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Abstract. An area-preserving homeomorphism isotopic to the identity is said to have
rational rotation direction if its rotation vector is a real multiple of a rational class. We
give a short proof that any area-preserving homeomorphism of a compact surface of genus
at least two, which is isotopic to the identity and has rational rotation direction, is either
the identity or has periodic points of unbounded minimal period. This answers a question
of Ginzburg and Seyfaddini and can be regarded as a Conley conjecture-type result for
symplectic homeomorphisms of surfaces beyond the Hamiltonian case. We also discuss
several variations, such as maps preserving arbitrary Borel probability measures with full
support, maps that are not isotopic to the identity and maps on lower genus surfaces. The
proofs of the main results combine topological arguments with periodic Floer homology.
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1. Introduction
1.1. History and main results. Questions on the existence and multiplicity of periodic
points of area-preserving surface homeomorphisms have a long history, dating back to
Poincaré and Birkhoff’s work on annulus twist maps and the restricted planar three-body
problem, and have attracted significant attention since then. The existence question asks
whether any periodic points exist, and the multiplicity question asks how many there are.
On a closed surface of genus g ≥ 1, there exists an area-preserving diffeomorphism that
has any prescribed finite number N ≥ 1 of periodic points. For N ≥ 2g − 2, as explained
in [LC22], it suffices to add N − 2g + 2 singularities to an irrational translation flow
(g = 1) or a translation flow in a minimal direction (g ≥ 2), and then take the time-one
map. This map has N periodic points, all of which are fixed, and is isotopic to the identity
relative to the fixed point set. More recently, an explicit construction for all N ≥ 1 was
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2 R. Prasad

presented by Atallah, Batoréo and Ferreira [ABF24]. The current state of the art on
the multiplicity problem for area-preserving surface maps, to our knowledge, is due to
Le Calvez [LC22]. He shows, barring some edge cases when g ≤ 1, that any
area-preserving homeomorphism of a closed surface is either periodic, has periodic points
of unbounded minimal period or, after passing to an iterate, only has finitely many fixed
points and is isotopic to the identity relative to the fixed point set. The last case is the one
modeled by the examples from [LC22].

In this article, we discuss a simple and dense homological condition that forces an
area-preserving map isotopic to the identity to have infinitely many periodic points.
Fix a compact surface � and a smooth area form ω. Any area-preserving map
φ ∈ Homeo0(�, ω) isotopic to the identity has a rotation vector

F(φ) ∈ H1(�; R) / �ω,

where �ω ⊆ H1(�; Z) is a discrete subgroup. The map φ has rational rotation direction
if F(φ) is a real multiple of a rational class, that is, c · F(φ) ∈ H1(�; Q) / �ω for some
real number c > 0. Any area-preserving map can be perturbed to an area-preserving map
with rational rotation direction by a C∞-small perturbation, so a dense subset of maps
have rational rotation direction. We now state our main result.

THEOREM A. Fix a compact surface � of genus ≥ 2 and a smooth area form ω. Let
φ ∈ Homeo0(�, ω) be any area-preserving homeomorphism that is isotopic to the identity
and has rational rotation direction. Then φ is either the identity or has periodic points of
unbounded minimal period.

Remark 1.1. In the theorem above and all subsequent discussion, we allow compact sur-
faces to have non-empty boundary, and we say they are closed when the boundary is empty.
The genus of a compact surface is the genus of the closed surface obtained by attaching
disks to each boundary component. All surfaces are assumed to be oriented from now on.

Remark 1.2. Franks and Handel [FH03] and Le Calvez [LC06] proved Theorem A under
the assumption that φ is Hamiltonian, which is equivalent to the condition that F(φ) = 0.

Remark 1.3. Similar results for surfaces of genus zero and one are either known or can be
shown to hold by combining known results. See §1.3 for a more detailed discussion.

Remark 1.4. The area-preserving maps with finitely many periodic points discussed above
do not have rational rotation direction.

Remark 1.5. Fix a compact surface � of genus ≥ 2 and a smooth area form ω. Let
Diff0(�, ω) denote the space of all area-preserving diffeomorphisms that are isotopic to
the identity. Theorem A and a short Baire category argument show that a C∞-generic
φ ∈ Diff0(�, ω) has periodic points of unbounded minimal period. Any periodic point
can be made non-degenerate by a C∞-small local perturbation, which leaves the rotation
vector unchanged. Since maps with rational rotation direction are C∞-dense, it follows
from Theorem A that, for each d, there exists an open and dense subset Ud ⊂ Diff0(�, ω)

such that, if φ ∈ Ud , then φ has a periodic point of minimal period ≥ d . Each φ in
U := ⋂

d≥1 Ud has periodic points of unbounded minimal period.
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Periodic points of rational area-preserving homeomorphisms 3

Theorem A answers a question asked independently by Ginzburg and by Seyfaddini.
From a modern perspective, the result contributes to the active stream of research centered
around the Conley conjecture. The original formulation of the conjecture asserts that any
Hamiltonian diffeomorphism of a closed aspherical symplectic manifold has infinitely
many periodic points. The Conley conjecture was resolved for surfaces by Franks and
Handel [FH03] and extended to Hamiltonian homeomorphisms by Le Calvez [LC06]
before being resolved in full generality by breakthrough work of Hingston [Hin09] for
higher-dimensional tori and by Ginzburg [Gin10] for the general case. The search for
extensions of the Conley conjecture to Hamiltonian diffeomorphisms/homeomorphisms
of more general symplectic manifolds has attracted a great deal of ongoing activity and
progress [GG09b, GG09a, GG10, GG12, Gür3, GG14, GG15, GG16, Çin18, GG19].
However, there has been much less progress in establishing Conley conjecture-type
results for non-Hamiltonian symplectic maps (some notable results include [Bat15,
Bat17, Bat18]). Moreover, to our knowledge, there is no agreed-upon formulation of
the Conley conjecture for non-Hamiltonian symplectic maps. Theorem A can be viewed
not only as establishing such a ‘non-Hamiltonian Conley conjecture’ in dimension two,
but also as a guidepost towards formulating a ‘non-Hamiltonian Conley conjecture’ for
higher-dimensional symplectic manifolds. We pose the following question.

