
11 

Many charges 

There is little effort in extending the Abraham model to several particles. We label 
their positions and velocities as q jCt), Vj(t), j = 1, ... , N. The j-th particle has 
bare mass mbj and charge e i, where for simplicity the form factor (ii is assumed 
to be the same for all particles. The motion of each particle is governed by the 
Lorentz force as before, and the current in the Maxwell equations now becomes 
the sum over the single-particle currents. Therefore the equations of motion read 

c- 1atB(x, t) = -\7 x E(x, t), 
N 

c- 1atE(x, t) = \7 x B(x, t)- L ejcp(x- qj(t))c- 1vj(t), 
j=l 

N 

\7 · E(x, t) = L ejcp(x- q 1(t)), \7 · B(x, t) = 0, (11.1) 
j=l 

~(mbi YiVi(t)) = ei(Eep(qi(t), t) + c- 1vi(t) x Bep(qi(t), t)), (11.2) 
dt 

h . - 1 N .th . - (1 ( ·/ )2)-I/2 w ere t - , . . . , Wl y1 - - Vz c . 
There are no external forces. The force acting on a given particle is due to the 

other particles, as mediated through the Maxwell field, and to the self-force, which 
we have discussed already at length. If two particles are at a distance of only a few 
times Rep, then they interact strongly with forces which depend on the details of 
the phenomenological and unknown charge distribution. Thus physically we trust 
our model only if particles are far apart on the scale set by Rep. 

11.1 Retarded interaction 

Let us take as a starting point the condition that initially particles are far 
apart, thus lq?- q~l = O(.s- 1 Rep). The velocities are less than c, not necessarily 
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11. 1 Retarded interaction 131 

small, and the initial fields are the linear superposition of N charge soliton 
fields corresponding to the initial conditions q?, v?, i = 1, ... , N. To under­
stand the scales involved it is convenient to switch to macroscopic coordinates, 
which simply amounts to replacing in (11.1 ), (11.2) e j by ylce j and cp by cpF; 
with cpF;(x) = 8-3cp(8- 1x); compare with the second half of section 6.1. Then 

lq?- q~l = 0(1). 
We insert the solution of the inhomogeneous Maxwell-Lorentz equations (11.1) 

into the Lorentz force of (11.2). The forces are additive and the force on particle 
i naturally splits into a self-force (i = j) and a mutual force (i =J. j). For the self­
force one uses the Taylor expansion of chapter 7. Thereby the mass is renormalized 
and the next order is the radiation reaction. For the mutual force we recall that 
in section 7.2 it was shown already that, to leading order, the field generated by 
charge j is the Lienard-Wiechert field. Thus, one obtains as retarded equations of 
motion 

N 

mi(Vi)Vi = L 8ei(Eretj(qi, t) +Vi X Bretj(qi, t)) 
j=i 
j#i 

+ 8(eT j6n)[yi4 (vi ·Vi )vi+ 3yi6 (vi · Vi) 2vi + 3yi4 (vi ·Vi )vi+ y 2vi ], 

(11.3) 

t ::::_ 0, which accounts for the effective mass mi and the radiation reaction of the 
i-th particle; compare with Eq. (8.1). Eretj(X, t) equals (2.24) withe replaced 
by e j, q replaced by q j, and tret replaced by tretj which is implicitly defined 
through 

tretj = t - IX - q j (tretj) I . (11.4) 

For x = q i the retarded time is of order 1. Similarly Bretj (x, t) equals (2.25) with 
q replaced by q j and tret replaced by tretj. The strength 8 results from the charge, 
vfcei, and the scale factor ylc in (8.47). Viewed differently, on the microscopic 
scale the force is of order (distance)-2 = 8 2 and thus of order 8 when accumulated 
over a time span 8-1. To solve (11.3) one needs the trajectories for the whole past. 
Our assumption of no initial slip is equivalent to 

(11.5) 

which must be added to (11.3). 
Using (11.3) one can estimate the size of the various contributions. The near 

fields of Eretj and Bretj are of order 1. Therefore the acceleration is of order 8, 
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132 Many charges 

which implies that the far field of Eretj and Bretj is O(s2). The radiation reaction 
term involves Vi and is therefore 0(s3). 

