1. Solution for the pressure
Taking the divergence on the momentum equation,

∇2 pdp = ∇ · f. (3.10)
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As stated, the in-plane dependence is worked out in the reciprocal space. Decomposing
the coordinates as r = s + z ẑ, the Fourier transform in xy of the velocity field is

vdp(k, z) =
∫

eik·svdp(s, z)d2s. (3.11)

Introducing this transformation into the pressure equation leads to a Laplace equation
inside the domain, (

∂2
z − k2

)
pdp = (ik, ∂z) · f for z ∈ [−H, H ]. (3.12)

We denote k = (kx , ky) and k = (k2
x + k2

y)
1/2 with a discrete set of wavevectors in the

doubly periodic box.
Outside the domain, source terms vanish and

(∂2
z − k2)pdp = 0 for z /∈ [−H, H ], (3.13)

whose solution is of the form pdp(k, z) = C1 exp[−kz] + C2 exp[kz]. Using p = 0 for
|z| → ∞,

pdp(k, z) = C2 exp[kz] for z �−H, (3.14)

pdp(k, z) = C1 exp[−kz] for z � H. (3.15)

At the borders of the domain, this implies (∂z ± k)p(k, z = ±H) = 0, which should be
satisfied for each wavevector k. Hence, the Chebyshev solver for the pressure pdp in the
inner domain solves(

∂2
z − k2

)
pdp = (ik + ∂z) · f for z ∈ [−H, H ], (3.16)

(∂z ± k)pdp(k, z = ±H) = 0. (3.17)

The boundary value problem (BVP) (3.16) subject to boundary conditions in (3.17) is
solved for each wavenumber using a Chebyshev discretisation in z (a similar approach
to that used to solve the Poisson equation (Maxian et al. 2021)). Once the BVP is solved,
the constants C1 and C2 depend on the wavevector k, and can be obtained by matching the
outwards and inwards pressure fields at the borders. From (3.14), and (3.15),

C1(k) = pdp(k, z = H) ek H at z = H, (3.18)

C2(k) = pdp(k, z = −H)e−k H at z = −H. (3.19)

3.1.2. Solution for the horizontal (parallel) velocity component
Once p is known, we can solve for the velocity. In the case of the oscillatory Stokes
equation, we need to take into account the time derivative, which, in phasor quantities,
equals to ηα2vdp. Inside the domain,

η
(
∂2

z − k̃2
)

vdp = (ik + ẑ∂z) pdp − f for z ∈ [−H, H ], (3.20)

where we have defined the complex wavenumber k̃ whose square is k̃2 ≡ k2 + α2. Outside
the domain,

η
(
∂2

z − k̃2
)

vdp = (ik + ẑ∂z) pdp for z /∈ [−H, H ]. (3.21)
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Equation (3.21) needs to be solved for both v‖
dp (velocity parallel to the plane) and for v⊥

dp
(velocity perpendicular to the plane). For the parallel velocity inside the domain,

η
(
∂2

z − k̃2
)

v‖
dp = ik pdp for z /∈ [−H, H ], (3.22)

where the pressure field is given by (3.14) and (3.15). Hence,(
∂2

z − k̃2
)

v‖
dp = i

kC1

η
e−kz for z � H, (3.23)

(
∂2

z − k̃2
)

v‖
dp = i

kC2

η
ekz for z �−H, (3.24)

whose solution has the form (see Appendix A)

v‖
dp = A‖,1e−k̃z − ikC1

ηα2 e−kz for z � H, (3.25)

v‖
dp = A‖,2ek̃z − ikC2

ηα2 ekz for z �−H. (3.26)

After some algebra, one derives the Dirichlet-to-Neumann maps providing the boundary
conditions for the inner domain,

∂zv‖
dp + k̃v‖

dp = − ik(k̃ − k)

ηα2 pdp for z = H, (3.27)

∂zv‖
dp − k̃v‖

dp = ik(k̃ − k)

ηα2 pdp for z = −H, (3.28)

where we recall that k̃ − k is a complex number.

3.1.3. Solution for the vertical (perpendicular) velocity component
Outside the domain, in the ẑ direction,

η
(
∂2

z − k̃2
)

v⊥
dp = ∂z pdp for z /∈ [−H, H ], (3.29)

with the outward pressure fields given by (3.14) and (3.15), leading to(
∂2

z − k̃2
)

v⊥
dp = −kC1

η
exp[−kz] for z � H, (3.30)

(
∂2

z − k̃2
)

v⊥
dp = kC2

η
exp[kz] for z �−H, (3.31)

whose solution (Appendix A),

v⊥
dp = A⊥,1e−k̃z + kC1

ηα2 e−kz for z � H, (3.32)

v⊥
dp = A⊥,2ek̃z − kC2

ηα2 ekz for z �−H, (3.33)
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has to satisfy the following boundary conditions for the inner domain,

∂zv
⊥
dp + k̃v⊥

dp =
(

k̃ − k
)

k

ηα2 pdp for z = H, (3.34)

∂zv
⊥
dp − k̃v⊥

dp =
(

k̃ − k
)

k

ηα2 pdp for z = −H. (3.35)

The BVP problems (3.25), (3.26) with BCs (3.27) and (3.28), and (3.32), (3.33) with
BCs (3.34) and (3.35) uniquely determine the free-space solution which is solved using a
spectral Chebyshev solver (Maxian et al. 2021; Hashemi et al. 2023) for each wavevector
k used in the in-plain Fourier decomposition in an embarrasingly parallel way.

3.2. Correction flow
At this stage, we have a numerical solution for vdp in z ∈ [−H, H ] based on a Chebyshev
expansion (i.e. we have the corresponding coefficients) and the solution of the pressure,
from the Laplace equation, in z ∈ [−H, H ]. The solution of vdp in the inner domain
and, in particular, at z = ±H is needed to calculate B±[vdp] and impose the BC for the
correction flow vc. Each discrete wavevector allowed in the doubly periodic system leads to
an independent boundary condition which determines the spectral solution of the confined
flow, i.e.

B±H [vc](k) = Bwall,±H (k) −B±H [vdp](k). (3.36)

3.3. Boundary condition at the bottom wall
According to (3.36), boundary conditions are imposed by adding a correction flow to
the free-space solution. Here, we consider a wall at the bottom of the domain z = −H
(figure 1) so the correction flow applies to the domain z ∈ [−H, ∞] and satisfies

η
(
∂2

z − k̃2
)

vc = (
ik + ẑ∂z

)
pc for z ∈ [−H, ∞], (3.37)

(
ik + ẑ∂z

)
vc = 0, (3.38)

B−H [vc](k, −H) = Bwall(k) −B−H [vdp](k, −H). (3.39)

The BC in (3.39) is written in its most general form to indicate that the scheme permits
introduction of a complex velocity pattern at the surface, which may involve a linear
operator B acting on v and some pattern in the Fourier space Bwall(k). This allows for a
broad range of situations (e.g. partial slippage on patterned surfaces). Here, we will apply
an homogeneous velocity distribution at the wall, corresponding to Bwall(k) = 0 for k 
= 0
and Bwall(k = 0) = vwall . A steady no-slip wall (B−H = 1 and Bwall = 0) corresponds to
vc(k, −H) = −vdp(k, −H).

We first deal with the correction pressure which satisfies, (∂2
z − k2)pc = 0, so

pc = Be−kz and ∂z pc = −k Be−kz . For the correction velocity, vc = v‖
c + v⊥

c ẑ, we have

(∂2
z − k̃2)v‖

c = ikB

η
e−kz, (3.40)(

∂2
z − k̃2

)
v⊥

c = −k B

η
e−kz, (3.41)
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with solution

v‖
c = D‖e−k̃z − ikB

ηα2 e−kz, (3.42)

v⊥
c = D⊥e−k̃z + k B

ηα2 e−kz . (3.43)

To ensure continuity,

k̃ D⊥ = ik · D‖, (3.44)

so we can define the vector of coefficients D in terms of D‖ (which lives in the plane),

D =
[

I‖ +
(

ik

k̃

)
ẑ ⊗ k̂

]
· D‖ (3.45)

and also
B ≡ (−ik̂ + ẑ)B. (3.46)

Hence, the correction pressure and velocity can be written as

pc = Be−kz, (3.47)

vc = De−k̃z + B
k

ηα2 e−kz . (3.48)

At the boundary, we need to impose (3.39), which for a steady homogeneous wall
(vwall(k) = 0 for k > 0) implies vc(z = −H) = −vdp(z = −H). Note that at this point,
we already derived vdp in the form of an expansion of Chebyshev polynomials. Using
(3.48), at z = −H , this leads to the following system of equations:

ek̃ H D‖(k) + k

ηα2 ek H B(k) = vB ≡ −vdp(k, −H), (3.49)

where vB ≡ vc(k, −H) is the correction velocity at the boundary, and B and D satisfy
(3.46) and (3.45) or (3.44). This leaves us with a solvable system of equations with three
equations and three unknowns (D‖ and B). In more explicit form,⎡

⎢⎢⎢⎢⎢⎢⎣

exp((k̃ − k)H) 0
−ikx

ηα2

0 exp((k̃ − k)H)
−iky

ηα2

ikx

k̃
exp((k̃ − k)H)

iky

k̃
exp((k̃ − k)H)

k

ηα2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

Dx

Dy

B

⎤
⎥⎦ =

⎡
⎢⎣

vx
B

v
y
B

vz
B

⎤
⎥⎦ exp(−k H) (3.50)

with solution

Dx = exp(−k̃ H)

k(k − k̃)

[
vx

B(k2
y − kk̃) − kx kyv

y
B − i k̃kxv

z
B

]
, (3.51)

Dy = exp(−k̃ H)

k(k − k̃)

[
−vx

Bkx ky + v
y
B

(
k2

x − kk̃
)

− vz
Bi k̃ky

]
, (3.52)

B = ηα2 exp(−k H)

k(k − k̃)

(
vx

Bikx + v
y
Biky − vz

B k̃
)

. (3.53)
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4. The k = 0 mode
We finally solve the overall current at each z arising from the net force imposed on the
system z ∈ [−H, H ]. Let us first deal with the pressure.

