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Large-scale coherent structures in turbulent
channel flow: a detuned instability of wall streaks
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In this paper it is shown that a modal detuned instability of periodic near-wall streaks
originates a large-scale structure in the bulk of the turbulent channel flow. The effect
of incoherent turbulent fluctuations is included in the linear operator by means of an
eddy viscosity. The base flow is an array of periodic two-dimensional streaks, extracted
from numerical simulations in small domains, superposed to the turbulent mean profile.
The stability problem for a large number of periodic units is efficiently solved using
the block-circulant matrix method proposed by Schmid et al. (Phys. Rev. Fluids, vol. 2,
2017, 113902). For friction Reynolds numbers equal or higher than 590, it is shown
that an unstable branch is present in the eigenspectra. The most unstable eigenmodes
display large-scale modulations whose characteristic wavelengths are compatible with
the large-scale end of the premultiplied velocity fluctuation spectra reported in previous
computational studies. The wall-normal location of the large-wavelength near-wall peak in
the spanwise spectrum of the eigenmode exhibits a power-law dependence on the friction
Reynolds number, similarly to that found in experiments of pipes and boundary layers.
Lastly, the shape of the eigenmode in the streamwise-wall-normal plane is reminiscent of
the superstructures reported in the recent experiments of Deshpande et al. (J. Fluid Mech.,
vol. 969, 2023, A10). Therefore, there is evidence that such large-wavelength instabilities
generate large-scale motions in wall-bounded turbulent flows.
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1. Introduction

Since the beginning of the 20th century, pattern and coherent structure formation were
studied in fluid dynamics (Lord Rayleigh 1916; Kraichnan & Chen 1989; Tuckerman,
Chantry & Barkley 2020). The first evidence of such structures in wall-bounded turbulent
flows dates back to Kline er al. (1967), who found elongated velocity defects, called
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streaks, in the near-wall region of the boundary layer. The dynamics of such near-wall
structures was studied by Jiménez & Moin (1991) employing numerical simulations.
They showed that small computational domains, referred to as minimal flow units, were
sufficient to observe self-sustained turbulence near the wall. Moreover, the minimal flow
unit concept was useful to isolate the near-wall dynamics, leading to the development
of the self-sustaining wall cycle theory (Hall & Smith 1991; Hamilton, Kim & Waleffe
1995). The cycle comprises a first phase during which streaks are amplified through
the lift-up effect induced by streamwise vortices, a second phase during which streaks
saturate and become unstable and a third phase that leads to the regeneration of streamwise
vortices by nonlinear interactions, thus closing the cycle (Waleffe 1997). Butler & Farrell
(1993) supported the role of the lift-up effect in the cycle with a linear transient growth
computation on the turbulent channel mean profile. In addition, Jiménez & Pinelli (1999)
showed that when near-wall streaks are artificially damped in the wall region, turbulence
can not be sustained in the minimal flow unit. Therefore, the near-wall self-sustaining
dynamics of turbulence in minimal flow units revolves around streaks and is well
established.

Nevertheless, when larger domains and high Reynolds numbers are considered, the
picture of wall turbulence becomes much more complex (Smits, McKeon & Marusic
2011). Kim & Adrian (1999) performed experiments on the turbulent pipe flow and
reported the presence of structures having streamwise length between 12 and 14 times
the pipe radius. The taxonomy of such structures in the pipe was improved by the work
of Guala, Hommema & Adrian (2006), who made a distinction between very-large-scale
motions (VLSMs), having a streamwise size between 8 and 16 pipe radii, and large-scale
motions (LSMs), having a streamwise length of 2-3 pipe radii. Balakumar & Adrian (2007)
extended these results to turbulent channels and zero-pressure-gradient boundary layers.
In these flows, the length of the large structures scales, respectively, with the channel
half-height and with the boundary layer thickness. It must be noted that these experimental
flows had a friction Reynolds number between 500 and 2500, approximately the same
range investigated in this work. Furthermore, Balakumar & Adrian (2007) observed that
boundary layer flows typically have shorter VLSMs with respect to channels and pipes, a
remark also made in Monty et al. (2007).

Simultaneously, the experimental work of Hutchins & Marusic (2007a) on turbulent
boundary layers showed that, at a large enough friction Reynolds number (=5000), there
are two well-separated peaks in the premultiplied streamwise fluctuation spectrum. In
general, structures having a characteristic streamwise size of O(h) are referred to as LSMs
and are associated with the region of the spectrum between the inner and outer peak,
whereas motions having a characteristic streamwise size of O(10h) are those associated
with the outer peak and are referred to as VLSMs or superstructures (Hutchins & Marusic
2007a; Deshpande, de Silva & Marusic 2023). The double peaked spectrum was observed
only recently in numerical simulations of a turbulent channel (Lee & Moser 2015; Hoyas
et al. 2022), due to the high computational cost of direct numerical simulations (DNS) at
such high Reynolds numbers.

Investigations on LSMs and VLSMs are becoming increasingly relevant for the
dynamics of wall-bounded turbulent flows. These structures carry a large fraction of the
turbulent kinetic energy and of the turbulent shear stress (Guala et al. 2006; Balakumar &
Adrian 2007). Moreover, it has been realized recently that their control may be important
for effective drag reduction in these flows (Marusic et al. 2021).

Large-scale motions extend to the wall and influence the near-wall region. Abe,
Kawamura & Choi (2004) reported that LSMs contribute to the turbulent shear stress
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near the wall. Likewise, Hutchins & Marusic (2007a) reported the existence of a footprint
of the large-scale structure near the wall. However, it must be noted that this superposition
effect is different from the amplitude modulation of near-wall fluctuations reported by
Hutchins & Marusic (2007b) and Mathis, Hutchins & Marusic (2009), which is the result
of nonlinear interactions (Andreolli et al. 2023).

Concerning the influence of viscous effects on large-scale structures, experiments
in zero-pressure-gradient boundary layers (Vincenti et al. 2013) and turbulent pipes
(Vallikivi, Ganapathisubramani & Smits 2015) showed that the wall-normal location of
the peak at large wavelengths of the premultiplied streamwise fluctuation spectrum scales
with the square root of the friction Reynolds number. As argued by Hwang (2016), this
means that viscous effects are non-negligible even at large wavelengths.

The origin of large-scale structures is still uncertain. Kim & Adrian (1999), Adrian,
Meinhart & Tomkins (2000) and Adrian (2007) advanced the hypothesis that such
structures may be the result of concatenation of smaller structures, which they identified
with hairpin vortices. The concatenation hypothesis has been further underpinned by
Lee & Sung (2011) and Dennis & Nickels (2011) in boundary layers and by Baltzer,
Adrian & Wu (2013) in turbulent pipes. Furthermore, Toh & Itano (2005) conjectured a
co-supporting cycle where large-scale structures are continuously generated by small-scale
near-wall structures.

On the other hand, this hypothesis has been challenged by the work of Hwang & Cossu
(2010), who showed that large-scale structures can self-sustain even when smaller scales
are artificially damped. Following this study, it has been proposed that a hierarchy of
self-sustaining processes exists at all scales (Hwang & Cossu 2011; Cossu & Hwang 2017),
each resembling the near-wall cycle of Hamilton et al. (1995).

Therefore, in this view, LSMs and VLSMs are generated by some large-scale instability
and/or through a mechanism of transient growth on the mean shear (e.g. lift-up) as
computed by Del Alamo & Jimenez (2006) and Pujals er al. (2009) in the channel
and Cossu, Pujals & Depardon (2009) in the boundary layer. This hypothesis is further
supported by the work on the resolvent analysis of McKeon & Sharma (2010) and Moarref
et al. (2013). Whereas, secondary instabilities of the large-scale structures are advocated
for the transfer of energy towards smaller scales (Park, Hwang & Cossu 2011; Alizard
2015).

