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Cantor–Bernstein Sextuples for
Banach Spaces

Elói M. Galego

Abstract. Let X and Y be Banach spaces isomorphic to complemented subspaces of each other with

supplements A and B. In 1996, W. T. Gowers solved the Schroeder–Bernstein (or Cantor–Bernstein)

problem for Banach spaces by showing that X is not necessarily isomorphic to Y . In this paper, we

obtain a necessary and sufficient condition on the sextuples (p, q, r, s, u, v) in N with p + q ≥ 1,

r + s ≥ 1 and u, v ∈ N
∗, to provide that X is isomorphic to Y , whenever these spaces satisfy the

following decomposition scheme

Au ∼ X p ⊕ Y q, Bv ∼ Xr ⊕ Y s.

Namely, Φ = (p − u)(s− v)− (q + u)(r + v) is different from zero and Φ divides p + q and r + s. These

sextuples are called Cantor–Bernstein sextuples for Banach spaces. The simplest case (1, 0, 0, 1, 1, 1)

indicates the well-known Pełczyński’s decomposition method in Banach space. On the other hand, by

interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder–

Bernstein problem become evident.

1 Introduction.

Let X and Y be Banach spaces. We write X ∼ Y if X is isomorphic to Y . If n ∈ N
∗

=

{1, 2, 3, · · · }, then Xn denotes the sum of n copies of X, X ⊕ X ⊕ · · · ⊕ X. It will

be useful to denote X0
= {0}. We recall that Y is isomorphic to a complemented

subspace of X if there exists a Banach space A such that X ∼ Y ⊕ A. In this case, we

say that A is a supplement of Y in X.

Suppose that X and Y are Banach spaces isomorphic to complemented subspaces

of each other, that is, there exist Banach spaces A and B such that

(1.1) X ∼ Y ⊕ A, Y ∼ X ⊕ B.

In 1996, W. T. Gowers [12] solved the so-called Schroeder–Bernstein (or Cantor–

Bernstein) problem for Banach spaces by showing that X is not necessarily isomor-

phic to Y , (see also [2–7, 13]). So in the Banach spaces theory, when (1.1) holds it

is necessary to search for some additional conditions to guarantee that X ∼ Y . In

this direction, the well-known Pełczyński’s decomposition method states that X ∼ Y

whenever X and Y satisfy (1.1) for some Banach spaces A and B, and the following

decomposition scheme holds

(1.2) X ∼ X2, Y ∼ Y 2.
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Keywords: Pełczyński’s decomposition method, Schroeder-Bernstein problem.

278

https://doi.org/10.4153/CMB-2010-018-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-018-4


Cantor–Bernstein Sextuples for Banach Spaces 279

See [8, 9] for some extensions of this decomposition method. Although the supple-

ments A and B from (1.1) do not appear in the decomposition scheme (1.2), it is easy

to check (see [1, p. 63] that Pełczyński’s decomposition method works because the

decomposition scheme (1.2) implies the existence of supplements A and B verifying

(1.1) and

A ∼ X, B ∼ Y.

Thus it follows immediately from (1.1) that X ∼ Y . In other words, Pełczyński’s

decomposition method works because under the hypothesis of the decomposition

scheme (1.2) it is possible to choose the supplements A and B conveniently close to

X and Y . This remark leads naturally to the following problem.

Problem 1 How close to X and Y must be the supplements A and B from (1.1) to

guarantee that X ∼ Y ?

For example, X ∼ Y whenever there exist supplements A and B satisfying (1.1)

and one of the following decomposition schemes:

A4 ∼ X5, B5 ∼ Y 24,(1.3)

A ∼ X7 ⊕ Y 8, B ∼ X6 ⊕ Y 9,(1.4)

A2 ∼ X15 ⊕ Y, B3 ∼ X2 ⊕ Y 4(1.5)

The case of the decomposition scheme (1.4) follows directly from (1.1). The other

cases are consequences of the main result of this paper, (see Theorem 1.2). To be

more precise we rewrite Problem 1 as follows.

Problem 2 Is it possible to determine all decomposition schemes that are similar to

those of (1.3), (1.4), and (1.5) such that if added to (1.1) yield X ∼ Y ?

In order to present the solution of Problem 2 it is useful to introduce the following

definition.

Definition 1.1 A sextuple (p, q, r, s, u, v) in N, with p + q ≥ 1, r + s ≥ 1, and

u, v ∈ N
∗ is a Cantor–Bernstein sextuple for Banach spaces (in short, CBS) if X ∼ Y

whenever the Banach spaces X and Y satisfy (1.1) for some Banach spaces A and B

and the following decomposition scheme holds:

(1.6) Au ∼ X p ⊕ Y q, Bv ∼ Xr ⊕ Y s.