4.1. Pressure
For the bottom wall we consider here, taking k = 0 in (3.12) leads to

∂2
z p(k = 0, z) = ∂z fz(k = 0, z), (4.1)

where we have introduced the perpendicular component of the net force at each z,

fz(k = 0, z) =
∫

x,y
f(x, y, z) · ẑ dx dy. (4.2)

The pressure is constant for z < −H and integrating (4.1) from z = −(H + ε) to z = −H
leads to the force balance ∂z p(k, −H) = fz(−H). Integrating (4.1) from −H to z and
using the force balance at z = −H reveals the balance between pressure gradient and net-
force balance plane-by-plane, ∂z p(k = 0, z) = fz(z). Integrating once again,

p(k = 0, z) =
∫ z

−H
fz(k = 0, z)dz + C. (4.3)

We choose p(k = 0, −H) = 0 so that C = 0. Hence, the BVP for the pressure involves
(4.1) and the BCs,

p(k = 0, −H) = 0, (4.4)

p(k = 0, H) =
∫ H

−H
fz(k = 0, z)dz, (4.5)

which is computed from the Chebyshev coefficients of fz (see Appendix C).

4.2. Perpendicular velocity
For the perpendicular velocity k = 0 field,

η
(
∂2

z v⊥ − α2v⊥)
= ∂z p − fz = 0, (4.6)

whose solution v⊥ = aeαz + be−αz should vanish at z = ∞. Imposing a moving wall,
v⊥(z = −H) = vwall · ẑ, leads to

v⊥(k = 0, z) = vwall · ẑ e−α(z+H). (4.7)

In the present study, we consider vwall · ẑ = 0, which implies v⊥(k = 0, z) = 0 and thus
no-net momentum in the vertical direction.

4.3. Parallel velocity
In the case of the net parallel velocity, we have the following set:

η
(
∂2

z v‖ − α2v‖) = −f‖(k = 0, z), (4.8)

v‖(k = 0, z = −H) = v‖
wall , (4.9)

v‖(k, z = ∞) = 0. (4.10)
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We note that the homogeneous part of (4.8) (f = 0) contributes to v‖ with the Stokes basal
flow v‖

walle
−α(z+H), which guarantees the BC (4.9). The inhomogeneous part of (4.8)

(solving for f 
= 0 and vwall = 0) is a BVP which can be solved using the Green function
formalism, as explained in Appendix B. Adding the homogeneous and inhomogeneous
parts of the solution leads to

v‖(k = 0, z) = − 1
2ηα

∫ H

−H

(
e−α(z+z′+2H) − e−α|z−z′|)) f‖(z′)dz′ + v‖

wall e−α(H+z).

(4.11)

Equation (4.11) provides the velocity of the zero mode at any z, and it can be evaluated at
the position of the Chebyshev grid, if needed. However, using fast Chebyshev transforms
and solving the BVP (i.e. imposing the BC at z = H ) is a faster computational route. For
this reason, we now derive the BC for (4.8) at z = H . We have implemented a Neumann
condition at z = H ; however, it is in principle possible to impose a Dirichlet BC at z = H .
Both are illustrated below.

4.3.1. Dirichlet condition for the inhomogeneous part of (4.8) at z = H
The two boundary conditions for the BVP problem of the inhomogeneous part of (4.8)
(i.e. f 
= 0 and vwall = 0) are

v‖(k = 0, z = −H) = 0, (4.12)

v‖(k = 0, z = H) = −e−αH

2ηα

∫ H

−H

(
e−α(z′+2H) − eαz′)

f‖(z′)dz′. (4.13)

The second relation can be simplified to

v‖(k = 0, z = H) = e−2αH

ηα

∫ H

−H
sinh[α(z′ + H)]f‖(z′)dz′. (4.14)

For |αz| << 1, one gets, to first order in α, v‖ = α
∫ H
−H (z′ + H)f(z′)dz′, whose real part

coincides with the solution for the Stokes limit. Finally, adding the homogeneous solution
of (4.8), vwalle−α(z+H) to impose v‖(k = 0, z = −H) = vwall , leads to the complete result,

v‖(k = 0, z = H) = e−2αH

ηα

∫ H

−H
sinh[α(z′ + H)]f‖(z′)dz′ + v‖

wall e−2αH . (4.15)

4.3.2. Neumann condition for the inhomogeneous part of (4.8) at z = H .
A Dirichlet BC at z = −H and a Neumann-type BC at z = H is obtained by taking the
derivative in relation (4.11)

v‖(k = 0, z = −H) = v‖
wall , (4.16)

∂zv‖(k = 0, z = H) = −e−2αH

η

∫ H

−H
sinh[α(z′ + H)]f‖(z′)dz′ − αvwall e−2αH . (4.17)

Note that for α → 0, we get ∂zv‖(H) = 0 as in the steady Stokes limit (Hashemi et al.
2023). In our scheme, we have implemented the k = 0 BCs (4.16) and (4.17). The costly
part (in either (4.15) or (4.17)) resides in the evaluation of the integral

∫ H
−H sinh[α(z′ +
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H)] f‖(z′)dz′, which is solved in the preprocessing step using a monomial expansion (see
Appendix C).

5. Implementation
For the sake of clarity, we now recapitulate the different steps of the scheme.

(i) Given a force distribution f(r) (normally resulting from the spreading of blob
forces f(r) = ∑

i S(r − qi )Fi , see Appendix D), we first take the Fourier–Chebyshev
transform (FCT) to obtain f(k, z) and use Chebyshev differentiation to obtain
∂zf(k, z). The scheme extensively uses fast Fourier–Chebyshev transforms (Trefethen
2000) and spectral operations, which have been thoroughly described in several works
(Maxian et al. 2021; Hashemi et al. 2023; Pérez Peláez 2022).

(ii) Then, solve the BVP for the free space pressure pdp using (3.16) with BC (3.17) and
reconstruct the pressure field pdp(k, ±H) using (3.14), (3.15) and (3.18). Use this to
evaluate the BVP for the velocity vdp in (3.25), (3.26) with BCs (3.27), (3.28) and
(3.32), (3.33) with BCs (3.34), (3.35). At this point, we have the solution for the free
space pdp and vdp in (3.3), (3.4).

(iii) To evaluate the correction flow, first evaluate vdp(k, −H) from (3.25), (3.26), (3.32)
and (3.33), then use (3.47), (3.48) to obtain pc and vc, where D and B are calculated
from the system in (3.49).

(iv) Solve the k = 0 mode for p(0, z) using Chebyshev integration on (4.5). Then, solve
the BVP given by (4.8) and BCs (4.16) and (4.17) for the k = 0 parallel velocity. The
integral in (4.17) is solved using the method explained in Appendix C. Finally, set
v⊥(0, z) = 0.

(v) For all k, take a one-dimensional (1-D) fast Fourier transform (FFT) in the z direction
to compute the Chebyshev coefficients of the correction and zero-mode solutions, and
add them to doubly periodic solution to obtain the three-dimensional (3-D) spectral
representation of p and v.

(vi) At this point, performing a back transform to real space (iFCT) leads to p(r) and
v(r), as sketched in figure 2(a). Figure 2(b) illustrates the velocity fields obtained
from a Gaussian force distribution oscillating in normal and tangential directions.
Numerical discretisation is only carried out in the inner domain |z|� H , and the
flow outside is connected by the plane wave analytic continuation. As indicated in
figure 2(a), one can also interpolate blob velocities u =Jq[v] = ∫

v(r)S(r − q)dr
to evaluate mobility fields. Also, spectral quantities can be directly used to evaluate
local stress fields σ = −pI + η∇(v + vT ) and drag forces Jq[∇ · σ ] on the blobs.

