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Mass transfer during drop impact on a thin film
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We conducted an axisymmetric numerical study of drop impact on a thin film of the same
liquid in order to generate maps identifying the fluid elements in the drop and film that
are transferred to the corolla during impact. We find that mass contribution from the drop
comes from a surprisingly thin surface layer on the drop, and furthermore, that the shape
of this layer in the drop and the film scales with film thickness, not the Weber number and
Reynolds number as one might expect. The maps could be used to tailor drop composition
for applications such as coatings or encapsulations.
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1. Introduction

Drop impact is pivotal in a wide range of fluid applications such as printing (Lohse 2022),
hydrophobic coatings (Gauthier et al. 2015), ice formation on aeroplanes (Khojasteh et al.
2016), disease spread (Bourouiba 2021), cooling (Breitenbach, Roisman & Tropea 2018;
Aksoy et al. 2021), atomized sprays (Villermaux 2007; Moreira, Moita & Panao 2010),
and microphysics processes in clouds and aerosols (Carslaw et al. 2013), to name a few.
Splashing from drop impact is defined as the generation of additional smaller droplets
following the initial impact, called secondary droplets. One of the outstanding challenges
in drop impact research is understanding the various processes affecting the characteristics
of secondary droplets (Liang & Mudawar 2016).

The focus here is on the transfer of mass during the impact of a drop with a film
that is much thinner than the drop’s diameter. When a drop impact event is sufficiently
energetic, sheet-like jets form that typically are axisymmetric at onset but may later break
symmetry and fragment into secondary droplets. Multiple distinct jets have been identified,
distinguished by the time scale at which they emerge, their formation mechanism, and their
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characteristics (Yarin 2006). The so-called ejecta jet (Weiss & Yarin 1999; Thoroddsen
2002) emerges within tens of microseconds after impact, displays speeds many times
that of the drop, and is thought to be produced by an overpressure condition (Weiss
& Yarin 1999; Davidson 2002; Howison et al. 2005). A single impact event may
produce several generations of ejecta jets (Zhang et al. 2012). The so-called corolla
(sometimes called the lamella, crown, corona or Peregrine sheet) emerges on the time
scale commensurate with the merger time of the drop and film (approximately 1 ms);
its speed is close to the drop speed, and it is thought to be produced by a collision
of the liquid from the drop with that of the film (Peregrine 1981; Yarin & Weiss
1995), causing an upward deflection of the combined fluid that leads to an axisymmetric
sheet-like jet as shown in figure 4. As the corolla grows, its leading edge destabilizes and
ultimately fragments into secondary droplets. Whereas ejectas and corollas are sheet-like
jets resulting from the impact, another jet characterized by its spike-like shape, called
the Worthington jet, forms from the collapse of the cavity in the film produced by the
impact event. Whether a particular jet manifests depends on the fluid and kinematic
parameters. We restricted our simulation to events in which the corolla is the only jet that
forms.

Due to its importance in practical applications, drop impact has been studied extensively,
revealing the phenomenology of splashing (Worthington & Cole 1897; Rein 1993;
Xu 2007; Deegan, Brunet & Eggers 2008), and its dependence on multitudinous
experimental conditions such as temperature (e.g. Aziz & Chandra 2000; Tran et al.
2012; Liang & Mudawar 2017), surface preparation (e.g. Marengo et al. 2011; Josserand
& Thoroddsen 2016), additives (e.g. Aksoy et al. 2021), incidence angle, tangential speed
(e.g. Castrejón-Pita et al. 2016), and many more (Liang & Mudawar 2016). By comparison,
the question about what parts of the drop and film contribute to a splash has received less
attention (for exceptions, see e.g. Stumpf et al. 2022; Fudge et al. 2023; Stumpf et al.
2023). Answering this question may lead to new techniques for controlling environmental
transport phenomena, encapsulation and coating technology.

