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Abstract. For a class of robustly transitive diffeomorphisms on T
4 introduced by Shub

[Topologically transitive diffeomorphisms of T 4. Proceedings of the Symposium on
Differential Equations and Dynamical Systems (Lecture notes in Mathematics, 206). Ed.
D. Chillingworth. Springer, Berlin, 1971, pp. 39–40], satisfying an additional bunching
condition, we show that there exists a C2 open and Cr dense subset U r , 2 ≤ r ≤ ∞, such
that any two hyperbolic points of g ∈ U r with stable index 2 are homoclinically related. As
a consequence, every g ∈ U r admits a unique homoclinic class associated to the hyperbolic
periodic points with index 2, and this homoclinic class coincides with the whole ambient
manifold. Moreover, every g ∈ U r admits at most one measure of maximal entropy, and
every g ∈ U∞ admits a unique measure of maximal entropy.
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1. Introduction and results
Shub introduced in [26] an example of a diffeomorphism on T

4 which is very important in
smooth dynamics: it is the first example of a diffeomorphism which is robustly transitive
and it is not uniformly hyperbolic. Later, Mañé [19] also built an example of a robustly
transitive but non-hyperbolic diffeomorphism, this time on T

3. Both examples belong to
the class of partially hyperbolic diffeomorphisms, Shub’s example has center dimension 2,

https://doi.org/10.1017/etds.2024.63 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2024.63
mailto:chaol@cufe.edu.cn
mailto:radu.saghin@pucv.cl
mailto:yangf@wfu.edu
mailto:yangjg@impa.br
https://doi.org/10.1017/etds.2024.63


2 C. Liang et al

while Mañe’s example has center dimension 1 (for the definition of partial hyperbolicity,
see §1.1).

There are many works addressing further properties of Mañe’s examples, and there is
a fairly good understanding of their dynamics. The Shub’s example was also studied, but
mainly under the restrictive condition that the center bundle has a dominated splitting into
two one-dimensional sub-bundles. In this paper, we are interested in the general Shub’s
examples, in particular, we do not assume that the maps admit a further domination of
the center bundle. This lack of further domination makes it an interesting class of maps,
because we cannot use one-dimensional techniques; however, we will see that we may have
enough hyperbolicity within these systems to obtain a good understanding of their ergodic
properties.

In this paper, we will consider a slightly more general class than the original setting of
the Shub’s example, a precise definition is the following.

1.1. Shub class
Definition 1.1. A diffeomorphism f : M → M is called partially hyperbolic if the
tangent bundle admits a continuous Df -invariant splitting TM = Es ⊕ Ec ⊕ Eu

such that there exist continuous functions 0 < λs(x) < λ−
c (x) ≤ λ+

c (x) < λu(x), with
λs(x) < 1 < λu(x), satisfying the following conditions:
(1) ‖Df (x)vs‖ ≤ λs(x);
(2) λ−

c (x) ≤ ‖Df (x)vc‖ ≤ λ+
c (x);

(3) ‖Df (x)vu‖ ≥ λu(x),
for every x ∈ M and unit vectors vi ∈ Ei(x)(i = s, c, u).

A partially hyperbolic diffeomorphism is called dynamically coherent if there exist
invariant foliations Fcs and Fcu tangent to Ecs = Ec ⊕ Es and Ecu = Ec ⊕ Eu. In this
case, Fcs is subfoliated by the stable and central foliations F s and Fc, while Fcu is
subfoliated by the unstable and center foliations Fu and Fc.

Let A, B be two linear Anosov automorphisms on T
2 such that 1 < |λB | < |λA|, where

λA and λB are the unstable eigenvalues of A and B. Then fA,B : T2 × T
2 → T

2 × T
2

fA,B(x, y) = (A(x), B(y))

is an Anosov automorphism, which can also be seen as a partially hyperbolic
diffeomorphism with two-dimensional center bundle, and one-dimensional stable and
unstable bundles.

Definition 1.2. Let PHA,B be the set of partially hyperbolic diffeomorphisms isotopic to
fA,B , all of them having the same dimension (that is, one dimension) of the stable and
unstable bundle, and let PH0

A,B be the connected component of PHA,B containing fA,B .

It is easy to see that PH0
A,B is an open set of diffeomorphisms of T4. The following

proposition is known.

PROPOSITION 1.3. (Fisher, Potrie, and Sambarino [11]) If f ∈ PH0
A,B , then f is

dynamically coherent and admits a center foliation where all central leaves are C1

two-dimensional tori, and f is center leaf conjugate to fA,B .
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Definition 1.4. The Shub class SH ⊂ ⋃
1<λB<λA PH0

A,B is the set of partially hyperbolic
diffeomorphisms f of T4 such that f belongs to some PH0

A,B and there exists a fixed point
pf = f (pf ) ∈ T

4, such that f |F c
f (pf )

is an Anosov diffeomorphism, where Fc
f (pf ) is

the (fixed) center leaf passing through pf . Also let

SHr := {f ∈ SH : f is Cr}, r ≥ 1.

Although this part will not be used in the proof, through analyzing the induced map on
the fundamental group, it is easy to show that f |F c

f (pf)
is topological conjugate to B. Shub

proved the following.

THEOREM 1.5. (Shub [26]) SH is C1 open and every f ∈ SH is transitive.

Shub proved this result for some specific examples, but the proof can be adapted for the
Shub class of diffeomorphisms with minor modifications. In this article, we consider the
class of Shub diffeomorphisms which also satisfy some bunching conditions.

Definition 1.6. The bunched Shub class SHr
b is the set of partially hyperbolic diffeomor-

phisms f ∈ SHr which also satisfy the following bunching conditions:
(a) global bunching,

λs(x) <
λ−
c (x)

λ+
c (x)

≤ λ+
c (x)

λ−
c (x)

< λu(x) for all x ∈ T
4; (1)

(b) stronger local bunching at the fixed center leaf Fc
f (pf),

λs(x) < (λ−
c (x))

2 ≤ (λ+
c (x))

2 < λu(x) for all x ∈ Fc
f (pf) (2)

and

λs(x) <
λ−
c (x)

(λ+
c (x))

2
≤ λ+

c (x)

(λ−
c (x))

2
< λu(x) for all x ∈ Fc

f (pf). (3)

Clearly, SHr
b is a C1 open set.

Remark 1.7. The condition in equation (1) implies (see [24]) that if f is C2, then the stable
and unstable bundles areC1 when restricted to the center-stable and center-unstable leaves,
and, as a consequence, the strong stable and strong unstable holonomies between the center
leaves are of class C1 (when restricted to the center-stable respectively center-unstable
leaves). We will see later that, in fact, these holonomies depend continuously in the C1

topology with respect to the points (or the center leaves) and with respect to the map f (in
the C2 topology).

Remark 1.8. The condition in equation (2) is the standard 2-bunching condition, and [13]
implies that if f is C2, then Fc

f (pf), Fcs
f (pf), and Fcu

f (pf) are of class C2. If the central
bounds are symmetric, or λ−

c λ
+
c = 1, then it is equivalent to the global bunching condition

in equation (1).
The condition in equation (3) gives us better regularity of the strong foliations

corresponding to the fixed Anosov leaf Fc
f (pf). In particular, if f is C3, then the strong
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stable foliation F s
f restricted to the center-stable manifold Fcs

f (pf) is of class C2, and the
strong unstable foliation Fu

f restricted to the center-unstable manifold Fcu
f (pf) is also of

class C2 (see [24]).

