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Abstract. The Sun and solar-type stars exhibit irregular cyclic variations in their magnetic
activity over long time scales. To understand this irregularity, we employed the flux transport
dynamo models to investigate the behavior of one solar mass star at various rotation rates. To
achieve this, we have utilized a mean-field hydrodynamic model to specify differential rotation
and meridional circulation, and we have incorporated stochastic fluctuations in the Babcock–
Leighton source of the poloidal field to capture inherent fluctuations in the stellar convection.
Our simulations successfully demonstrated consistency with the observational data, revealing
that rapidly rotating stars exhibit highly irregular cycles with strong magnetic fields and no
Maunder-like grand minima. On the other hand, slow rotators produce smoother cycles with
weaker magnetic fields, long-term amplitude modulation, and occasional extended grand min-
ima. We observed that the frequency and duration of grand minima increase with the decreasing
rotation rate. These results can be understood as the tendency of a less supercritical dynamo in
slow rotators to be more prone to produce extended grand minima. We further explore the pos-
sible existence of the dynamo in the subcritical regime in a Babcock–Leighton-type framework
and in the presence of a small-scale dynamo.
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1. Introduction

Like our Sun, many other sun-like stars have magnetic fields and cycles as unveiled
by various observations (Donati et al. 1992; Baliunas et al. 1995; Wright et al. 2011;
Wright & Drake 2016; Metcalfe, Egeland, and van Saders 2016). According to these obser-
vations, a star’s rotation rate plays an important role in determining its magnetic activity.
Rapidly rotating (young) Sun-like stars exhibit a high activity level with no Maunder-like
grand minimum (flat activity) and rarely display smooth regular activity cycles. On the
other hand, slowly rotating old stars like the Sun and older have lower activity levels
and smooth cycles with occasional grand minima (Skumanich 1972; Rengarajan 1984;
Baliunas et al. 1995; Oláh et al. 2016; Boro Saikia et al. 2018; Garg et al. 2019). Recently,
Shah et al. (2018) observed the decreasing magnetic activity of HD 4915, which might
indicate it as the Maunder minimum candidate. Later Baum et al. (1995) confirmed that
HD 166620 is entering into a grand minimum phase. Interestingly, these stars (including
Sun) are slow rotators.
Magnetic cycles in the Sun and other sun-like stars are maintained by dynamo

action powered by helical convection and differential rotation in their convection zones
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(Karak et al. 2014a; Charbonneau 2020; Karak 2023). This is because the toroidal field
is generated through the stretching of the poloidal field by the differential rotation,
which is known as the Ω effect. There is strong evidence that the poloidal field is gener-
ated through a mechanism, so-called the Babcock–Leighton process (Dasi–Espuig et al.
2010; Kitchatinov & Olemskoy 2011; Muñoz-Jaramillo et al. 2013; Priyal et al. 2014;
Mordvinov et al. 2020, 2022; Kumar et al. 2021). In this process, tilted sunspots (more
generally bipolar magnetic regions; Sreedevi et al. 2023) decay and disperse to produce
a poloidal field through turbulent diffusion, meridional flow, and differential rotation.
While the systematic tilt in the BMR is crucial to generate the poloidal field, the scatter
around Joy’s law tilt (e.g, McClintock et al. 2014; Jha et al. 2020) produces a variation in
the solar cycle (Lemerle & Charbonneau 2017; Karak and Miesch 2017, 2018; Karak et al.
2018; Karak 2020; Biswas et al. 2023).

Many observations suggest that as the stars rotate faster, the magnetic activity
becomes stronger, but the relation between the activity cycle period and the rotation
rate does not seem a straightforward trend. The cycle period tends to decrease with the
rotation rate for the slowly rotating stars, whereas the trend is quite complicated for
the fast rotators. Previous studies have explored the trend of magnetic field strength and
the cycle period with the rotation rate of the stars (Karak et al. 2014; Hazra et al. 2019).
Karak et al. (2020); Noraz et al. (2022) have also explored the possibility of magnetic
cycle and reversals in slowly rotating stars possibly having anti-solar differential rotations
(e.g., Karak et al. 2015, 2018). Here we aim to understand these observational trends of
stellar magnetic activity using dynamo modeling. We shall extract the dependency of the
rotation rate of the sun-like stars on its cycle variability and the occurrence of the grand
minima using the dynamo models of Karak et al. (2014); Hazra et al. (2019) in which
the regular behavior of the stellar cycle was simulated. As the stellar cycles are irregular,
it is natural to explore the irregular features of the stellar cycles using these models. For
this, we have included stochastic noise to capture the inherent fluctuations in the stellar
convection, as seen in the form of variations in the flux emergence rates and the tilts of
BMRs around Joys law. To do so, we have included the stochastic fluctuations in the
Babcock–Leighton source for the poloidal field in the dynamo.