In this paper, we identify the fluid elements in the drop and film that are transferred
to the corolla at different times. Investigating this transfer experimentally is challenging
(see e.g. Stumpf et al. 2022), so instead we use high-resolution two-phase numerical
axisymmetric simulations for multiple Reynolds and Weber numbers and film thicknesses.
The imposition of axisymmetry is consistent with the experimental observation that
corollas are typically axisymmetric at early times. We find a number of remarkable
features: the mass of fluid in the drop that ultimately enters the corolla is confined to a
thin surface layer, and most surprisingly its characteristic dimensions are almost entirely
determined by the thickness of the film rather than by a combination of Weber and
Reynolds numbers, as one might expect based on extensive prior work characterizing
splashing (see e.g. Mundo, Sommerfeld & Tropea 1995; Rioboo et al. 2003; Josserand
& Zaleski 2003; Deegan et al. 2008; van der Veen et al. 2012).

In § 2, we present our numerical methods, the simulation configuration, its validation,
and our parameter space, and the post-processing techniques to identify the corolla and
to track the fluid elements entering it. In § 3, we present a series of maps showing the
domains of fluid elements that will go on to form the corolla at various later times. The
most salient features of these maps are the shape and scaling properties of the domains.
We show that the shape scales with the depth of the film but is almost independent of the
Weber and Reynolds numbers. In § 4, we discuss the various theories proposed for crown
formation, and their relevance and applicability to the maps.
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2. Methods

2.1. Numerical method
Numerical treatments of wet drop impact in two and three dimensions have been
developed extensively. Harlow & Shannon (1967) conducted some of the first numerical
computations using an axisymmetric code that neglected surface tension. Weiss & Yarin
(1999), and later Davidson (2002), used the boundary integral method on an axisymmetric
domain and an inviscid formulation of the dynamics to show the existence of a jet
preceding the corolla, the so-called ejecta jet. Rieber & Frohn (1999) were the first
to perform fully three-dimensional computations using a volume-of-fluid method, and
argued that the instability of the corolla is due to the Rayleigh instability. Currently, drop
impact simulations can be performed routinely and reliably using open source software
such as Gerris and Basilisk (Thoraval et al. 2012; Agbaglah & Deegan 2014; Josserand,
Ray & Zaleski 2016), particularly when supplemented by experimental results as we do
here. Axisymmetric computations are readily realized on reasonably sized clusters. While
in principle fully three-dimensional computations are possible, they continue to strain
resources, and the issues of numerical artefacts arising from changes in topology are not
fully resolved (see e.g. Afanador et al. 2021; Zhou et al. 2021).

We model a gas–liquid system with the incompressible Navier–Stokes equation,
utilizing the one-fluid approach:

ρ(∂tu + u · ∇u) = −∇p + ∇ · (2μD) + γ κδsn, (2.1)

∇ · u = 0, (2.2)

where u is the velocity of the fluid, μ ≡ μ(x, t) is the viscosity, ρ ≡ ρ(x, t) is the density,
and D is the deformation tensor. The densities and viscosities are constant in each phase,
with values ρg and μg in the gas, and ρl and μl in the fluid. The surface tension term acts
only at the interface and is included in (2.1) by a Dirac function δs, with prefactors κ and
n denoting the local curvature and normal unit vector to the interface, respectively.

We use the Basilisk open-source solver (Popinet 2018), which is an enhanced version of
the Gerris solver widely used for various multiphase flow problems (Agbaglah et al. 2011,
2015; Thoraval et al. 2012; tao Li et al. 2014; Visser et al. 2015; Ling et al. 2016; Osama
et al. 2022). In Basilisk, the liquid–gas interface is tracked by the volume-of-fluid method
on an octree structured grid facilitated by adaptive mesh refinement. The adaptive mesh
refinement in this study relies on a criterion of wavelet-estimated discretization error (Van
Hooft et al. 2018). To define physical properties such as μ and ρ, the volume fraction of
the liquid phase f is utilized to linearly interpolate these quantities in cells containing the
liquid–gas interface:

μ( f ) = f μl + (1 − f )μg, (2.3)

ρ( f ) = f ρl + (1 − f )ρg. (2.4)

The transport equation of f is computed from

∂tf + ∇ · (uf ) = 0. (2.5)

Basilisk uses a balanced-force technique to calculate the surface tension, and the
interface’s curvature is determined using the height function approach. Further elaboration
on the numerical methods utilized in Basilisk can be found in Popinet (2003, 2009).
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Figure 1. A spherical drop of diameter D falls vertically through a gas with speed U and collides with a film
of thickness H of the same liquid. Initially, the velocity is zero everywhere except in the drop, and the drop is
at a vertical distance zo = 10−3D above the film surface. The simulations were performed on an axisymmetric
domain 5D × 5D, with the dashed line as the axis of symmetry. No-slip boundary conditions were enforced on
the other three boundaries.