The CUDA implementation of the present solver makes extensive use of the
UAMMD library (Peláez et al. 2025) and will be available at the code website
https://uammd.readthedocs.io/en/latest/.

6. Validation and results

6.1. Validation tests
We have performed two types of validations of the scheme, presented in the following
subsections. The first test compares the Green function in the reciprocal space (in-plane
Fourier transform) with analytical expressions of Felderhof (2005). The second calculates
mutual and self-mobilities of spherical particles (actually immersed boundary ‘blobs’,
defined next) and compare with Mazur–Bedeaux relation (for free space) and Felderhof’s
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Figure 2. (a) Sketch of the method used to measure particle mobility. An immersed boundary (IB) kernel
(typically Gaussian, as described in Appendix D) located is employed to spread a force F onto the fluid grid
(with cell size hgrid) resulting in a force distribution f(r′). The resulting flow v(r) is interpolated at the location
q using a similar kernel, with an associated hydrodynamic radius a. Both are related by the mobility tensor
u = Mq,q′ F. (b) Streamlines of oscillatory flows induced by normal (left) and tangential forces (right) created
by a Gaussian distribution with radius a = 0.1δ at a height h = 2.5 a and penetration length δ = [2η/(ρω)]−1/2.
The streamlines are taken from the real part of the velocity field, i.e. at zero phase lag. We illustrate the location
of the inner domain z ∈ [−H, H ] (where forces are confined and the velocity field is numerically solved) and
the outer domain z > H , where the field is analytically continued by a plane wave expansion. In this example,
H = 0.5 δ. Colors in the streamline indicate the flow speed in units of F/(6πηδ), with F the force amplitude.

point-particle approximation (for semibounded domains). In these tests, we use immersed
boundary (IB) kernels to spread localised forces and to interpolate the velocity field
at different locations, to evaluate ‘particle’ mobilities. Most of the results presented
have been obtained with Gaussian kernels (Hashemi et al. 2023; Pérez Peláez 2022),
but we also compare with the three-point Peskin (2002) kernels (see Appendix D for
details). As shown in previous works (Pérez Usabiaga et al. 2014; Peláez 2022), the IB
kernels have compact support and an associated hydrodynamic radius a, which can be
mapped to the radius of a ‘rigid’ spherical particle, providing minimal particle-models
(Usabiaga et al. 2014; Pérez Peláez 2022). Despite their simplicity, IB kernels provide
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surprisingly accurate ‘finite particle’ effects, being able to even recover the nonlinear
drag forces of hard-spheres up to large particle Reynolds number (Balboa et al. 2012), or
the extent of (nonlinear) ultrasound forces in compressible oscillatory flows (Bruus 2012;
Balboa Usabiaga & Delgado-Buscalioni 2013), also, they can be generalised to provide a
solenoidal spreading field Bao et al. (2017). Figure 2(a) illustrates the use of these kernels
in mobility evaluations. A force distribution f(r′) = FS(r′ − q0) is prescribed by an IB
kernel S(r) centred at q0 and activated to propagate momentum to the fluid. The resulting
velocity field v(r) is interpolated at another location q, providing a ‘particle’ velocity
u = ∫

S(r − q)v(r)dr. The nomenclature used in the following sections is indicated in
figure 2(a) (for instance, h is the vertical component of the kernel at q). Note that
interpolations are carried out in the discrete setting by summing over a discrete set of
fluid cells (i.e. in the real space) (Usabiaga et al. 2014).

Discretisation errors are presented in Appendix E against the mesh size in x and y
directions, hgrid (recall that Chebyshev points in z are not regularly spaced, being more
compact near z = ±H ). We advance the main outcome of the error analysis, based on
the ratio Nδ ≡ δ/hgrid , which is roughly the number of mesh points used to resolve
the fluid penetration length δ = (2ν/ω)1/2 (again, recall that Chebyshev is not regularly
spaced). Notably, relative errors become smaller than 0.05 for just Nδ > 4, which reveals
the excellent accuracy of spectral schemes (in a 3-D staggered regular-mesh, a similar
accuracy requires approximately Nδ > 12 (Delgado-Buscalioni 2024)). In Appendix F, we
also show that the choice of H is arbitrary (it does not introduce errors) as long as forces
and sources are confined in the inner domain (0 < z < H ).

6.2. Green tensor
The solution of (2.3) and (2.2) can be expressed using the Green tensor of the problem
G(r, r′), as

v(r) =
∫

G(r, r′)f(r′)d3r′. (6.1)

Using the isotropy of the problem in the xy plane (and decomposing r = s + z ẑ),
Felderhof (2005) derived the in-plane Fourier transform of the Green tensor for the
semi-bounded oscillatory Stokes problem,

G(k, z, z′) =
∫

G(s − s′, z, z′)eik·(s−s′)ds′, (6.2)

which we shall deploy to validate the numerical scheme. The tensor in the reciprocal space
G is however not analytically invertible to the real space (see Pozrikidis 1989; Fouxon &
Leshansky 2018). Recently, Fouxon and Leshanski have derived sound approximations
to G to study small particles or arbitrarily large spheres far enough from the surface
(Fouxon & Leshansky 2018; Fouxon et al. 2023). In any case, to validate the present
spectral scheme, Felderhof’s exact expressions G(k, z, z′) (recapitulated in Appendix H)
are quite convenient. To that end, we indicate r = s + z ẑ and apply a force distribution f(r′)
localised at q0 = s0 + h0ẑ. We will use a smeared delta function with a spatial dependence
separable as a product of kernels in orthogonal coordinates: S‖(s) indicates the in-plane
xy kernel product and Sz(z) the kernel used in the vertical direction (see Appendix D for
details),

S(r − q) = S‖(s − s0) × Sz(z − h0). (6.3)
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We apply a force density F at q0 = s0 + h0ẑ, resulting in a velocity field,

vα(r; h0) =
∫

Gαβ(s − s′, z, z′)Fβ [S‖(s′ − s0) × Sz(z
′ − h0)]ds′dz′ (6.4)

(where the h0 dependence in the velocity indicates that it depends on the point of
application of the force). Its plane-Fourier transform,∫

e−ik·svα(q; h0)ds =
∫

dz′
∫

ds′
∫

dse−ik·sGαβ(s − s′, z, z′)Fβ [S‖(s′ − s0)

× Sz(z
′ − h0)], (6.5)

can be simplified using the isotropy in the xy plane, to introduce the variable ξ ′ = s′ − s0
with dξ ′ = ds′,

vα(k, z; h0) =
∫

dz′
∫

ds′e−ik·s′
∫

dξ ′e−ik·ξ Gαβ(ξ ′, z, z′)Fβ [S‖(ξ ′ − s0) × Sz(z
′ − h0)],

(6.6)

to get

vα(k, z ; h0) = e−ik·s0 S‖(k)Ḡα,β(k, z ; h0), (6.7)

Ḡα,β(k, z ; h0) ≡
∫

dz′Sz(z
′ − h0)Gαβ(k, z, z′) Fβ. (6.8)

Proving the velocity field excited by unit forces in different γ̂ orthogonal directions (i.e.
using Fβ = δβ,γ ), we reconstruct the Green tensor components as v

(γ )
α ∝ Ḡα,γ , which

is analytically derivable from (6.8) using Gaussian kernels for S‖(s) and Sz(z) and
Felderhof’s expressions for Gαβ (see Appendix H).

Such a comparison is illustrated in figure 3, where a perfect agreement is found between
the numerical results (circles) and the analytical relations (lines) for all the nine tensor
components. The case corresponds to a force located at s0 = 0 and h0 = 0.1δ spread to the
fluid using a Gaussian kernel of hydrodynamic radius a = 0.1δ in a box with Lx = L y =
5δ, and H = 0.7δ discretised with N = {150, 150, 65} points.

6.3. Two-particle mobility
The previous validation of the Green tensor allows to ensure that the two-particle mobility
is correctly captured by the numerical scheme. We now evaluate the mutual mobility of
two ‘blob particles’ defined by their kernel distributions S(r). The relevant issue for our
purpose here is to evaluate the mutual mobility, or equivalently, the smeared Green tensor.
To that end, we apply a force density field f(r′) = FS(r′ − q2) associated with a unit force
|F| = 1 centred at q2 and evaluate the resulting velocity of a blob located at q1. Denoting
u1 the blob’s velocity, this operation results in

u1 =
∫ ∫

S(r − q1)G(r, r′)S(r′ − q2)F2d3r d3r′ =M12F2. (6.9)

The two-particle mobility tensor is thus simply

M12 ≡ GS(q1, q2) ≡
∫ ∫

S(r − q1)G(r, r′)S(r′ − q2)d
3r d3r′, (6.10)

where we have introduced the smeared Green tensor (field) GS(q1, q2) associated with the
kernel S(r). We present results for the two-particle mobility using Gaussian blobs. In doing
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Figure 3. Comparison between the analytical result for the Gaussian kernel smeared Green function
GS(k, z, h) ((6.2), lines), obtained by Felderhof (2005, 2009, 2012) (Appendix H) and numerical results
(symbols). Results correspond to the flow at different positions in the vertical coordinate z/δ with an imposed
unit force at h = 0.25δ spread to the fluid with a Gaussian kernel of hydrodyamic radius a = 0.1δ. Numerical
results were obtained using a grid of {150, 150, 65} left with a cell size hgrid = δ/30.

so, we also validate the numerical scheme against the reciprocal relations (Felderhof 2009;
Fouxon & Leshansky 2018) which arise from the Green tensor, Gαβ(r, r0) = Gβα(r0, r).
In terms of mobilities,

Mαβ

12 =Mβα

21 . (6.11)

We have verified that our numerical scheme satisfies relations (6.11) to machine precision.
This test is shown in figure 4, where the mutual mobility Mαβ

12 (x, h1, h2) is displayed
against the in-plane particle–particle distance (x ≡ |x2 − x1|). One particle is located at
q1 = (0, 0, 3a) and the other at q2 = (x, 0, 6a), where a is the hydrodynamic radius of the
Gaussian kernel and x varies from 0 to 15a. Note that in this example, the components yx
and yz vanish because both particles are located at y = 0.

