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Fourier coefficients of  and 1
sin θ

θ
sin θ

G. J. O. JAMESON

Introduction
Recall that for a -periodic function , the Fourier coefficients on the

interval  are
2π f

(−π, π)

an (f ) =
1
π ∫

 π

−π
f (θ) cos nθ dθ,

bn (f ) =
1
π ∫

 π

−π
f (θ) sin nθ dθ,

and the Fourier series for  isf

1
2a0 (f ) + ∑

∞

n = 1

(an (f ) cos nθ + bn (f ) sin nθ) .

The Riemann-Lebesgue lemma says that if  is bounded and integrable, then
 and  tend to 0 as : for  with bounded derivative, this is

easily proved by integration by parts. Under suitable (stronger) conditions,
the Fourier series converges to ; it is more than enough if  is bounded
and differentiable on . Of course, if the coefficients do not tend to 0,
then the series does not converge.

f
an (f ) bn (f ) n → ∞ f

f (θ) f
(−π, π)

If  is even, then  and , and
the series has only cosine terms. If  is odd, then  and

. If  is only specified on , these are the
‘half-range’ cosine and sine coefficients, corresponding to even and odd
extensions of  defined by taking either  or
on .

f bn (f ) = 0 an (f ) = 2
π ∫

π
0 f (θ) cos nθ dθ

f an (f ) = 0
bn (f ) = 2

π ∫
π
0 f (θ) sin nθ dθ f (0, π)

f f (−θ) = f (θ) f (−θ) = −f (−θ)
(−π, 0)
Here we will describe the half-range Fourier coefficients of  and

, first on the interval , then, by suitable scaling, on the interval
. On  the coefficients do not even tend to zero, but on

they generate rather interesting cosine and sine series converging to
, nicely exhibiting the connection with the known integral in terms

of Catalan's constant. On the way we will need to investigate the integrals of
the products of these functions with  and  or .
These integrals are of some interest in themselves, and have further
applications. A simple variation delivers corresponding results for

 and . The resulting catalogue of integrals is quite
lengthy, but hopefully not quite so formidable when viewed as a systematic
scheme.

1 / sin θ
θ / sin θ (0, π)
(0, 1

2π) (0, π) (0, 1
2π)

θ / sin θ

sin nθ cos nθ (1 − cos nθ)

cos θ / sin θ θ cos θ / sin θ

Integrals on (0, π)
We start by recording the integrals of  and  themselves,cos nθ sin nθ
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FOURIER COEFFICIENTS OF  AND 4131 / sin θ θ / sin θ

distinguishing even and odd  where necessary. They are completely
elementary, but it will be useful to have the list available for reference. For
positive integers  and , we have:

n

n r

∫
 π

0
cos nθ dθ =

1
n [ ]π

0
= 0, (1)sin nθ

∫
π

0
sin 2rθ dθ = −

1
2r [ ]π

0
= 0, (2)cos 2rθ

∫
π

0
sin (2r − 1) θ dθ = −

1
2r − 1 [ ]π

0
=

2
2r − 1

, (3)cos (2r − 1)

∫
π

0
θ sinnθ dθ =−

1
n [ ]π

0
+

1
n ∫

 π

0
cosnθ dθ = (−1)n− 1 π

n
, (4)θ cosnθ

 ∫
 π

0
θ cos2rθ dθ =

1
2r [ ]π

0
−

1
2r ∫

π

0
sin2rθ dθ = 0, (5)θ sin2rθ

∫
 π

0
θ cos(2r − 1)θ dθ =

1
2r − 1 [ ]π

0
−

1
2r − 1 ∫

π

0
sin (2r − 1)θ dθθ sin (2r − 1)θ

= −
2

(2r − 1)2
, (6)

Identities (4), (5) and (6) lead to the well-known Fourier series for  and ,
but that is not our topic here.

θ |θ|

We turn to the integral of , and the same multiplied
by . Viewed purely as an integral, there is no problem about the integrand:
the zeros of  at 0 and  are cancelled by zeros of . A
simple trigonometric identity makes this point more explicit, and also
enables the evaluation. In fact, adding the identities

sin (2n + 1) θ / sin θ
θ

sin θ π sin (2n + 1) θ

sin (2r + 1) θ − sin (2r − 1) θ = 2 cos 2rθ sin θ
for , we obtain, for ,1 ≤ r ≤ n 0 < θ < π

sin (2n + 1) θ
sin θ

= 1 + 2 ∑
n

r = 1

cos 2rθ. (7)

(With the substitution , this is the ‘Dirichlet kernel’. As the reader
may know, it is an essential tool in the proof of convergence of Fourier
series.) By (1) and (5), only the term 1 contributes to the integrals: we obtain

θ = 1
2φ

∫
 π

0

sin (2n + 1) θ
sin θ

dθ = π, (8)

 ∫
 π

0
θ

sin (2n + 1) θ
sin θ

dθ =
π2

2
. (9)

These integrals, multiplied by , give the Fourier sine coefficients of2 / π
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 and . Clearly they do not satisfy the Riemann-Lebesgue
Lemma. This was not to be expected, since both functions tend to infinity as

 tends to , and also  as  tends to 0.