(a) (b)

(ii)(i) (ii)(i)

Figure 2. Comparison of X-ray images of drop impact on a deep pool (greyscale images) and the
corresponding snapshot from numerical simulations with the same dimensionless parameters: (a i,ii) We =
324, Re = 2191; (b i,ii) We = 451, Re = 710. Adapted from Agbaglah & Deegan (2014).

2.2. Numerical simulations
We modelled a spherical drop with initial diameter D and velocity U impacting a film
of the same liquid with thickness H as shown in figure 1. The computational domain
was 5D × 5D in size, and axially symmetric with the axis of symmetry along the
vertical centreline of the drop. No-slip boundary conditions were enforced on the top,
bottom and right-hand edges of the domain. The grid was discretized using adaptive
mesh refinement with minimum spacing 5D/214 along each dimension. This level of
refinement corresponds to a minimum mesh size �x = D/3277, and was shown previously
to accurately represent experimental results (Agbaglah & Deegan 2014) as shown in
figure 2. The simulations were initialized with the drop’s bottom at a vertical distance
0.001D above the film’s upper surface, and with a velocity field equal to −Uz within the
drop, and zero everywhere else.
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We

Re

No jet

Ejecta
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Figure 3. Qualitative phase diagram for the type of splash observed. The boundaries vary with depth, but the
overall structure remains the same (Cossali, Coghe & Marengo 1997; Rioboo et al. 2003; Thoraval et al. 2012;
Agbaglah et al. 2015). Our simulations focus on impact events that produce only a corolla as in (a) Re = 1000,
We = 500, h = 0.025, t = 0.6 and (b) Re = 2042, We = 292, h = 0.025, t = 1.05. The flows outside of the
corolla regime are (c) Re = 2000, We = 100, h = 0.2, t = 0.3, (d) Re = 3000, We = 500, h = 0.2, t = 0.3, (e)
Re = 2042, We = 292, h = 0.4, t = 0.7.

The system is characterized by five dimensionless groups: the Reynolds number Re =
ρlUD/μl, the Weber number We = ρlU2D/σ , the dimensionless thickness h ≡ H/D,
and the ratios of the liquid and gas dynamic viscosity Λ = μl/μg and density ρl/ρg.
We fixed the values of D = 0.2 cm, U = 190 cm s−1, ρl = 0.851 g cm−3, ρg = 1.293 ×
10−3 g cm−3, μg = 1.90 × 10−2 cP, and varied μl, σ and H to tune the values of Re, We
and h, respectively. All results below are reported in dimensionless units, where lengths
are scaled by D and times by D/U.

The ranges of values for the Weber number, Reynolds number and dimensionless
thickness in our study were chosen to focus exclusively on impact events that produce a
corolla without a separate ejecta – i.e. events such as in figure 2(a) rather than figure 2(b) –
while remaining close to Re = 2191, We = 324 where we can validate our simulations. The
constraints are illustrated schematically in figure 3 in the Re–We plane; the boundaries
depicted therein shift with depth.

Higher values of h combined with low We and high Re tend to produce a separate
ejecta; we observed, for example, that at h = 0.4 for Re = 2042 and We = 292, an ejecta
is present. Thus we limited h ≤ 0.2. Low values of h are difficult to achieve experimentally
(see e.g. Wang & Chen 2000). For example, h = 0.015 corresponds to a 30 µm film for a
2 mm drop. Moreover, qualitatively different flows appear after some time at low values of
h, such as the one shown in figure 4( f ). Thus we limited h ≥ 0.015.

Low Weber numbers are insufficiently energetic to produce a corolla, but too large a
value produces a separate ejecta (Agbaglah et al. 2015). For example, with We = 100,
Re = 1000, 2000, 3000 and h = 0.03, 0.05, 0.2, a corolla does not form. At higher values
of the Reynolds and Weber numbers, the corolla begins to interact with the drop (see
‘bumping’ and other phenomena in Thoraval et al. 2013). We observed bumping at
Re = 3000, We = 500, h = 0.2. Thus we settled on the ranges 500 ≥ We ≥ 100 and
3000 ≥ Re ≥ 1000.