The existence of a bottom-up mechanism that from near-wall structures brings to LSMs
has been questioned also by Mizuno & Jiménez (2013), who showed that LSMs exist even
without a wall, and Zhou, Xu & Jiménez (2022), who showed that the merging of near-wall
streaks is weakly correlated with LSMs.

Still, the question is not settled because there is growing statistical evidence for the
concatenation hypothesis (Lee, Sung & Adrian 2019; Deshpande et al. 2023). Interestingly,
Doohan, Willis & Hwang (2021) showed, using a shear stress-driven two-scale model,
that energy can be transferred from small scales to large scales and that this transfer
corresponds to the streaks instability stage. In the present study it will be shown, by means
of a modal stability analysis, that a detuned instability of periodic near-wall streaks can
originate large-scale structures in the bulk of the flow.

However, the application of linear stability analyses to turbulent flows is not trivial. As
discussed in the recent paper of Cossu (2022), two different approaches are proposed in
the literature. In the first, the equations are linearized around the base flow (often identified
with the mean flow) without including a turbulence model in the linear operator (Malkus
1956; Butler & Farrell 1993; McKeon & Sharma 2010). In these studies the effect of
turbulent fluctuations is either neglected or included in an unknown forcing term that
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Case Rey, Re: Li/h  L;/h Ny Ny N; Axt AzT Ayl Ayt

C180 2800 ~180 B n/2 72 129 60 ~785 ~471 =0.05 =442
C590 11000 =590 n/2 w/4 96 257 96 ~9.65 ~483 =~0.04 =~7.24
C1000 21000 =1000 =/2 w/4 200 385 200 =785 ~393 ~003 =82
C1000, 21000  =1000 3n 3n 800 385 1200 ~11.8 =785 ~0.03 ~8.2
C2000 45000 =~2000 =w/2 mw/4 400 633 400 ~8.09 ~4.04 ~0.03 =102

Table 1. Parameters of the DNS. Here Rep, and Re; are the Reynolds number based respectively on the bulk
velocity and the friction velocity (the channel is forced with constant bulk); Ly/h and L;/h are the domain
dimension respectively in the streamwise and spanwise direction scaled with the channel half-height; N, and
N; are the number of Fourier modes in the streamwise and spanwise direction including dealiasing; Ny is the
number of Chebyshev collocation points in the wall-normal direction; Ax™ and Az* are the grid spacings in
wall units in the streamwise and spanwise direction; Ay;} and Ay are the wall-normal spacings respectively
near the wall and at the channel centre.

provides the input for a resolvent analysis (McKeon 2017). In the second approach, a
turbulence model is included in the linear operator, often in the form of an eddy viscosity.
This approach is based on the work of Reynolds & Hussain (1972) and has been employed
by Del Alamo & Jimenez (2006), Cossu et al. (2009), Pujals et al. (2009), Park et al.
(2011), Alizard (2015), Hwang (2016) and many others. There is recent evidence of the
need for modelling the Reynolds stresses in linear analyses (Morra et al. 2019). In the case
of resolvent analyses on asymptotically stable mean flows, the model can be included in
the forcing (Nogueira et al. 2021). Whereas, as argued by Cossu (2022), for modal stability
analyses the model must be included in the linear operator. Therefore, this is the approach
followed in this work. Cossu (2022) showed that this method produces results consistent
with DNS.

The rest of the paper is organized as follows. In § 2 the stability problem formulation
and the numerical methods employed are outlined. In § 3 the resulting eigenspectra and
leading eigenmodes are presented after a brief discussion on the considered base flow.
Finally, conclusions are drawn in § 4.

2. Formulation and numerical methods

The objective of this work is to study the stability of turbulent near-wall streaks and its
connection to the appearance of large-scale structures in the flow. To this aim, DNS of
turbulent channel flow are performed at different Reynolds numbers (see table 1) using
the channelflow code by Gibson et al. (2021). Periodic boundary conditions are imposed
in the streamwise and spanwise directions and no-slip conditions are used at the walls
(y =0 and y = 2). The flow field is discretized by Fourier and Chebyshev collocation
methods in a domain having dimensions [Ly, Ly, L.].

Flow variables can be either non-dimensionalized with respect to the channel half-height
h and mean bulk velocity U = 1/82 [, ud$2 or with respect to the friction velocity u, =
/Tw/p and the viscous length scale §, = v/u;, v being the kinematic viscosity. These
quantities define the turbulent Reynolds number Re; = u;h/v. Variables expressed in the
latter (inner) units are referred to with the superscript +, whereas, from now on, variables
without any superscript are scaled in the former (outer) units.

The size of the computational domains, the number of Fourier modes and Chebyshev
collocation points and the grid spacings in wall units are listed in table 1. Note that the
flow cases without any subscript are those used for the base flow computation, which
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considers rather small (although larger than the minimal flow units) domains. For instance,
for Re; ~ 1000, we have used a minimal box for the logarithmic layer as in Jiménez (2013),
which is known to have incorrect statistics above y &~ L,/3 ~ 0.25h (Flores & Jiménez
2010; Lozano-Durédn & Jiménez 2014). However, it must be observed that the only purpose
of these simulations is to extract the near-wall coherent structures used for the stability
analysis, which, using spanwise-periodic conditions, allows the computation of coherent
structures of much longer wavelengths than those of the base flow. Whereas, the flow
case indicated in table 1 with the subscript L has been run with a computational domain
sufficiently large for allowing the development of large-scale structures, and will be used
for validation of the wavelengths and eigenmodes found by the stability analysis. The
validity of our DNS data for this purpose is further discussed in Appendix A.

The base flow for the stability analysis is composed of the long-time averaged flow
plus near-wall streaky coherent structures. The mean flow profile is obtained using a
semi-analytical model (Reynolds & Tiederman 1967), whereas the near-wall streaks are
extracted from DNS data by means of proper orthogonal decomposition (POD). It has
been shown in previous studies (Moin & Moser 1989; Alfonsi & Primavera 2007) that the
leading POD mode for the turbulent channel flow is constituted by streamwise uniform
streaks. However, in the near-wall region of turbulent flows, as indicated by the early
works of Hamilton et al. (1995) and more recently discussed in Jiménez (2022), due to
the establishment of the wall cycle, velocity streaks exhibit small inclinations with respect
to the streamwise direction due to the sinuous/varicose modulations induced by their
secondary instability. This can be visualized in figure 1, which provides a snapshot of
the DNS velocity field after filtering out the flow structures with spanwise wavelengths
A} <80 and A} > 220. The dashed lines, having angle 6 = 14° with respect to the
streamwise direction, show a mild inclination of the coherent structures in the wall region.
Qualitatively similar structures are found in the larger domain DNS at Re; = 1000 (not
shown). However, it must be noted that these streaks are inclined with different angles.
Whereas, we will consider a more idealized situation where the streaks are periodic along
a given direction, i.e. they are all inclined with the same angle. This is a necessary
approximation in order to apply the block-circulant matrix method described below.

For this reason, we extract by POD arbitrarily inclined coherent structures considering
the Fourier decomposition of the instantaneous flow field # in the streamwise (x) and
spanwise (z) directions (Muralidhar et al. 2019):

u(x’ t) — Z lAlkx,kz(% t) eZ‘JTi(kxx/LX—FkZZ/LZ). (21)
ke kz

Here i denotes the imaginary unit and the sum is extended to all the Fourier modes used
for the discretization of the domain, while y denotes the wall-normal direction. For a given
wavenumber couple {k,, k;}, POD is performed using the profiles &, (,f) obtained
from 2000 three-dimensional snapshots of the small-domain DNS, equi-spaced in time
with non-dimensional time step AtU,/h = 0.25. Convergence of the POD was assessed
by repeating the computation with 1200 snapshots. The resulting POD eigenvalues and
eigenvectors showed minor differences with respect to the case with 2000 snapshots, as
did the corresponding stability analysis results. Therefore, it can be concluded that the
chosen number of snapshots for the POD does not qualitatively affect the outcome of the
stability analysis. In one case, the POD has been repeated with 4000 snapshots, in order to
address an issue described below (see discussion in § 3.1).
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Figure 1. Direct numerical simulation snapshots of the streamwise velocity fluctuation at (@) Re; = 590 and
(b) Re; = 1000 in a wall-parallel plane at y*+ ~ 40. The velocity field is filtered in the spanwise direction with
wavelengths 80 < Azr < 220. The dashed lines, having angle 6 = 14° with respect to the streamwise direction,
show the mild inclination of the coherent structures in the wall region. These inclined streaky structures are
extracted by POD for analysing their secondary instability.