We also say that Φ = (p−u)(s−v)−(q+u)(r+v) is the Cantor–Bernstein discriminant

of the sextuple (p, q, r, s, u, v).

Our main aim is to show that we know enough solutions of Schroeder–Bernstein

problem for Banach spaces to characterize the CBS. Indeed, by using some Banach

spaces introduced in [5, 13], (see Remarks 2.1 and 2.2), we will prove the following

characterization of CBS in terms of the Cantor–Bernstein discriminant Φ.
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Theorem 1.2 A sextuple (p, q, r, s, u, v) in N with p + q ≥ 1, r + s ≥ 1, and u, v ∈ N
∗

is a CBS if and only if its Cantor–Bernstein discriminant Φ is different from zero and Φ

divides p + q and r + s.

It is interesting to remark that if we interchange A and X in the first condition

of decomposition scheme (1.6) and also B and Y in the second one, then the situa-

tion becomes rather complicated. We do not even know how to solve the following

problem, (see also [10]).

Problem 3 (The Square-Cube Cantor-Bernstein Problem for Banach Spaces)

Give nonisomorphic Banach spaces X and Y satisfying (1.1) for some Banach spaces

A and B and the following decomposition scheme

X2 ∼ Y 2 ⊕ A3, Y 2 ∼ X2 ⊕ B3.

2 Preliminaries

To obtain the characterization of the sextuples in N that are CBS, we need to recall

some recent results on Banach spaces that are isomorphic to complemented sub-

spaces of each other.

Remark 2.1 Gowers and Maurey [13, p. 563] constructed Banach spaces Xt for

every t ∈ N, t ≥ 2, having the following property: Xm
t ∼ Xn

t , with m, n ∈ N
∗, if and

only if m is equal to n modulo t .

We recall that two Banach spaces X and Y are said to be totally incomparable if no

infinite dimensional subspace of X is isomorphic to a subspace of Y .

Remark 2.2 Fix two totally incomparable Banach spaces X and Y from the class of

spaces constructed in [11]. Then by [5] there exists a Banach space Z such that

(i) Z ∼ Z2 [5, p. 31];

(ii) Z ∼ Z ⊕ Xm ⊕ Y m, ∀m ∈ N [5, p. 31];

(iii) Z is not isomorphic to Z ⊕ Xm, ∀m ∈ N
∗ [5, Theorem 3.4].

Remark 2.3 In [8] a quintuple (p, q, r, s, t) in N with p + q ≥ 2, r + s + t ≥ 3,

(r, s) 6= (0, 0), and u ∈ N
∗ was said to be a Schroeder-Bernstein quintuple for Banach

spaces (in short, SBQ) if X ∼ Y whenever the Banach spaces X and Y satisfy (1.1) for

some Banach spaces A and B and the following decomposition scheme holds:

X ∼ X p ⊕ Y q, Y u ∼ Xr ⊕ Y s.

The number ∇ = (p − 1)(s − u) − rq was called the discriminant of the quintu-

ple (p, q, r, s, u). The following characterization of SBQ was obtained in [8, Corol-

lary 4.2]. Let (p, q, r, s, v) be a quintuple in N with p + q ≥ 2, r + s + v ≥ 3,

(r, s) 6= (0, 0), and v ∈ N
∗. Then (p, q, r, s, v) is a SBQ if and only ∇ is different

from zero and ∇ divides p + q − 1 and r + s − v.
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3 On Sextuples in N with Φ = 0

The purpose of this section is to show that every sextuple in N with Cantor–Bernstein

discriminant Φ equal to zero is not a CBS.

Proposition 3.1 If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 1, r + s ≥ 1, and

u, v ∈ N
∗ has Cantor–Bernstein discriminant Φ equal to zero, then it is not a CBS.

Proof First notice that Φ = −(u − p)(r + s) − (p + q)(r + v). Hence if p ≤ u, then

Φ ≤ −(p + q) ≤ −1. Therefore, by our hypothesis we can assume that p > u. Take

m = q + u and n = p − u. Let X, Y , and Z be the Banach spaces mentioned in

Remark 2.2. So by Remark 2.2(i) and (ii)

Z ⊕ Xm ∼ Z ⊕ Y n ⊕ Z ⊕ Xm+n, Z ⊕ Y n ∼ Z ⊕ Xm ⊕ Z ⊕ Y m+n.