Since the dependence on the density and viscosity ratios between the gas and liquid is
almost insignificant for the range of values in typical experiments, these were not varied
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(a)

(d) (e) ( f )

(b) (c)

m1 m2 m1 m3 m2m1

Corolla C

A 
α 

Figure 4. Defining the corolla. (a) Simulation with Re = 1000, We = 292, h = 0.05 at t = 0.2, with the
interface in red, and the fluid originally in the drop and film in blue and white, respectively. (b) Magnified view
of the corolla, with markers used to define its boundaries. Point A is the local minimum in z of the interface
(r, z) nearest r = 0. Point C is found by iteratively rotating anticlockwise a vertical line through point A until
it meets the interface. (c–f ) Problematic surface profiles. (c) For thick films at late times (h = 0.2 at t = 0.9
shown), point A falls below the film’s initial surface height, and it is no longer possible to construct a tangent.
(d–f ) Surface profiles for Re = 1000, We = 292, h = 0.025 at t = 0.5, 0.8, 0.995, illustrating the appearance
of multiple minima.

Re We h Λ ρl/ρg

500 292 0.025, 0.05, 0.2 260 709
1000 292 0.015, 0.025, 0.035, 0.05, 0.1, 0.2 130 709
1000 500 0.015, 0.025, 0.035, 0.05, 0.1, 0.2 130 709
2000 150 0.025, 0.05 65 709
2042 292 0.015, 0.025, 0.035, 0.05, 0.1, 0.2 64 709
2042 500 0.015, 0.025, 0.035, 0.05, 0.1, 0.2 64 709
3000 292 0.025, 0.05, 0.2 43 709
3000 500 0.025, 0.05 43 709

Table 1. Parameters for numerical simulations.

systematically. The density ratio was fixed at 709 for all simulations, and the viscosity
ratio changed with Re.

The parameter values for all 34 simulations are listed in table 1. Each simulation (i.e. a
single combination of (Re, We, h)) took approximately two days on 32 cores (1536 CPU
hours), using Basilisk’s parallelization capabilities and adaptive mesh refinement, and
required up to 0.5 TB of storage for the output files. Post-processing to backtrack the fluid
elements (see algorithm below) required up to an additional three days on a single core,
and 62 GB of random access memory.

The main advantage of an axisymmetric simulation is the modest computational
resources needed, when compared to those needed in a three-dimensional domain. The
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latter would require, using the adaptive mesh refinement, roughly 1.6 × 106 CPU hours
and 3 PB of disk space per set of (Re, We). Given the number of simulations and the
resources available to us, performing our study in three dimensions was infeasible.
A downside of an axisymmetric simulation of drop impact is that it cannot reproduce
the longitudinal destabilization of the corolla’s edge that ultimately produces secondary
droplets. This disadvantage is somewhat mitigated by the well-known difficulties of
resolving droplet pinch-off in three dimensions (Afanador et al. 2021; Zhou et al. 2021),
and experiments show that the corolla is approximately axisymmetric for times less than
D/U (i.e. t < 1) for the parameter range of our study.

2.3. Defining the corolla
Physical experiments in the parameter regime of our study (table 1) produce an initially
axisymmetric corolla that ultimately breaks up into secondary droplets. The corolla in our
simulations appears in cross-section as a thin strip of fluid rising from where the drop and
film meet, as shown in figure 4(a). Unlike in experiments, corolla break-up is not possible
because of the imposed axial symmetry.

Dividing the liquid domain into parts inside and outside the corolla proved challenging
since no criteria that we tried based on identifiable features on the interface, velocity or
vorticity field worked for all parameters and all times. Ultimately, we adopted the criteria
shown in figure 4(b), because this worked with the greatest number of simulations. We
define point A to be the first minimum of the interface height encounter moving along the
interface, starting from the centre of the drop. Next, we found the line segment through
point A and tangent to the interface on the other side of the corolla, as shown in figure 4(b).
Any fluid inside the curve composed of the interface between points A and C and the line
segment AC is defined to be in the corolla.