1.2. Results. The homoclinic intersections between hyperbolic periodic points were
first observed by Poincaré, and, since then, they play an important role in the theory of
dynamical systems. Smale [27] used them to define homoclinic classes.

Definition 1.9. Given two hyperbolic periodic points p, q of the diffeomorphism f, with
the same stable index, we say that they are homoclinically related if their stable and
unstable manifolds intersect transversally:

Ws(p) � Wu(q) 
= ∅ and Ws(q) � Wu(p) 
= ∅. (4)

We say that Orb(p) and Orb(q) are homoclinically related if

Ws(Orb(p)) � Wu(Orb(q)) 
= ∅ and Ws(Orb(q)) � Wu(Orb(p)) 
= ∅. (5)

This is an equivalence relation between hyperbolic periodic orbits. The homoclinic class
of Orb(p), HC(Orb(p)), is the closure of the equivalence class of Orb(p).

For diffeomorphisms in the Shub class, the center bundle may not admit a dominated
splitting, which means that the diffeomorphisms may not have a dominated splitting of
index 2. If a diffeomorphism has no dominated splitting of index 2, it seems unexpected
that any two hyperbolic points of stable index 2 are homoclinically related to each other.
Indeed, the sizes of stable and unstable manifolds of the hyperbolic periodic points are
non-uniform, and the intersection in equation (5) can be empty. However, even if the
intersection is non-empty, the intersection may not be transverse, because of the lack of
domination (see [25]).

The main result of this paper is the following.

THEOREM A. For any 2 ≤ r ≤ ∞, there exists a C2 open and Cr dense subset U r ⊂
SHr

b, such that for any f ∈ U r , holds the following: every pair of hyperbolic periodic
points of f with stable index 2 are homoclinically related.

As a consequence, any diffeomorphism f ∈ U r admits a unique homoclinic class
associated to the hyperbolic periodic points of index 2. Denote by pf a hyperbolic fixed
point of f ∈ U r .
COROLLARY B. For any f ∈ U r , f admits a unique homoclinic class H(pf , f ) associ-
ated to the hyperbolic periodic points of index 2, and the homoclinic class coincides with
the ambient manifold.

For a continuous potential φ and a continuous map f, an f -invariant probability measure
μ is called an equilibrium measure for the potential φ, if

hμ(f )+
∫
φ dμ = Ptop(φ),

where Ptop(φ) := supν∈Me(f )
{hν(f )+ ∫

φ dν}.
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The equilibrium states do not necessarily exist. Assuming entropy expansiveness,
Bowen [4] proved the equilibrium states do exist. It was shown by Liao, Viana, and
Yang [18] that any diffeomorphism away from homoclinic tangencies is entropy expansive.
Yomdin [31] (see also Buzzi [6]) proved also that for any C∞ diffeomorphism, equilibrium
states always exist.

The uniqueness of equilibrium states is a more subtle problem. Recently, Climenhaga
and Thompson [9] (see also Pacifico, Yang, and Yang [23]) gave a criterion based on
Bowen property and specification. Another method used by Buzzi, Crovisier, and Sarig [7]
(see also Ben Ovadia [2, 3]) is based on the use of the homoclinic class of measures.

Definition 1.10. Suppose f is a Cr diffeomorphism for some r > 1. For two ergodic
hyperbolic measures μ1 and μ2 of f, we write μ1 � μ2 if and only if there exist measurable
sets A1, A2 ⊂ M with μi(Ai) > 0 such that for any x1 ∈ A1 and x2 ∈ A2, the manifolds
Wu(x1) and Ws(x2) have a point of transverse intersection.

Here, μ1, μ2 are homoclinically related if μ1 � μ2 and μ2 � μ1. We write μ1
h∼ μ2.

The set of ergodic measures homoclinically related to a hyperbolic ergodic measure μ is
called the measured homoclinic class of μ.

Remark 1.11. The homoclinic relation is an equivalence relation, moreover, two atomic
measures supported on two periodic orbits are homoclinically related if and only if the two
periodic orbits are hyperbolic and homoclinically related.

We have the following theorem. For a discussion on the index of hyperbolic measures,
see §§2.3 and 2.4.

THEOREM C. For any f ∈ U r , all the hyperbolic ergodic measures of index 2
are homoclinically related. Let φ : T4 → R be any Hölder potential function with
maxx,y∈T4 ‖φ(x)− φ(y)‖ < log λB , where f ∈ PH0

A,B , then f admits at most one
equilibrium state for the potential φ. In particular, every f ∈ U r admits at most one
measure of maximal entropy.

A direct consequence of [6, 31] is the following.

COROLLARY D. Every f ∈ U∞ ∩ PH0
A,B admits a unique equilibrium state for every

Hölder potential satisfying maxx,y∈T4 ‖φ(x)− φ(y)‖ < log λB . In particular, every
f ∈ U∞ admits a unique measure of maximal entropy.

For Shub’s example, some similar results were obtained under some extra assumptions.
For instance, by Newhouse and Young [21] and Carvalho and Pérez [8], with the extra
assumption that within the center foliation there exists a one-dimensional invariant
sub-foliation, and by Álvarez [1], assuming that the center bundle admits a further
dominated splitting. For other partially hyperbolic diffeomorphisms on T

4, there are results
on the uniqueness of u-Gibbs states in [10, 22].
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2. Preliminaries
2.1. Stable and unstable holonomies between center leaves. As we mentioned before,
the condition in equation (1) implies that the holonomies between the center leafs are
uniformly C1. In fact, there exists a continuity of the holonomies in the C1 topology. If
y ∈ Fu

f (x), let us denote by huf ,x,y : Fc
f (x) → Fc

f (y) the unstable holonomy between the
two center leaves. Since it is of class C1, the derivative Dhuf ,x,y induces a continuous map
between the unit tangent bundles Dhuf ,x,y∗ : T 1Fc

f (x) → T 1Fc
f (y).

LEMMA 2.1. Dhuf ,x,y∗ is continuous with respect to f ∈ SH2
b (the C2 topology) and

x, y ∈ T
4, y ∈ Fu

f (x). The same holds for the stable holonomy.

Remark 2.2. The continuity in Lemma 2.1 means that if fn converges to f in the C2

topology, xn converges to x in T
4, and yn ∈ Fu

fn,loc(xn) converges to y, then Dhufn,xn,yn∗
converges uniformly to Dhuf ,x,y∗. The proof requires only the weaker global condition in
equation (1).

Remark 2.3. Since, in our case, the stable and unstable bundles are one-dimensional, one
could approach the continuity question using the classical ordinary differential equation
(ODE) theory of the regularity of solutions with respect to the initial conditions and
parameters. We prefer to present a different proof which constructs the projectivized
holonomies as unstable foliations of the projectivization of f along the center bundle.