6.4. Self-mobility
Before presenting results for the self-mobility of blobs in the semi-bounded oscillatory
Stokes set-up, we need to introduce several useful quantities: the mobility in the
unbounded domain, derived by Mazur et al. (1974b), and the wall reaction field tensor
R, derived by Felderhof (2005).
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Figure 4. (a) Real and (b) imaginary parts of the components Mαβ

12 of the mobility. Particle 1 is located at
q1 = (0, 0, 3a) and particle 2 at q2 = (x, 0, 6a). According to the reciprocal relations (6.11), dots and lines of
the same colour should be equal (and they match to machine precision). The box size is L = [48a, 48a, 16a]
and the penetration length is δ = 10a.

6.4.1. Self-mobility in the free space
The self-mobility of a particle oscillating in free space is M∞ =M∞ I , where I is the
identity matrix and

M∞ =
∫ ∫

S(r − q) G(∞)(r − r′) S(r′ − q) d3r d3r′

= 1
(2π)3

∫
|Ŝ(k)|2 1

η(α2 + k2)

(
I − k̂k̂

)
d3k, (6.12)

where G∞(r − r′) is the Green function for the oscillatory Stokes flow in free space
(Appendix H). Mazur et al. (1974b) derived the self-mobility of a solid spherical particle
or radius a, corresponding to a Heaviside kernel, S(r) =V

−1 Θ(r − a) with V= 4πa3/3,
and obtained

ξMB =M−1∞ = 6πηa[1 + αa + (1/3)(αa)2]. (6.13)

This self-friction ξMB corresponds to a net induced force transferred to the fluid F = ξMB ×
(u − u(0)), where u(0) = ∫

S(r − q)v0(r)d3r is the volume averaged unperturbed velocity
(i.e. the base flow velocity in the absence of the particle disturbance). Starting from (6.12),
in Appendix G, we derive the self-mobility of a Gaussian blob (G10). Figure 5 compares
the continuum-based analytical relation (G10) with the discrete scheme results, resulting
in a perfect match. We also include in figure 5 mobility of a hard sphere of radius a with
no-slip boundaries, given by (6.13) (Mazur et al. 1974b). Notably, the self-mobility of the
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Figure 5. Comparison between the self-mobility in free space given by the Mazur–Bedeaux relation for hard
spheres (inverse of (6.12) (line)) and for the Gaussian blob (blue line) derived in (G10). The latter coincides
with the numerical evaluations for the discrete set-up using the present code and Gaussian blobs (black dots)
and 3-points Peskin kernel (green stars) for the free-space set-up using L‖ = 192a and H = 3a (varying a/δ).
The support and grid cell size for the Gaussian kernel were computed as explained in the Appendix, while for
the Peskin kernel, we used a = hg .

Gaussian blob is remarkably close to the hard-sphere results, with just a small deviation
in its imaginary part for a/δ ∼ 1. The same comment applies for the 3-pt Peskin kernel,
whose mobility is also shown.

6.4.2. Self-mobility in the semi-bounded domain
Felderhof derived the self-mobility of an isolated point particle (S(r) = δDirac(r)) at
a distance h from the wall when submitted to an oscillatory force in a semibounded
domain. It is illustrative to clarify the meaning of this mobility, which includes the
reaction flow reflecting from the wall back to the particle. The semi-bounded Green tensor
can be decomposed as G(r, r′) =R(r, r′) + G(∞)(r − r′), where R(r, r′) ≡ G(r, r′) −
G(∞)(r − r′) was called by Felderhof the ‘reaction field’ to indicate that it is the flow
arising from the wall disturbance in response to the flow induced by a force applied at the
blob location. In a dispersion, with some base flow v(0) and blobs imposing forces F j to
the fluid, the velocity of the blob i located at q = s + h ẑ would be

ui = u(0)
i +

∑
i 
= j

Mi j F j +Mi i Fi = u(0)
i +

∑
i 
= j

Mi j F j +RSFi +M∞Fi . (6.14)

We have introduced M∞ in (6.12) and the smeared self-reaction field,

RS(h) =
∫ ∫

S(r − q)R(r, r′)S(r′ − q)d3rd3r′ =

=
∫ ∫

Sz(z − h)

[∫
R̂(k, z, z′)|Ŝ‖(k)|2d2k

]
Sz(z

′ − h)dzdz′ (6.15)

Note that due to the system (and kernel) symmetries, RS(h) = R‖(h) ŝ + R⊥(h) ẑ with
Rxx = Ryy = R‖ and R⊥ = Rzz . Analytical expressions for the components R in the
point-particle limit (Felderhof 2005) (S(r) = δDirac(r) in (6.15)) are provided in (H6) and
(H7) of Appendix H for completeness. In the case of a Gaussian blob, (6.15) becomes
analytically intractable and, in this case, we evaluate R from (6.15) numerically (see
Appendix H).
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Figure 6. Variation of the self-mobility obtained using a Gaussian kernel with varying hydrodynamic radius
at different heights. Numerical results (dots) are compared with the analytical equation obtained using the
predictions for the mobility for a Gaussian kernel near a wall (continous lines) and also with the commonly
used MBF friction (6.17) (dashed lines). (a) Real part zz; (b) imaginary part zz; (c) real part xx ; (d) imaginary
partxx . The numerical calculations have been done using a box width Lx = L y = 243a so the finite-size effect
is completely negligible and a box height 2H = 2h + 4a is large enough to have the full kernel inside the box.

For an isolated particle (Mi j = 0 for i 
= j), one can simplify (6.14) (dropping the i
index) to get (

u − u(0)
)

= MMBF(h) F, (6.16)

where we have defined ξM B =M−1∞ to introduce what we called the ‘Mazur–Bedeaux–
Felderhof’ (MBF) self-mobility,

MMBF = ξ−1
MB (ξMBRS(h) + I) . (6.17)

Again, MMBF is a diagonal tensor, with parallel M‖
MBF(h) and perpendicular M⊥

MBF(h) =
M(z)

MBF(h) components. Figure 6 shows the excellent agreement between the MBF self-
mobility obtained from the continuum setting ((6.15) and (6.17) and solid lines in figure 6)
and from the discrete setting (dots, calculated with the present numerical scheme). The
dashed line in figure 6 is the result of (6.17) combining the hard-sphere MB self-friction
ξM B with the Felderhof point-particle reaction field tensor (H6 and H7). We call ‘standard-
MBF’ this ‘hybrid’ combination of kernels (i.e. hard sphere for ξM B via (6.13) and
point-particle reaction field R via (H6), (H7)), which proves to be valid for a/δ < 0.06.
Interestingly, standard-MBF worsens as the height h is decreased. To understand the origin
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Figure 7. Comparison between the analytical relations for the point-particle reaction field (H6 and H7) (solid
lines) with the numerical calculations for the smeared self-reaction field in (6.15), calculated from (H5).

of this discrepancy, we compare in figure 7 the point-particle and Gaussian-blob result for
the reaction-field tensor components R‖(h) and R⊥(h). As it was also argued by Simha
et al. (2018), as the height is reduced, we find that the point-particle reaction field (solid
line) deviates from the finite-radius result (dots). From figure 7, the point-particle limit
ceases to be appropriate approximately for h < 2 a, i.e. when the size of the particle
becomes comparable to its distance to the wall, as one should expect.