Question. Let (M , �) be a closed and symplectically aspherical symplectic manifold of
any dimension. Then, does any symplectic diffeomorphism φ ∈ Diff0(M , �) such that
F(φ) ∈ H1(M; Q) / �� have infinitely many periodic points?

The idea that a Conley conjecture-type result may hold for area-preserving homeomor-
phisms with rational rotation direction was motivated by recent work on the C∞-closing
lemma [CGPZ21, EH21] for area-preserving surface diffeomorphisms. Herman famously
showed [HZ94, Ch. 4.5] that a version of the closing lemma using only Hamiltonian
perturbations cannot hold for certain irrational maps (Diophantine torus rotations). This
issue was avoided by proving a Hamiltonian C∞-closing lemma for many rational maps
(any map with rational asymptotic cycle, see §1.2) and then observing that such maps
form a C∞-dense subset of Diff(�, ω). It seems reasonable to suspect that, given these
marked differences in behavior, rationality conditions for rotation vectors have dynamical
significance.

Theorem A can be extended, with slightly weaker conclusions, to maps preserving
arbitrary Borel probability measures with full support. Given an isotopy � from
the identity to φ and a φ-invariant Borel probability measure μ, a rotation vector
F(�, μ) ∈ H1(�; R) can be defined. When � has genus ≥ 2, the rotation vector does not
depend on the isotopy �, and we write it as F(φ, μ).

THEOREM B. Fix a compact surface � of genus ≥ 2 and a Borel probability
measure μ with full support such that μ(∂�) = 0. Let φ ∈ Homeo0(�, μ) be any
μ-preserving homeomorphism that is isotopic to the identity, such that its rotation vector
F(φ, μ) ∈ H1(�; R) is a real multiple of a rational class. Then φ has infinitely many
periodic points. Moreover, if μ has no atoms, then φ is either the identity or has periodic
points of unbounded minimal period.
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Theorem B follows from a short argument combining Theorem A and the Oxtoby–Ulam
theorem [OU41], which was suggested to the author by Le Calvez. Theorem A follows
from Theorem C, which may be of independent interest, and the results in [LC06, LC22].

THEOREM C. Fix a closed surface � of genus ≥ 2 and a smooth area form ω. Then
any φ ∈ Homeo0(�, ω) with rational rotation direction is either Hamiltonian or has a
non-contractible periodic point.

Remark 1.6. An interesting problem related to Theorem C, posed by Ginzburg, is to deter-
mine whether a C∞-generic Hamiltonian diffeomorphism of a closed and symplectically
aspherical symplectic manifold has a non-contractible periodic point. This was proved
for the two-torus by Le Calvez and Tal [LCT18] and was recently extended to all closed
surfaces of positive genus by Le Calvez and Sambarino [LCS23].

A recent result from symplectic geometry is central to the proof of Theorem C. In
[CGPZ21], a non-vanishing theorem is proved for the periodic Floer homology (PFH)
of area-preserving diffeomorphisms of closed surfaces. PFH is a homology theory for
area-preserving surface maps built out of their periodic orbits. The non-vanishing theorem
relies on a deep result of Lee and Taubes [LT12] which shows that PFH is isomorphic
to monopole Floer homology. We explain more about PFH and state the non-vanishing
theorem at the beginning of §4.

There are two major issues in the proof of Theorem C that require new arguments to
overcome. The first issue is that PFH is only well defined for diffeomorphisms, not home-
omorphisms. To get around this, we observe that a quantitative version (Proposition 4.2) of
Theorem C holds; there exists a non-contractible periodic point with an upper bound on its
minimal period depending only on the rotation vector. This allows us to extend Theorem C
to homeomorphisms by an approximation argument. The proof of Proposition 4.2 exploits
the homological grading of PFH to extract the required information. To our knowledge,
this is a new argument with no analog in previous work.

The second issue is that the non-vanishing of PFH is only known for maps with rotation
vector in H1(�; Q) and not all maps with rational rotation direction. We cannot hope for
too much when F(φ) �∈ H1(�; Q); in this case, there are many examples (irrational torus
rotations and translation flows in minimal directions) where PFH essentially vanishes.
(More precisely, it vanishes in non-trivial homological gradings, so it only detects
null-homologous periodic orbit sets, in which every periodic orbit could be contractible.)
This is overcome via a novel blow-up argument.

1.2. Maps not isotopic to the identity. Assume that � is closed and has genus ≥ 2. It is
known [LC22] that either φ has periodic points of unbounded minimal period or it has
periodic Nielsen–Thurston class. Therefore, if φ has periodic Nielsen–Thurston class and
some iterate φq ∈ Homeo0(�, ω) has rational rotation direction, then Theorem A implies
that φ is either periodic or has periodic points of unbounded minimal period. We now
show that maps with periodic Nielsen–Thurston class and rational asymptotic cycle have
an iterate with rational rotation direction.
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Let Mφ denote the mapping torus of φ. The asymptotic cycle C(φ) ∈ H1(Mφ ; R) is an
analog of the rotation vector for area-preserving maps that are not isotopic to the identity;
by rational asymptotic cycle, we mean C(φ) ∈ H1(Mφ ; Q). It is defined by applying
Schwartzman’s construction [Sch57] to the suspension flow. When φ is isotopic to the
identity, a choice of identity isotopy � defines a diffeomorphism Mφ 	 T × �, where
T := R/Z denotes the circle. Lemma 3.1 proves that, under this identification,

C(φ) = [T] + F(�).

If φ ∈ Homeo0(�, ω) has rational asymptotic cycle, then this computation shows that
φ has rational rotation direction. The property C(φ) ∈ H1(Mφ ; Q) is preserved under
iteration. Lemma 3.3 below shows that if C(φ) is rational, then so is C(φk) for each
k > 1. Putting these facts together implies our claim above, that if φ has periodic
Nielsen–Thurston class and C(φ) ∈ H1(Mφ ; Q), then it has an iterate φq ∈ Homeo0(�, ω)

with rational rotation direction. Combining this with Theorem A proves the following
theorem.