1 / sin θ θ / sin θ

θ π 1 / sin θ θ

A variant of (7) is as follows. Since 

sin (2n + 1) θ = sin 2nθ cos θ + cos 2nθ sin θ,
we have

sin 2nθ cos θ
sin θ

=
sin (2n + 1) θ

sin θ
− cos 2nθ

= 1 + 2 ∑
n − 1

r = 1

cos 2rθ + cos 2nθ. (10)

So the integrals in (8) and (9) retain the same value if  is
replaced by , thereby describing even-numbered Fourier
coefficents of  and . We will see an application of
this variant shortly.

sin (2n + 1) θ
sin 2nθ cos θ
cos θ / sin θ θ cos θ / sin θ

Now let us replace  by  in these integrals. Adding the equalities
 for , we obtain

2n + 1 2n
sin2rθ − sin (2r − 2)θ = 2 cos(2r − 1)θ sinθ 1 ≤ r ≤ n

sin 2nθ
sin θ

= 2 ∑
n

r = 1

cos (2r − 1) θ. (11)

So by (1) and (6) we have

∫
π

0

sin 2nθ
sin θ

 dθ = 0, (12)

∫
π

0
θ

sin 2nθ
sin θ

 dθ = −4 ∑
n

r = 1

1
(2r − 1)2

. (13)

In the same way as for (8) and (9), there are variants with  replaced
by ; in (13), the final term in the sum is halved.

sin 2nθ
sin (2n − 1) θ cos θ

We now consider companion integrals involving  instead of
. Adding the identities ,

we obtain

cos nθ
sin nθ cos(2r − 1)θ − cos(2r + 1)θ = 2 sin2rθ sinθ

cos θ − cos (2n + 1) θ
sin θ

= 2 ∑
n

r = 1

sin 2rθ. (14)

(This is the ‘conjugate Dirichlet kernel’.) So by (2) and (4) (with ),n = 2r

∫
π

0

cos θ − cos (2n + 1) θ
sin θ

 dθ = 0, (15)

 ∫
π

0
θ 

cos θ − cos (2n + 1) θ
sin θ

 dθ = −π ∑
n

r = 1

1
r

. (16)
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Note that for these integrals to exist, it is essential to have the difference of
two cosines in the numerator, in order to cancel the zeros of  at 0 and .
In other words, Fourier cosine coefficients of  and  on
do not exist.

sin θ π
1 / sin θ θ / sin θ (0, π)

Corresponding to (10), we have the following variant of (14) derived
from the identity :cos (2n + 1) θ = cos 2nθ cos θ − sin 2nθ sin θ

(1 − cos 2nθ) cos θ
sin θ

= 2 ∑
n − 1

r = 1

sin 2rθ + sin 2nθ. (17)

So variants of (15) and (16) apply with  replaced by
; in (16), the final term is halved. This variant will be

needed for a later application.

cos θ − cos (2n + 1) θ
(1 − cos 2nθ) cos θ

Now, replacing  by , we have the following companion to (14):2r 2r − 1

1 − cos 2nθ
sin θ

= 2 ∑
n

r = 1

sin (2r − 1) θ, (18)

so by (3) and (4),

∫
π

0

1 − cos 2nθ
sin θ

 dθ = 4 ∑
n

r = 1

1
2r − 1

, (19)

 ∫
π

0
θ 

1 − cos 2nθ
sin θ

 dθ = 2π ∑
n

r = 1

1
2r − 1

. (20)

Of course, in these integrals we can write  instead of .2 sin2 nθ 1 − cos 2nθ

Again, variants apply with  replaced by .1 − cos2nθ 1 − cos(2n − 1)θ cosθ

Application to . (This is a digression which the reader is at liberty to
ignore.)

log sin θ

Although  is unbounded on , it has a finite integral. In
fact, it can be shown quite simply that  (see [1]
or [2]). Our earlier results enable us to evaluate the Fourier cosine
coefficients. Let

log sin θ (0, π)
∫
π
0 log sin θ dθ = −π log 2

In = ∫
 π

0
(log sin θ) cos nθ dθ.