The leading POD profile obtained, 1/; ku.k. (), 1s used to reconstruct a three-dimensional
flow field as

uy(x) = Py g () M0t/ 4 e (2.2)

where c.c. denotes complex conjugate. The properties of the POD (Berkooz, Holmes
& Lumley 1993) ensure that the mode obtained in this way is still a POD mode for
the three-dimensional channel. In addition, using this method, the inclination of the
resulting coherent structures can be freely chosen selecting k, and k,. Note that, being
selected a priori, this inclination is not expected to vanish as the number of snapshots
used for the POD is increased. Note that, for a given couple {ky, k;}, there is a paired
{ky, —k;} mode that provides streaks inclined with the same angle in the opposite direction.
However, in order to obtain a two-dimensional base flow (see below), the two modes
can not be employed together. It is a limitation of the current approach to consider only
two-dimensional base flows.

The extracted structures are uniform along the direction x, which is inclined with
respect to x of an angle & = arctan[(k,L;)/(k;Ly)]. In order to make the stability analysis
computationally cheaper, we exploit this spatial homogeneity by rotating the POD mode
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in the y—z plane, where 7 is the axis perpendicular to x. The base flow is thus constructed
adding the mean turbulent flow to the rotated streaky POD mode u;. Because the POD
modes are defined up to an arbitrary multiplicative constant, we introduce an amplitude
definition as in Alizard (2015):
_ Maxyzu —minyzu
B 2U, '
Here u (scalar) is the streamwise component of a two-dimensional velocity field and U, is
the centreline velocity of the mean turbulent profile.

Before adding the streaky mode to the mean flow, the amplitude of the POD mode is
normalized such that the streaks have a chosen amplitude A;. More explicitly, let u; be the
streaky mode in the rotated frame with an arbitrary amplitude (i.e. before normalization),
the normalized mode ;% is given by

—A As —
ug’ = — —U,. 2.4)
maxy, z Us — miny, 7 Ug
2U,
Note that A; is a free parameter of the problem, whose choice will be made on the basis of

DNS data, as discussed in the next section. The base flow is thus constructed as

U(y,2) = (u)(y) + 5 (y, 2), (2.5)

where (-) denotes the averaging in time and in the wall-parallel spatial directions.
The instability of this z-modulated base flow is thus addressed linearizing the

Navier—Stokes equations around this two-dimensional base flow as (Park et al. 2011;
Alizard 2015)

au, ou, ,dU; dp D du,  ou;
ki AR e S e A S R iy ,
o1 T e R P e

(2.3)

(2.6)

where v = 1/Rep, is the non-dimensional viscosity and ' denotes the perturbations.
A detailed derivation is provided in Appendix B. Despite the perturbation verifying the
linear equations (2.6), the base flow does not verify the corresponding steady nonlinear
equations as would be the case in classical hydrodynamic stability analyses. This work
relies on a frozen base flow assumption, which is common to numerous previous studies
on the secondary instability of streaks (Schoppa & Hussain 2002; Marquillie, Ehrenstein
& Laval 2011; Park er al. 2011; Hack & Zaki 2014; Alizard 2015; Hack & Moin 2018). This
working hypothesis is a weak point of the approach because it is difficult to substantiate in
a turbulent flow (see § 3.1 for further details), but it is not clear at present how to relieve it.

Following Park et al. (2011), Alizard (2015) and also the recent work of Cossu (2022),
the effect of the turbulent fluctuations in the stability problem is taken into account using
the eddy viscosity model proposed by Cess (1958), i.e.

1/2

1 Re.k 5 5 Re: ,_q_ 2
= 1 2y — )3 —4y+2yH) (1 — =L el 1! —1
V= SRes [+(3(y y( y+ y)( < ° ;

2.7)

with k = 0.426, A = 25.4 (Del Alamo & Jimenez 2006) and y € [0, 2]. Computing the
eddy viscosity from the minimal DNS data after subtraction of the projected POD mode
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(following Tammisola & Juniper 2016) gave minor differences with respect to the Cess
(1958) model, which did not qualitatively affect the results of the paper. This being the
case, the Cess (1958) formula is preferred because it avoids the singularity at the channel
centre in the definition of the eddy viscosity (where the mean flow gradient tends to zero).

Then, a normal mode ansatz with complex frequency o and real streamwise
wavenumber «, namely,

g, y.7,0) =gy, 2) @ 4 cc. 2.8)

is injected in the linearized Navier—Stokes equations for the secondary perturbation ¢ =
(', p")T and the following generalized eigenvalue problem is obtained:

oBg=Aq. (2.9)
Here
< =Uy+iay —U; —ix
Ve 0 ¥ i/ /ID VZ D
— ! + Vv —V- —
B=01(1)0,A= Y =y z y’ (2.10)
0 0 0 0 -W, + vt/Dz L —W; —-D;
0 00 O i
10 Dy DZ 0
& = —iaU — VDy — WD; + (v + v)V* + v/Dy, (2.11)
where Dy ; denotes differentiation with respect to y or z, V2= —a?+ Dg + D% is the

Laplacian operator, Uyz, Vyz, W) 7 are the base flow components differentiated with
respect to y or Z and v, is the eddy viscosity differentiated with respect to y.

Now, note that the considered two-dimensional base flow is periodic by construction in
the z direction. Then, the instability of an array of periodic streaks can be studied efficiently
using the block-circulant matrix formalism proposed by Schmid, De Pando & Peake
(2017). Using this method, the computation of the stability of a system composed by N,
repeated subunits is reduced to N,, subunit-size computations, each associated to a root of
unity p; = exp(2mij/N,) withj =0, 1, ..., N, — 1. Here, a subunit is a two-dimensional
y — Z domain periodic in Z.

The first step consists in reordering the system as a partition in N, subsystems
corresponding to the N, subunits. Thus, the eigenvalue problem is recast as

B ... .. qg© AO A AWD 70
B [N é(l) A(Nu—l) A(O) . A(Nu_2) é(])
G = M . b
B/ \Gv—n AD A A0 G
B, q A, q

2.12)

where A’ is the Jacobian associated to the stability problem composed of the matrices A"/
(forj=0,...,N, — 1) describing the dynamics in a subunit and the interactions between

subunits, and the disturbance in the jth subunit is denoted as g”). The Jacobian matrix
A’ is block circulant due to the specific N,-periodic nature of the system and becomes a
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block-diagonal matrix A using the similarity transformation
P AP = diag(A©, A1 . ANy = A (2.13)
where the transfer matrix P is defined as
P=J®lI, (2.14)

with J a matrix such that Jipj i1 = pj{‘/\/m for j,k=0,...,N,—1 and p; =
exp(2imj/N,) the jth of the N, roots of unity. The symbol ® denotes the Kronecker product
and / the identity matrix. Using this similarity transformation, the full linear stability
problem is thus reduced to that of the N, subsystems characterized by the matrices AV).
From (2.13) follows that

Ny—1
AL) — k a(k)
AD = Y pka®, (2.15)
k=0
The full eigenspectrum of the matrix A’ is found merging the N, spectra of AY) for
j=0,...,N, — 1. Similarly, provided v; is an eigenvector of AU the eigenfunctions of
the full system can be retrieved and take the form [v;, p;v;, pjzvj, e, pf’”_lvj]T forj =
0,....,N, — 1.