We see that the various contributions are well ordered in powers of s. The 
forces are weak, however, and therefore over longer times the particles will move 
apart, which is of somewhat reduced interest. There are two limiting situations of 
physical relevance, which will be discussed in the following sections. One pos­
sibility is to take the initial velocity I vi I cl « 1. Then to lowest order the 
particles interact through the static Coulomb potential and post-Coulombic 
corrections can be studied meaningfully. The other option is to let N --+ oo, 
which yields a kinetic description for charge densities as commonly used in 
plasma physics. 

11.2 Limit of small velocities 

We impose the condition that initially lvj lei « I. Then retardation effects should 
be negligible and the particles interact through the static Coulomb potential. Ac­
cording to the standard textbook recipe, I v j I c I « I is to be interpreted as c --+ oo. 
Indeed, from ( 11.1) one concludes B = 0 and 

N 

\7 x E(x, t) = 0, \7 · E(x, t) = L ejCfJ(X- q j(t)), 
j=l 

(11.6) 

which together with Newton's equations of motion yields the desired result. Un­
fortunately, our argument fails on two counts. First, the interaction is obtained as 
the smeared Coulomb potential. More severely, in Newton's equations of motion 
only the bare mass of charge i appears, whereas physically it should respond to 
forces with its renormalized mass. Of course, the reason is that c --+ oo does not 
ensure charges to be far apart on the scale of RlfJ. 

To improve we require, as in the previous section, that the initial positions sat­
isfy 

(11.7) 

Then the force is of order s2. Under rescaling the dynamical variables should be 
of order 1 as s --+ 0. If in addition we demand the relation q = v to be preserved, 
the only choice remaining is 

(11.8) 
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11.2 Limit of small velocities 133 

Indeed, the accumulated force is of order V£, which means that the magnitude of 
the velocity is preserved. We have arrived at the following scale transformation 

t = 0 -3/2[1' -] I (";; I 
c q j = £ q j , V j = y EV j , 

x = £- 1x 1 , E = £ 312£ 1 , B = £ 312B 1 , (11.9) 

where the primed quantities are considered to be of 0(1). The field amplitudes are 
scaled by £3/ 2 so as to preserve the field energy. There is little risk in omitting the 
primes below. We set 

Then the rescaled Maxwell's and Newton's equations of motion are 

,JEatB(x,t) = -V' x E(x,t), 
N 

,J£ atE(x, t) = V' x B(x, t)- L ,J£ejCP8 (x- qj(t)),J£vj(t), 
j=l 

N 

(11.10) 

Y'·E(x,t)= L.:-J£ejC{Jo(x-qj(t)), Y'·B(x,t)=O, (11.11) 
j=l 

d 
£ dt (mbi(l- Evf(t) 2)-112vf(t)) = ,JEei(Erp"(qf(t), t) 

+ ,J£vf(t) X Brp"(qf(t), t)). (11.12) 

On the new scale the velocity of light tends to infinity as c j V£ and the charge 
distribution has total charge V"£e j, finite electrostatic energy mf, and shrinks to a 
8-function as cp8 • Recall that the scale parameter£ is just a convenient way to order 
the magnitudes of the various contributions. 

Before entering into more specific computations, it is useful first to sort out 
what should be expected. We follow our practice from before and denote positions 
and velocities of the comparison dynamics by r j, u j, j = 1, ... , N, i.e. qj (t) ~ 
r j (t), vj (t) ~ u j (t). Since the velocities are small, the kinetic energy takes its 
nonrelativistic limit 

1 ( 4 ) 2 To(u·)=- mb·+-mc u. 
1 2 1 3 1 1' 

(11.13) 

up to a constant; compare with (4.24). Note that the mass of the particle is renor­
malized through the interaction with the field. For small velocities, magnetic fields 
are small and retardation effects can be neglected. Thus the potential energy of the 
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134 Many charges 

effective dynamics should be purely Coulombic and be given by 

(11.14) 