THEOREM D. Fix a closed surface � of genus ≥ 2 and a smooth area form ω. Let
φ ∈ Homeo(�, ω) be any area-preserving homeomorphism such that C(φ) ∈ H1(Mφ ; Q).
Then φ is either periodic or has periodic points of unbounded minimal period.

Remark 1.7. Assuming that C(φ) ∈ H1(Mφ ; Q), for φ with periodic Nielsen–Thurston
class, is sufficient but not necessary for φ to have an iterate with rational rotation direction.
It can be weakened, but we were unable to find a sufficiently elegant condition to write
down. It is still true that the set of maps with C(φ) ∈ H1(Mφ ; Q) is dense.

Remark 1.8. Theorem D and a similar Baire category argument extend Remark 1.5 to
all area-preserving diffeomorphisms. Fix a closed surface of genus ≥ 2 and a smooth
area form ω. Then a C∞-generic φ ∈ Diff(�, ω) is either periodic or has periodic
points of unbounded minimal period. We stress that this statement is not new. Previous
work [CGPZ21, EH21] establishes the much stronger statement that a C∞-generic
φ ∈ Diff(�, ω) has a dense set of periodic points.

Asymptotic cycles C(φ, μ) ∈ H1(Mφ ; R) can be defined for each φ-invariant Borel
probability measure μ. The same proof as that of Theorem D, after replacing Theorem A
with Theorem B, implies the following result.

THEOREM E. Fix a closed surface � of genus ≥ 2 and a smooth area form ω. Let
φ ∈ Homeo(�, μ) be an area-preserving homeomorphism preserving a Borel probability
measure μ of full support. Assume that C(φ, μ) ∈ H1(Mφ ; Q). Then φ has infinitely many
periodic points. Moreover, if μ has no atoms, then φ is either periodic or has periodic
points of unbounded minimal period.

1.3. Lower genus surfaces. The analogs of the above theorems when � has genus zero
are already known. Collapsing the boundary components and appealing to [FH03, LC06]
gives a sharp characterization of the existence and multiplicity of periodic points. A genus
one version of Theorem A follows from work of Le Calvez.
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6 R. Prasad

PROPOSITION 1.1. [LC06] Fix a compact surface � of genus one and a smooth area
form ω. Let φ ∈ Homeo0(�, ω) be an area-preserving homeomorphism and assume that
F(φ) ∈ H1(�; Q) / �ω. Then φ is either periodic or has periodic points of unbounded
minimal period.

The assumptions are stronger than in Theorem A, but the result is sharp. Any translation
(x, y) 
→ (x + a, y + b) on T2 := R2/Z2, where at least one of a and b is not rational,
has irrational rotation vector and has no periodic points. The proof of Proposition 1.1 is
straightforward. Any map satisfying the conditions of Proposition 1.1 has a Hamiltonian
iterate, and the main result of [LC06] shows that Hamiltonian torus homeomorphisms are
either the identity or have periodic points of unbounded minimal period. Our methods do,
however, imply something new in the genus one case. The following is a sharp version
of Theorem C for smooth torus maps. (An explanation for why we need smoothness is
provided below the statement of Proposition 4.3.)

THEOREM F. Fix φ ∈ Diff0(T
2, dx ∧ dy) and an identity isotopy � such that F(�) is a

real multiple of a rational class. Then φ is either Hamiltonian, has no periodic points or
has a periodic point that is not �-contractible.

The proof is given in §4.

Remark 1.9. The assumptions of Theorem F are satisfied when F(�) ∈ H1(T
2; Q). In

this case, φ has a Hamiltonian iterate, so it has a periodic point by Conley–Zehnder’s fixed
point theorem [CZ83].

Theorem D also has an analog for the torus.

PROPOSITION 1.2. Fix a compact surface � of genus one and a smooth area form
ω. Let φ ∈ Homeo(�, ω) be an area-preserving homeomorphism and assume that
C(φ) ∈ H1(Mφ ; Q). Then φ is either periodic or has periodic points of unbounded
minimal period.

Addas-Zanata and Tal [AZT07] proved that an area-preserving torus homeomorphism
φ either has periodic points of unbounded minimal period, is isotopic to a Dehn twist
with no periodic points and vertical rotation set reduced to an irrational number, or has
an iterate isotopic to the identity. The assumption that C(φ) ∈ H1(Mφ ; Q) rules out the
second case, so we can assume that φ has an iterate φq isotopic to the identity. The
assumption that C(φ) ∈ H1(Mφ ; Q) implies that φq has rational rotation direction, and
then, by Proposition 1.1, φq is either the identity or has periodic points of unbounded
minimal period.

1.4. Outline. Section 2 reviews some important preliminaries. Section 3 contains some
computations of asymptotic cycles that seem standard but which we could not find
elsewhere. Section 4 presents a brief overview of PFH and the non-vanishing theorem
from [CGPZ21], and then proves Theorems A–C and F. Theorems D and E were proved
above using computations from §3 and Theorems A and B.
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2. Preliminaries
2.1. Area-preserving maps.
2.1.1. Diffeomorphisms. Write Diff(�) for the space of diffeomorphisms φ : � →
�, equipped with the topology of C∞-convergence of maps and their inverses, and
let Diff(�, ω) denote the space of diffeomorphisms such that φ∗ω = ω. Let Diff0(�)

and Diff0(�, ω) denote the respective connected components of the identity. The group
Diff0(�, ω) contains a large subgroup Ham(�, ω) of Hamiltonian diffeomorphisms, the
maps with rotation vector 0. An isotopy is a continuous path � : [0, 1] → Diff(�).
Sometimes, we will write � = {φt }t∈[0,1] to emphasize our interpretation of � as a
one-parameter family of diffeomorphisms. An identity isotopy of φ ∈ Diff(�) is an isotopy
� with �(0) = Id and �(1) = φ.