Proof. Let T 1
T

4 be the unit tangent bundle of T
4 (which can be identified with

T
4 × S

3) withDf∗ being theC1 diffeomorphism induced by f. We will consider the central
unit tangent bundle Sf := ⋃

x∈T4 S(f , x), where S(f , x) = T 1
x Fc

f (x) is the unit circle in
Ecf (x). Then, Sf is a Hölder submanifold of T 1

T
4 invariant under Df∗, which is also a

Hölder bundle over T4.
We claim that there exists a continuous unstable foliation on Sf and that Dhuf ,x,y∗ is

exactly the unstable holonomy for this foliation between the transversals T 1Fc
f (x) and

T 1Fc
f (y). We apply the standard construction of the local unstable leaves as the invariant

section of a bundle contraction map (see [13] for example), with a minor difficulty arising
from the lack of smoothness.

For any x, y ∈ T
4, we define the πf ,y,x : Ecf (y) → Ecf (x) as the projection parallel

to Esf (x)⊕ Euf (x). The maps πf ,y,x depend continuously on x, y ∈ T
4 and f (in the C1

topology). For x close to y, this is invertible and close to the identity, and its projectivization
πf ,x,y∗ is bi-Lipschitz with Lipschitz constant close to 1.

For δ > 0 and x ∈ T
4, let αf ,x : [−δ, δ] → Fu

f (x) be the length parameterization of
the local unstable manifold of f at x. Since the unstable foliation is orientable and depends
continuously in the C1 topology with respect to x and f, we have that αf ,x is continuous in
x and f (in the C1 topology).

For any δ > 0, there exists εδ > 0 such that for any x, y such that d(x, y) < δ, we
have:
• ‖π±1

f ,y,x − Id‖ < εδ;

• π±1
f ,y,x∗ is bi-Lipschitz with constant (1 + εδ);
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• (1 + εδ)
−1λ−

c (x) < λ−
c (y) ≤ λ+

c (y) < (1 + εδ)λ
+
c (x).

• If furthermore y ∈ Fu
f ,δ(x), then du(f (x), f (y)) ≥ (1 + εδ)

−1λu(x)du(x, y), where
du is the distance along the unstable leaves.

We can choose εδ independent of f in a C1 neighborhood and limδ→0 εδ = 0.
Now we will construct the bundle with the candidates for the local unstable manifolds

in Sf . Consider δ > 0 (small) to be specified later. Let

B =
{
σ : [−δ, δ]) → R : σ(0) = 0,

∣∣∣∣σ(t)t
∣∣∣∣ < ∞

}

be the Banach space of functions σ bounded for the norm

‖σ‖ = sup
t∈[−δ,δ]

∣∣∣∣σ(t)t
∣∣∣∣.

Then,

V (f ) := Sf × B

is a continuous (in fact, Hölder) Banach bundle over Sf .

Remark 2.4. The maps σ are candidates for unstable manifolds in Sf in the following
sense. For any (x, v) ∈ Sf and σ ∈ B, we can define a section σ̃ : Fu

f ,δ(x) → Sf in the
following way:

σ̃ (y) := π−1
f ,y,x∗(v + σ(α−1

f ,x(y))) ∈ S(f , y).

The graph of this section σ̃ is a natural candidate for the local unstable manifold in
(x, v) ∈ Sf . We construct it as a fixed point of the natural graph transformation.

Let T : V (f ) → V (f ) be the bundle map which fibers over Df∗ on Sf and is given by

T σ(x,v)(t) = (πf ,f (y(t)),f (x) ◦Df (y(t)) ◦ π−1
f ,y(t),x)∗(v + σ(α−1

f ,x(y(t))))

−Df (x)∗(v),
y(t) = f−1 ◦ αf ,f (x)(t).

One can check that in fact T is defined in such a way so that we have ˜T σ = Df∗σ̃ . Let us
check that T is a continuous bundle map on V (f ), which is also a fiber contraction.

CLAIM 1. If σ ∈ B, then T σ(x,v) ∈ B.

Proof. Remember that y(t) = f−1 ◦ αf ,f (x)(t), and let us denote

G(t) := (πf ,f (y(t)),f (x) ◦Df (y(t)) ◦ π−1
f ,x,y).

Observe that G(t)∗ is Lipschitz with the Lipschitz constant

Lip(G(t)∗) = (1 + εδ)
2 λ

+
c (y(t))

λ−
c (y(t))

≤ (1 + εδ)
4 λ

+
c (x)

λ−
c (x)

.

Also,

|α−1
f ,x(y(t))| = du(x, y(t)) ≤ (1 + εδ)λu(x)

−1du(f (x), f (y(t)) = (1 + εδ)λu(x)
−1|t |.
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Then,

‖T σ‖ = sup
t∈[−δ.δ]

∣∣∣∣
G(t)∗(v + σ(α−1

f ,x(y(t)))−Df (x)∗(v)
t

∣∣∣∣

≤ sup
t∈[−δ.δ]

∣∣∣∣
G(t)∗(v + σ(α−1

f ,x(y(t)))−G(t)∗(v)
t

∣∣∣∣
+ sup
t∈[−δ.δ]

∣∣∣∣G(t)∗(v)−Df (x)∗(v)
t

∣∣∣∣

≤ (1 + εδ)
4 λ

+
c (x)

λ−
c (x)

sup
t∈[−δ.δ]

∣∣∣∣
σ(α−1

f ,x(y(t))

t

∣∣∣∣
+ π

2
sup

t∈[−δ.δ]
1
t

∥∥∥∥ G(t)(v)

‖G(t)(v)‖ − Df (x)(v)

‖Df (x)(v)‖
∥∥∥∥

≤ (1 + εδ)
5 λ+

c (x)

λ−
c (x)λu(x)

‖σ‖ + π

λ+
c (x)

sup
t∈[−δ.δ]

∥∥∥∥G(t)(v)−Df (x)(v)

t

∥∥∥∥,

where in the last line, we used the inequality∥∥∥∥ a

‖a‖ − b

‖b‖
∥∥∥∥ ≤

∥∥∥∥ a

‖a‖ − a

‖b‖
∥∥∥∥ +

∥∥∥∥ a

‖b‖ − b

‖b‖
∥∥∥∥ ≤ 2

‖b‖‖a − b‖.

Let us remark that if v ∈ Ecf (x), then πf ,f (y(t)),f (x) ◦Df (x) ◦ π−1
f ,y,x(v) = Df (x)(v),

because the partially hyperbolic splitting is invariant under Df . Then,

‖G(t)(v)−Df (x)(v)‖ = ‖πf ,f (y(t)),f (x) ◦ (Df (y(t))−Df (x)) ◦ π−1
f ,y,x(v)‖

≤ (1 + εδ)
2Lip(Df )d(y(t), x)

≤ Lip(Df )
(1 + εδ)

3

λu(x)
|t |.

Finally, we obtain the desired bound:

‖T σ‖ ≤ (1 + εδ)
5λ+
c (x)

λ−
c (x)λu(x)

‖σ‖ + Lip(Df )(1 + εδ)
3π

λ+
c (x)λu(x)

.

CLAIM 2. T is a fiber contraction.

Proof. We have

‖T σ1 − T σ2‖ = sup
t∈[−δ,δ]

∣∣∣∣T σ1(t)− T σ2(t)

t

∣∣∣∣

= sup
t∈[−δ,δ]

∣∣∣∣
G(t)∗(v + σ1(α

−1
f ,x(y(t)))−G(t)∗(v + σ2(α

−1
f ,x(y(t)))

t

∣∣∣∣

≤ (1 + εδ)
4 λ

+
c (x)

λ−
c (x)

sup
t∈[−δ,δ]

∣∣∣∣
σ1(α

−1
f ,x(y(t))− σ2(α

−1
f ,x(y(t))

t

∣∣∣∣
≤ (1 + εδ)

5 λ+
c (x)

λ−
c (x)λu(x)

‖σ1 − σ2‖.
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Now all we have to do is to choose δ small enough so that εδ is close enough to zero so
that we have

(1 + εδ)
5 λ+

c (x)

λ−
c (x)λu(x)

< 1.