Physically, the argument of the root of unity arg(p;) = 2mj/N, (j=1,...,N, — 1) acts
as a phase shift between the different subunits: the farther it is from O (or 21), the more
desynchronised the mode is. After 21t/ arg(0;) = N,,/j subunits, the cumulative phase shift
will exceed 27, giving an estimate of the effective fundamental period of the eigenfunction
of the full system. Therefore, this formalism allows the analysis of a very large size
system composed of small subunits such as near-wall streaks, possibly prone to large-scale
instabilities (Jouin ef al. 2024).

For each subunit, the stability problem (2.9) is discretized with N, = 60 Fourier
modes in the z direction and Ny = 129 Chebyshev modes in the wall-normal direction.
Some computations have been repeated increasing the resolution to N; x N, = 100 x 201,
showing minor changes both on the eigenvalues (variation smaller than 2 % with respect
to the previous resolution) and on the shape of the eigenvectors. This validation has been
carried out at the largest Reynolds number considered, which, in principle, would require
the finest discretization. Hence, the coarser previously mentioned discretization is deemed
appropriate and used for all the other computations.

3. Results
3.1. Base flow

An example of the wall-close coherent structures extracted using POD is shown in
figure 2(a). The two-dimensional base flow constructed adding these structures with
amplitude A; = 0.25 to the mean flow is shown in figure 2(b). As can be remarked from the
arrows on this panel, the streamwise velocity modulations are subject to a non-zero mean
flow component in the z direction, due to their inclination with respect to the streamwise
direction.

It can be noted that the extracted streaks are not symmetric with respect to the channel
mid-plane. For this reason, we repeated the POD for Re; = 590, k, = 1 and k; = 2 with
4000 snapshots instead of 2000. Comparing panel (a) with panel (c) in figure 3 it can
be observed that the asymmetry persists. Moreover, it has been remarked that the first
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Figure 2. Base flow for the Re; = 590 case. (a) Isocontours of the streamwise component of the POD mode
with kx = 1 and k; =2 (6 = 14°). (b) Base flow (POD mode plus mean flow) visualized in the y—z plane:
isocontours of the streamwise component and arrows for the tranverse components.

two POD modes have comparable eigenvalues and seem to be always in phase opposition
(compare panel (a) with panel (b) and panel (c) with panel (d)). Hence, the first two POD
modes are indeed coupled. A linear combination of these two modes would be arbitrary
because their amplitudes are not defined (we define only a relative amplitude of the streaks
with respect to the mean flow, as described above). Therefore, the asymmetric mode was
retained.

In figure 3 it can also be noted that the POD mode decreases rapidly when the distance
from the wall is greater than 0.25h, as demarcated by the dashed black lines. The flow in
the minimal unit is well resolved in this region (Flores & Jiménez 2010). For larger k, and
k;, the mode is even more localized near the wall. Whereas, it is dislocated towards the
channel centre for k£, = 1 and k, = 1. However, as shown in the following, this particular
combination of wavenumbers is not much relevant for the conclusions of the paper and is
included in the results only for completeness.

In order to define a realistic variability range for A, some quantitative measurements
are performed on the DNS data. For each snapshot, (2.3) is applied to every y—z plane
and averaged in the streamwise direction and in time. The result is an amplitude of
~0.3 £ 0.01 (blue crosses in figure 4) for all the four Reynolds number considered,
where the uncertainty is given by the standard deviation in time. Evidently, this is a
rough estimate because (2.3) is applied to an instantaneous turbulent field, which is
rather different from the base flow constituted by periodic streaky structures. Using (2.3),
the amplitude is computed using the maximum and minimum values of the streamwise
component of velocity, irrespective of the structural topology of the velocity field, in a
sort of worst case scenario. Therefore, this can be considered an upper estimate on the
streaks amplitude.

On the other hand, the root-mean-square (r.m.s.) peak value of the streamwise velocity
fluctuation (scaled with the centreline velocity for comparison) is around 0.1, as shown
by the black circles in figure 4. Given the definition of r.m.s., it is sure that a greater
value will be attained by the velocity fluctuation at least at some instant of time. Thus, it is
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Figure 3. Root mean square of the POD streaky modes for Re; = 590, k, = 1, k; = 2 (the mean is computed
along x and z). The POD modes are obtained from (a,b) 2000 DNS snapshots and (c,d) 4000 DNS snapshots
spaced at At = 0.25h/ U}, in time. (a,c) First leading mode, (b,d) second leading mode. The dashed lines denote
y/h = 0.25 and y/h = 1.75 and delimit the wall regions where the turbulent flow is well resolved in the minimal

domains.
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Figure 4. Amplitude A (2.3) measured in the DNS for different Reynolds numbers; the symbols denote the
temporal mean value while the error bars denote the respective standard deviation. The circles are the peaks in
the r.m.s. profiles of the streamwise fluctuation scaled with U, (see also figure 14b).
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argued that a realistic amplitude for the coherent structures must fall in the range 0.1 =- 0.3.
This estimation from the DNS is performed on the full velocity fluctuation, whereas the
considered base streaks are made up of only one Fourier mode. The energy contained
in one Fourier mode of the DNS fields is not so substantial, because of the broadband
character of the turbulent velocity spectrum. Therefore, the extracted mode should not
be seen as representative of the (ky, k;) Fourier mode alone but, rather, as an idealized
representative of the whole ensemble of near-wall coherent turbulent fluctuations. In
practice, the coherent turbulent spectrum was condensed into one mode. This is a very
strong approximation, but it is necessary in our current approach. Note, also, that the values
used by Park ef al. (2011) and Alizard (2015) are included in the same range.

Moreover, the stability equations are derived assuming that the base flow U verifies the
following equation (see Appendix B):

oU; aU; oP 0 oU;  aU;
—=-Ui— — — + — — 4+ —1. 3.1

If the right-hand side is zero then the base flow is steady and one can legitimately fomulate
the stability problem as an eigenvalue problem. If U is unsteady but periodic in time, one
can use Floquet theory and still define eigenvalues and eigenmodes. In the case considered
here, U is neither steady nor periodic but has a general time dependence dictated by (3.1).
In these cases, one usually employs the frozen base flow assumption which means that U
is treated as if it were steady. This implies that the right-hand side of (3.1) is somewhat
neglected in the stability equations. Therefore, the assumption can be tested by comparing
the time derivative of &’ with the time derivative of U. It must be taken into account that
i’ is defined up to a multiplicative constant. Therefore, we consider

1
[edl

ou'

B

1

l[a]]

~|o| and X :=

ou’
‘ ) (3.2a,b)

o

where o is the complex frequency of the mode and ||-|| is the L? norm on the y—z domain.
Then, the frozen base flow assumption is justified if the ratio X'/|o| is small. This ratio
has been computed for several of the parameter combinations explored in the following
sections and has been found in most cases smaller than 1. Only in few cases, however,
it is smaller than 0.1, confirming that the frozen base flow assumption is only partially
corroborated. This is a limitation of the current study.