2.1.2. Homeomorphisms. Write Homeo(�) for the space of homeomorphisms
φ : � → �, equipped with the topology of C0-convergence of maps and their inverses,
and let Homeo(�, μ) denote the space of homeomorphisms preserving a Borel measure μ.
Let Homeo0(�) and Homeo0(�, μ) denote the respective connected components of
the identity. Isotopies of homeomorphisms are defined as above. It is well known
that Diff(�, ω) is C0-dense in Homeo(�, ω), which is the space of area-preserving
homeomorphisms. Write Ham(�, ω) ⊂ Homeo0(�, ω) for the C0-closure of Ham(�, ω),
which is the group of Hamiltonian homeomorphisms. Fathi [Fat80, §6] showed that these
are exactly the area-preserving homeomorphisms with rotation vector 0.

2.1.3. Periodic points and orbits. Fix any φ ∈ Homeo(�, ω). A periodic point of
φ ∈ Homeo(�, ω) is a point p ∈ � such that φk(p) = p for some finite k ≥ 1, and
the period of p is the minimal k such that this holds. A periodic orbit is a finite set
S = {x1, . . . , xk} of not necessarily distinct points in � that are cyclically permuted by φ.
A periodic orbit is simple if all of the points are distinct.

Fix φ ∈ Homeo0(�, ω) and an identity isotopy �. Fix any periodic point p of period
k ≥ 1. The union of arcs

γp :=
k−1⋃
j=0

{φt (φ
j (p))}t∈[0,1]

is a closed loop in �. The point p is �-contractible if γp is contractible. Note that if � has
genus ≥ 2, then Homeo0(�, ω) is simply connected, so �-contractibility is independent
of the choice of �. We will not specify � in this case.

2.2. Rotation vectors.
2.2.1. Definition. Fix φ ∈ Homeo0(�) and an identity isotopy �. To any φ-invariant
Borel probability measure μ we associate a class F(�, μ) ∈ H1(�; R) called its rotation
vector. The rotation vector depends only on the homotopy class of � relative to its
endpoints. When � has genus ≥ 2, the space Homeo0(�) is simply connected, so F(�, μ)

is independent of the choice of �, and we sometimes write it as F(φ, μ) instead.
Let [�, T] denote the set of homotopy classes of continuous maps from � to the circle

T := R/Z. This is isomorphic to H 1(�; Z). The isomorphism sends a class [f ] ∈ [�, T]
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to the pullback f ∗dθ of the oriented generator dθ ∈ H 1(T; Z). The universal coefficient
theorem implies that H1(�; R) is isomorphic to Hom([�, T], R).

For any continuous circle-valued function f : � → T, the isotopy � defines a
real-valued lift g : � → R of the null-homotopic T-valued function f ◦ φ − f . The
map

f 
→
∫

�

g dμ

defines a real-valued linear functional on [�, T], and the rotation vector F(�, μ) ∈
H1(�; R) is the associated homology class. Several basic properties follow from this
definition. First, observe that F(�, μ) is invariant under endpoint-preserving homotopy
of �. Next, observe that F(�, μ) is continuous in μ with respect to the weak topology.
Moreover, it is linear with respect to convex combinations: that is,

F(�, tμ1 + (1 − t)μ2) = tF(�, μ1) + (1 − t)F(�, μ2).

Next, observe that F(�, μ) changes with respect to a homeomorphism in the following
manner. If f : � → �′ is a homeomorphism, then

F(f �f −1, f∗μ) = f∗F(�, μ). (1)

Finally, observe that since the space of invariant probability measures is convex and
compact with respect to the weak topology, the image of the map F(�, −) is a convex
and compact subset of H1(�; R). This subset is called the rotation set. The structure of
the rotation set has been extensively studied by many authors, and it can have interesting
dynamical consequences. See the introduction of [GM22] for a comprehensive survey.

2.2.2. Rotation vectors of periodic orbits. Any periodic orbit S = {x1, . . . , xk} deter-
mines an invariant Borel probability measure: the average of the δ-measures at its points.
The rotation vector F(�, S) is the rotation vector of this measure. This has a nice
geometric interpretation. The union of arcs

γS :=
k⋃

j=1

{φt (xj )}t∈[0,1]

is a closed, oriented loop in �. It is easy to show that

k · F(�, S) = [γS] ∈ H1(�; Z). (2)

If p ∈ � is a periodic point, then its rotation vector F(�, p) is defined to be the
rotation vector of any simple periodic orbit containing p. The identity (2) shows that if
F(�, p) �= 0, then p is not �-contractible.

2.2.3. Rotation vectors of area-preserving homeomorphisms. Fix φ ∈ Homeo0(�, ω)

and any identity isotopy �. We use the following notation for the rotation vector of the
normalized area measure: that is,

F(�) := F
(

�,
( ∫

�

ω

)−1

· ω

)
∈ H1(�; R).
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Periodic points of rational area-preserving homeomorphisms 9

This invariant was introduced by Fathi [Fat80] as the mass flow. The function F is
C0-continuous in � and additive with respect to pointwise composition of isotopies.
Moreover, the image �ω := F(π1(Homeo(�, ω)) of the subgroup of loops based at the
identity is a lattice in H1(�; Z). If � = T2, then �ω = H1(�; Z). If � is closed and has
genus ≥ 2, then �ω = {0}. We end up with a homomorphism

F : Homeo0(�, ω) → H1(�; R) / �ω.

Remark 2.1. For smooth area-preserving maps, the rotation vector is Poincaré dual to
the flux homomorphism, which is an invariant that might be more familiar to symplectic
geometers.

2.3. Mapping torii. Fix any φ ∈ Homeo(�). The mapping torus of φ is the compact
three-manifold Mφ defined by quotienting Rt × � by the relationship (1, p) ∼ (0, φ(p)).
Translation in the t-direction with speed 1 yields a continuous flow {ψt

R}t∈R on Mφ called
the suspension flow. Its closed integral curves are in one-to-one correspondence with
simple periodic orbits of φ. If φ preserves a Borel measure μ, then the suspension flow
preserves the measure dt ⊗ μ on Mφ .