Claims 1 and 2 show that we are in the conditions of the invariant section theorem from
[13], so there exists a unique bounded continuous invariant section.

From [24], we know that the unstable holonomy along center leaves is uniformly
differentiable. The projectivization of the derivative of this local holonomy will then
correspond to a bounded invariant section for the transfer operator T, so it has to coincide
with the unique continuous invariant section constructed above. This concludes the proof
of the continuity of Dhuf ,x,y∗ with respect to the points x, y (we proved it for d(x, y) < δ,
but this can be easily extended to larger distances).

If fn converges to f, then Sfn converges to Sf (this can be made explicit by projecting
Ecfn toEcf parallel toEsf ⊕ Euf for example). One can check that the corresponding transfer
operators Tfn also converge to Tf . Since the invariant section is continuous with respect to
the bundle map, we obtain the continuity of Dhuf ,x,y∗ with respect to f.

Remark 2.5. We gave the proof for our special setting, but the proof can be adapted
to general partially hyperbolic diffeomorphisms in higher dimensions. We used that
Df is Lipschitz to show that the transfer operator T verifies the conditions of the
invariant section theorem. The proof can be adapted for f of class C1+α and the stronger
bunching condition λs(x)α < λ−

c (x)/λ
+
c (x) ≤ λ+

c (x)/λ
−
c (x) < λu(x)

α , using the norm
‖σ‖ = supt∈[−δ,δ] |σ(t)/tα|. Once one obtains the bounded invariant section for the
projectivization Df∗ on Sf , using the boundness of the Jacobian, one could try to obtain
the differentiability of the stable/unstable holonomy along center leaves.

2.2. Homoclinic holonomies. Let f ∈ SH2
b and pf be the fixed point such that

f |F c
f (pf)

is Anosov. We will drop the index f when it is not necessary to specify
the dependence on the map f. From [13] and the bunching conditions, we know that
Fc(p), Fcu(p) and Fcs(p) are C2 submanifolds. Assume that q is a homoclinic point of
Wc(p), that is, q ∈ Fcu(p) ∩ Fcs(p), then Wc(q) is also C2 as a connected component
of the intersection of the transverse C2 submanifolds Fcu(p) and Fcs(p). We can define
the stable holonomy hsp,q : Fc(p) → Fc(q) and the unstable holonomy huq,p : Fc(q) →
Fc(p), and they are both of class C1. Then h̃q := huq,p ◦ hsp,q : Fc(p) → Fc(p) is a C1

diffeomorphism, so it induces a C0 map on the unit tangent bundle T 1Fc(p) which we
denote by Dh̃q∗.

Let ṽs(x) be the unit vector tangent in x ∈ Fc(p) to the stable bundle of f |F c(p) (we
fix an orientation). Since f |F c(p) is a C2 Anosov map on a C2 surface, we have that
ṽs : Fc(p) → T 1Fc(p) is C1. We define the map g̃q : Fc(p) → T 1Fc(p),

g̃q(x) := Dh̃q∗(ṽs(h−1
q (x))) = Dh̃q(h

−1
q (x))ṽs(h−1

q (x))

‖Dh̃q(h−1
q (x))ṽs(h−1

q (x))‖ . (6)
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Remark 2.6. In fact, we consider the stable foliation of f |F c(p) inside the leaf Fc(p), we
first push it forward using the stable holonomy hsp,q to the leaf Fc(q), and then we push it
again using the unstable holonomy huq,p back to the leaf Fc(p). Then g̃q(x) is in fact the
unit tangent vector in x to this new foliation.

If furthermore f ∈ SH3
b, then the stable and unstable holonomies along the fixed

center-stable leaf Wcs(p) and respectively the fixed center-unstable leaf Wcu(p) are C2,
so, in this case, Dh̃q∗ and g̃q are in fact C1.

If the map f ′ isC2 close to f, then the fixed Anosov center leaf Fc(p) and its homoclinic
center leaf Fc(q) will have continuations Fc

f ′(p(f ′)) and Fc
f ′(q(f ′)). Then we obtain

the continuations of the stable holonomy hs
p(f ′),q(f ′),f ′ : Fc

f ′(p(f ′)) → Fc
f ′(q(f ′)) and

the unstable holonomy hu
q(f ′),p(f ′),f ′ : Fc

f ′(q(f ′)) → Fc
f ′(p(f ′)); they are C1 maps and

depend continuously in the C1 topology with respect to f ′ (in the C2 topology). We also
have a continuation of the homoclinic holonomy h̃q(f ′),f ′ : Fc

f ′(p(f ′)) → Fc
f ′(p(f ′)) and

also the continuation g̃q(f ′),f ′ : Fc
f ′(p(f ′)) → T 1Fc

f ′(p(f ′)), which is continuous both

with respect to x ∈ Fc
f ′(p(f ′)) and with respect to f ′ ∈ SH2

b (in the C2 topology).

2.3. Hyperbolic measures. Let μ be an ergodic measure of a diffeomorphism f, then
by the theorem of Oseledets, for μ-almost every point x ∈ M , there exist k(μ) ∈ N,
real numbers λ1(μ) > · · · λk(μ), and an invariant splitting TxM = E1(x)⊕ · · · ⊕
Ek(x) of the tangent bundle at x, depending measurably on the point, such that
limn→±∞(1/n) log ‖Df nx (v)‖ = λj (μ) for all 0 
= v ∈ Ej(x). The real numbers λj (μ)
are the Lyapunov exponents of μ. We say that the ergodic measure μ is hyperbolic if all
the Lyapunov exponents of μ are non-zero.

THEOREM 2.7. (Katok’s horseshoe theorem [14]) For any f ∈ Diffr (M), r > 1 and any

hyperbolic ergodic measure μ, there exists a hyperbolic periodic point p, such that μ
h∼

δOrb(p), where δOrb(p) is the ergodic measure supported on the orbit Orb(p).

If a diffeomorphism f admits a dominated splitting, then the Oseledet’s splitting must
be subordinated to the dominated splitting. In particular, since every f ∈ SH is partially
hyperbolic on T

4, then for any ergodic measure μ of f, its biggest Lyapunov exponent is
positive (λu > 0) and its associated Oseledet’s bundle is tangent to the strong unstable
bundle Eu of f. A similar result holds for the minimal Lyapunov exponent λs < 0 with
its associated Oseledet’s bundle tangent to the strong stable bundle Es . There are also
two center Lyapunov exponents (counted with multiplicity) λc1 ≥ λc2 whose associated
Oseledet’s bundles are tangent to the center bundle Ec of f.

2.4. Criterion of uniqueness of equilibrium state
Definition 2.8. Let μ be an ergodic hyperbolic measure of a diffeomorphism f. The stable
index of μ is the number of negative Lyapunov exponents, counted with multiplicity.