6.4.3. Finite size effects in the self-mobility
We now study the effect of periodic images in the self-mobility, which is illustrated in
figures 8 and 9. In the case of steady Stokes flow in a 3-D periodic box of side L , Hasimoto
(1959) analytically derived the drag force acting on any one of the small fixed spheres
(obstacles) forming the 3-D periodic array. Due to Galilean invariance, this result can be
applied to the mobility of an array of particles in a system with zero total momentum
(more precisely, the sum of fluid plus particles’ momentum). Thus, it applies to systems
with a vanishing net external force, e.g. where forces (particle–particle and particle–fluid)
satisfy Newton’s third law. In such a case, the self-mobility of a particle in the 3-D array
decreases with the lattice cell side L as

M3-D(L) =M(∞) (1 − 2.8373a/L + . . .) , (6.18)

where M(∞) = 6πηa is the Stokes mobility of an isolated particle and M3-D(L) the
self-mobility in the cubic 3-D lattice. The system we are studying here differs from the
Hasimoto situation in two ways. First, in the doubly periodic case, the images of one
particle are placed in a 2-D lattice extending over the xy plane. Second, we impose zero
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Figure 8. Dependence of the self-mobility on the free-space set-up against the inverse of the scaled periodic
box side a/L‖ and different values of the δ/a = [2ν/(a2ω)]1/2 ratio. Solid lines indicate the mobility for
L → ∞ using (G10) and the dotted lines correspond to (6.19). Black dashed line in Re[Mzz] corresponds to
the Hasimoto result for 3-D lattices (6.18) and coloured dashed lines to (6.19).

net flow in the z direction (vwall · ẑ = 0 in 4.7), while the total momentum in the plane does
not vanish (see 4.17). Physically, this corresponds to a (infinite or semi-infinite) box which
is fixed in the z direction, but it is allowed to shake in the plane. In terms of self-mobilities,
one should expect that the zz component should decrease with the cell side L‖, similarly
to the Hasimoto picture. However, in the plane, the self-mobility is more resemblant to
the settle velocity under jittering gravity and, as the box is enlarged, it should eventually
increase with the number of particles per area in the periodic 2-D lattice (thus, as L−2

‖ ).
It is actually crucial for the present scheme to recover these strong in-plane hydrodynamic
couplings which are present in applications, such as QCM (Delgado-Buscalioni 2024).
In the free-space doubly periodic set-up, the self-mobility corresponds to a very large
box Lz → ∞ whose position is fixed in the vertical direction, but not in the plane.
The effect of reducing L‖ in the free-space self-mobility is illustrated in figure 8. As
predicted, Mzz(L‖) is consistent with the results reported by Scalfi et al. (2023) for a triply
periodic, momentum-conserving molecular system. In their study, they examine the effect
of periodic boundary conditions by summing (using the Ewald summation technique) the
contribution of the interaction with each image to the velocity of the central particle. As
shown in figure 8, at very low frequencies (δ/a = 48 or ωa2/ν ∼ 10−3), Re[Mzz(L‖)]
converges to the Hasimoto result (6.18) within all the studied window 5 < L‖/a < 200.
As the frequency is increased, convergence takes place for more compact lattices (e.g. for
L‖ < 12a if δ/a = 5 or ωa2/ν ∼ 10−1). As L‖ increases, the imaginary zz-component of
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Figure 9. Semibounded set-up: variation of the xx and zz terms of the mobility with the box size (points)
compared with the predictions for an infinite box (solid lines) calculated using (6.17). For the real components,
a comparison is also made with Hashimoto’s result for particles in a 3-D lattice, (6.18). The penetration length
employed to make the calculations was δ = 48a. Dashed lines for Mxx correspond to (6.19).

the mobility slowly converges to the mobility of an isolated particle (evaluated from (G10)
for the Gaussian blob, see figure 6). Notably, the convergence is significantly slower at
lower frequencies (large δ/a values). Similarly, for the xx component, convergence to the
L‖ → ∞ limit slows down with the frequency. However, opposite to the zz component,
Mxx (L‖) increases as one reduces the separation between images: as predicted, we find
Mxx ∼ L−2

‖ due to the increase in the net force applied per unit area and the resulting
hydrodynamic couplings between images.

Finite-size effects in the semi-bounded case are particularly relevant to understand QCM
signals, whose dissipation shift shows significant coverage effects due to hydrodynamic
couplings between suspended analytes even at extremely low concentrations (Delgado-
Buscalioni 2024). Figure 9 presents Mxx and Mzz in the semi-bounded set-up against
a/L‖ (we recall L‖ = Lx = L y) and various h/δ values. We present results for δ/a = 48
which correspond to small particles within the point-particle limit, which (figure 7) is
valid at least for h > 2a = δ/24. In all cases, we consistently observe that the mobility
converges to the L‖ → ∞ limit given by the MBF result in (6.17). As in the slit set-up, the
zz component converges to the Hasimoto result (6.18) as the cell side L‖ is decreased. The
imaginary part Mzz follows a different decay pattern (so far, not analytically predicted).
Finite-size effects are noticeable up to significantly small particle coverage (a/L‖)2 ∼
10−4, being more relevant as the particle height h is increased (which is consistent
with QCM observations (Delgado-Buscalioni 2024)). In the plane, the mobility increase
with L‖ has the same origin as that explained for the slit set-up, being related to the
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hydrodynamic coupling between images in those directions where the net fluid momentum
is not conserved. We have fitted the xx mobility as

Mxx (L , h) =Mxx (∞, h) ·
[

1 + C1(h/δ)
a

L‖
+ C2(h/δ)

(
a

L‖

)2
]

, (6.19)

where C1 ≈ −4.94s0.27 − 0.724s and C2 ≈ 454s0.71 + 352s1.57, where s ≡ h/δ ∈
[0.1, 0.4]. Again, finite-size effects are more noticeable in the imaginary part of the
mobility, reaching up to very small particle coverages (a/L‖)2 ∼ 10−4. As an aside, (6.19)
also captures the large L‖ trend of Mxx in the open slit set-up (figure 8).

7. Discussion
This work presents a novel spectral solver for oscillatory Stokes hydrodynamics in doubly
periodic (open) boundaries. Similarly to the steady Stokes version (Hashemi et al. 2023),
the present method uses FFTs in the two periodic directions and Chebyshev transforms
in the aperiodic direction. The method has been implemented in efficient implementation
on GPUs by using a single 3-D FFT for each Fourier–Chebyshev transformation (Pérez
Peláez 2022; Hashemi et al. 2023). Notably, the computational mesh is restricted to a
finite relevant domain z ∈ [−H, H ], which is connected to the analytical solution of the
exterior flow based on plane wave expansion. The scheme first derives the solution for the
free space (i.e. without external boundaries at z = ±H ) and then adds a correction field
to enforce the boundary conditions imposed by the boundaries (walls). These boundary
conditions for the aperiodic direction z connect the exterior and interior flows, being
derived from the Dirichlet-to-Neumann map. Here, we implement a no-slip bottom
boundary (at z = −H ) which oscillates in the plane with velocity vwall . However the
solver can be generalised in different ways, as we comment below. A relevant feature of the
present scheme is that it is written in the frequency domain, i.e. solving the time-Fourier-
transformed equations. Thus, fields are subjected to four different spectral transformations:
‘time’ evolution in the frequency domain (resulting in complex phasor fields), Fourier-
based spectral description for the x, y directions (resulting, due to linearity, in independent
equations for each in-plane wave vector) and finally, a spectral Chebyshev solver in the
z direction for each wavevector. While this certainly complicates the solver structure, it
translates into a computationally efficient algorithm. First, time-stepping is avoided, which
brings a strong benefit in computational time, as the equations directly solve the (long-
time) oscillatory regime, avoiding time-stepping and transient propagation of vorticity
over the system. The gain in computational time can be estimated by considering the
Courant number limitation CFD = dt ν/h2 ∼ 0.1 on the time step dt arising from viscous
momentum propagation across a given mesh size h. A time-stepping scheme will require
a time Tν ∼ L2/ν to propagate momentum across the box side L and a time Tω = 2π/ω

to cover one oscillation. Consider a typical QCM scenario with ω = 2π × 106 Hz and
penetration length δ ∼ 100 nm. Taken as example the calculations carried out by Vázquez-
Quesada et al. (2020), one would set a mesh of h ∼ 4 nm to resolve a liposome of ∼ 50 nm
radius placed in a tall enough box (to avoid finite size effects, i.e. L ∼ 4δ ∼ 400 nm). The
number of time steps needed to cover the transient momentum propagation is Tν/dt ∼ 105,
and this number also roughly correspond to Tω/dt . By constrast, the present code will only
require a single step to obtain the mobility of the immersed body. The time reduction
is therefore very large. As an example, our previous simulations of ∼50 nm spherical
particles under wall oscillations using the standard time-stepping integration (Vázquez-
Quesada et al. 2020) required between 1 and 10 hours (depending on size and frequency),
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while calculations based on the present code (to be submitted), which required some
iterations to take into account the viscoelastic stress of the structure in the fluid phase,
required less than one minute. Even more importantly, simulations of proteins ∼3 nm
under unsteady Stokes flows with δ ∼ 100 nm are just impossible in a standard code, due
to the length scale disparities. Here, we can set H ∼ 10 nm and focus on the relevant
domain surrounding the protein. Second, it is also important to state that the time for
a single calculation of the present scheme scales linearly with the number of particles,
and roughly linearly O(N log N ) with the number of fluid cells, thanks to the use of fast
Fourier and Chebyshev transforms. Through careful bookkeeping and manipulation, our
implementation only requires the application of a single 3-D FFT call to carry out the
Fourier transform in the x and y directions plus the Chebyshev transform in the z direction.
Details on the implementation of the fast Fourier and Chebyshev transform in similar
boundary value problems can be found from Maxian et al. (2021) and Pérez Peláez (2022,
Appendix C) . The nature of the oscillatory complex equations impose several technical
problems, complicating the Dirichlet–Neumann map, and also in the solution for the zero
mode k = 0, which required performing an integral involving the force density over the
whole domain. This steps were efficiently solved by combining monomial expansion and
Chebyshev integration (Appendix B).