To obtain post-Coulombic corrections, one has to expand properly the self- and 
retarded forces, which we will carry to order £ 512 where the radiation reaction 
appears first. Since, as can be seen from (11.1 ), (11.2), the forces are additive, it 

suffices to consider two particles only. For initial conditions we choose the linear 
superposition of the two charge solitons corresponding to the initial data q?, v?, 
i = I, 2. One solves the Maxwell equations and inserts them in the Lorentz force. 
As already explained, in the self-interaction the contribution from the initial fields 
vanishes fort :=:: drp. In the mutual interaction the initial fields take a time of order 

,JE to reach the other particle and their contribution vanishes fort :=:: ,JSiq~- qgl. 
Thus for larger times one is allowed to insert in ( 11.2) the retarded fields only, 
which yields 

d ( E: ) £- mbl Yl V1 (t) = Fret II (t) +Fret 12(t), 
dt ' ' 

(11.15) 

(11.16) 

where 

t 

Fret,ij(t) = eiej Ids I d3kli{J(Ek)l 2eik·(qj(t)-qj(s)) 

0 

x (- £1/ 2(1kl- 1 sin(lkl(t- s)jy'c))ik- E(cos(lkl(t- s)jy'c))vj(s) 

+£312(1kl-l sin(lkl(t- s)jy'c))vf(t) x (ik x vj(s))), (11.17) 

i, j = 1, 2. 
For the self-interaction we set Ek = k', £-312t = t'. Then 

()() 

Fret,u(t) = £-3/2(q)2 I dr I d3klifJ{k)l2eik·(q"J(t)-q"J(t-~:312r))/t: 
0 

x (- £1/ 2(1kl- 1 sin lklr)ik- £(cos lklr)v~(t- £312r) 

+ £312(1kl- 1 sin lklr)v~ (t) x (ik x v~ (t - £312r))) . (11.18) 
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11.2 Limit of small velocities 

One Taylor-expands as 

1 1 
s -1 (q~ (t) - q~ (t - s3f2r)) = slf2rv - 2s2r2v + (/ 7 /2r3ii' 

1 
vf (t - s 312r) = v- s312rv + -s3r 2ii. 

2 

Then, up to errors of order s3 , 

()() 

Fret, II (t) = (el)21dr I d3kl~(k)l 2 (s[- (lkl-l sin lklr) ~r2 (k. v)k 

0 

1 
+(cos lklr)rv] + s 2[(- (lkl-l sin lklr)2r2(k. v)k 

135 

(11.19) 

+(cos lklr)rv) (- ~r2 (k. v)2) -(cos lklr)~r 3 (k. v)(k. v)v 

1 
+ (lkl-l sin lklr)(r2(k · V)V X (k XV)+ -r2(k · v)(v X (k X v)))] 

2 

(11.20) 

For the mutual interaction we leave the k-integration and set s 112t = t'. 

Then 

()() 

Fret,12(t) = -J€e1e2 I dr I d3kl~(sk)l 2eik·(qf(t)-q2(t-v"£r)) 
0 

x (- s 112(1kl-l sin lklr)ik- s(cos lklr)v~(t- -J"€r) 

+s312(1kl- 1 sin lklr)vf(t) x (ik x v~(t- -J"€r))). (11.21) 

One Taylor-expands as 

(11.22) 
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with r = q~ (t) - q~ (t). Then, up to errors of order .s3 , 

()() 

Fret, 12 = e1 e2 I dr I d3klq}(.sk) 12eik·r (- .s(lkl- 1 sin lklr) ik + .s2[ (lkl- 1 sin lklr) 

0 

1 1 
X (- - r 2 (k · V2)k +- r 2 (k · V2) 2ik + V1 X (ik X V2)) 

2 2 

+(cos lklr)(rv2- ir(k · v2)v2)] 

1 1 
+ .s512[ (lkl- 1 sin lklr)( -r3 (k · v2)k- -r3 (k · v2)(k · v2)ik 

6 2 

- ~r3 (k · v2)3k) - (cos lklr)~r2vJ) 
6 2 

= (ele2/4n)(- .SY'rlrl- 1 + .s2[( ~ Y'r(V2 · Y'r)- ~Y'r(V2 · Y'r)2)1rl 
2 2 

- (V2- V2(V2 · Y'r))lrl- 1 +(VI X (Y'r X V2))1rl- 1] 

(11.23) 

We discuss each order separately, where we recall that in (11.15), ( 11.16) the 

acceleration is multiplied by .s. As anticipated, to order 1 one obtains the Coulomb 
dynamics with renormalized mass from F jj (t). Let us define the Coulomb La­
grangian 

N N "'1( 4 ) 2 1"' eiej 
Lcoul = L...,; -2 mbj + -3mfj ui- -2 L...,; 4 I . _ ·I . 