Now observe that m(p−u)−n(q+u) = 0 and since Φ = 0, −m(r +v)+n(s−v) = 0.

Thus again by Remark 2.2(i) and (ii) we see that

(Z ⊕ Xm+n)u ∼ (Z ⊕ Xm)p ⊕ (Z ⊕ Y n)q, (Z ⊕ Y m+n)v ∼ (Z ⊕ Xm)r ⊕ (Z ⊕ Y n)s.

Next assume that

(3.1) Z ⊕ Xm ∼ Z ⊕ Y n.

Thus adding Xn to both sides of (3.1) and using Remark 2.2(ii) we deduce

Z ⊕ Xm+n ∼ Z ⊕ Xn ⊕ Y n ∼ Z.

This is absurd by Remark 2.2(iii), because m + n = p + q 6= 0. So (p, q, r, s, u, v) is

not a CBS.

4 Necessary Conditions for a Sextuple in N with Φ 6= 0 to be a CBS

In this section we prove that if a sextuple in N with Φ 6= 0 is a CBS, then Φ divides

p + q and r + s; see Proposition 4.4. To state this result we need three lemmas.

Lemma 4.1 Let p, q, r, s, u, v ∈ N with p + q ≥ 1, r + s ≥ 1 and u, v ∈ N
∗. Suppose

that there exist i, j, t ∈ N
∗ with t ≥ 2 satisfying

(i) t divides i(p − u) + j(q + u),

(ii) t divides i(r + v) + j(s − v),

(iii) t does not divide j − i.

Then (p, q, r, s, u, v) is not a CBS.

Proof Let n ∈ N
∗ such that nt− j+i > 0 and nt−i+ j > 0. Since j+(nt− j+i)−i =

nt and i + (nt − i + j) − j = nt , we have by the property of Xt mentioned in Remark

2.1 that

Xi
t ∼ X

j
t ⊕ X

nt− j+i
t , X

j
t ∼ Xi

t ⊕ X
nt−i+ j
t .
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Notice that by the conditions (i) and (ii) we deduce

X
(nt− j+i)u
t ∼ X

i p
t ⊕ X

jq
t , X

(nt−i+ j)v
t ∼ Xir

t ⊕ X
js

t .

Furthermore, according to condition (iii) we conclude that Xi
t is not isomorphic to

X
j

t . Consequently (p, q, r, s, u, v) is not a CBS.

Lemma 4.2 Let (p, q, r, s, u, v) be a sextuple in N with p +q ≥ 1, r +s ≥ 1, u, v ∈ N
∗,

and Cantor–Bernstein discriminant Φ ≥ 2. Suppose that there exist integers α and β
satisfying

(i) α(s − v) > β(q + u),

(ii) β(p − u) > α(r + v),

(iii) Φ does not divide β(p + q) − α(r + s).

Then (p, q, r, s, u, v) is not a CBS.

Proof Let t = Φ and consider the linear system

(4.1) i(p − u) + j(q + u) = αt, i(r + v) + j(s − v) = βt.

The only solution of (4.1) is i = α(s − v) − β(q + u) and j = β(p − u) − α(r + v).

It follows from (i), (ii), and (iii) that i > 0, j > 0, and t does not divide j − i =

β(p+q)−α(r+s). Moreover, clearly t divides i(p−u)+ j(q+u) and i(r+v)+ j(s−v).
Hence Lemma 4.1 implies that (p, q, r, s, u, v) is not a CBS.

Taking t = −Φ and proceeding as in the proof of Lemma 4.2 we obtain the fol-

lowing lemma.

Lemma 4.3 Let (p, q, r, s, u, v) be a sextuple in N with p +q ≥ 1, r +s ≥ 1, u, v ∈ N
∗,

and Cantor–Bernstein discriminant Φ ≤ −2. Suppose that there exist integers α and β
such that

(i) α(s − v) < β(q + u),

(ii) β(p − u) < α(r + v),

(iii) Φ does not divide β(p + q) − α(r + s).

Then (p, q, r, s, u, v) is not a CBS.

Proposition 4.4 If a sextuple (p, q, , r, s, u, v) in N with p+q ≥ 1, r+s ≥ 1, u, v ∈ N
∗,

and Cantor–Bernstein discriminant Φ different from zero is a CBS, then Φ divides p +q.

Proof Assume that Φ does not divide p + q. We will distinguish two cases: Φ ≥ 2

and Φ ≤ −2.

Case 1: Φ ≥ 2. Therefore

(4.2) (p − u)(s − v) > (q + u)(r + v).