Integrating by parts, we have

In =
1
n [ ]π

0
−

1
n ∫

 π

0

cos θ
sin θ

sin nθ dθ.(log sin θ) sin nθ

From the fact that  as , we can show that the first
bracket equals 0. By the variant forms of (8) and (12), we deduce that

 and .

θ log θ → 0 θ → 0+

I2n = −π / (2n) I2n − 1 = 0
If we assume that the Fourier series converges to the function, we

conclude that

log sin θ = − log 2 − ∑
∞

n = 1

1
n

cos 2nθ (21)
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for . However, because the function is unbounded, the general
theorem on convergence of Fourier series, under the conditions usually
stated, does not apply. Convergence of the series, at least, is assured by
Dirichlet's test. In fact (21) can be seen as a case of the complex logarithmic
series , with , since  for

. The proof of this identity for  with  is by no
means trivial, but that is not our concern here.

0 < θ < π

log(1 − z) = − ∑∞
n =1zn /n z = e2iθ |1 − e2iθ| = 2 sinθ

0 < θ < π z ≠ 1 | z | = 1

Integrals on  involving (0, 1
2π) 1 / sin θ

We now consider corresponding integrals on the interval . Those
involving  are a good deal simpler, and we deal with them first.
Corresponding to (1) and (3), we have

(0, 1
2π)

1 / sin θ

∫
π/2

0
cos 2rθ dθ = −

1
2r [ ]π/2

0
= 0 (r ≥ 1) , (22)sin 2rθ

∫
π/2

0
cos (2r − 1) θ dθ =

1
2r − 1 [ ]π/2

0
=

(−1)r − 1

2r − 1
, (23)sin (2r − 1)θ

∫
π/2

0
sin (2r − 1) θ dθ = −

1
2r − 1 [ ]π/2

0
=

1
2r − 1

. (24)cos(2r − 1)θ

By (7) and (22), we have

∫
π/2

0

sin (2n + 1) θ
sin θ

 dθ =
π
2

, (25)

while by (11) and (23), we have

∫
π/2

0

sin 2nθ
sin θ

 dθ = 2 ∑
n

r = 1

(−1)r − 1

2r − 1
. (26)

Also, by (18) and (24),

∫
π/2

0

1 − cos 2nθ
sin θ

 dθ = 2 ∑
n

r = 1

1
2r − 1

(27)

(this also follows easily from (19)). Mindful that our catalogue of integrals
is getting rather long, we have left out the analogues of (2) and (15), which
would logically belong here. Any sufficiently determined reader will be able
to supply these.

We now show how with the help of the Riemann-Lebesgue Lemma, we
can deduce the ‘sine integral’

∫
∞

0

sin θ
θ

 dθ =
π
2

. (28)

Write

F (θ) =
1

sin θ
−

1
θ

.
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Then  as , since the series for  givesF (θ) → 0 θ → 0 sin θ

F (θ) =
θ − sin θ

θ sin θ
=

θ3 / 3! − θ5 / 5! +…
θ2 − θ4 / 3! +…

=
θ / 3! − θ3 / 5! +…

1 − θ2 / 3! +…
.

So  is bounded and continuous on  when assigned the value 0 at
0. Hence the Riemann-Lebesgue lemma applies to give

F (θ) [0, π
2]

∫
π/2

0
F (θ) sin (2n + 1) θ dθ → 0 as  n → ∞.

Now

∫
π/2

0

sin (2n + 1) θ
θ

 dθ = ∫
(n + 1

2)π

0

sin φ
φ

 dφ.

Denote this by . With (25) we have shown that , so
that  as , which proves (28).

J2n + 1
π
2 − J2n + 1 → 0

J2n + 1 → π
2 n → ∞

Of course, this also shows that  as . Since
 also tends to 0 as , we can deduce from (26) that

 (however, this is more easily deduced from the Fourier

series for  itself).

J2n → π
2 n → ∞

∫
π/2
0 F(θ) sin 2nθ dθ n → ∞

∑
∞

r = 1

(−1)r − 1

2r − 1
=

π
4

θ

Integrals on  involving (0, π
2) θ / sin θ

A new ingredient emerges when we come to . While this
function is not integrable on , it is bounded and continuous on ,
so it will have convergent Fourier sine and cosine series on this interval. We
describe how Fourier coefficients and series translate to this interval. Given
a function  on , substitute  to obtain

θ / sin θ
(0, π) (0, π

2)

f (φ) (0, π) φ = 2θ

an (f ) =
2
π ∫

π

0
f (φ) cos nφ dφ =

4
π ∫

π/2

0
f (2θ) cos 2nθ dθ.