2. Model

In our work, we have developed three kinematic mean-field dynamo models, namely,
Models I-III, by assuming the axisymmetry. Thus, the evolution equation of the poloidal
(∇× [A(r, θ)eφ]) and toroidal (B(r, θ)eφ) fields are followings.
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where s= r sin θ, vp = vr r̂+ vθ θ̂ is the meridional flow and the Ω is the angu-
lar velocity whose profile is obtained from the mean-field hydrodynamic model of
Kitchatinov & Olemskoy (2011), η is the turbulent magnetic diffusivity which is written
as the function of r alone and take the following form,

η(r) = ηRZ +
ηSCZ

2
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+
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with rBCZ = 0.7Rs (Rs being the stellar radius), dt = 0.015Rs, d2 = 0.05Rs, rsurf =
0.95Rs, ηRZ = 5× 108 cm2 s−1, ηSCZ = 5× 1010 cm2 s−1, and ηsurf = 2× 1012 cm2 s−1.S
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is the source for the poloidal field and its parameterized form is written as

S(r, θ;B) =
α0αBL(r, θ)

1 +
(
B(rt, θ)/B0

)2B(rt, θ), (4)

where B(rt, θ) is the toroidal field at latitude θ averaged over the whole tachocline from
r= 0.685Rs to r= 0.715Rs, α0 is the measure of the strength of the Babcock–Leighton
process, which is expressed as the dependence on the rotation in the following way,

α0 = α0,s
Ts
T
, (5)

where α0,s is the value of α0 for the solar case, which is taken as 0.7 cm s−1 in Model
I-II and Ts and T are the rotation period of Sun and the star, respectively. And finally,
αBL is the parameter for Babcock–Leighton process which is written in Model I-II as,

αBL(r, θ) =
1

4

[
1 + erf

(
r− r4
d4

)] [
1− erf

(
r− r5
d5

)]
× sin θ cos θ (6)

where, r4 = 0.95Rs, r5 =Rs, d4 = 0.05Rs, d5 = 0.01Rs, and for Model III, the α profile
used is given by,

αBL(r, θ) =
1

2

[
1 + erf

(r− rsurf
d

)]
sin2 θ cos θ, (7)

where d= 0.01Rs.
Thereafter, to study large-scale magnetic fields, we included fluctuations in the source

of the poloidal field. The main reason for including the randomness was that since the
star cycle’s amplitude is not equal, it varies from time to time. This happens due to the
fluctuating nature of the stellar convection. The dynamo parameters fluctuate around
their mean. In Babcock–Leighton, the fluctuations are due to the scatter in the bipolar
active region tilts around the Joy’s law. This randomness changes the poloidal field and
makes irregular magnetic cycles as observed in Sun and Sun-like stars. In order to include
randomness in our Babcock–Leighton α, we include fluctuations in the α appearing in
Eq. (5) as, α0,s = α0,sr, where r is the Gaussian random number with mean unity and
standard deviation (σ) as 2.67. We keep the value of σ the same for all the stars. In our
models, the value of α0 is updated randomly after a certain time, which we take to be
one month.
The α0 in all three models have the same form (Eq. (5)), except in Model III, α0,s =

4 cm s−1 and fluctuations in this model are included separately in the two hemispheres.
We note that above α in Eq. (7) has a sin2 θ cos θ dependence instead of sin θ cos θ as
used in Models I-II to make the α effect strong (weaker) in low (high) latitudes. Also,
the radial extent of this α is a bit wider than that used in Models I-II.

Finally, In Model III, we have added radial magnetic pumping. This inclusion of pump-
ing is inspired by Hazra et al. (2019), who found some agreement of the cycle period vs
rotation trend with observations. It was realized that a downward magnetic pumping
helps to make the magnetic field radial near the surface and reduce the toroidal flux
loss through the surface, making the dynamo model in accordance with the surface flux
transport models and observations (Cameron et al. 2012; Karak and Cameron 2016). The
pumping has the following form:

γ =−γ0
[
1 + erf

(
r− 0.9Rs

0.02Rs

)]
, (8)

where the amplitude of the radial magnetic pumping is given by γ0 which is 24 m s−1 in
all the stars.
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Figure 1. Variation of the magnetic activity with the rotation period of stars for all three
models. Figure adopted from Vashishth et al. (2023).

3. Results & Discussion

The simulations were done for M� mass stars having rotation periods of 1, 3, 7, 10,
15, 20, 25.30 (Sun), and 30 days, respectively. Here we discuss the various aspects of
magnetic cycles obtained from all the stars and from all the three models.
Firstly, the regular polarity reversals in the toroidal field were noted. Model II presents

an irregular magnetic cycle with significant hemispheric asymmetry. In contrast, Model
III shows regular polarity reversals for fast rotators and the Sun but irregularity for
slower ones. Depending on the rotation period, stars exhibit varying magnetic field con-
figurations: slow rotators mainly have dipolar fields, while those rotating in 7 days or less
can have quadrupolar configurations. The pictorial representation and detailed analysis
are in Vashishth et al. (2023).