PROPOSITION 2.9. Let f : M → M be a Cr diffeomorphism r > 1, φ : M → R be a
Hölder potential, and p a hyperbolic periodic point. Then there is at most one equilibrium
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state for φ which is homoclinically related to δOrb(p), and its support coincides with
HC(Orb(p)).

Proof. This is explained in [3, Theorem 2.4] and [7, §1.6]. See also [2] and [7,
Corollary 3.3].

2.5. Hyperbolicity of equilibrium states. If f ∈ PH0
A,B , then standard results of Franks

and Manning [12, 20] imply that f is semi-conjugate to fA,B , that is, there exists a
continuous surjection h : T4 → T

4 homotopic to the identity such that fA,B ◦ h = h ◦ f .
By the Ledrappier–Walters variational principle [16], we have

htop(f ) ≥ htop(fA,B) = log λA + log λB . (7)

For any invariant probability measure μ of f, we say that a measurable partition ξ is μ
adapted (sub-ordinated) to Fu if the following conditions are satisfied:
• there is r0 > 0 such that ξ(x) ⊂ BFu

r0
(x) for μ almost every x, where BFu

r0
(x) is a ball

of Fu(x) with radius r0;
• ξ(x) contains an open neighborhood of x inside Fu(x);
• ξ is increasing, that is, for μ almost every x, ξ(x) ⊂ f (ξ(f−1(x))).
The existence of such a partition was provided by [15] (see also [17, 30]). The partial
entropy of μ along the expanding foliation Fu is defined by

hμ(f , Fu) = Hμ(f
−1ξ | ξ).

The definition of the partial entropy does not depend on the choice of the partition.
The following two lemmas are important for our further discussion.

LEMMA 2.10. If f ∈ PH0
A,B , then hμ(f , Fu) ≤ log λA.

Proof. Denote by Fc
f the center foliation of f. By Proposition 1.3, the projection map πcf

along the center foliation induces a topological Anosov homeomorphism f on the quotient
space T

2
f = T

4/Fc
f , which is topological conjugate to A, so we may in fact identify T

2
f

with T
2 and f with A.

Denote by F s
A (respectively Fu

A) the stable (respectively unstable) foliation of A. The
projection map πcf maps each center unstable leaf Fcu of f to an unstable leaf Fu

A of A. In
particular, πcf maps every unstable leaf Fu of f to an unstable leaf Fu

A of A. Proposition 1.3
implies that all the hypotheses of Tahzibi and Yang [28, Theorem A] are satisfied (see also
[1, §2.5]), and this implies that hμ(f , Fu) ≤ htop(A) = log λA.

The following lemma is a generalization of [1, Theorem A].

LEMMA 2.11. Let f ∈ PH0
A,B be a Cr diffeomorphism, r > 1, and μ an ergodic invariant

measure of f with hμ(f ) > log λA. Then μ is a hyperbolic ergodic measure of f with stable
index 2, that is, λc1 > 0 > λc2.

Proof. We will show that λc1 > 0. To prove that λc2 < 0, one only needs to consider the
diffeomorphism f−1 instead of diffeomorphism f.
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Suppose by contradiction that λc1 ≤ 0. The entropy formula of Ledrappier and Young
(see [5, 15]) implies that hμ(f ) = hμ(f , Fu).

Combining with the previous lemma, we obtain that hμ(f ) ≤ log λA, which is a
contradiction with the hypothesis that hμ(f ) > log λA. The proof is complete.

3. Proof of Theorem A
3.1. Definition of U r and plan of the proof. Let us define the open set U r which is the
candidate for the set U r in Theorem A. We recall that p is a fixed point for f ∈ SHr

b, and
the restriction of f to the center leaf Fc(p) is Anosov. Here, q is a homoclinic point of
Fc(p) if q ∈ Fcu(p) ∩ Fcs(p). The map g̃q : Fc(p) → T 1Fc(p) is defined by equation
(6), and represents in fact the unit tangent vector to the foliation obtained by pushing the
stable foliation of f |F c(p) along the homoclinic loop corresponding to q.

Definition 3.1. Let U rs ⊂ SHr
b,

U rs = {f ∈ SHr
b : for all x ∈ Fc(p), there exists q homoclinic to Fc(p)

such that g̃q(x) 
= ±ṽs(x)}. (8)

In a similar way, we define U ru . Let U r = U rs ∩ U ru .

The definition of U rs is given, in fact, by a transversality condition. What we ask is that
the stable foliation of f |F c(p) and its pushed forward by holonomies along homoclinic
loops are transverse.

To prove Theorem A, we will have to show the following three facts:
(1) the set U r is C2 open;
(2) the set U r is Cr dense;
(3) the set U r verifies the conclusion of Theorem A, in other words, if f ∈ U r , then any

two hyperbolic periodic points of f of index 2 are homoclinically related.
Consequently, the proof of Theorem A is divided into the following three propositions.

PROPOSITION 3.2. U r is C2 open.

Proof. An immediate consequence of the compactness of Fc(p) and of the fact that the
stable and unstable holonomies depend continuously in the C1 topology with respect to
the points (see Remark 1.7) is the following lemma.

LEMMA 3.3. Let f ∈ SHr
b. Then f ∈ U rs if and only if there exist q1, q2, . . . qk homo-

clinic points of Fc(p) such that the image of g̃q1 × g̃q2 × · · · × g̃qk is disjoint from the
image of ±ṽsk .

However, the holonomies along the center leaves depend continuously in the C1

topology with respect to the map f (in C2 topology), so the images of g̃q1 × g̃q2 × · · · ×
g̃qk and ±ṽsk depend continuously on the map f. Since these images are compact, this
concludes the C2 openness of U rs . The proof for U ru is similar, so U r = U rs ∩ U ru is C2

open.

PROPOSITION 3.4. U r is Cr dense.
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We will give the proof of the proposition in §3.2.

PROPOSITION 3.5. If f ∈ U r , then any two hyperbolic periodic points of f of index 2 are
homoclinically related.

We will give the proof of the proposition in §3.3. As we mentioned before, the proof of
these three propositions will imply Theorem A.

3.2. Proof of Cr density. We will show that U rs is Cr dense in SHr
b, the proof for U ru is

similar. Then U r will be Cr dense as the intersection of two Cr open dense sets.
The main perturbation result which we will use is the following lemma.

LEMMA 3.6. Let f ∈ SH3
b. Let q be a homoclinic point of the fixed Anosov leaf Fc(p).

Then we have the following.
(1) For any C2 family (φT ), where T ∈ R

n is a parameter, of perturbations of the
identity on T

4 (in other words, φ0n = IdT4), supported in a neighborhood of Fc(q)

disjoint from all the other iterates f k(Fc(q)), k ∈ Z \ {0}, the map (T , x) �→
g̃q(f ◦φT ),f ◦φT (x) is C1 on [−δ, δ]n × Fc(p) for some δ > 0.

(2) For any x0 ∈ Fc(p) and any r0 > 0, there exists a C∞ family (φt )t∈[−δ,δ] of
(volume-preserving) perturbations of the identity on T

4, supported in B(y0, r0)
where y0 := hup,q(x0) ∈ Fc(q), such that

∂

∂t
g̃q(f ◦φt ),f ◦φt (x) |(x,t)=(x0,0) 
= 0. (9)

Proof. Part (1). Since Fc(p) is compact, it is enough to prove that g̃q(f ◦φT ),f ◦φT (x) is C1

in (x, T ) in a small neighborhood of every point (x0, 0n) ∈ Fc(p)× R
n.