3.2. Leading growth rates

Examples of eigenspectra are given in figure 5 for two of the four friction Reynolds
numbers considered in this study, Re; = 180 (a) and Re; = 590 (b), for N, = 60 subunits.
The colourbar shows the respective detuning factor (¢; = j/N,) of the instability, which
is allowed to take N, discrete equi-spaced values in the interval [0, 1). Due to the high
number of subunits considered, the eigenspectra show numerous branches. Figure 5 shows
that one of these branches is almost marginally stable at Re; = 180 and becomes prone to a
detuned instability (0.9 < €; < 1) at a higher Reynolds number. However, it must be noted
that the detuning factor depends on the reference frame, so that the effective detuning
factor in the streamwise-aligned (x—z) reference frame is lower. Nevertheless, the actual
value of the detuning factor is of minor significance for the purpose of this paper. The
important message of figure 5 is that an unstable branch is present at a sufficiently high
Reynolds number, with the leading mode corresponding to a detuned instability.
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Figure 5. Eigenspectra for the Ay =0.25 and o = 1.0 case (N, = 60, 6 ~ 14°) at (a—c) Re; = 180 and
(b-d) Re; = 590. The colours denote the detuning factor €; = j/N, forj =0, ..., N, — 1. The top row panels
are close-ups on the portion of the spectrum denoted by solid line rectangles in the bottom row panels. The
dashed black line denotes the marginal stability limit (o, = 0). The point with maximum growth rate o, defines
the leading unstable mode in the case of instability (max o, > 0) or the least stable mode in the case of stability
(max o, < 0).

(=]

We verified that the number of subunits has a weak impact both on the eigenspectra
and on the eigenmodes, provided that it is sufficiently large (e.g. N, > 60, see details in
Appendix D). This behaviour is expected because the number of units fixes the maximum
allowable spanwise size of the modes. If this size is too small, modes linked to a large-scale
spanwise modulation might not be properly resolved. On the other hand, if the domain
is sufficiently large, the leading mode is properly resolved and becomes independent of
the domain size. Whereas, the streaks amplitude A and the inclination of the base flow
streaks 6 strongly affect the outcome of the stability analysis, as shown in figure 6. The
growth rates of the most unstable modes have similar values and trends for Re; = 590,
Re; = 1000 and Re; = 2000 (blue, red and yellow lines), while the Re, = 180 (green)
cases show a different behaviour.

The dependence of the most unstable mode growth rate on the base flow streaks
amplitude is displayed in figure 6(a). As expected, the growth rate increases linearly with
this parameter so that instability is found for Ay > 0.1 for Re; = 590, 1000, 2000. For
Re; = 180, instability is found only at a very large amplitude A; > 0.25.

Concerning the base flow inclination, figure 6(b) shows that there is a peak in the
growth rate at 8 ~ 14° for Re; = 590, 1000 slightly displaced at 8 ~ 7.1° for Re; = 2000,
while the flow remains stable at Re; = 180. This decrease of the optimal angle with
the friction Reynolds number might indicate a trend towards the destabilisation of more
streamwise-aligned streaky structures at higher Reynolds numbers. Whereas, for Re; =
180 and A < 0.25, the base flow remains stable no matter the angle of the POD mode.
The stability of the Re; = 180 cases can be attributed to low-Reynolds-number effects
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Figure 6. Growth rate of the leading unstable mode (%) or least stable mode (e) as a function of (a) the base
flow streaks amplitude (with @ = 1.0 and k, = 2), (b) the inclination of the base flow (with ¢ = 1.0 and Ay =
0.20), (c) the streamwise wavenumber « (with A; = 0.20 and k; = 2). All computations were performed with
ky = 1and N, = 60.

and is compatible with the poor evidence of large-scale structures in these flow conditions
(Smits et al. 2011).

The wavenumber along X, namely, «, is a free parameter of the problem as well.
Figure 6(c) shows that, for the intermediate Reynolds number considered (590, 1000),
there is a plateau in the growth rate for o € [1.0, 2.0]. The plateau is shifted towards
smaller wavenumbers (« € [0.5, 1.5]) for Re; = 2000. Whereas, for Re; = 180, the
growth rate is found positive for the streaks amplitude A; = 0.2 only for = 2.0.

Hence, the influence of o on the growth rate gives a range of unstable wavenumbers
depending on the friction Reynolds number. The fact that the most unstable wavenumber
decreases when Re; grows is consistent with the observation of coherent structures
having a larger streamwise wavelength at a higher friction Reynolds number (compare
the premultiplied energy spectra at different Re; in figure 10 and the work of
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Figure 7. Growth rate of the leading unstable mode (%) or least stable mode (e) as a function of base flow
wavenumbers {ky, k;} for (a) Re; = 590 and (b) Re; = 1000. All computations were performed with @ = 1.0,
As; = 0.20 and N,, = 60.

Del Alamo et al. 2004). As shown in the next section, this range of o gives a range of
streamwise and spanwise wavelengths in the DNS reference frame.

Finally, one may ask what happens when both the base flow wavenumbers k., k;,
are changed. To investigate this point, several computations spanning k, = [0, 1, 2, 4, 8]
and k;, =[1,2,4, 8] for the two intermediate Reynolds numbers considered (Re; =
[590, 1000]) were performed having fixed A; = 0.20, « = 1.0 and N,, = 60. The resulting
growth rates are shown in figure 7. Two aspects can be remarked: (i) the streamwise
independent (k, = 0) structures result is always stable; (ii) increasing k,, the maximum
growth rate moves towards larger k.. This means that the instability is found in a given
range of the ratio k;/k, that corresponds to a range of inclination angles 8 ~ 7° + 28°.

3.3. Leading eigenmodes

In this subsection some observations on the leading unstable modes (or least stable modes
in some cases) are presented. The Re; = 180 case, for which evidence of LSMs is not
compelling, will not be considered. Moreover, we fix k, = 1 and k; = 2 for most of the
section to simplify the analysis. It will be argued that other combinations of base flow
wavenumbers {ky, k;} lead to similar conclusions. Whereas, different @ € [0.5, 2] will be
considered unless differently specified.

A closer look to the eigenmodes spatial structure is provided in figure 8, where the
energy content of the mode is represented with respect to the wavelength along z (1;)
and to the wall-normal position. To be more precise, consider the eigenvector g(y, z) =
[it(y,2), 9(y,2), w(y,2), p(y,2)]T and its Fourier transform in the Z direction (} The

quantity plotted in figure 8 is E,,(y, A,) = uir*, where * denotes the complex conjugate. It
can be seen in the figure that the eigenmodes are made up of several waves with different
wavelengths. Among them, one is characterized by a large wavelength and extends up
to the outer region of the flow (y/h > 0.1). In the figure the spanwise wavelength
characterizing the base flow is denoted by the black solid line. Therefore, it is evident that
the large-wavelength component of the eigenmode is much more extended than the base
flow structures. We postulate that the large-wavelength modulation found in the unstable
eigenmode is a large-scale structure engendered by the interaction of several base flow
subunits, i.e. several near-wall streaks. In the wall-normal direction the eigenmodes have
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Figure 8. Spectral energy content along the z direction of the streamwise component of the leading unstable
eigenmodes (E,, in the text) for « = 1.0 and different Reynolds numbers (A; = 0.20, kx = 1, k; = 2). The
vertical black line denotes the wavelength of the subunits (the base flow is periodic along z with this
wavelength). The eigenmode is normalized to have kinetic energy equal to one. The contour levels are for
E. = [107*,107!]. The two different background colours indicate the inner layer (light grey for y < 0.1) and
the bulk of the flow (light blue for y > 0.1).

two peaks at large wavelength: one in the wall layer (y < 0.1) and the other in the outer
layer (y > 0.1). The outer one is the presumed large-scale structure, while the inner one
can be interpreted as the near-wall footprint of this structure, as described by Hutchins &
Marusic (2007a). The other short-wavelength modulations that are present near the wall
can be attributed to the near-wall cycle (Hamilton et al. 1995).