We performed an extensive series of tests, with the scheme acting either as a free-
space solver or for the semi-bounded domain (including a rigid no-slip wall at the bottom
z = −H ). The Green tensor for the semi-bounded domain in the reciprocal space was
measured by exciting the flow with local force distributed over a smeared delta function
(Gaussian kernel). The result is in excellent agreement with the smeared version of
the analytical formulae derived by Felderhof (2005) (collected and corrected for the
typo published in the scattered literature (Felderhof 2006)). The spectral nature of the
scheme translates in an excellent accuracy, presenting relative errors smaller than 5 %
with relatively large grid sizes hgrid < δ/4, compared with hgrid < δ/15 for standard
collocation discretisation (Vázquez-Quesada et al. 2020; Delgado-Buscalioni 2024) (we
recall that δ is the fluid penetration length). Self-mobilities and mutual mobilities were
analysed using blobs defined by Gaussian kernels (we also test 3-point Peskin kernels)
with a well-defined hydrodynamic radius a (Pérez Peláez 2022). Importantly, using two
‘blobs’ (a force-emitter and a velocity-receiver), we verified that the reciprocal relations
for the mobility tensor are satisfied to machine precision. Concerning the self-mobility,
we found that the Gaussian blob mobility provides excellent agreement with the Mazur–
Bedeaux mobility for a hard sphere oscillating in free space. In the semi-bounded
domain, Felderhof’s reaction field for point-particles was found to be consistent with
our results, provided the particle height over the surface is larger than its diameter. As
previously expected (Simha et al. 2018), near to the surface, the point-particle limit
breaks down. A more precise evaluation of the self-mobility of a finite particle near the
wall would then require adding higher moments in the particle response (rotlet, stresslet
couplings to translation) which is left for a future contribution. Finite-size effects due to
hydrodynamic coupling between image particles in the doubly periodic system have been
also investigated. In this set-up, the periodic images spread over the 2-D plane which
introduce quantitative differences with respect to a 3-D periodic space. Finite-size effects
propagate as L−2

‖ leading to strong hydrodynamic couplings particularly for the imaginary
part of the in-plane mobility, which are present up to very small coverage Θ = πa2/L2‖ ∼
10−4. This is related to the reported sub-linear power-law scaling of the dissipation signal
�D in QCM of suspended particles (Delgado-Buscalioni 2024), presenting �D ∼ Θ0.8

up to extremely small coverages.

1010 A57-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.279


R.P. Peláez, P. Palacios-Alonso and R. Delgado-Buscalioni

The present fluid solver is the core of a new class of schemes to measure viscoelastic
response of soft structures under oscillatory flow with applications, inter alia, to QCM of
biomolecules, vibrational spectra of AFM or oscillatory excitation of vesicles, which will
be presented in future contributions. The boundary condition at the bottom surface is here
specified in the reciprocal space

B±H [v] = Bwall(k, ±H), (7.1)

so it can be generalised in several ways. Here, B±H is a linear operator and Bwall(k)

is a phasor, in general, wavevector dependent. Here, we consider homogeneous surfaces
(Bwall = 0 for k 
= 0 and Bwall = vwall for k = 0) with no-slip condition (B−H = 1), but
one can also impose partial slip using B[v] = ∂zv − βv, where β is the inverse of the
slip-length. Additionally, the formalism allows further generalisations as the operator
B(k, z = −H) may introduce partial derivatives with respect to z and in the plane, via
the Fourier map ∇s → ik. This allows for general coarse-grained implementations of
patterned surfaces, even active surfaces with a non-trivial wavevector dependent Bwall(k),
or coupling with viscoelastic layers, via continuity of tangential stress and velocity. Slip
velocity field due to ion transport in thin Debye layers (Schnitzer & Yariv 2012) can be
also easily implemented. In contrast, being monochromatic, the scheme is restricted to
the linear response. Yet, it could be used as a fast tool to measure the drift forces arising
from the time average of nonlinear terms such as those driving ultrasound forces (Bruus
2012; Balboa Usabiaga & Delgado-Buscalioni 2013) or in electrokinetics (Ramos et al.
1998). To this end, the scheme could be coupled to other transport equations (such as fluid
compressibility and Poisson–Planck–Nerst, which has been already solved in real-time
using open doubly periodic domains (Maxian et al. 2021)). Solvers for doubly periodic
domains including transient effects in the time domain are also feasible and could be
practical to regimes with strong aperiodic unsteadiness.

Funding. We acknowledge funding from the Spanish Agencia Estatal de Investigacion (AEI) with grant
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Appendix A. Solution of (3.22), (3.29)
Equations (3.23) and (3.24) are ordinary differential equations for w(z) ≡ v‖(k, z), with
generic form,

w′′
1 − k̃2w1 = C̃1e−kz, (A1)

w′′
2 − k̃2w2 = C̃2ekz, (A2)
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where we have defined

C̃i = i
kCi

η
. (A3)

Let us deal with w1. The homogeneous solution is w1,h = A1e−k̃z + A2ek̃z . A particular
solution is w1,p = A1,pe−kz because

w′′
1,p − k̃2w1,p = A1,p

(
k2 − k̃2

)
e−kz = C̃1e−kz . (A4)

Therefore,

Ap,1 = C̃1

k2 − k̃2
= −i

kC1

ηα2 . (A5)

A similar result applies for w2, for which the particular solution is w2,p = Ap,2ekz and

Ap,2 = −i
kC2

ηα2 . (A6)

In the case of (3.29), the homogeneous solution is v(h) = A±e±k̃z and the particular
solution of the non-homogeneous equation is now w(z) = Ap

±e±kz , leading to (k2 −
k̃2)Ap

±e±kz = −α2 Ap
±e±kz and therefore

−α2 Ap
+ = kC2

η
, (A7)

−α2 Ap
− = −kC1

η
. (A8)

The solution in (3.32) and (3.33) is indicated with A⊥,1 = A− and A⊥,2 = A+.

Appendix B. Green function formalism for the k = 0 parallel velocity
We particularise the problem for the domain z ∈ [−H, ∞]. The Green function of the
problem satisfies

∂2
x G(x, y) − α2G(x, y) = δ(x − y), (B1)

G(−H, y) = 0, (B2)

G(∞, y) = 0, (B3)

∂x G(y+, y) − ∂x G(y−, y) = 1, (B4)

G(y+, y) = G(y−, y). (B5)

The relation (B4) is the jump condition, obtained by integrating (B1) from x = y − ε to
x = y + ε and then taking the limit ε → 0. The relation (B5) imposes continuity of G(x, y)

at x = y.
For x 
= y, (4.8) is homogeneous and

G(x, y) = ai e
−αx + bi e

αx for x 
= y, (B6)
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where a1 and b1 are used for the domain x < y and a2, b2 for the domain x > y. We now
apply the boundary conditions:

(i) for x < y, G(−H, y) = 0, so a1eαH + b1e−αH = 0;
(ii) for x > y, G(∞, y) = 0, so b2 = 0.

This yields

b1 = −a1e2αH (B7)

and

a1 = 1
2α

(
e−α(y+2H)

)
, (B8)

a2 = 1
2α

(
e−α(y+2H) − eαy

)
. (B9)

Therefore,

G(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2α

(
e−α(x+y+2H) − eα(x−y)

)
x < y,

1
2α

(
e−α(x+y+2H) − e−α(x−y)

)
x > y.

(B10)

As is customary, the solution is built as

v(x) =
∫

G(x, y)[− f (y)]dy, (B11)

and reassigning variables z → x and z′ → y, we get

v‖(z) = −
∫ z

−H
[G(z, z′)]z>z′f‖(z′)dz′ −

∫ ∞

z
[G(z, z′)]z<z′f‖(z′)dz′. (B12)

Or, specifically,

v‖(z) = − 1
2ηα

[∫ z

−H

(
e−α(z+z′+2H) − e−α(z−z′)

)
f‖(z′)dz′

+
∫ ∞

z

(
e−α(z+z′+2H) − eα(z−z′)

)
f‖(z′)dz′

]
. (B13)

As f(z) = 0 for z > H , this can be written as indicated in the main text (4.11).