Let x0 ∈ Fc(p) and denote y0 = hup,q(x0) ∈ Fc(q), y1 = f (y0) ∈ Fc(f (q)), z1 =
hsf (q),p(y1) ∈ Fc(p), and z0 = f−1(z1) ∈ Fc(p). The f -invariance of the stable holon-

omy implies that hsq,p(y0) = z0, or h̃q(z0) = x0.
Let ψp : T2 → Fc(p) be a C2 embedding, a0 = ψ−1

p (x0), b0 = ψ−1
p (z0). Let Iδ =

[−δ, δ]. There exist C2 foliations charts of F s (respectively Fu) on a small neighborhood
of y1 (respectively y0) inside Fcs(p) (respectively Fcu(p)):

αs : Bcy1
× Iδ → Bcsy1

, αs(·, 0) = IdF c
loc(y1), α

s({y} × Iδ) = F s
loc(y) for all y ∈ Bcy1

;

αu : Bcy0
× Iδ → Bcuy0

, αu(·, 0) = IdF c
loc(y0), α

u({y} × Iδ) = Fu
loc(y) for all y ∈ Bcy0

,

where B∗
x denotes a small ball centered in x inside F∗(x). Define the C2 maps

βs : Bb0 × Iδ → Bcsy1
, βs(b, s) = αs(hsp,f (q)(f (ψp(b))), s);

βu : Ba0 × Iδ → Bcuy0
, βu(a, r) = αu(hup,q(ψp(a)), r),

where Bx is a small ball centered at x in T
2.

We know that the support of φT does not intersect f k(Fcs
loc(y1)) for all k ≥ 0 and

f l(Fcu
loc(y0)) for all l < 0. This implies that Fcs

loc(y1) remains a local center-stable leaf for
fT := f ◦ φT for all T, βs(a, ·) remain parameterizations of the strong stable manifolds
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inside Fcs
loc(yi), Fcs

loc(y1) remains inside Fcs(p) and the stable holonomy between Fc(p)

and Fcs
loc(y1) is unchanged. A similar statement holds for Fcu

loc(y0).
The maps fT do change the center leaves Fc(q), we have that Fc(q(fT ), fT ) =

f−1(F s
loc(Fc(y1))) ∩ Fu

loc(Fc(y0)). We can in fact compute implicitly the homoclinic
stable–unstable holonomy h̃q(fT ),fT in a neighborhood of z0 in the following way:

ψp(a) = h̃q(fT ),fT (ψp(b)) ⇐⇒ hup,q(fT ),fT (ψp(a)) = hsp,q(fT ),fT (ψp(b))

⇐⇒ hup,q(fT ),fT (ψp(a)) = f−1
T (hsp,q(fT ),fT (f (ψp(b)))

⇐⇒ βu(a, r) = f−1
T (βs(b, s)) for some r , s ∈ Iδ

⇐⇒ φT (β
u(a, r)) = f−1(βs(b, s)) for some r , s ∈ Iδ .

In conclusion, denoting hT = ψ−1
p ◦ h̃q(fT ),fT ◦ ψp (the map h̃q(fT ),fT in the chart ψp),

we have

a = hT (b) ⇐⇒ φT (β
u(a, r)) = f−1(βs(b, s)) for some r , s ∈ Iδ . (10)

We choose a C∞ chart ψq : By0 → R
4 (can also be volume preserving) such that:

• ψq(y0) = 04;
• Dψq(y0)(E

c(q0)) = span{e1, e2};
• Dψq(y0)(E

u(q0)) = span{e3};
• Dψq(y0)(E

s(q0)) = span{e4}.
Let E : Ba0 × Bb0 × In+2

δ → R
4,

E(a, b, r , s, T ) = ψq(φT (β
u(a, r)))− ψq(f

−1(βs(b, s))). (11)

We have that E is C2 and E(a0, b0, 0, 0, 0n) = ψq(y0)− ψq(f
−1(y1)) = 0.

CLAIM. ∂E/∂(b, r , s)(a0, b0, 0, 0, 0n) is invertible.

Proof. We observe that since αs is a diffeomorphism such that αs({y} × Iδ) = F s
loc(y),

we have that Dαs(y, 0) · ∂/∂s is a non-zero vector in Es(y). Since Df preserves Es , and
Dψq(y0) takes Es(q0) to the line generated by e4, we have that DE(a0, b0, 0, 0, 0n) takes
the line generated by ∂/∂s isomorphically to the line generated by e4.

A similar argument shows that DE(a0, b0, 0, 0, 0n) takes the line generated by ∂/∂r
isomorphically to the line generated by e3 (remember that φ0n = IdT4 ).

Now let us analyze the action of DE(a0, b0, 0, 0, 0n) on the two-dimensional space
Tb0Bb0 . It is not hard to see that Dβs(b0, 0) takes Tb0Bb0 isomorphically to Ec(y1). Since
Df preserves Ec and Dψq(y0) takes Ec(q0) to the plane generated by e1 and e2, we have
that DE(a0, b0, 0, 0, 0n) takes Tb0Bb0 isomorphically to the plane generated by e1 and e2.
This concludes the proof of the claim.

Now let us finish the proof of the first part of the lemma. The implicit function
theorem gives us the existence of a C2 function H : Ba0 × Inδ → Bb0 × I 2

δ , H(a, T ) =
(h(a, T ), r(a, T ), s(a, T )) such that E(a, h(a, T ), r(a, T ), s(a, T ), T ) = 0 (eventually
by making smaller the balls and the intervals). Then the map hT (a) = h(a, T ) isC2 in both
variables, which means that h̃q(fT ),fT (x) isC2 in both variables, and then g̃q(f ◦φT ),f ◦φT (x)
is C1 in both variables. This finishes the proof of the first part.
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Part (2). We will use the same notation from part (1). Let ρ : R4 → [0, ∞) be a smooth
bump function supported on a small ball centered at the origin, and constantly equal to one
near the origin. The family φt : T4 → T

4 is defined as

φt := ψ−1
q ◦ (Rρt × IdR2) ◦ ψq ,

where Rt is the rotation of angle t in R
2. Assume that the support of ρ is small enough

so that the support of φt is inside B(y0, r0) and disjoint of all the other iterates of Wc(q).
From part (1), we have

E(a, b, r , s, t) = (Rρt × Id|R2)(ψq(β
u(a, r)))− ψq(f

−1(βs(b, s))). (12)

We will compute DE(a0, b0, 0, 0, t). Observe that Lb := DE(a0, b0, 0, 0, t) |Tb0Bb0
:

Tb0BB0 → span{e1, e2} and Ls := DE(a0, b0, 0, 0, t) |span{∂/∂s}: span{∂/∂s}→ span{e4}
are isomorphisms independent of t. Since D(Rρt × Id

R2) keeps e3 invariant, we have that
also Lr := DE(a0, b0, 0, 0, t) |span{∂/∂r}: span{∂/∂r} → span{e3} is also an isomorphism
independent of t, and

∂E

∂(b, r , s)
(a0, b0, 0, 0, t) = Lb × Lr × Ls .