One obvious feature in these simulations, as seen in Fig. 1, is that the magnetic field
becomes strong in fast-rotating stars. This is because the strength of α increases with the
rotation rate of the star (the shear, however, remains more or less unchanged in different
stars). If a star rotates faster, the tilt of the BMR associated with the Babcock–Leighton
α is expected to increase. Therefore, with age, as the rotation rate decreases, the dynamo
process becomes weaker, and the dynamo number also decreases. This implies that the
rapidly rotating stars will likely have stronger magnetic cycles. This result agrees with
the Karak et al. (2014) and the observations (Noyes et al. 1984; Wright et al. 2011).

We also computed the cycle periods for all three models. To achieve this, we analyzed
the Fourier power spectrum peaks of the toroidal field time series within the tachocline.
This analysis was conducted separately for the northern and southern hemispheres, dis-
tinguishing between symmetric and anti-symmetric cycles. The variations of the cycle
duration in each case with the rotation rate are shown in Fig. 2. Notably, Models I and
II exhibit an increasing trend in the cycle period with higher stellar rotation rates. This
behavior is due to the weakening of the meridional flow with the decrease in the rotation
period which leads to intensifying the flow speed in the thin layers near the boundaries.
Although these two models reproduced various stellar observations, they failed to

reproduce the magnetic cycle period vs. rotation trend correctly for the slowly-rotating
stars. One way to resolve this discrepancy was to include radial magnetic pumping in
the stellar CZs as done by Hazra et al. (2019). As a result, in Model III, we got the
cycle-rotation period trend closer to the observations.
When strong downward magnetic pumping is included in this model, the diffusion of

the magnetic field across the surface becomes negligible, and then the dynamo allows
it to operate at a low α (Karak and Cameron 2016). The lower the α, the longer the
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Figure 2. Change in the stellar cycle duration with the rotation period of stars for (a)
Models I-II and (b) Model III. From Vashishth et al. (2023).

Figure 3. Change of (a) the number and (b) the average duration of grand minima with the
rotation period of stars. Yellow circles, blue asterisks, and red diamonds depict Models I, II, and
III trends, respectively. In (b), the error bars are computed from the standard deviation of the
durations of the grand minima in each case. From Vashishth et al. (2023).

cycle period. We can see from Fig. 2 that at 30 days rotation period, while Models I-II
were producing a cycle period of 6 years, Model III produced a much longer period of 13
years. Then with the decrease of the rotation period, the α becomes stronger and thus
the poloidal field generation process becomes more efficient. This makes the reversal of
the field faster. This effect in the pumping-dominated regime overpowers the increase
of the cycle period due to a decrease in meridional flow speed.
The focal point of our study was to understand how the long-term variability of stellar

cycles is influenced by their rotation rates. We found that fast rotators manifest irregular
cycles with less pronounced long-term variability, while slower rotators exhibit longer
modulations in their cycles, interspersed with periods of weaker magnetic fields. We then
identified extended periods of low magnetic activity, known as grand minima, using a
method adapted from solar studies by Usoskin et al. (2007). We examined the number
of grand minima observed in each case with the help of a time-series plot of the toroidal
field at the base of CZ and radial magnetic field from simulations for 11,000 years. We
infer that the number of grand minima observed in all the models shows an increasing
trend with the rotation period. We saw that the rapidly rotating stars hardly produce
any grand minima, whereas the slowly rotating stars produce some grand minima, and
also, as the rotation period increases, the number of grand minima is seen to increase (see
Fig. 3). This is because, with the increase of rotation period, the supercriticality of the
dynamo decreases, and the dynamo is more prone to produce extended grand minima
in this regime. This result is as per Vashishth et al. (2021) where we observed that
as the supercriticality increases (i.e., as the dynamo number increases), the frequency of
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occurrence of grand minima decreases. This is also supported by the observation that the
detected grand/Maunder minima candidates are the slow rotators. Notably, the average
duration of these grand minima also increases with rotation duration, with most lasting
under 150 years and the majority even below 70 years.

4. Conclusion

Based on the kinematic dynamo simulations of one solar mass at different rotation
rates with stochastically forced Babcock–Leighton source, we make the following con-
clusions. In slowly rotating stars, the cycles are smooth and show long-term variation
with occasional grand minima. Whereas the magnetic field is strong for rapidly rotating
stars, cycles are more irregular, and no grand minima are detected. The number of grand
minima increases with the decrease in the star’s rotation rate. Details of this work have
been presented in Vashishth et al. (2023). We further explore the possible existence of
the dynamo in the subcritical regime in a Babcock–Leighton-type framework and in the
presence of a small-scale dynamo, whose details have been presented in Vashishth et al.
(2021) and Vashishth et al. 2023 (under preparation).
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