Appendix C. Integrals via Chebyshev expansion.
The k = 0 mode requires the evaluation of the integral∫ H

−H
sinh[α(z′ + H)]f‖(z′)dz′, (C1)

where f‖(z) = ∫ ∫
I‖fdx dy is the projection of the net force in the plane and I‖ ≡ x̂x̂ + ŷŷ.

To simplify the notation, we consider the integral for a generic function f (x) for which
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we have already obtained an expansion in Chebyshev polynomials,

f (x) =
∑

m

fm Tm(x). (C2)

Using the transformation of variable x → z/H , the integral becomes

H
∫ 1

−1
h(x) f (x)dx, (C3)

where h(x) ≡ sinh[α(x + 1)] and now α → αH . The weight function for the Chebyshev
polynomials

w(x) = 1(
1 − x2

)1/2 (C4)

is involved in their ortogonality conditions, which, in continuous form,

cnδnm ≡
∫ 1

−1
Tn(x)Tm(x)w(x)dx =

⎧⎪⎨
⎪⎩

0 n 
= m,

π n = m = 0,
π

2
n = m 
= 0.

(C5)

For any function h(x), we define hw(x) = h(x)/w(x), so the integral can be then rewritten
as ∫ 1

−1
h(x) f (x)dx =

∫ 1

−1

h(x)

w(x)
f (x)dz =

∫ 1

−1
hw(x) f (z)w(x)dz. (C6)

Expanding in Chebyshev and using the orthogonality conditions,∫ 1

−1
h(x) f (x)dx =

∑
n,m

hw
n fm

∫ 1

−1
Tn(x)Tm(x)w(x)dx =

∑
n

cnhw
n fn, (C7)

with c0 = π and cn>0 = π/2. The coefficients of the Chebyshev expansion for hw(x) are

hw
n =

∫ 1

−1
hw(x)w(x)Tn(x)dx =

∫ 1

−1
h(x)Tn(x)dx . (C8)

The integrals can be evaluated by expanding h(x) and Tn(x) in monomials, e.g. h(x) =∑
l Hl xl and Tn(x) = ∑

i Tn,i x i . As we use an expansion in Chebyshev of order N ,
without loss of accuracy, we just need to evaluate

hw
n =

N−n∑
l=1

Hl

∫ 1

−1
xl Tn(x)dx . (C9)

The monomial expansion for the Chebyshev polynomials is well known,

Tn(x) =
� n

2 �∑
k=0

ak,nxn−2k, (C10)

where

ak,n = n

2
(−1)k 2n−2k(n − k − 1)!

k!(n − 2k)! (C11)
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and the prefactor accompanying xl is thus,

Tn,l =
{

a n−l
2 ,n (n − l) even,

0 otherwise.
(C12)

It should be noted that the factorials become too large to be computed when l > 20, but
fortunately, the expression for ak,n can be simplified using Stirling approximation,

ak,n ≈ n

2k!(−1)k exp
[
(n − 2k) log(2) + s f (n − k − 1) − s f (n − 2k)

]
, (C13)

where

s f (n) = n log(n) − n − 1 + log(2πn)

2
+ log

(
1 + 1

12n
+ 1

288n2 − 139
51 840n3

)
. (C14)

Note that the k! factor can also be included in the exponential if necessary. Using Stirling
approximation for l > 18 yields a relative error smaller than 10−10 in the computation
of ak,n . We also use Stirling approximation to evaluate the coefficients of the monomial
expansion of h(x). Since there is no approximation for the lower coefficients (up to
l � 15), the overall computation of the integral is unaffected precision-wise. This
procedure is much faster than another alternative based on the recurrent expressions
Tn = 2Tn−1 − Tn−2

Appendix D. Kernels
Kernels are smooth functions that we use to spread the forces acting on the blobs to the
fluid and, once the fluid behaviour has been resolved, to interpolate the fluid’s velocity to
the particles. There is a wide variety of kernels, each with its own specific characteristics.
In this work, we have mainly used a Gaussian kernel, as it allows for achieving an arbitrary
level of accuracy easily, as we will see later. Additionally, we have compared the results
obtained using this kernel with those that would be achieved using the 3-point kernel
by Peskin (2002) which is less accurate but faster. The kernels depend on the distance
r = (x, y, z) of the particles to any point in the box, and usually they can be separated by
dimensions,

δ(x, y, z) = φ(x)φ(y)φ(z). (D1)

D.1 Gaussian kernel
The Gaussian kernel, as its name suggests, employs a Gaussian function to transfer the
forces from the particles to the fluid,

φG(rα) = 1(
2πσ 2

)1/2 exp
[
− r2

α

2σ 2

]
for r < rc, (D2)

where rα = x , y or z, and σ represents the width of the Gaussian, which is related to
the hydrodynamic radius of the blob as a = √

πσ . In principle, the Gaussian function is
greater than zero for any distance; however, to increase the efficiency of the spreading and
interpolation functions, the kernel is truncated at a maximum distance rc. This distance
is determined by a tolerance parameter ε, which indicates that if δ(r)� ε, it can be
approximated to 0. The cutoff radius of the kernel is related to the tolerance according
to

rc(ε) =
(
−21/2 log

[
−(2πσ 2)d/2ε

])1/2
σ, (D3)
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where d indicates the number of dimensions of the system. The other important variable
that determines the accuracy of the kernel is the fluid mesh h = Lbox/Ncells . In principle,
this value could be set arbitrarily, but to ensure consistency in the accuracy with the
tolerance that will be used, we define it using the expression

σ(ε) = π1/2 min[0.55 − 0.11 log10(3ε), 1.65] h. (D4)

D.2 The 3-point Peskin kernel
The 3-point Peskin kernel uses a more compact function than the Gaussian kernel,

φ3pt (r̃α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3

(
1 + √

1 − 3r̃2
α

)
|r̃α| < 0.5,

1
6

(
5 − 3|r̃α| − √

1 − 3(1 − |r̃α|)2
)

0.5 � |r̃α| < 1.5,

0 |r̃α| > 1.5,

. (D5)

where r̃α = rα/h. In this case, the support of the kernel always spans three cells and the
hydrodynamic radius is a = 0.91 hgrid (Pérez Peláez 2022). This allows the spreading and
interpolation functions to be faster, at the cost of losing some accuracy.

To evaluate the accuracy of the kernels and analyse how the precision of the Gaussian
kernel varies with tolerance, we studied the relative error of the mobility obtained
depending on the position of the blob within the cell. The relative error was calculated
as

RE = ||Mα,α(x, y) − 〈Mα,α〉||
||〈Mα,α〉|| , (D6)

where 〈. . .〉 denotes the average over the entire cell and || . . . || represents the norm of the
complex number. The results are shown in figure 10. The Peskin kernel has a relative error
that varies between 2 % and 4 % in most of the cell, which is considerably better than the
error obtained when using a Gaussian kernel with the same support (three cells), which
is approximately 8 %. However, when we make ε smaller, we achieve much lower errors,
approximately 0.1 % when ε = 10−3 and close to 0.001% when ε = 10−5. Throughout this
work, a Gaussian kernel with ε = 10−5 has been used.

Appendix E. Discretisation errors
To study the discretisation errors, we analyse how the relative error varies between the
Felderhof’s smeared Green tensor (6.2) and the numerical calculations at each height z
of the box when we apply a force on a Gaussian blob of radius a = 10hgrid at a height
h = 2.5a in a box on length 60hgrid and height 70hgrid . We have studied the error by
varying δ between δ = 0.004hgrid and δ = 2hgrid .

In figure 11, we show the relative errors for the real (left panels) and imaginary (right)
terms of the xx (top), xz (central) and zz (bottom) components of GS(k, z, h). We can see
that for δ > 5hgrid , the relative error is always smaller than a 1 % and using a value of
δ ≈ hgrid still leads to relative errors smaller than a 10 %. It should be mentioned that
the largest relative error for δ/hgrid � 1 corresponds to z/a ∼ 5 in the real part of the xx
mobility, due to the vanishing of the Green function component.