Suppose that φ ∈ Homeo0(�). Choose an identity isotopy � = {φt }t∈[0,1]. This choice
defines a homeomorphism

η : T × � → Mφ (3)

by the map [(t , p)] 
→ [(t , φ−1
t (p))]. This homeomorphism provides a useful method for

recovering the rotation vector of a periodic orbit. Let S = {x1, . . . , xk} ⊂ � be a simple
periodic orbit, and let γ ⊂ Mφ be the associated closed integral curve of the suspension
flow. Using η to realize γ as a loop in T × �, its homology class is easily computed using

k−1 · [γ ] = [T] + F(�, S) ∈ H1(T × �; R). (4)

3. Asymptotic cycles
This section discusses the asymptotic cycle construction and carries out several useful
computations. Fix a compact surface �, a map φ ∈ Homeo(�) and a φ-invariant Borel
probability measure μ. The asymptotic cycle, which was introduced by Schwartzman
[Sch57], is a homology class C(φ, μ) ∈ H1(Mφ ; R). If φ is area-preserving, then C(φ)

denotes the asymptotic cycle of the normalized area measure.

3.1. Definition. We define C(φ, μ) as a real-valued linear functional on [Mφ , T].
Fix any continuous f : Mφ → T. For each s ∈ R, write fs := f ◦ ψs

R . The functions
fs − f are a continuous family of null-homotopic circle-valued functions, so they
lift to a unique continuous family {gs}s∈R of functions Mφ → R with g0 ≡ 0.
Kingman’s subadditive ergodic theorem implies that G := lims→∞ gs/s is a well-defined
(dt ⊗ μ)-integrable function. We set 〈C(φ, μ), f 〉 to be the integral of G. This is linear
and homotopy-invariant in f (see [Sch57]), so it defines a real-valued linear functional on
H 1(Mφ ; Z); therefore, it defines a class in H1(Mφ ; R).
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Remark 3.1. Fix any compact manifold M. An asymptotic cycle, taking values in
H1(M; R), is defined as above for any choice of a continuous flow {ψt }t∈R and a
ψ-invariant Borel probability measure.

3.2. Maps isotopic to the identity. When φ ∈ Homeo0(�), the rotation vector of μ can
be recovered from C(φ, μ).

LEMMA 3.1. Fix a compact surface �, a φ-invariant Borel probability measure μ and
φ ∈ Homeo0(�, μ). For any identity isotopy �, the pullback of C(φ, μ) by (3) satisfies the
identity

η∗ · C(φ, μ) = [T] + F(�, μ) ∈ H1(T × �; R). (5)

Proof. Write � = {φt }t∈[0,1] and write qt := η−1 ◦ ψt
R ◦ η, where we recall that {ψt

R}t∈R
is the suspension flow. Write μt := (φt )∗(μ) for every t. The pullback η∗ · C(φ, μ) is the
asymptotic cycle of the flow {qt }t∈R with respect to dt ⊗ μt = η∗(dt ⊗ μ). We extend
the isotopy to a map � : R → Homeo0(�) by setting φt := φt−�t�φ�t�. For any s ∈ R and
t ∈ [0, 1), we compute qs(t , p) = (s + t , φs+tφ

−1
t (p)) ∈ T × �.

The T-invariant functions and the projection π : T × � → T define a basis of
H 1(T × �; Z). The lemma is proved by showing that

〈η∗ · C(φ, μ), π〉 = 1, 〈η∗ · C(φ, μ), f 〉 = 〈F(�, μ), f 〉 (6)

for any T-invariant f : T × � → T. The real-valued lift gs of π ◦ qs − π is gs(t , p) = s,
so the integral of gs/s is always 1. This proves the first identity in (6).

Fix any T-invariant f : T × � → T. Write fs := f ◦ qs and let {gs}s∈R be the
real-valued lift of the family {fs − f }s∈R. Fix any t ∈ [0, 1) and set φ(t) ∈ Homeo0(�, μt)

to be the conjugate of φ by φt . The function (fτ − f )(t , −) is the displacement of f (t , −)

under the identity isotopy �t := {φτ+tφ
−1
t }τ∈[0,1] ending at φ(t). It follows that∫

�

g1(t , −)μt = F(�t , μt). (7)

Next, we claim that, for any s ∈ N,

1
s

∫
�

gs(t , −)μt = F(�t , μt). (8)

To see this, observe that gs(t , −) = gs−1(t , −) ◦ φ(t) + g1(t , −). Expanding recur-
sively, we find that

gs(t , −) =
s−1∑
i=0

g1(t , −) ◦ (φ(t))i .

Integrating both sides with respect to μt , dividing by s and applying (7) gives (8). Now,
observe that the isotopy �t is homotopic relative to its endpoints to the conjugated isotopy
φt ◦ � ◦ φ−1

t , so

F(�t , μt) = F(�, μ). (9)
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Fix s ∈ N. We integrate (8) over t ∈ [0, 1) and apply (9) and the fact that f is T-invariant
to show that

1
s

∫ 1

0

( ∫
�

gs(t , −) dμt

)
dt =

∫ 1

0
〈F(�t , μt), f (t , −)〉 dt = 〈F(�, μ), f 〉

for any s ∈ N. Taking s → ∞ on the left-hand side proves the second identity in (6).

3.3. Smooth maps. When φ ∈ Diff(�, ω), the area form ω defines a closed two-form
ωφ on the mapping torus Mφ , which restricts to 0 on the boundary. Its cohomology class
is Poincaré dual to the asymptotic cycle.

LEMMA 3.2. Assume that φ ∈ Diff(�, ω). Then [ωφ] ∈ H 2(Mφ , ∂Mφ ; R) is Poincaré
dual to (

∫
�

ω) · C(φ).

