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The concept of negative energy (NE) waves is very useful in studying stability.
For long time only the NE wave instability of propagating waves was studied. Some
time ago, Ruderman (2018) (Paper I below) studied for the fist time this type of
instability for standing waves. He used a model problem of stability of a tangential
magnetohydrodynamic (MHD) discontinuity in an incompressible plasma. The main
conclusion that he made is that the NE wave instability of standing waves occurs
when the flow velocity exceeds a critical velocity. This condition is the same as the
condition of the NE wave instability for propagating waves. While this conclusion
is perfectly correct, the expression for the instability increment obtained by Paper
I is wrong. We aim to correct the error made in that paper and derive the correct
expression for the instability increment.

We start from a brief reminder of the problem set-up and its solution given in
by Paper I. The equilibrium state is an MHD tangential discontinuity in an incom-
pressible plasma. The equation of this discontinuity is z = 0 in Cartesian coordinates
x, y, z. The plasma below the discontinuity is immovable and viscous, while the
plasma above the discontinuity is moving with the velocity U in the positive x-
direction. It was assumed that the Reynolds number is large, so dissipation in the
viscous plasma only takes place in a narrow dissipative layer near the discontinuity.
The perturbed discontinuity is defined by z = ζ (t, x). In the linear approximation the
evolution of ζ (t, x) is described by the equation derived by Ruderman & Goossens
(1995). It was assumed that the magnetic field lines are frozen in a dense plasma
at x = 0 and x = L, so ζ (t, 0) = ζ (t, L) = 0. The wave propagating in the direction
opposite to the direction of flow becomes an NE wave when U > Uc, where

U2
c = ρ1V 2

1 + ρ2V 2
2

ρ2
= ρ1V 2

KH

ρ1 + ρ2
, V1,2 = B2

1

μ0ρ1,2
, (1)

where ρ is the density, B the magnetic field, μ0 magnetic permeability of free
space, the indices 1 and 2 refer to the equilibrium quantities below and above the
discontinuity and V 2

KH is the Kelvin-Helmholtz threshold velocity.
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The NE wave instability increment is proportional to the coefficient of kinematic
viscosity ν. It was assumed in Paper I that the instability growth time is much
higher than the oscillation period of a standing wave. In accordance with this the
‘slow’ time T = εt, ε � 1, and the scaled coefficient of kinematic viscosity ν̄ = ε−1ν
were introduced. Then the solution to the problem was looked for in the form of
expansion ζ = ζ1 + εζ2 + . . . In the first-order approximation the expression for ζ1
was obtained. It reads

ζ1 = A(T )[ cos (ωt − k+x) − cos (ωt − k+x)], (2)

where A(T ) is a function to be determined and the frequency ω is given by equation
(3.12) in Paper I. The expression for ω is incorrect. The correct expression is

ω = knρ2(U2 − U2
c )√

ρ1ρ2(V 2
KH − U2

c )
, k = π

L
, n = 1, 2, . . . (3)

The wavenumbers k± are defined by

k± = ω
ρ2U ∓

√
ρ1ρ2(V 2

KH − U2)

ρ2(U2 − U2
c )

. (4)

This quantities are related by k− − k+ = 2kn.
In the second-order approximation the equation for ζ2 was derived (see equation

(3.12) in Paper I. It is convenient to transform this equation to

(ρ1 + ρ2)
∂2ζ2

∂t2
+2ρ2U

∂2ζ2

∂t∂x
+ ρ2(U2 − U2

c )
∂2ζ2

∂x2

=− ie iωt
(
a+ e− ik+x + a− e− ik−x

)
+ c.c., (5)

where c.c. indicates complex conjugate and

a± = k±
√

ρ1ρ2(V 2
KH − U2)

dA
dT

± 2ν̄ωρ1(k2± + k2
y)A. (6)

We note that ζ2 = 0 at x = 0, L. The condition of existence of solution to equation
(5) bounded with respect to time results in the equation determining A(T ). This
equation was incorrectly derived in Paper I. This resulted in a wrong expression for
the instability increment γ . We now derive the correct expression for this quantity.
We look for the solution to equation (5) satisfying the zero boundary conditions in
the form ζ2 = ζp + ζh, where ζp is a particular solution to equation (5) and ζh is the
general solution to its homogeneous counterpart. It can be shown that the solution
bounded with respect to time to the homogeneous counterpart satisfying the zero
boundary conditions and arbitrary initial conditions always exists. We do not give
this proof here. We look for ζp in the form ζp = f (x) e iωt + c.c. Substituting this
expression in equation (5) yields

ρ2(U2 − U2
c )f ′′ + 2 iρ2ωUf ′ − (ρ1 + ρ2)ω2f = − i

(
a+ e− ik+x + a− e− ik−x

)
, (7)

where the prime indicates the derivative with respect to x. We look for the solution
to this equation in the form

f (x) = x
(
H+ e− ik+x + H− e− ik−x

)
. (8)
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Substituting this expression in equation (7) and collecting terms proportional to
e− ik+x and e− ik−x we obtain

H± = ∓a±
2ω

√
ρ1ρ2(V 2

KH − U2). (9)

The function f (x) must satisfy the conditions f (0) = f (L) = 0. Obviously f (0) = 0.
Using equations (3), (4), (6), (9) and the relation k− − k+ = 2kn we obtain from the
condition f (L) = 0 is H+ + H− = 0. Using equations (6) and (9) we obtain from this
relation √

ρ1ρ2(V 2
KH − U2)

dA
dT

= ν̄ρ1ρ2(U2 − U2
c )(k2+ + k2−)√

ρ1ρ2(V 2
KH − U2)

A. (10)

It follows from this equation that A = A0 eγ T . Using equations (3) and (4) we obtain
that the expression for γ is given by

γ = 2ν̄
U2 − U2

c

V 2
KH − U2

(
k2n2 ρ2U2 + ρ1(V 2

KH − U2)

ρ1(V 2
KH − U2)

+ k2
y

)
. (11)
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