In the Fourier cosine series, the term  becomes .
Similar adjustments apply to the sine series. To obtain ,
we take  to be . We will determine the coefficients: they
are hardly transparent in advance. We start by recording the integrals
corresponding to (4) and (6):

an (f ) cos nφ an (f ) cos 2nθ
f (2θ) = θ / sin θ

f (φ) φ / (2 sin 1
2φ)

∫
π/2

0
θ sin (2r − 1)θ dθ = −

1
2r − 1 [ ]π/2

0
+

1
2r − 1 ∫

π/2

0
cos(2r − 1)θ dθθ cos(2r − 1)θ

=
(−1)r − 1

(2r − 1)2
, (29)

∫
π/2

0
θ cos(2r − 1)θ dθ =

1
2r − 1 [ ]π/2

0
−

1
2r − 1 ∫

π/2

0
sin (2r − 1)θ dθθ sin (2r − 1)θ

=
(−1)r − 1

2r − 1
π
2

−
1

(2r − 1)2
. (30)
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We also need the integral of  itself, which can be evaluated in
terms of Catalan's constant. This constant, commonly denoted by , is
defined by

θ / sin θ
G

G = ∑
∞

n = 0

(−1)n

(2n + 1)2
= 1 −

1
32

+
1
52 −  … .

By termwise integration of the series

tan−1 x
x

= ∑
∞

n = 0

(−1)n x2n

2n + 1

one finds that 

∫
1

0

tan−1 x
x

dx = G.

Substituting  and then , we deducex = tan φ 2φ = θ

G = ∫
π/4

0

φ
tanφ

 sec2φ dφ = ∫
π/4

0

φ
sinφ cosφ

 dφ = ∫
π/2

0

θ
2 sin θ

 dθ. (31)

(There are numerous other integrals evaluated in terms of ; again see [1, 2].)G

We consider the cosine series first. By (18) and (29), we have

∫
π/2

0
θ 

1 − cos 2nθ
sin θ

 dθ = 2 ∑
n

r = 1

(−1)r − 1

(2r − 1)2
. (32)

In (32), unlike (20) or (27), we can separate the terms. By (31),

∫
π/2

0

θ
sin θ

 dθ = 2G = 2 ∑
∞

r = 1

(−1)r − 1

(2r − 1)2
.

Hence

∫
π/2

0
θ

cos 2nθ
sin θ

 dθ = 2pn,

where

pn = ∑
∞

r = n + 1

(−1)r − 1

(2r − 1)2
.

(Note that .) Of course, this shows that  as , in
accordance with the Riemann-Lebesgue lemma. Conversely, if we assume
the Riemann-Lebesgue lemma, we can deduce (31) from (32), though
admittedly this is rather a tortuous route to this integral.

p0 = G pn → 0 n → ∞

So we have obtained the Fourier cosine series (valid for )−π
2 ≤ θ ≤ π

2

θ
sin θ

=
4G
π

+
8
π ∑

∞

n = 1

pn cos 2nθ.

The sum of this series has period , so (for example) for  it
equals .

π π
2 ≤ θ ≤ 3π

2
(π − θ) / sin θ
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Since  as , we can evaluate at 0 to deduce that

. Evaluation at  gives . One

can verify these identities directly from the definition of  by reversal of
summation in the implied double series.

θ / sin θ → 1 θ → 0

∑
∞

n = 1

pn +
1
2

G =
π
8

π
2 ∑

∞

n = 1

(−1)n pn +
1
2

G =
π2

16
pn

We now turn to the sine series. By (11) and (30), we have

∫
π/2

0
θ

sin 2nθ
sin θ

 dθ = 2qn,

where

qn =
π
2 ∑

n

r = 1

(−1)r − 1

2r − 1
− ∑

n

r = 1

1
(2r − 1)2

.

According to the Riemann-Lebesgue lemma, we should have . This
indeed happens, in a rather interesting way. Recall that

qn → 0

∑
∞

r = 1

(−1)r − 1

2r − 1
=

π
4

 and  ∑
∞

r = 1

1
(2r − 1)2

=
π2

8
.

It follows that . Conversely, if we assume the Riemann-
Lebesgue lemma, we can deduce either of these series from the other. Also,
we can rewrite  as follows:

qn → π2

8 − π2

8 = 0

qn

qn = ∑
∞

r = n + 1

1
(2r − 1)2

−
π
2 ∑

∞

r = n + 1

(−1)r − 1

2r − 1
.