Thus p 6= u and there are two subcases: p < u and p > u.
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Subcase 1.1: p < u. By (4.2), (s− v)/(q + u) < (r + v)/(p − u). Take α = q + u and

β = s − v − 1. Hence β/α < (s − v)/(q + u) and β(p + q) −α(r + s) = Φ− (p + q).

By Lemma 4.2 (p, q, r, s, u, v) is not a CBS.

Subcase 1.2: p > u. By (4.2), (r + v)/(p − u) < (s − v)/(q + u). Fix m ∈ N
∗ such

that
r + v

p − u
+

1

m(p − u)
<

s − v

q + u
,

and take α = m(p−u) and β = m(r +v)+1. Then we have (r +v)/(p−u) < β/α <
(s − v)/(q + u) and β(p + q) − α(r + s) = −mΦ + p + q. According to Lemma 4.2

(p, q, r, s, u, v) is not a CBS.

Case 2: Φ ≤ −2. Consequently

(4.3) (p − u)(s − v) < (q + u)(r + v).

There are three subcases: p < u, p = u, and p > u.

Subcase 2.1: p < u. By (4.3), (r + v)/(p − u) < (s− v)/(q + u). Take α = q + u and

β = s − v + 1. Hence (s − v)/(q + u) < β/α and β(p + q) − α(r + s) = Φ + p + q.

By Lemma 4.3 we conclude that (p, q, r, s, u, v) is not a CBS.

Subcase 2.2: p = u. Thus Φ = −(q + u)(r + v). Take α = q + u and β = s − v + 1.

Since α > 0, (q + u)(s− v) < (s− v + 1)(q + u) and β(p + q)−α(r + s) = Φ + p + q,

it follows from Lemma 4.3 that (p, q, r, s, u, v) is not a CBS.

Subcase 2.3: p > u. By (4.3), (s − v)/(q + u) < (r + v)/(p − u). Pick m ∈ N
∗ such

that
s − v

q + u
<

r + v

p − u
−

1

m(p − u)
,

and take α = m(p − u) and β = m(r + v) − 1. Hence (s − v)/(q + u) < β/α <
(r + v)/(p − u) and β(p + q) − α(r + s) = −mΦ − (p + q). Once again Lemma 4.3

implies that (p, q, r, s, u, v) is not a CBS.

5 Sufficient Conditions for a Sextuple (p, q, r, s, u, v) in N with Φ 6= 0
To Be a CBS

In this last section, we show that the necessary conditions stated in the previous sec-

tion for a sextuple (p, q, r, s, u, v) in N with Φ 6= 0 to be a CBS are also sufficient. This

completes the proof of Theorem 1.2.

Proposition 5.1 Let (p, q, r, s, u, v) be a sextuple in N with p + q ≥ 1, r + s ≥ 1,

u, v ∈ N
∗. If its Cantor–Bernstein discriminant Φ is different from zero, Φ divides p + q

and r + s, then (p, q, r, s, u, v) is a CBS.
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Proof Let X and Y be Banach spaces satisfying (1.1) and the decomposition scheme

(1.6) for some Banach spaces A and B. We will prove that X ∼ Y . First observe that

u ≤ p + 1. Otherwise, since

Φ = −(u − p)(r + s) − (p + q)(r + v) < −(p + q),

it would follow that Φ does not divide p + q. Next notice that by using the second

condition of (1.1) in the first one, we obtain

(5.1) X ∼ X ⊕ A ⊕ B.

Now adding A ⊕ B to both sides of (5.1) we get

X ∼ X ⊕ A ⊕ B ∼ X ⊕ A2 ⊕ B2.

Therefore by induction we conclude X ∼ X ⊕ Au ⊕ Bu. So by the first condition of

(1.6) and the second condition of (1.1) we have that

X ∼ X p+1 ⊕ Y q ⊕ Bu ∼ X p−u+1 ⊕ Xu ⊕ Bu ⊕ Y q ∼ X p−u+1 ⊕ Y q+u.

Analogously we infer that Y ∼ Xr+v ⊕ Y s−v+1. Hence the following decomposition

scheme holds

X ∼ X p−u+1 ⊕ Y q+u, Y ∼ Xr+v ⊕ Y s−v+1.

Since the discriminant ∇ of the quintuple (p − u + 1, q + u, r + v, s− v + 1, 1) is equal

to (p−u)(s− v)− (r + v)(q + u) = Φ, it follows by hypothesis that ∇ 6= 0, ∇ divides

(p − u + 1) + (q + u)− 1 = p + q and (r + v) + (s− v + 1)− 1 = r + s. Thus according

to Remark 2.3 X ∼ Y .
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