It is interesting to investigate how the wall-normal position of the inner peak at large
wavelength depends on the Reynolds number. Experimental works in boundary layers
(Vincenti et al. 2013) and pipes (Vallikivi ef al. 2015) have shown that the wall-normal
position of the peak of the premultiplied streamwise energy spectrum scales as y;“e ar X

Reg'5 (or ypeak/h o Re;o's), meaning that even large-scale structures are affected by
viscous effects (Hwang 2016). In figure 9(a) the wall-normal position of the inner peak for
the leading eigenmodes computed with Re; = [590, 1000, 2000], ¢ = [0.5, 1, 1.5, 2] and
Ay = [0.20, 0.25] is plotted as a function of the friction Reynolds number. A power-law

least-squares regression applied to all these points gives the scaling law y;re ar X Re(t)'81

(dashed line in the figure). This result is in between the experimental findings recalled

above and the scaling y;'e ak X Re(r)'898 found by Hwang (2016) from the primary transient

growth of the mean flow. Note that we considered the spectrum with respect to A, instead
of the spectrum with respect to A, but the location of the inner peak remains unchanged
when the reference frame is rotated from z to x. Thus, the scaling law we found can be
directly compared with the previously mentioned ones.

To assess if the large-scale modulations observed in the leading eigenmodes can
represent large-scale structures populating turbulent flows, a comparison of their
wavelengths with DNS data is presented. Again, the leading eigenmodes computed
with Re; = [590, 1000, 2000], « = [0.5, 1, 1.5, 2] and Ay = [0.20, 0.25] are considered.
For each of these, the prominent A, is extracted from the Fourier spectrum (the A,
corresponding to the peaks in figure 8). Then, the streamwise and spanwise wavelengths
in the DNS frame (4,, A,) must be obtained from those in the rotated frame (1, and
A, = 2m/a). This can be done considering the large-scale modes as waves whose crests
are inclined with respect to the z axis of an angle § = arctan(4,/4;). The inclination with
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Figure 9. Wall-normal position of the inner peak as a function of Re,. Leading unstable modes (x) or least
stable modes (o) for (a) Re; = [590, 1000, 2000], & = [0.5, 1, 1.5, 2] and A; = [0.20, 0.25] (ky = 1, k; = 2,
N, = 60); (b) Re; =[590, 1000], k, = [0, 1, 2,4, 8] and k, = [1, 2,4, 8] (« = 1.0, A; = 0.20, N, = 60). The
abscissa of the symbols are jittered in order to avoid overlapping. In both (a) and (b) the black dashed line
is the scaling law found by least-squares regression of all the points contained in the two plots, respectively
y;“e ak X Reg'81 and y;“e ak X Reg'm“. In () the grey lines join the points corresponding to a given {ky, k;} couple
from one Reynolds number to the other.

respect to the z axis is 8 + 6, hence,

cos(B) sin(B)
cos(B+6)’ “sin(B +0)°

with 6 the angle of inclination of the rotated frame. These transformations are equivalent
to a rotation by 6 of the wavenumber vector,

A= A =21 (3.3a,b)

27 27
Ay cosf® —sinfh Ay
o (sin 6 cosb > ow | (34)
A, A,

The results for the streamwise and wall-normal velocity components are shown in
figure 10 along with the respective DNS premultiplied spectra by Del Alamo et al.
(2004) and Hoyas & Jiménez (2006). The characteristic sizes of the unstable modes
(blue/red/yellow stars) are included in the large-wavelength portion of the DNS spectra,
showing that these eigenmodes may represent the large-scale modulations found in the
turbulent flow. The spectra are taken at a wall-normal position y/h =~ 0.3, which is not far
from the outer peak of the mode (see figures 8 and 12). The premultiplied energy spectra
of the spanwise component are equivalent to the wall-normal ones, hence are not shown.

Particularly, the wavelengths of the eigenmodes are found to scale according to the law
A, o< A% with ¥ 2 0.71 (thick dashed line in figure 10). This scaling law is comprised
between the scalings reported by Del Alamo et al. (2004), namely A, /12'5 and A; x
Ax. Del Alamo et al. (2004) reported the laws in terms of A,/y and A;/y, whereas we
are considering only the eigenmode outer peak wall-normal position, so y is fixed and
included in the proportionality constant. This is because the eigenmode is representative
only of one large-scale structure at a time, whereas the scaling of the DNS spectra with
respect to y is due to the whole hierarchy of structures present in the flow. These two
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Figure 10. Wavelengths of the (a) streamwise and (b) wall-normal velocity component of the leading unstable
modes (x) or least stable modes (e) reported in the DNS reference frame for several cases. The contours are
the reference DNS premultiplied spectra at y/h & 0.3 for the (a) streamwise and (b) wall-normal velocity
fluctuations by Del Alamo et al. (2004) and Hoyas & Jiménez (2006). The wavelengths of the eigenmodes
follow the thick dashed line given by 1, = 1.32/12'7'. The solid black lines are the scaling laws A, o A, and
A, x 12'5 reported in Del Alamo et al. (2004).

scaling laws are reported in the panels of figure 10 as solid black lines. The first one
is mainly followed by the streamwise velocity fluctuation, the second characterizes the
transverse fluctuations (wall normal and spanwise). Whereas, our eigenmodes display the
same prominent wavelengths both for the streamwise and for the wall-normal component
(the same is true also for the spanwise component, not shown). Consistently, the scaling
law is intermediate between the two given by Del Alamo et al. (2004).

Until now, only the couple {ki, k;} = {1,2} of base flow wavenumbers has been
considered. Whereas, in figure 11 it is shown how the choice of these parameters affects
the characteristic wavelengths of the eigenmodes (reported in the DNS reference frame as
explained above). It can be remarked that the wavelengths are rather independent of both
wavenumbers except in two cases: (i) when k, = 0, but this is not much relevant because
these streaks are always stable; (i) when k, = 8 and k; < 8, but this case also is not much
relevant because it corresponds to structures inclined of an angle >45° with respect to the
streamwise direction. These large inclination angles are unlikely to be found near the wall
and are included only for completeness. Also the Reynolds number dependence illustrated
in figure 9(a) is generally not affected by the variation of &, and k, as it is demonstrated
by panel (b) of the same figure. It can be seen that, for most of the {k,, k;} couples, the
position of the trend increases and on average the trend is consistent with the law reported
in panel (a). Therefore, it can be concluded that the main features of the eigenmodes are
robust enough to allow us to focus only on a given couple {k,, k.} for the rest of the paper.

Finally, the spatial structure of the unstable modes is presented in figure 12(a—c). One of
the leading unstable eigenmodes is shown in a x—y plane for each Re; € {590, 1000, 2000}.
It can be seen that the Reynolds number does not have a major influence on the shape of
the eigenmode. This visualization recalls a conceptual sketch suggested in figure 13 of
Deshpande et al. (2023), where an experimental boundary layer is considered. Despite
the fact that the Reynolds number considered in this study is too low compared with the
experiment, the large-scale modulation of the eigenmode is found to reproduce the shape
of a superstructure. To make a direct comparison, following Deshpande et al. (2023), the
outline of the superstructure is superposed to a snapshot taken from our large-domain DNS
at Re; = 1000 (C1000;, see table 1) in figure 12(d). Considering the channel half-height
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Figure 11. Streamwise (a,b) and spanwise (c,d) wavelengths of the streamwise velocity component of the
leading unstable modes (%) or least stable modes (e) reported in the DNS reference frame as functions of base
flow wavenumbers {ky, k;} for (a,c) Re; = 590 and (b,d) Re; = 1000. All computations were performed with
a =1.0,A; = 0.20 and N,, = 60.

as the equivalent boundary layer thickness, it can be seen that the instantaneous structures
of the channel form a large-scale structure of the same height and shape of that found in
the boundary layer. Comparing the frames of figure 12, one can conclude that the unstable
mode is reminiscent of the superstructures.