So we have the Fourier sine series (valid for )0 < θ < π
2

θ
sin θ

=
8
π ∑

∞

n = 1

qn sin 2nθ.

The sum of this series is an odd function, so for , it equals
. Also, it has period , so equals  for .

Clearly it is 0 at 0 and , reflecting the fact that at discontinuities Fourier
series converge to the average of the left and right limits.

−π
2 < θ < 0

−θ / sin θ π (θ − π) / sin θ π
2 < θ < π

π
2

Still missing are the analogues of (9) and (16) for . We will leave
(9) for the sufficiently keen reader to investigate, and concentrate on (16),
which opens the way to another interesting Fourier series, the cosine series
for . For this we need

(0, π
2)

θ cos θ / sin θ

  ∫
π/2

0
θ sin2rθ dθ = −

1
2r [ ]π/2

0
+

1
2r ∫

π/2

0
cos2rθ dθ = (−1)r − 1 π

4r
.θ cos2rθ

So by (14) we have, for ,n ≥ 1

∫
π/2

0
θ 

cos θ − cos (2n + 1) θ
sin θ

 dθ = π ∑
n

r = 1

(−1)r − 1

2r
.

This is the analogue of (16), but for the Fourier series in question, what we
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actually want is the following variant, derived from (17) instead of (14):

∫
π/2

0

θ cos θ
sin θ

(1 − cos 2nθ)  dθ = π ∑
n − 1

r = 1

(−1)r − 1

2r
+ π

(−1)n − 1

4n
. (33)

We now need to know the following integral:

∫
π/2

0

θ cos θ
sin θ

 dθ =
π
2

log 2. (34)

Integration by parts shows that this is equivalent to the integral 

∫
π/2

0
log sin θ = −

π
2

log 2,

which we mentioned earlier. Alternatively, we can deduce (34) from (33),
using the Riemann-Lebesgue lemma and the fact that 

∑
∞

r = 1

(−1)r − 1

2r
=

1
2

log 2.

Either way, we can now deduce

∑
∞

r = 1

θ cos θ
sin θ

 cos 2nθ dθ =
π
2

tn,

where

tn =
(−1)n − 1

2n
+ ∑

∞

r = n + 1

(−1)r − 1

r
.

So we have the Fourier cosine series (valid for )−π
2 < θ < π

2

θ cos θ
sin θ

= log 2 + 2 ∑
∞

n = 1

tn cos 2nθ.

A little more discussion of this series is illuminating. The half value for
 might appear to be a tiresome complication, but it actually makes

good sense, for the following reason. Let us compare  with the simpler

sum , which we denote by . Clearly .

Given any decreasing sequence  that tends to 0, let .

We can estimate  by bracketing it in two ways:

r = n
tn

∑
∞

r = n

(−1)r − 1

r
t∗
n t∗

n = tn +
(−1)n − 1

2n

(ar) ρn = ∑
∞

r = n
(−1)r − 1 ar

(−1)n − 1 ρn

(−1)n − 1 ρn = (an − an + 1) + (an + 2 − an + 3) +  …
= an − (an + 1 − an + 2) − (an + 3 − an + 4) +  … ,

showing that . To apply this to , observe that0 ≤ (−1)n − 1 ρn ≤ an (tn)
2 (−1)n − 1 tn =

1
n

−
2

n + 1
+

2
n + 2

−
2

n + 3
+  …
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= (1
n

−
1

n + 1) − ( 1
n + 1

−
1

n + 2) + ( 1
n + 2

−
1

n + 3) −…

=
1

n(n + 1)
−

1
(n + 1)(n + 2)

+
1

(n + 2)(n + 3)
−  … .

So . Meanwhile,

Hence the series  converges much more rapidly than .

|tn| = (−1)n− 1 tn <
1

2n(n + 1)
|t∗

n| = (−1)n −1 t∗
n =

1
2n

+ (−1)n −1 tn.

∑
∞

n= 1

tn cos2nθ ∑
∞

n= 1

t∗
n cos2nθ

Having said this, let us identify the sum of  (only to

reinforce the conclusion that this is a less basic Fourier series than

). By (21), applied to , we have

∑
∞

n =1

t∗
n cos2nθ

∑
∞

n =1

tn cos2nθ θ + π
2

∑
∞

n = 1

(−1)n − 1

n
cos 2nθ = log cos θ + log 2

for . So−π
2 < θ < π

2

2 ∑
∞

n = 1

t∗
n cos 2nθ =

θ cos θ
sin θ

+ log cos θ.
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