From equation (12), we can compute

DE(a0, b0, 0, 0, t) |Ta0Ba0
= Rt ◦ La : Ta0Ba0 → span{e1, e2},

where La := DE(a0, b0, 0, 0, 0) |Ta0Ba0
: Ta0Ba0 → span{e1, e2} is an isomorphism.

From the implicit function theorem, we deduce that

Dht(a0) = L−1
b ◦ Rt ◦ La . (13)

Define g : Ba0 × Iδ → T
1,

g(a, t) := Dψ−1
p (a)∗g̃q(f ◦φt ),f ◦φt (ψ(a)) = Dht(a)(v

s(a))

‖Dht(a)(vs(a))‖ ,

whereDψ−1
p (a)∗ is the diffeomorphism induced byDψ−1

p (a) on the unit tangent bundles
and vs(a) = Dψ−1

p (a)(ṽs(ψp(a))). In other words, g(·, t) is in fact the map g̃q(f ◦φt ),f ◦φt
seen in the chart ψp which identifiesWc(p) with T

2 and the unit tangent spaces toWc(p)

with T
1. To prove equation (9), it is enough to show that

∂

∂t
g(a, t) |(a,t)=(a0,0) 
= 0,

which in turns is equivalent to the fact thatDh0(a0)(v
s(a0)) and ∂/∂tDht (a0)(v

s(a0))|t=0

are not collinear. Using equation (13), we obtain Dh0(a0)(v
s(a0)) = L−1

b ◦ La(vs(a0))

and ∂/∂tDht (a0)(v
s(a0)) |t=0= L−1

b ◦ Rπ/2 ◦ La(vs(a0)), which are clearly non-collinear
since La and Lb are isomorphisms while vs(a0) is non-zero. This finishes the proof of
part (2).

Now let us prove Proposition 3.4.
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Proof of Proposition 3.4. Let f ∈ SHr
b. We need to find maps in U rs arbitrarily Cr close

to f. Since the C∞ maps are dense in the Cr maps in the Cr topology (even inside the
volume preserving class), we can assume that f is C∞.

Choose q1, q2, q3 homoclinic points of Fc(p) such that the orbits of the homoclinic
leaves Fc(qi) are mutually disjoint, i ∈ {1, 2, 3}.

For any x ∈ Fc(p) and any 1 ≤ i ≤ 3, there exists rx,i > 0 such that if yi :=
hup,qi (x) ∈ Fc(qi), then the ball B(yi , rx,i ) is disjoint from Fc(p), from all the iterates
f k(Fc(qi)) for all k 
= 0, and from all the iterates of Fc(qj ), j 
= i. Applying Lemma 3.6
part (2), we obtain the family of perturbations φt ,x,i such that the derivative of g̃qi ,f ◦φt ,x,i

with respect to t in (x, 0) does not vanish. By the continuity of the derivative, there exists
a neighborhood Ux,i of x such that (∂/∂t)g̃qi ,f ◦φt ,x,i is non-zero on Ux,i × {0}.

Let Ux = ⋂3
i=1 Ux,i . By compactness of Fc(p), there exist finitely many x1, x2, . . .

xK ∈ Fc(p) such that Fc(p) = ⋃K
j=1 Uxj .

Let us fix some notation. Denote

T = (t
j
i )1≤i≤3,1≤j≤K = (Ti)1≤i≤3 = (T j )1≤j≤K ∈ I 3K := [−δ, δ]3K ,

with Ti = (t
j
i )1≤j≤K ∈ IK , i ∈ {1, 2, 3} and T j = (t

j
i )1≤i≤3 ∈ I 3, j ∈ {1, 2, . . . K}.

For every 1 ≤ i ≤ 3, we let φi : T4 × IK → T
4 given by

φi(·, Ti) = φt1i ,x1,i ◦ φt2i ,x2,i ◦ · · · ◦ φtKi ,xK ,i for all Ti ∈ IK . (14)

We define φ, F : T4 × I 3K → T
4,

φ(·, T ) = φT (·) := φ1(·, T1) ◦ φ2(·, T2) ◦ φ3(·, T3),

F(·, T ) = FT (·) := f ◦ φT .

The maps φi , φ, and F have the following properties:
(1) φi , φ, and F are of class C∞ on (x, T );
(2) φi is a small perturbation of the identity on a small neighborhood of Fc(qi), in

particular, it leaves the other homoclinic orbits of Fc(qj ) unchanged for j 
= i;
(3) FT is equal to f on a neighborhood of Fc(p), so it does not change Fc(p) and the

function ṽs .
Let Vj = ψ−1

p (Uxj ), where ψp : T2 → Fc(p) is the C2 embedding. For every 1 ≤
i ≤ 3, define gi : T2 × I 3K → T

1,

gi(x, T ) = Dψ−1
p (x)∗g̃qi (fT ),fT (ψp(x)).

In other words, gi(·, T ) is again the map g̃qi (fT ),fT seen in the chart ψp which identifies
Fc(p) with T

2 and the unit tangent spaces T 1Fc(p) with T
1. Lemma 3.6 part (1) tells

us that gi is C1 with respect to (x, T ) ∈ T
2 × I 3K (maybe for a smaller interval I).

Furthermore,

∂gi

∂t
j
i

(x, T ) 
= 0 for all (x, T ) ∈ V j × {0}3K , for all 1 ≤ j ≤ K . (15)
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However, because for l 
= i, the perturbation φl does not touch the orbit of Fc(qi), we have

∂gi

∂t
j
l

(x, T ) = 0 for all (x, T ), for all l 
= i, for all 1 ≤ j ≤ K . (16)

Define G : T2 × I 3K → T
3

G(x, T ) = (g1(x, T ), g2(x, T ), g3(x, T )). (17)

Again, G is C1 in (x, T ) ∈ T
2 × I 3K . Equations (15) and (16) tell us that for every

1 ≤ j ≤ K , we have

det
(
∂G

∂T j
(x, T )

)
= det

(
∂gi

∂t
j
i

(x, T )
)

=
3∏
i=1

∂gi

∂t
j
i

(x, T ) 
= 0 for all (x, T ) ∈ V j × {0}3K .

From the compactness of V j and the C1 continuity of G with respect to T, there exists
J ⊂ I with 0 ∈ J such that, for all 1 ≤ j ≤ K , we have

det
(
∂G

∂T j
(x, T )

)

= 0 for all (x, T ) ∈ Vj × J 3K , (18)

and since every point from T
2 is inside some Vj , we conclude that G has maximal rank at

every point in T
2 × J 3K .

Remember that vs : T2 → T
1 is the C1 map given by vs(x) = Dψ−1

p (x)∗ṽs (ψ(x)).
Let A := {(x, T ) ∈ T

2 × J 3K : G(x, T ) ∈ {−vs(x), vs(x)}3} and B = π2(A), where π2

is the projection from T
2 × J 3K on the T component in J 3K .

A simple consequence of the above definitions is the fact that if T /∈ B, then fT ∈ U rs .
To finish the proof of the density of U rs , we have to find T arbitrarily close to 0NK such
that T /∈ B. We will prove in fact that B has Lebesgue measure zero in J 3K .