To further illustrate the structure of the unstable eigenmode, its three-dimensional shape,
in the DNS frame of reference, is shown in figure 13(a) for Re; = 590. The modes
at other Reynolds numbers are totally equivalent, as can be deduced by the various
panels of figure 12. In a wall-parallel plane the mode has the shape of a travelling
wave. Therefore, the only meaningful information in this plane are the streamwise and
spanwise wavelengths, already compared with DNS results in figure 10. To improve the
comparison of the wall-normal structure of the leading unstable mode with DNS results,
spanwise-wall-normal cuts of the two are included in figure 13(b,c). Like the base streaks,
the resulting modes also have infinite length along a given axis. However, they have larger
dimensions in the cross-plane. Therefore, they effectively represent structures larger than
the base streaks.

The panels of figures 12 and 13 show that a sign change is present in the mode at
y/h = 0.1. It can be noted, especially in the wall-normal-spanwise plane (figure 13¢), that
similar sign changes can be observed at some locations in the DNS snapshots. However,
it is not present as a net phase shift as it seems to be present in the unstable mode.
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Figure 12. (a—c) Streamwise component of the leading unstable eigenmode reported in the DNS x—y reference
frame for (a) Re; =590, (b) Re; = 1000 and (c) Re; =2000 (@ = 1.0, A; =0.20, 6 ~ 14°, N, = 60).
The amplitude of the mode is normalized to one. (d) Instantaneous streamwise component of the turbulent
fluctuation extracted from a snapshot of the large-domain DNS at Re; = 1000 (C1000., see table 1). The
dashed line is a conceptual representation of a superstructure (from figure 13 of Deshpande et al. 2023).

One should take into account that the eigenmode is a linear, therefore idealized, structure,
whereas the actual structures found in the DNS are the result of nonlinear interactions
between several modes. In particular, the nonlinear development of the mode may alter the
relative amplitude of the near-wall small-wavelength wave with respect to the amplitude of
the large-wavelength wave such that the sign of the large-wavelength wave would prevail
and mostly remove the sign change. Unfortunately, such a nonlinear development would
transfer energy also to other wavelengths, such that the problem would become easily not
prone to detailed analysis. Therefore, this feature of the eigenmodes is not currently well
understood.

4. Conclusion
In this work the detuned stability of turbulent near-wall streaks and its connection
to the appearance of LSMs in the flow is investigated. Streaky structures with an
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-0.25
—0.50

Figure 13. (a) Streamwise velocity component isocontours (mode amplitude normalized to one, contour
value 0.1) of the leading unstable eigenmode reported in the DNS x—y—z reference frame at Re; = 1000
(@ =1.0,A; = 0.20, 0 =~ 14°, N,, = 60). (b) The y—z cut of the same mode in (a). (¢) Instantaneous streamwise
component of the turbulent fluctuation extracted from a snapshot of the large-domain DNS at Re; = 1000
(C1000y), y—z cut.

arbitrarily small inclination in the streamwise-spanwise plane are extracted by POD from
minimal-flow-unit DNS data. A periodic N, array of such structures superposed to the
turbulent mean profile is considered as base flow for the stability analysis. Unresolved
turbulent motions were included in the linear operator using an eddy viscosity model, as
in previous works (Park et al. 2011; Alizard 2015; Cossu 2022). This method allows the
study of turbulent coherent structures without the need for heavy computations in large
domains.
However, the employed approach has several limitations.

(1) First of all, the considered base flow is not a steady solution of the nonlinear
equations, as would be the case in a classical stability analysis. The underlying
assumption of frozen base flow is only weakly substantiated (see §3.1). Also, a
separation of scales argument is difficult to advocate in fully turbulent flows like
those considered in this work.
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(i) The current method is limited to two-dimensional base flows, whereas realistic
near-wall streaks can cross in the x — z plane, making the candidate base flows three
dimensional.

(iii) The block-circulant matrix method requires periodic base flows, whereas realistic
near-wall streaks are inclined of different angles, hence not perfectly periodic.

(iv) The base flow is constructed with a POD mode computed from a given wavenumber
couple {ky, k;}. This mode is then equipped with an amplitude that takes into
account the energy contained in the whole turbulent spectrum. This is a strong
approximation, as it means that a complex chaotic field is ideally represented by
only one Fourier mode.

(v) As pointed out by Cossu (2022), there is not universal agreement in the literature
on how to close the linear equations (and whether to employ a closure at all).
However, we have verified that eddy viscosities computed from DNS data are not
much different from the Cess (1958) model employed.

These shortcomings are, at least in part, shared by most previous studies on the secondary
instability of streaks (Schoppa & Hussain 2002; Marquillie et al. 2011; Park et al. 2011;
Hack & Zaki 2014; Alizard 2015; Hack & Moin 2018) and also by various works on the
stability of mean flows (for instance, see McKeon & Sharma 2010; Cossu 2022). In the
present work, it has not been possible to tackle and overcome them, but they are under
current investigation.

Notwithstanding the various approximations made, the results display a certain
consistency with the features of large-scale structures reported in previous studies. The
results show that for sufficiently high friction Reynolds numbers, near-wall streaks can
trigger a large-scale instability, suggesting a possible origin of LSMs in wall-bounded
turbulence. There is little qualitative difference between the unstable modes at Re; =
[590, 1000, 2000] and this is compatible with the fact that large structures scale in outer
units (Hutchins & Marusic 2007a; Cossu & Hwang 2017). Whereas, the Re; = 180 case
is always stable except for very large amplitudes of the streaks and small wavelengths of
the instability, corroborating the observation that developed large-scale structures are not
expected at this low Reynolds number.

A comparison of the computed unstable eigenmodes with DNS and experimental results
was attempted. It was found that the eigenmodes reproduce some features of turbulent
LSMs. The streamwise and spanwise wavelengths of the large-scale modulation are
compatible with the DNS spectra of Del Alamo et al. (2004) and Hoyas & Jiménez (2006).
They also scale according to a power law that is included between the two power laws
A; X /12'5 and A, o A, reported by Del Alamo et al. (2004). In addition, the scaling of
the wall-normal position of the spectrum inner peak with Re, agrees reasonably well
with experimental findings (Vincenti et al. 2013; Vallikivi et al. 2015), with a slight
improvement with respect to previous linear computations (Hwang 2016). Moreover,
it was found that these traits of the eigenmodes are rather robust with respect to the
variation of the base streaks wavenumber couple {ky, k;}. This consistency sustains at
least in part the applicability of the assumptions made, since it shows that the choice of
a given wavenumber couple is not critical as long as it respects some physical constraints
(moderate inclination of the streaks with respect to the streamwise direction).

As the employed base flow, the eigenmode itself is an idealized structure, as it resembles
an oblique travelling wave. Nevertheless, it contains interesting elements. The shape
of the structure in the streamwise/wall-normal plane conceptually recalls the structures
found in recent experimental findings (Deshpande et al. 2023) and in the large-domain
DNS performed in this study. Similar considerations apply to the structure in the
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spanwise/wall-normal plane. Even if in the comparison there are unclear elements (e.g. a
near-wall phase shift not well understood at the moment), which are probably due to the
linear nature of the eigenmode, it can be concluded that the instability returns the correct
streamwise/spanwise wavelengths and a fair wall-normal structure.

Therefore, this study brings numerical evidence that the LSMs found in numerical
simulations and experiments of wall turbulence may be the result of an instability of
near-wall structures. Despite the fact that the considered Reynolds numbers are still too low
to assess a connection with VLSMs, this work sheds new light on the role of instabilities in
the dynamics of wall-bounded turbulent flows and the possible bottom-up scale interaction
originated by them.
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Appendix A. DNS validation

Direct numerical simulation computations were performed in minimal flow units in order
to extract the base flow streaks (see table 1). In order to validate the data, velocity statistics
are compared with literature results (Kim et al. 1987; Moser et al. 1999; Del Alamo et al.
2004; Hoyas & Jiménez 2006) in figure 14. It can be seen that the mean flow and the
streamwise fluctuation r.m.s. are well computed, with minor differences imputable to the
use of very small domains. Indeed, repeating the computation at Re; = 180 in a larger
domain (see Kim et al. 1987), the discrepancy in the peak of the r.m.s. in figure 14(b)
disappears. However, it must be noted that these small-size effects influence the flow only
fory 2 L;/3 ~ 0.25h (Flores & Jiménez 2010), so the considered minimal flow units are
appropriate to extract near-wall coherent structures.