. I ·-~-. I JT rt rl j= 1-,-j= 

(11.24) 

Then the comparison dynamics is 

d 
-(Y'u Lcoul)- Y'r Lcoul = 0, j = 1, ... , N, dt J J 

(11.25) 

with the error bounds 

lqj(t) -rj(t)l = O(.s), lvj(t) -uj(t)l = O(.s). (11.26) 

The first-order correction is O(.s). More conventionally the error is counted in 

powers of lv/cl relative to the zeroth-order Coulomb dynamics. To convert, one 
only has to set .s = 1. The first correction is then of order lv/cl 2 (= O(.s), compare 
with (11.8)), and the next-order corrections lv/ cl 3 . The order .s2 terms in (11.20), 
(11.23) combine in a simple fashion and yield the Darwin correction. Let us define 
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the Darwin Lagrangian 

N 

Lctarw = L ( ( mbj + ~mfj) ~u] + £( ~mbj + }:_mfj )c-2uj) 
j=l 3 2 8 15 

137 

N 
1 " eiej [ 1 ( ~ ~ )] -- ~ . . 1-£-2 Ui · Uj + (ui ·rij)(uj ·rij) 
2 i#J=l 4rrlrt -r1 1 2c 

(11.27) 

with Tj j = (r i - r j) I lr i - r j 1. In the first sum one recognizes the correction to 
the kinetic energy, while in the second-term corrections due to retardation and 
the magnetic field combine into a velocity-dependent potential. The comparison 
dynamics is governed by the improved Lagrangian, 

d 
-(Y'u Lctarw)- Y'r Lctarw = 0, ) = 1, ... , N, dt J J 

(11.28) 

with the error bounds 

(11.29) 

At order lvlcl 3 one picks up terms proportional to Vj. Remarkably, the prefac-
tors in Fretjj and Fretji are identical, and one obtains the comparison dynamics 

d e· N 
-(Y'u Lctarw)- Y'r.Lctarw = t:312 __j__3 "eiiii, j = 1, ... , N. 
dt 1 1 6rrc ~ 

1=1 

(11.30) 

The physical solutions have to be on the center manifold of (11.30). At the present 
level of precision it suffices to substitute the Lagrangian dynamics to lowest order, 
which yields 

ii'i' 

If the charge-mass ratio e i I m i does not depend on j, the damping term 
is suppressed. The collection of charges has vanishing dipole moment. This 

can be seen also directly by considering the dipole moment d = 'Lf= 1 e W j = 

J;f= 1(eJimJ)mJqi. If (eJimJ) = const., then d equals the center of mass and 

d = 0. Thus there is no dipole radiation. Only quadrupole radiation is allowed and 
radiation damping would appear at the scale lvlcl 5. 

We briefly return to the limit c ---+ oo from the beginning of this subsection. 
In fact, the expansion for computing the effective dynamics turns out to be not 
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so drastically different as one might have anticipated. To lowest order the kinetic 
energy is mbju]/2 and is modified to (mbj + (4mfj j3c2))u]f2 at the Darwin order 

lvfcl2 . The correction to the quadratic behavior is visible only at order lvfcl4 . The 
friction term is identical to that of (11.30). Only in (11.27) must the Coulomb 
potential be smeared by the charge distribution cp. 

11.3 The Vlasov-Maxwell equations 

If N is large, it is impractical to follow the trajectory of individual particles and, as 
widely used for example in plasma physics, a kinetic description is more appropri­
ate. The basic object describing matter is now the distribution function fa (x, v, t). 

For each component a it is a function on the one-particle phase space and defined 
through 

fa (x, v, t )d3 xd3 v = ~ (number of particles with charge ea in the volume element 
d3 xd3 v at timet) . 