Proof. Let dθ denote the closed one-form on T with integral 1. If φ is smooth, then
a circle-valued function f : Mφ → T corresponds to [f ∗dθ] ∈ H 1(Mφ ; R). The lemma
follows from showing that∫

Mφ

f ∗ dθ ∧ ωφ =
( ∫

�

ω

)
· 〈C(φ), f 〉 (10)

for any f : Mφ → T. Write fs = f ◦ ψs
R for each s ∈ R, and let ḟs = (f ∗

s dθ)(R) :
Mφ → R denote the time derivative. The associated real-valued lifts are gs := ∫ s

0 ḟτ dτ

for s > 0. For any s > 0, g2s = gs + gs ◦ ψs
R . Since dt ∧ ωφ is R-invariant, this implies

that the integral of g2s/2s over Mφ is equal to the integral of gs/s. Repeated division by
two shows that∫

Mφ

1
s
gs dt ∧ ωφ = lim

τ→0

∫
Mφ

1
τ

gτ dt ∧ ωφ =
∫

Mφ

ḟ0 dt ∧ ωφ

=
∫

Mφ

(f ∗ dθ)(R) dt ∧ ωφ =
∫

Mφ

f ∗ dθ ∧ ωφ

for any s > 0. This proves (10).

3.4. Behavior under iteration. We show that rationality of C(φ, μ) is preserved under
iteration.

LEMMA 3.3. Fix any k ∈ N. If C(φ, μ) ∈ H1(Mφ ; Q), then C(φk , μ) ∈ H1(Mφk ; Q).

Proof. There is a covering map πk : Mφk → Mφ with deck group Z/kZ, given by the map
[(t , p)] 
→ [(kt − �kt�, φ�kt�(p))]. The deck group is generated by the map T : [(t , p)] 
→
[(t − 1/k, φ(p))]. Denote the suspension flows of φ and φk by {ψt } and {ψt

k}, respectively.
The group [Mφk , T] is spanned by functions of the form f ◦ T − f and those which are
pulled back by πk from Mφ . The suspension flow of φk commutes with the covering
translations, so if {gs}s∈R denotes the real-valued lifts of the family {f ◦ ψs

k − f }s∈R, then
{gs ◦ T }s∈R are the real-valued lifts of {f ◦ T ◦ ψs

k − f ◦ T }s∈R. The map T preserves
dt ⊗ μ, so gs ◦ T and gs have the same integral. We conclude that

〈C(φk), f ◦ T − f 〉 = 0.
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It remains to consider functions pulled back from Mφ . Note that, for any f : Mφ → T,
the pairing 〈C(φk , μ), f ◦ πk〉 is equal to 〈(πk)∗ · C(φk , μ), f 〉. Since we are assuming
that C(φ) is rational, the rationality of C(φk) therefore follows from the identity

(πk)∗ · C(φk , μ) = k · C(φ, μ). (11)

The key observation here is the commutation relationship πk ◦ ψ
t/k
k = ψt ◦ πk . This

shows that the asymptotic cycle of the flow {ψt/k
k }t∈R pushes forward to C(φ). Rescaling

a flow in time by a factor of λ multiplies the asymptotic cycle by λ. The asymptotic cycle
of {ψt/k

k }t∈R is k−1 · C(φk), so this proves (11).

4. PFH and proofs of main theorems
4.1. Overview of PFH and non-vanishing. Fix a closed surface � and a smooth area
form ω. Fix an area-preserving diffeomorphism φ ∈ Diff(�, ω). The area form ω defines
a closed two-form on the mapping torus Mφ , denoted by ωφ . Let t be the coordinate for the
interval component of [0, 1] × �. Then dt pushes forward to a smooth one-form on Mφ .
The pair (dt , ωφ) forms a stable Hamiltonian structure on Mφ , and the Reeb vector field is
a smooth vector field R generating the suspension flow {ψt

R}t∈R. The associated two-plane
bundle ker(dt) is equal to the vertical tangent bundle of the fibration Mφ → T, which we
denote by V.

Fix some non-zero homology class � ∈ H1(Mφ ; Z). The PFH generators are finite sets
� = {(γi , mi)} of pairs of embedded Reeb orbits γi and multiplicities mi ∈ N that satisfy
the following three conditions: (1) the orbits γi are distinct; (2) the multiplicity mi is 1
whenever γi is a hyperbolic orbit; and (3)

∑
i mi[γi] = �. The chain complex PFC∗(φ, �)

is the free module over a commutative coefficient ring (this can be anything when � solves
(12) for some d, but, in general, � must be a Novikov ring) � generated by the set of all
PFH generators.

The differential on PFC∗(φ, �) counts ‘ECH index 1’ J-holomorphic currents between
orbit sets. The homology of this chain complex is the PFH PFH∗(φ, �). This homology
theory was constructed by Hutchings [Hut02] (see [Hut14] for a detailed exposition of
the closely related theory of embedded contact homology). The PFH group depends only
on the Hamiltonian isotopy class of φ; this allows us to define PFH for a degenerate map
as the PFH of any sufficiently close non-degenerate Hamiltonian perturbation. We now
precisely state the non-vanishing theorem for PFH.

PROPOSITION 4.1. [CGPZ21, Theorem 1.4] Fix a closed surface � of any genus g and
a smooth area form ω. Fix any area-preserving diffeomorphism φ ∈ Diff(�, ω). Then, for
any d > max(2g − 2, 0) and any class � ∈ H1(Mφ ; Z) satisfying

PD(�) =
( ∫

�

ω

)−1

(d + 1 − g)[ωφ] − 1
2
c1(V ), (12)

the group PFH(φ, �) with Z/2-coefficients is non-zero.

The result as stated in [CGPZ21] only asserts non-vanishing for d sufficiently large,
but the explicit lower bound is not difficult to extract once the details are understood. We
only need d large enough to ensure that PFH is isomorphic to the ‘bar’ version HM of
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monopole Floer homology. Lee and Taubes [LT12, Theorem 1.2, Corollary 1.5] prove
this isomorphism assuming that d > max(2g − 2, 0). The non-vanishing theorem is a key
ingredient in the following technical result.

PROPOSITION 4.2. Fix a closed surface � of genus g ≥ 2 and a smooth area form ω. Let
φ ∈ Homeo0(�, ω) be such that there exists non-zero h ∈ H1(�; Z) and a positive real
number c > 0 satisfying F(φ) = c · h. Then, for any rational number p/q ∈ (0, c] with
p and q coprime and q > g − 1, φ has a non-contractible periodic point with minimal
period ≤ q + g − 1.