Appendix F. Zero finite-effects in vertical direction for arbitrary H
One of the main advantages of the present scheme is that the height of the inner domain
(or computational domain) 2H is an arbitrary parameter that does not influence the
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Figure 10. Relative error obtained when calculating the xx (left column) and zz (right column) components of
the mobility using: (a,b) a 3-point Peskin kernel; (c,d) a Gaussian kernel with ε = 10−1, resulting in a support
of three cells; (e,f ) a Gaussian kernel with ε = 10−3, resulting in a support of seven cells; and (g,h) a Gaussian
kernel with ε = 10−5, resulting in a support of 11 cells.
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Figure 11. Relative error between the analytical result of the Gaussian kernel smeared Green’s function,
GS(k, z, h) (6.2), and the numerical results for the wavenumber n = (1, 1). The smeared Green’s tensor is
computed by applying a force to a Gaussian blob of radius a = 10hg , located at a height h = 2.5a above the
wall. The relative error is shown as a function of the fluid cell position z and the penetration length. The left
panels illustrate the relative error for the real part of Green’s tensor, while the right panels show the imaginary
part. The top panels correspond to the xx component, the middle panels to the xz component and the bottom
panels to the zz component.

result, provided that all forces are exerted within it. This allows the use of very small
computational boxes, with H much smaller than the fluid’s penetration length δ. Moreover,
for a given limitation in computer memory, this feature permits to significantly extend
the area covered by the xy-plane (Lx Ly), to reach very small particle coverages Θ . To
prove the H -independence of the numerical scheme, we show in figure 12 the xx and
zz components of the self-mobility of a particle with radius a = 0.1δ located at height
h = 0.5δ. Results for various values of H , in figure 12, clearly prove our claim showing
a constant mobility for any H > 0.3δ. The limit value of the computational height is
determined by H � (h + a)/2 = 0.3δ and corresponds to a portion of the particle kernel
being outside the inner-domain (0 < z < 2H ). In such a case, not all forces spread to the
fluid, resulting in the incorrect mobility. In conclusion, the only condition for H is that it
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Figure 12. Dependence of the (a) xx and (b) zz components of the mobility on H . The mobility has been
computed for a particle with a radius a = 0.1δ located at a height h = 0.5δ. Continuous red and blue lines
indicate the predictions of the MBF theory. The black vertical line indicates the value of H at which h + a =
2H . When H is smaller than this value, a fraction of the particle is outside the box.

should be sufficiently tall for all particles to be fully contained within the inner-domain
0 < z < 2H .

Appendix G. Calculation of the self-mobility of a Gaussian kernel
Equation (6.12) can be solved analytically by performing the integration in spherical
coordinates:

kx = k cos(ϕ) sin(θ),

ky = k sin(ϕ) sin(θ),

kz = k cos(θ), (G1)

where the azimuthal angle ϕ ∈ [0, 2π] and the polar angle θ ∈ [0, π]. We also know that
the Fourier transform of the Gaussian kernel is another Gaussian function:

Ŝ(k) = e
k2σ2

2 . (G2)

In this way, the integral in (6.12) can be rewritten as

M∞ = 1
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

ek2σ 2

η(α2 + k2)

(
I − k̂k̂

)
k2 sin(θ)dϕdθdk. (G3)

First, we note that all the off-diagonal terms are zero because the integrals in ϕ that
arise from the products kαkβ with α 
= β vanish:

∫ 2π

0 sin(ϕ) cos(ϕ)dϕ = ∫ 2π

0 sin(ϕ)dϕ =∫ 2π

0 cos(ϕ)dϕ = 0. To compute the diagonal integrals, we start by calculating the angular
integrals:

Ixx =
∫ π

0

∫ 2π

0

(
1 − sin2(θ) cos2(ϕ)

)
sin(θ)dϕdθ = 8π

3
, (G4)

Iyy =
∫ π

0

∫ 2π

0

(
1 − sin2(θ) sin2(ϕ)

)
sin(θ)dϕdθ = 8π

3
, (G5)

Izz =
∫ π

0

∫ 2π

0

(
1 − cos2(θ)

)
sin(θ)dϕdθ = 8π

3
. (G6)
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To compute these integrals, we have used
∫ π

0 sin(θ)dθ = 2,
∫ π

0 sin3(θ)dθ = 4/3 and∫ 2π

0 sin2(ϕ)dϕ = ∫ 2π

0 cos2(ϕ)dϕ = π . In this way, we obtain that the self-mobility can
be written as M∞ =M∞I, where

M∞ = 1
(2π)3η

· 8π

3

∫ ∞

0
ek2σ 2 k2

α2 + k2 dk. (G7)

The fraction inside the integral can be expressed as (k2/α2 + k2) = 1 − (α2/α2 + k2),
so we can rewrite the integral as

M∞ = 1
3ηπ2

[∫ ∞

0
e−k2σ 2

dk − α2
∫ ∞

0

k2

α2 + k2 dk

]
. (G8)

The first integral is the Gaussian integral, whose value is known to be
√

π/2σ . The
second integral also has an analytical form (Gradshteuin et al. 2007, integral 3.466)∫ ∞

0

k2

α2 + k2 dk = π

2α
eσ 2α2

erfc(σα), (G9)

where erfc(x) = 1 − 2/
√

π
∫ x

0 e−t2
dt is the complementary error function. Using this

result and rearranging the terms, we arrive at

M∞ = 1
6π3/2ησ

[
1 − √

πασ · erfc(ασ)eα2σ 2
]

I (G10)

and we recall that the effective radius is a = √
πσ .

Appendix H. Calculation of the smeared self-reaction field
The calculation of the smeared self-reaction field involves solving a four-dimensional
integral, as given in (6.15). Here, the tensor R̂(k, z, z′) is defined as R̂(k, z, z′) =
G(k, z, z′) −G(∞)(k, z, z′). Analytical expressions for all the components are available
in the literature (Felderhof 2005):

Gxx (k, z, z′) = 1
8π2ηkα2

[
k

k − s
(k(k + s)e−kz′−kz − k(k − s)e−k|z−z′|

+s(k − s)e−s|z−z′| + s(k + s)e−sz′−sz + 2kse−kz′−sz − 2kse−sz′−kz)

+k2
y(k + s)

α2s
(s(k + s)e−kz′−kz − s(k − s)e−k|z−z′| + k(k − s)e−s|z−z′|

−(k2 − ks − 2s2)e−sz′−sz − 2s2e−kz′−sz − 2s2e−sz′−kz)
]
, (H1)

G(∞)
xx (k, z, z′) = 1

8π2ηksα2

[
−k2

x se−k|z−z′| + k(s2 − k2
y)e

−s|z−z′|] , (H2)

Gzz(k, z, z′) = k

8π2ηs(k − s)α2 (s(k + s)e−kz′−kz + s(k − s)e−k|z−z′|

− k(k − s)e−s|z−z′| + k(k + s)e−sz′−sz

− 2kse−kz′−sz − 2kse−sz′−kz), (H3)
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G(∞)
zz (k, z, z′) = k

8π2ηsα2

[
se−k|z−z′| − ke−s|z−z′|] , (H4)

with s = √
α2 + k2. Despite the availability of these analytical expressions, obtaining

a closed-form expression for the integral in (6.15) is challenging. This complexity
arises from the repeated integration of products involving fractions, polynomials and
exponentials.

Given this difficulty, we opted to compute the integral numerically. However, direct
numerical integration in four dimensions is computationally expensive. To address this,
we first performed one of the integrals analytically, then evaluated the remaining integrals
numerically. Specifically, we expressed the k-integral in polar coordinates:

Rαα
S (h) =

∫ ∞

0
Sz(z − h) dz

∫ ∞

0
Sz(z

′ − h) dz′
∫ ∞

0
|Ŝ‖(k)|2k dk

×
∫ 2π

0

(
Gαα(k, ϕ, z, z′) − G(∞)

αα (k, ϕ, z, z′)
)

dϕ. (H5)

The integral over the azimuthal angle ϕ is straightforward to solve analytically. For the
zz component, there is no dependence on ϕ, so the integral simply evaluates to 2π . In the
case of the xx component, some terms involve k2

x and k2
y , which depend on sin2(ϕ) or

cos2(ϕ). The integrals of these terms are π , while the integrals of all other terms are 2π .
After solving the angular integral analytically, the remaining three integrals were

computed numerically using the ‘tplquad’ function from Python’s SciPy library.
We have validated the calculation of this integrals by comparing the numerical results

computed for different particle radii with the analytical predictions for point particles
(Felderhof 2005),

R(p)
‖ (h) = − 1

192πηhν4

[
36 + 27ν + 6ν2 + 6(6 + 12ν + 11ν2 + 6ν3 + 4ν4)e−2ν

−
(

144 + 144ν + 72ν2 + 24ν3 − 6ν4 + 2ν5 − ν6 + ν7
)

e−ν

+ ν8 E1(ν) + 12ν3(2νK2(2ν) + 3K3(2ν))

+6πν3(2νY2(2ν) − 3Y3(2ν) − 3H−3(2ν) − 2νH−2(2ν))
]
, (H6)

R(p)
⊥ (h) = − 1

96πηhν4

[
6(6 + ν2 + 8ν3) + 6(6 + 12ν + 9ν2 + 2ν3)e−2ν

− (144 + 144ν + 48ν2 − 6ν4 + 10ν5 + ν6 − ν7)e−ν

+ ν6(12 − ν2)E1(ν) + 72ν2K0(2ν)

+ 36ν(2 + ν2)K1(2ν) + 6πν(2ν(3 − ν2)(Y0(2ν) − H0(2ν))

−(6 − 5ν2)(Y1(2ν) − H1(2ν)))
]
. (H7)

In figure 7, we compare numerical calculations for a blob particle of radius a with the
analytical predictions for point particles based on Felderhof’s reaction-field tensor against
the particle height h. As the particles move further away from the bottom of the box,
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numerical results converge to the point-particle analytical prediction. However, significant
discrepancies arise once the particle becomes close to the wall, h < 2a.
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