The charge density of the a-th component is then 

Pa(X, t) = ea J d3vfa(X, V, t) 

and the total charge density 

p(x, t) = L Pa(X, t). 
a 

Similarly, the current density is 

ja(X, t) = ea J d3vvfa(X, V, t), j(x, t) = Lja(X, t). 
a 

(11.32) 

(11.33) 

(11.34) 

The Maxwell field is governed by (2.2), (2.3) with p from (11.33) and j from 
(11.34) as source terms. As densities on the one-particle phase space the distribu­
tion functions evolve according to 

3tfa(X, V, t) + Y'x · (vfa(X, V, t)) + (Y'v · (may)-l 

X (Fa- (v · F a)v)fa(X, V, t)) = 0 (11.35) 

with the Lorentz force 

Fa= ea(E(x, t) + v x B(x, t)). (11.36) 

The system of equations (2.2), (2.3), and (11.32)-(11.36) are called the Vlasov­
Maxwell system. They were written down first by Vlasov in 1938 in the more 
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conventional form where the velocity v is replaced by the kinetic momentum 
u = mavf~. Then in (11.35), (11.36) vis to be replaced by ujJm~ + u 2 

and the Vlasov equation for the distribution function fa(x, u, t)d3xd3u reads 

Ot fa(X, U, t) + (m; + u 2)- 112u · Vxfa(X, U, t) +Fa· Vufa(X, U, t) = 0. 
(11.37) 

The static limit of the Vlasov-Maxwell system, namely c ---+ oo yielding B = 0, 
V x E = 0, V · E = p, is the Vlasov equation. 

To establish the link to the Abraham model with N charges it is convenient to 
start on the macroscopic scale, for simplicity for a single component, where 

orB(x, t) = -V X E(x, t)' 
N 

orE(x, t) = v X B(x, t)- c L ecpE:(x- q j(t))Vj(t)' 
j=l 

N 

V · E(x, t) = t: Lecp8 (x -q1(t)), V · B(x, t) = 0, (11.38) 
j=l 

d 
dt (mbYiVi(t)) = e(Eep"(qi(t), t) + Vi(t) x Bep"(qi(t), t)). (11.39) 

We used here the freedom in the scale factor for the amplitude of the electromag­
netic fields which accounts for an extra ,JE as compared to (6.11). On a formal 
level, the step to the Vlasov-Maxwell equation is immediate. We set N = t:- 1• 

The typical distance between particles is then t: 113 Rep while the charge diameter is 
t: Rep « t: 113 Rep. Thus particles are still very far apart. If we assume that at time t 
the particle configuration is well approximated by a distribution function, then the 
source term of the Maxwell equations is of the form claimed in (11.33), (11.34). 
For (11.39) we have again to split into the self- and mutual parts. The self-part 
renormalizes the mass to m(v) from (8.2) and the mutual part yields the force 
of (11.36) for the considered component. Put differently, in (11.39) the Maxwell 
fields E, B, smeared by cp8 and evaluated at q i (t), have a singular part which renor­
malizes the mass and a smooth part from all the other charges which is governed 
by (11.38). To carry out this program and to thereby derive the Vlasov-Maxwell 
equations along the lines indicated remains as a task for the future. 

11.4 Statistical mechanics 

For a system of many particles the first impetus is to investigate its equilibrium 
statistical mechanics. Although this means venturing into the domain of nonzero 
temperatures, let us see how much will be captured by our oversimplified model 
of matter. Statistical mechanics starts with a Hamiltonian defined on phase space. 
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Since this is also the starting point for canonical quantization, in Chapter 13, our 
discussion of the Pauli-Fierz model necessarily deals with the Lagrangian and 
Hamiltonian structure of the Abraham model. We preview the result (13.24) for a 
system of N particles. The canonical coordinates for the particles are (q j• p j), j = 

I, ... , N. For the Maxwell field we adopt the Coulomb gauge, V ·A= 0. The 
canonical field variables are then (A(x), -Ej_(X)), x E IR3. Both fields are purely 
transverse, V · A = 0 = V · E j_. In terms of these variables the Hamiltonian for 
the Abraham model reads 

(II.40) 

For simplicity we adopt the nonrelativistic kinetic energy, p 2 j2m. The potential 
V<pcoul originates from the longitudinal part of E and is defined through 

(II.4I) 

V<pcoul is the Coulomb potential smeared by the charge distribution cp, which ap­
pears twice, since both the i-th and the j-th particles carry a charge distribu­
tion. 