The same argument proves an analog for smooth torus maps, but we need to rule out
maps without fixed points in the statement.

PROPOSITION 4.3. Fix φ ∈ Diff0(T
2, dx ∧ dy). Assume that φ has at least one fixed

point. Assume further that there exists an identity isotopy �, non-zero h ∈ H1(�; Z) and
a positive real number c > 0 satisfying F(�) = c · h. Then, for any rational number
p/q ∈ (0, c] with p and q coprime, φ has a �-non-contractible periodic point with
minimal period ≤ q.

Remark 4.1. We cannot extend Proposition 4.3 to homeomorphisms since the blow-up
argument requires the map to be differentiable, and it is not clear that a torus homeomor-
phism with a fixed point can be approximated by diffeomorphisms with fixed points and
the same rotation vector.

Theorems C and F, respectively, from the introduction follow from Propositions 4.2 and
4.3. We now outline the plan for the rest of the section. Section 4.2 proves Theorems A
and B assuming Theorem C. Section 4.3 proves Proposition 4.2. Section 4.4 proves
Proposition 4.3.

4.2. Existence of infinitely many periodic points. We prove Theorems A and B using
Theorem C. We assume that � is a closed surface of genus ≥ 2, since we can reduce to
this case by collapsing the boundary components.

4.2.1. Proof of Theorem A. Fix any φ ∈ Homeo0(�, ω) with rational rotation direction.
Le Calvez [LC06] showed that any Hamiltonian homeomorphism on a surface of
genus ≥ 1 is either the identity or has periodic points of unbounded minimal period.
Therefore, we consider only the case where φ is not Hamiltonian, in which case, it has
a non-contractible periodic point, by Theorem C. The arguments from [LC22, §4] then
show that it has periodic points of unbounded minimal period.

Here is a high-level outline of [LC22, §4]. Write φ̃ for the lift of φ to the universal cover
�̃ commuting with the covering translations. The non-contractible periodic point p, which
we assume to have minimal period k, lifts to a point p̃ such that φ̃k(p̃) = T · p̃ for some
T ∈ π1(�). Pass to the annular cover �̃/T and compactify to produce a homeomorphism
φ̂ of the closed strip [0, 1] × R with rotation interval containing [0, 1/k]. Le Calvez’s
refinement of the Poincaré–Birkhoff–Franks theorem [LC22, Theorem 2.4] then shows
that either φ has periodic points of unbounded minimal period or φ̂ does not satisfy the
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intersection property. In this latter case, a forcing argument is used to produce periodic
points of unbounded minimal period regardless.

4.2.2. Proof of Theorem B. Fix a map φ ∈ Homeo0(�, μ), where μ is a Borel
probability measure of full support with μ(∂�) = 0 and F(φ, μ) is a real multiple of
a rational class. We may assume, without loss of generality, that � is closed by collapsing
the boundary.

There exists t ∈ [0, 1] and a unique decomposition (see [Joh70])

μ = tμ0 + (1 − t)μ1

with the following properties. The measures μ0 and μ1 are Borel probability measures, μ0

has no atoms, μ1 is purely atomic and they are mutually ‘S-singular’. This means that, for
any Borel set E ⊂ �,

μ0(E) = sup{μ0(E ∩ F) | μ1(F ) = 0}, μ1(E) = sup{μ1(E ∩ F) | μ0(F ) = 0}.
The decomposition μ = tφ∗μ0 + (1 − t)φ∗μ1 satisfies the same properties, so, by

uniqueness, both μ0 and μ1 are φ-invariant. Now, we break up the argument into a few
cases, depending on the value of t.

First, assume that t = 0. This implies that μ = μ1. Therefore, μ is atomic and has full
support, so it has infinitely many atoms. Since μ is φ-invariant, each atom is a periodic
point. Therefore, φ has infinitely many periodic points.

Second, assume that t = 1. This implies that μ = μ0. Therefore, μ is atomless and has
full support. By a theorem of Oxtoby and Ulam [OU41, Theorem 21], it is homeomorphic
to a smooth area measure, so φ is conjugate to an area-preserving homeomorphism. Since
F(φ, μ) is proportional to a rational vector, the latter homeomorphism has rational rotation
direction (see (1)), so we may apply Theorem A.

Third, assume that t ∈ (0, 1). We consider two subcases, depending on the rotation
vector of μ1. If the rotation vector of μ1 is equal to zero, then F(φ, μ0) = tF(φ, μ). If
μ0 does not have full support, then μ1 has infinitely many atoms, and we obtain infinitely
many periodic points as in the first case. If μ0 has full support, we apply the Oxtoby–Ulam
theorem as in the second case. If the rotation vector of μ1 is non-zero, then it follows
that φ must have a periodic point with non-zero rotation vector. This periodic point is
non-contractible, which forces the existence of periodic points of unbounded minimal
period by the argument of Le Calvez mentioned above.

4.3. Proof of Proposition 4.2
4.3.1. Information from PFH. The following lemma records the relevant information
needed from Proposition 4.1. We only state and prove it for diffeomorphisms, but note that
it extends to homeomorphisms by an approximation argument.

LEMMA 4.4. Fix a closed surface � of genus g. Fix φ ∈ Diff0(�, ω) and an identity
isotopy �, and assume that F(�) ∈ H1(�; Q). Let d be the smallest integer greater than
max(2g − 2, 0) such that

(d + 1 − g) · F(�) ∈ H1(�; Z).
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Then there exists a set of simple periodic orbits {Si}Ni=1 of periods {ki}Ni=1 and a set of
positive integers {mi}Ni=1 such that

N∑
i=1

miki = d ,
N∑

i=1

mikiF(�, Si) = (d + 1 − g) · F(�). (13)

Proof. Using Lemmas 3.1 and 3.2, we compute

η∗[ωφ] =
( ∫

�

ω

)
· PD([T] + F(�)) ∈ H 2(T × �; R).