Appendix B. Derivation of linearized perturbation equations
Let us consider a flow field decomposed as follows:

ui=Ui+u,, p=P+p. (Bla,b)

The continuity equation implies that, assuming u; and U; to be divergence free, then u;
must also be divergence free. The total flow field verifies the Navier—Stokes momentum
equation

ou; ou; _ ap 9%u;

(B2)

— tu— = -tV
TR T T
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Figure 14. Validation of DNS data. (a) Mean flow scaled in wall units. (b) Root mean square of the streamwise

velocity fluctuation scaled with the centreline velocity. Dashed lines are reference data: respectively Kim, Moin

& Moser (1987), Moser, Kim & Mansour (1999), Del Alamo et al. (2004) and Hoyas & Jiménez (2006) for

Re; = 180, Re; = 590, Re; = 1000 and Re; = 2000. The black dotted line is from a DNS at Re; = 180 in the

domain of Kim et al. (1987).

which, by introducing the decomposition (B1), reads

3U,'+3M;+U3Ui+U3M;+ /3Ul' /314;.
a a0 Yoy oy YAy Yoy
P dp  d*u; 0%
=————++vV +v L. B3
ox;  Ox; ox? ox; o

One could assume that the base flow U; also verifies the unsteady momentum equation

aU; aU; P 3U;
— tU—=——+v—.
Jat 8x]~ 0X; asz

(B4)

If this is the case, without any further assumption, by subtracting (B4) from (B3), the
perturbation equation is obtained:
ou; U ou;  U; ,0u op’ 3%u!,

i = - L. B5
ar T an Ty TYan T o ! 02 (®3)

Then, the linearized equation is obtained by assuming u; ~ & < 1, such that the quadratic
term u]’.au;. /0%; can be neglected:

ou' ou' aU; ap’ 3%u
l l / L 1

. (L . B6

I R T (56)

The derivation of this equation is not affected by the generic unsteadiness of U;. Indeed,
these equations are used, e.g. for the computation of Lyapunov exponents of turbulent
flows, where U; is a chaotic trajectory (Ishikawa, Takehiro & Yamada 2018; Nikitin 2018).
The assumption of frozen base flow is made when the linearized problem is formulated
as an eigenvalue problem, because then the time dependency of the linear operator, which
contains Uj, is neglected.
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When one wants to introduce an eddy viscosity in the linear operator, the derivation
is analogous, if the eddy viscosity is introduced from the beginning, i.e. in the total flow
equation:

/ / /
aU;  ou; aU; ou U, 0u; oP  dp’

AR SN/ Y P B TAL SR .
ar ot Ty T am Wam TYay T om ow

i )(8U+8U O | oy (254 2 (B7)
8)(;] |: v Vi 8__ a—)ﬁ):| 8x] (V V¢ a—x] 8_)(;l .

In this case, the flow field U; + u; is seen as the coherent part of the turbulent flow, whereas
the incoherent fluctuations are modelled by the eddy viscosity (Cossu 2022). The base flow
is assumed to verify the following unsteady equation:

Wi 0V _ 9P D[ (U 3Y, B8)
_ [ — RN V v _ _
ar oy 0%, | 0% “\ox, | o

By subtracting (B8) from (B7) and assuming small perturbations, one obtains the
linearized perturbation equation

A LT S/ SN YN ;0 (BY)
or T ox  ax . oxm ax | P\am o aw )|

which is (2.6) of the main text. We note that the perturbation equation contains an eddy
diffusivity term proportional to the perturbation, that can be interpreted as a perturbation
of the Reynolds stresses. Again, the frozen base flow assumption comes in when one
considers this linearized equation as an eigenvalue problem.

Appendix C. Stability code validation

The two-dimensional stability code is validated against the results of Park et al. (2011)
at Re; = 300. Their approach is followed: a primary optimal disturbance (figure 15a) is
computed from the mean flow transient growth in agreement with Pujals ez al. (2009); the
optimal initial vortices are rescaled with an amplitude A, = 0.1 and evolved nonlinearly;
then, the resulting streaks with amplitude Ay = 0.23 (figure 15b) are added to the mean
flow to form the base flow. Performing a two-dimensional stability analysis with @ = 1.3,
this base flow is found to be unstable. The unstable eigenmode is shown in figure 15(c)
along with the critical layer: it is equivalent to figure 15(d) in Alizard (2015). The growth
rate and the phase velocity of this unstable mode are respectively o, = 0.021 and ¢/U, =
0.86, which are in excellent agreement with Park et al. (2011) and Alizard (2015).

The block-circulant matrix method was validated in a previous study (Jouin et al. 2024).

Appendix D. Dependence on the number of subunits

The dependence of the stability results (eigenvalues and eigenmodes) on the number of
coupled subunits N, is assessed here at Re; = 2000. The variation of the leading growth
rate is displayed in figure 16(a) for « = 0.5 and o = 1.0. We report a variation in the
leading growth rate between N, = 60 and N,, = 90 of the 2.4 % for « = 0.5 and of the
1.8 % for a = 1.0. The figure clearly shows that this variation is negligible with respect
to the variation due to, e.g. the wavenumber «. Therefore, N, has a secondary influence
on the eigenvalues. Concerning the influence on the eigenmodes, figure 16(b—d) shows the
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Figure 15. (@) Optimal perturbation for the turbulent mean flow at Re; = 300 for « = 0.0 and 8 = /2.
Contours of the streamwise velocity at optimal time and transverse velocity components at initial time.
(b) Same as (a) for the optimal perturbation evolved with the nonlinear code. (c) Secondary instability mode
for « = 1.3: contours of the absolute value of the spanwise velocity component. The dashed line is the critical
layer, i.e. where the local base flow velocity is equal to the phase velocity of the unstable mode.
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Figure 16. (a) Growth rate of the leading unstable mode (x) as a function of the number of subunits N, for
two different values of the @ wavenumber and Re; = 2000, k, = 2, A; = 0.20. (b—d) Spectral energy content
along the z direction of the streamwise component of the leading unstable eigenmodes (Ey,) for (b) o = 0.5
and (c,d) o = 1.0. The vertical black line denotes the width of a subunit. The eigenmode is normalized to have
kinetic energy equal to one. The contour levels are for E,, = [10~%, 10~1]. The difference between (c) and (d)
is that a different root unity index j is selected for the N, = 90 mode (see Appendix D for a comment).

spectral energy content in z of the leading modes for « = 0.5 (b) and @ = 1.0 (¢,d), in the
same spirit of figure 8. It can be seen that the structure of the eigenmodes is not influenced
by N,. The only difference that may be recovered, depending on the case, is illustrated
by the two panels (¢) and (d). The leading mode obtained with N, = 60 corresponds to a
root of unity index (see § 2) j = 56, whereas with N, = 90 the leading mode corresponds
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to j = 85. These unstable modes are compared in panel (c¢). Whereas, in panel (d) we
plot the N, = 90 unstable mode corresponding to j = 84 instead of 85 (together with
leading modes obtained from N, = 30 and 60). We see that the j = 84 mode matches well
those obtained with N, = 30 and 60 (indeed 84/56 = 1.5 = 90/60), while the truly most
unstable mode at N, = 90 (j = 85) has a slightly different prominent wavelength. Hence,
this slight shift in the prominent wavelength is what may happen to the most unstable
eigenmode when increasing the total number of subunits. However, this does not alter the
conclusions of the paper because the prominent wavelengths remain in the neighbourhood
of those shown in figure 10.
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