The particles are confined to the box A c IR3. We should also restrict the fields 
to the box A, but it will be somewhat simpler to regard them as filling all space. 
Then, formally, the equilibrium distribution at inverse temperature f3 = 1/ kBT is 
given by 

I . N 
ze-,I!HnXA(qj)d3qjd3pj n d2A(x)d2Ej_(X), 

j=] XEJR:3 

(II.42) 

where Z is the normalizing partition function and xA is the indicator function for 
the box A. Since the field energy is quadratic in E j_ and A, combined with the a 
priori measure and the normalization, it follows that E j_ (x) and A(x) are Gaussian 
fields. We will only need A(x). It has mean zero and covariance 

(11.43) 

From the experience with black-body radiation we have little trust in the statis­
tics of the Maxwell field at large wave numbers and therefore concentrate on the 
particle degrees of freedom, only. 
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According to (11.40), (11.42) for fixed positions qj, j = 1, ... , N, the mo­
menta are Gaussian distributed with mean zero and covariance 

(PiPj)(q 1 ••••• qN) =((Pi+ eiAcp(qi))(Pj + ejAcp(qj))) 

= (PiPj) + eiej(Acp(qi)Acp(qj)) 

= *(mbiDijll+eiej J d3klq}(k)l 2 1kl-2(ll-k0k)eik·(q;-q)). 

(11.44) 

Here in the first equality we shifted p j by e j Acp (q j) which transforms (-) to a 
Gaussian averaging factorized with respect to the p 's and A's. For i = j we re­
cover the renormalized mass mbi + mfi. For i #- j, there are momentum correla­
tions which decay as lq i - q j 1-1 in the distance of the two particles. 

For the distribution of the positions, we integrate first over p and then over A 
with the result 

(11.45) 

which is the standard Gibbs distribution for a Coulombic system of charges. The 
equilibrium statistics decouples into a positional part and, when conditioned on the 
positions, a Gaussian velocity part. 

The equilibrium properties of Coulomb systems have been studied very exten­
sively. To be specific, let us consider a two-component charge-symmetric plasma, 
which is neutral in the sense that both components have the same chemical poten­
tial. Since the system is very large, the natural quantities are the free energy and 
the correlation functions in the limit where the volume tends to infinity, A t JR3. 

Indeed this limit has been established together with one major qualitative result, 
namely the validity of the Debye-Hiickel theory at sufficiently low density. One 
inserts an extra charge at the origin into the system at thermal equilibrium. Then 
the charges of opposite sign screen in a statistical sense and the average charge 
density decays on the scale of the De bye length ln = ( 4rr e2 ,Bp) - 1/ 2. 

While we cannot enter into details, it might be useful to understand how the 
smearing of the charge distribution is needed even on the level of equilibrium 
statistical mechanics. Let us assume that the two components have equal charge of 
opposite sign, which means either e j = e ore j = -e. Since Vcpcoul is of positive 
type (the Fourier transform of a positive measure), one has 

1 N 1 N 
- L eiejVcpcoui(qi -qj) :=:: -- LeJVcpcoui(O) 
2 i=lj=1 2 j=1 

= -(~e2 J d3kliP(k)l 2 1k1-2)N. (11.46) 
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The energy is bounded from below by a constant proportional to N, which means 
that V<pcoul defines a thermodynamically stable interaction. To control the behavior 
for large A one uses again the positive definiteness of V<pcoul and introduces the 
auxiliary Gaussian field ¢(x), x E IR\ with mean zero and covariance 

(¢(x)¢(y))G = V<pcouJ(X- y), 

which is well defined since V<pcoul (k) ::::_ 0. Then 

N 

e-fW(ql···· .qN) = ( exp [ift"I:>jc/J(q j) ])0 
j=l 

and the grand canonical partition function becomes 

(11.47) 

(11.48) 

(11.49) 

Thus our system of charges has been converted into a field theory. The a priori 
measure Oc is known as the Gaussian massless free field. In (11.49) it is per­
turbed by the interaction f11. d3q cos(,j"pe¢(q)), which is clearly proportional to 
I A 1. Thus we conclude that the pressure is extensive, 

(11.50) 

Despite the long-range forces, a neutral Coulomb system has extensive (volume­
proportional) thermodynamics, provided the charges are somewhat smeared. 