It is enough to show this for B1 = π2(A1), where A1 = {(x, T ) ∈ T
2 × J 3K :

G(x, T ) = vs(x)3}, the other combinations of ±vs work similarly. Let H(x, T ) =
G(x, T )− vs(x)3, this is a C1 map from T

2 × J 3K to T
3. Equation (18) tells us that

H has maximal rank equal to 3 at every point (vs is independent of T), so H−1(03)

is a C1 submanifold of codimension 3 (or dimension 3K − 1) inside T
2 × J 3K . Since

π2 |H−1(03): H
−1(03) → J 3K is a C1 map, Sard’s theorem tells us that the image B1 has

Lebesgue measure zero.
This implies that we can find arbitrarily small T /∈ B, which finishes the proof of the

Cr density of U rs .

3.3. Proof of Proposition 3.5

Proof. We first remark that, because of the transitivity of the homoclinic relation, it is
enough to show that every hyperbolic periodic point of index 2 of f ∈ U r is homoclinically
related to the fixed point p of the hyperbolic fixed leaf Fc(p).

Let x be a hyperbolic point of f ∈ U r of index 2. Let ṽu(x) be the unit tangent vector
to the weak unstable direction inside TxFc(x). The strong unstable manifold Fu(x) must
accumulate on the fixed hyperbolic leaf Fc(p), so there exists a sequence of homoclinic
points pn ∈ Fu(x) ∩ F s

loc(Fc(p)) such that limn→∞ pn = p0 ∈ Fc(p). If for some pn
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we have that Dhux,pn∗(ṽ
u(x)) 
= ±Dhsp,pn∗(ṽ

s(hs
−1

p,pn(pn))), then the two-dimensional
unstable manifold of x, Wu(x), intersects Fc(pn) in a C1 curve locally transverse to the
weak stable foliation inside Fc(pn) (which is then pushed forward by the stable holonomy
of the weak stable foliation in Fc(p)). Since the two-dimensional global stable manifold
of p, Ws(p), is dense inside the weak stable foliation of Fc(pn), we obtain a transverse
homoclinic intersection from x to p.

Suppose that Wu(x) ∩Ws(p) = ∅. The above argument implies that

Dhux,pn∗(ṽ
u) = ±Dhsp,pn∗(ṽ

s(hs
−1

p,pn(pn))) for all n ∈ N.

Since f ∈ U r , there exists a homoclinic point q of Fc(p) such that g̃q(p0) 
= ±ṽs(p0) ∈
T 1Fc(p). Let q0 := hup,q(p0), consider the strong unstable holonomy huloc : Fcs

loc(p0) →
Fcs

loc(q0), and let qn := huloc(pn) ∈ Fcs
loc(q0). Then, qn → q0. The lack of homoclinic

relations between x and p implies that also

Dhux,qn∗(ṽ
u) = ±Dhsp,qn∗(ṽ

s(hs
−1

p,qn(qn))) for all n ∈ N.

Since hux,qn = hupn,qn ◦ hux,pn , we obtain that

Dhsp,qn∗(ṽ
s(hs

−1

p,qn(qn))) = ±Dhupn,qn∗ ◦Dhsp,pn∗(ṽ
s(hs

−1

p,pn(pn))).

Using the continuity of ṽs and of Dhs,u, we can pass to the limit and obtain that

Dhsp,q∗(ṽs(hs
−1

p,q (q0))) = ±Dhup,q∗(ṽs(p0)),

or g̃q(p0) = ±ṽs(p0), which is a contradiction.
The proof of the intersection of the global stable manifold of x with the global unstable

manifold of p is similar. This concludes the proof.

Now, as we explained in §3.1, the proof of Theorem A is concluded by this last
proposition.

4. Proof of Corollary B
We have to show that for any f ∈ U r , the transverse homoclinic intersections of the
invariant manifolds of the fixed hyperbolic point pf are dense in T

4. The proof uses the
same ideas from the proof of Proposition 3.5.

Let f ∈ U r , and p be the hyperbolic fixed point of f (for simplicity, we will drop
the index f in the following arguments). Let U be an open set in T

4. Since Wu(p) ∩
Ws(Fc(p)) is dense in T

4, choose x ∈ Wu(p) ∩Ws(Fc(p)) such that B(x, δ) ⊂ U

for some δ > 0. If Dhsp,x∗(ṽs(hsx,p(x))) /∈ TxWu(p), then clearly there is a transverse
homoclinic intersection between Ws(p) and Wu(p) arbitrarily close to x.

Suppose that v := Dhsp,x∗(ṽs(hsx,p(x))) ∈ TxWu(p). Then there exists a subsequence
nk → ∞ and (p0, v0) ∈ T 1Fc(p) such that Df nk∗ (x, v) → (p0, ṽs(p0)). There exists a
homoclinic point q of Fc(p) such that g̃q(p0) 
= ±ṽs(p0) ∈ T 1Fc(p). We consider again
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the strong unstable holonomy huloc : Fcs
loc(p0) → Fcs

loc(q0) and let qk := huloc(f
nk (x)) ∈

Fcs
loc(q0), where q0 := hup,q(p0). We have that

Dhsp,q∗(ṽs(hs
−1

p,q (q0))) 
= ±Dhup,q∗(ṽs(p0)),

and by continuity, for all k large enough, we have

Dhsp,qk∗(ṽ
s(hs

−1

p,qk (qk))) 
= ±Dhuf nk (x),qk∗(ṽs(f nk (x))).
Iterating by f−nk and denoting f−nk (qk) = xk → x, we obtain

Dhsp,xk∗(ṽ
s(hs

−1

p,xk (xk))) 
= ±Dhux,xk∗(ṽ
s(x)).

Since Dhu preserves TWu(p), we obtain that Dhsp,xk∗(ṽ
s(hsxk ,p(xk))) /∈ TxkWu(p), with

xk ∈ Wu(p) ∩Ws(Fc(p)), and this implies again that arbitrarily close to xk (and thus
close to x), there are transverse homoclinic intersection between Ws(p) and Wu(p). This
finishes the proof.

5. Proof of Theorem C
Remember that φ : T4 → R is a Hölder potential satisfying sup(φ)− inf(φ) < log λB .
For simplicity, we may assume

0 < inf φ ≤ sup φ ≤ log λB . (19)

First, by the variation principle, there is a sequence of ergodic measures μn of f such
that

lim sup hμn = htop(f ) ≥ log λA + log λB ,

the last inequality comes from equation (7).
Again, by the variation principle, the pressure of the function φ is

Ptop(φ) ≥ lim sup
(
hμn +

∫
φ dμn

)
≥ lim sup hμn ≥ log λA + log λB ,

where the last inequality comes from the assumption that φ > 0 in equation (19).
Thus, for any ergodic measure μ with pressure sufficiently large, that is,

hμ +
∫
φ dμ > Ptop(φ)+

(∫
φ dμ− log λB

)
, (20)

we have

hμ > Ptop(φ)− log λB ≥ log λA.

As a consequence of Lemma 2.11, μ is a hyperbolic measure with stable index 2. By
Lemma 2.7, μ is homoclinically related to the atomic measure supported on a hyperbolic
periodic point O. Since f ∈ U , by Theorem A, all the hyperbolic periodic orbits with
stable index 2 are homoclinically related, and as a consequence of Remark 1.11, all the
hyperbolic ergodic measures with stable index 2 are homoclinically related. In particular,
all the ergodic measures satisfying equation (20) are homoclinically related.
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Thus, all equilibrium states for the Hölder potential φ are homoclinically related, if
they do exist. By Proposition 2.9, there exists at most one equilibrium state. The proof is
complete.
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