The class

� = d[T] + (d + 1 − g)F(�)

solves (12). By Proposition 4.1, there exists an orbit set � = {(γi , mi)} such that∑
i mi[γi] = �. For each i, let Si be the simple periodic orbit of φ corresponding to γi .

We sum up the homology class computation (4) over all i to conclude that

d[T] + (d + 1 − g)F(�) =
∑

i

miki([T] + F(�, Si)).

This identity implies (13).

4.3.2. Blow-up. Fix a closed surface � of genus ≥ 2, a smooth area form ω of area A
and a diffeomorphism φ ∈ Diff0(�, ω). Suppose that φ has a contractible fixed point p.
Choose an identity isotopy � that fixes p (one always exists; see [HLRS16, Proposition 9]).
We give a precise account here of how to blow up the fixed point p and cap it with a disk
of any prescribed area.

Fix polar coordinates (r , θ) on R2, and, for any s > 0, denote by Ds := {0 ≤ r < s}
and As := Ds\{0} the open disk and punctured disk, respectively, of radius s centered
at the origin. Write �̇ := �\{p}. For positive δ � 1, there is a symplectic embedding
ι : (Aδ , rdr ∧ dθ) ↪→ (�, ω) that is a diffeomorphism onto a punctured neighborhood
of p. Next, fix a parameter B > A, which will be the area of the capped surface, and fix

s1 > s0 > 0 such that B −A = πs2
0 and s2

1 − s2
0 = δ2. Then the map (r , θ) 
→ (

√
s2

0 + r2, θ)

is a symplectic embedding τ : (Aδ , rdr ∧ dθ) ↪→ (Ds1 , dx ∧ dy) that identifies Aδ with
the annulus {s0 < r < s1}. The surface �̂ is the surface constructed by gluing �̇ and Ds1

along Aδ , using the symplectic embeddings ι and τ . The glued surface �̂ has a symplectic
form ω̂ restricting to ω on � and dx ∧ dy on Ds1 . The area of �̂ is A + πs2

0 = B, as
desired.

The isotopy � = {φt }t∈[0,1] extends to an identity isotopy �̂ : [0, 1] → Diff(�̂, ω̂).
Since the isotopy fixes p, it coincides with a Hamiltonian isotopy in a neighborhood of p;
we extend the generating Hamiltonian to �̂ to produce the desired extension. The following
lemma computes the rotation vector of the extension.

LEMMA 4.5. Fix a closed surface �, an area form ω and a point p ∈ �. Let
� : [0, 1] → Diff0(�, ω) be an identity isotopy such that �(t) fixes p ∈ � for each t.
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Fix any extension �̂ of � to the blown-up surface (�̂, ω̂), and let π : �̂ → � be the
blow-down map. Then the rotation vector of �̂ satisfies the identity( ∫

�̂

ω̂

)
· π∗F(�̂) =

( ∫
�

ω

)
· F(�). (14)

Proof. Fix any f : � →T and set f̂ := f ◦ π : �̂ →T. Write g : � →R and ĝ : �̂ →R

for the lifts of f ◦ φ − f and f̂ ◦ φ̂ − f̂ induced by the isotopies � and �̂. The function
f̂ is equal to f on �̇ ⊂ �̂ and is constant on its complement. Both sets are �̂-invariant, so
ĝ = g on �̇ and ĝ = 0 elsewhere. We conclude that( ∫

�̂

ω̂

)
· 〈F(�̂), f̂ 〉 =

∫
�̂

ĝ ω̂ =
∫

�̇

g ω =
( ∫

�

ω

)
· 〈F(�), f 〉,

which implies (14).

4.3.3. Proof for diffeomorphisms. Fix a closed surface � of genus ≥ 2, a smooth
area form ω of area A and φ ∈ Diff0(�, ω) such that F(φ) = c · h, where c > 0 and
h ∈ H1(�; Z). Choose a rational number p/q ∈ (0, c] with q > g − 1. Fix B > A such
that A/B = p/q · c−1. Blow up the fixed point to get a surface �̂ of area B, and extend
the identity isotopy � to an identity isotopy �̂ with endpoint φ̂ ∈ Diff0(�̂, ω̂). By (14),

π∗F(φ̂) = A/B · F(φ) = p/q · h.

The map π∗ is an isomorphism H1(�̂; Z) 	 H1(�; Z), so we conclude that
qF(φ̂) ∈ H1(�̂; Z). By Lemma 4.4, φ̂ has a non-contractible periodic point z of
minimal period ≤ q + g − 1. This periodic point must lie in �̇ ⊂ �̂. This is because
the complement �̂\�̇ is a �̂-invariant disk, so any periodic point contained in it is
contractible. The point z is therefore a non-contractible periodic point of φ of minimal
period ≤ q + g − 1.

4.3.4. Proof for homeomorphisms. We approximate φ ∈ Homeo0(�, ω) by diffeo-
morphisms with the same rotation vector. Let ψ ∈ Diff0(�, ω) be any diffeomorphism
such that F(ψ) = F(φ). It follows that F(ψ−1 ◦ φ) = 0, so ψ−1 ◦ φ lies in Ham(�, ω)

[Fat80, §6]. Pick any sequence of Hamiltonian diffeomorphisms hk ∈ Ham(�, ω)

approximating ψ−1 ◦ φ. The maps φk := ψ ◦ hk converge in the C0 topology to φ

and all have F(φk) = F(φ). By the argument above, for any q such that p/q ∈ (0, c],
each diffeomorphism φk has a non-contractible periodic point zk with minimal period
≤ q + g − 1. Any subsequential limit z is a non-contractible periodic point of φ with
minimal period ≤ q + g − 1.

4.4. Proof of Proposition 4.3. Assume that φ ∈ Diff0(T
2, dx ∧ dy) has a fixed point

p ∈ T2. If it is not �-contractible, then the proof is complete. If it is �-contractible, then
we assume, without loss of generality, that it is fixed by �. The same blow-up argument as
in the genus ≥ 2 case proves the proposition.
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