Notes and references 

Section 11.1 

On the quantized level the retarded interaction between neutral atoms shows as 
an attractive R-7 decay of the interaction potential in contrast to the nonretarded, 
attractive van der Waals R-6 law. 
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Section 11.2 

The Darwin Lagrangian is discussed in Jackson (1999). In Kunze and Spohn 
(2000c) the errors in ( 11.29) are estimated. Kunze and Spohn (200 1) extend their 
analysis to include radiation reaction. The major novel difficulty is to properly 
match the initial conditions of the comparison dynamics (11.31 ). The next post­
Coulombic correction, of order lvlcl 4 , is computed formally by Landau and Lif­
shitz (1959), Barker and O'Connell (1980a, 1980b), and Damour and Schafer 
(1991 ). It contains quadrupole corrections to the Coulomb interaction and terms 
proportional to v. It would be of interest to compare these results with the system­
atic expansion presented here. 

A qualitatively rather similar problem arises in general relativity. The object 
of interest is a binary pulsar, like the famous Hulse-Taylor pulsar PSR 1913 + 
16. It consists of two neutron stars, each with a mass of roughly 1.4 solar mass 
and a diameter of 10 km. They rotate around their common center of mass with 
a period of 7 h 45 min. The neutron stars move slowly with lvlcl ~ w-3 . Since 
one of the neutron stars is rotating, it emits radio waves through which the orbit 
can be tracked with very high precision, in fact so precise that damping through 
the emission of gravitational waves can be verified quantitatively. I refer to Hulse 
(1994) and Taylor (1994). As in the case of charges, the theoretical challenge is to 
obtain the orbits of the two neutron stars in an expansion in I vI cl. For gravitation 
there is no dipole radiation and damping appears only at order lvlcl 5, with lvlcl0 

being the Newtonian orbit. Since experimental accuracy is expected to increase 
further (Will 1999) various groups have taken up the challenge with the present 
order at lvlcl7 (Jaranowski and Schafer 1998). 

Section 11.3 

The relativistic Vlasov-Maxwell equations already appear in the original 1938 
paper of Vlasov, see Vlasov (1961 ). The existence of solutions is studied at in­
creasing level of generality in Glassey and Schaeffer (1991, 1997, 2000). In the 
nonretarded Vlasov-Poisson approximation the existence of solutions is now well 
understood (Pfaffelmoser 1992; Schaeffer 1991) and the link to theN -particle sys­
tem has been established for a mollified potential (Neunzert 1975; Braun and Hepp 
1977), a review being Spohn (1991). Physically the natural requirement is to have 
the charge diameter much smaller than the interparticle distance. Since this case is 
somewhat singular, a satisfactory derivation of the Vlasov-Poisson approximation 
is open, with a partial step towards its solution in Batt (2001 ). 

As in the case of N charges, the solution to the Vlasov-Maxwell system can 
be expanded in powers of 1 I c. The leading order is then Vlasov-Poisson, as 
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established by Schaeffer (1986), which is corrected a la Darwin at order c-2 , 

as proved by Bauer and Kunze (2003). A one-component system can dissipate 
energy only through quadrupole radiation, which first appears at order c-5. A 
two-component system emits dipole radiation at order c-3. Properties of the for­
mally derived Vlasov equation including radiative friction are studied by Kunze 
and Rendall (2001 ). 

Section 11.4 

The statistical mechanics of charges plus Maxwell field is usually treated only 
on the level of thermodynamics (Alastuey and Appel 2000). Lebowitz and Lieb 
(1969) and Lieb and Lebowitz (1972) prove the existence of the, in fact shape­
dependent, thermodynamic limit for Coulomb systems. A very readable review 
is Lieb and Lebowitz (1973). The existence of the infinite-volume limit of the 
correlation functions in the case of charge-symmetric systems is proved by 
Frohlich and Park (1978). For the Debye-Hiickel theory I recommend the excellent 
survey by Brydges and Martin (1999). 
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