This definition for the boundary of the corolla always works at short times, but breaks
down under two different conditions at late times. For thick films, the vertical position
of point A decreases and ultimately falls below the undisturbed height of the film (or
equivalently, its position at infinity), and thereafter the tangent curve no longer exists
(see figure 4c). For the thinnest films at late times, multiple minima appear between the
drop centre and the corolla’s tip, as shown by the sequence in figures 4(d–f ), so point A
fails to be unique. Selecting the first minimum leads to an unappealing definition of the
corolla, and switching to the second minimum (say, when it falls below the first) leads
to a discontinuity of the mass inside the corolla. Overall, our definition of the corolla’s
boundary works in approximately 80 % of the parameter–time combinations, which is
better than any other definition that we tried.

2.4. Lagrangian tracking of the fluid elements
We computed the Lagrangian trajectories of fluid elements from the flow calculation to
determine if a particular element is inside or outside the corolla at some particular future
time. It proved more accurate to compute the trajectories backwards in time, starting
with the elements position in the corolla and tracing its origin back to t = 0 (Dubitsky,
Mcrae & Bird (2023) employed a similar technique). First, the Basilisk output files were
post-processed using Python’s shapely.geometry module to identify every mesh point
inside the corolla at 0.1 time increments from 0.1 to 0.9. Next, the backwards-in-time
trajectory of each mesh point was computed using the time-reversed flow field stored
in the output files from Basilisk with time resolution δt ≡ 5 × 10−4. The first two time
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(b)(a) (d )(c)

Figure 5. Backtracking. Simulation snapshots for Re = 1000, We = 292, h = 0.2, with the interface shown as
a black line, and the tracers placed inside the corolla shown in red and blue at (a) t = 0.5. (b–d) The advection
of the tracers at t = 0.3, 0.1, 0.0. The tracers are coloured red or blue to indicate their ultimate destination in
the drop or the film, respectively.

steps were computed using a first-order Euler method with time-step size δt. These data
were then used to initialize a third-order Adams–Bashforth scheme for the subsequent
steps, tracing the elements position back to t = 0. Thus the trajectory for each mesh point
for each of the nine starting times is computed separately. The algorithm applied to one
particular start time yields a sequence such as that shown in figure 5. The final frame of
this sequence is an example of the main result of our computations: it shows the domain
of fluid elements prior to impact that will form the corolla at some later time, t = 0.5 in
this particular case.

A few trajectories near the liquid–air interface or the computational domain boundary
stray across these boundaries. Since this unphysical behaviour is caused by the finite
time-step size in our backtracking algorithm and was infrequent, we discarded such
trajectories. This elimination scheme was employed most often for the thinnest films, and
was most acute for mesh points that begin near the bottom solid boundary. In the most
adverse case (Re = 2042, We = 292, h = 0.015), this occurred for approximately 3 % of
tracers.

3. Results

We follow the Lagrangian path of fluid elements in the drop or film starting at t = 0, and
determine if it ends up in the corolla at some particular time t > 0. By tracing all such
elements, we construct domains of fluid elements that ultimately enter the corolla. These
domains at any given time consist of two disjoint subdomains: one for the drop and one
for the film, since both contribute to the corolla. Examples of these domains are shown in
figure 6, colour-coded to indicate the time when they entered the corolla. We refer to these
diagrams as maps since they show which parts of the drop and film will evolve into the
corolla.

The main qualitative features of these maps are: (i) the fluid contribution from the drop
to the corolla comes from a narrow sliver on the surface of the drop starting near its south
pole; (ii) the shapes of the domains in the drop are generally similar in appearance, having
a comma-like shape; (iii) the percentage of mass contributed by the film versus the drop
changes with film thickness, with the drop contribution dominating for the thinnest films;
and (iv) the mass contribution from the film comes from all depths for the thinnest films.
Below, we quantify these observations and show that drop domains have a self-similar
shape.
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Figure 6. Mass transfer maps for Re = 1000, We = 292 and h values (a) 0.2, (b) 0.1, (c) 0.05, (d) 0.035,
(e) 0.025, ( f ) 0.015. The colours identify elements that enter the corolla prior to t values 0.1 (purple), 0.2 (red),
0.3 (dark blue), 0.4 (yellow), 0.5 (green), 0.6 (orange), 0.7 (cyan), 0.8 (pink), 0.9 (brown). There are fewer data
points in (e, f ) because of the ambiguity in delineating the corolla, as discussed in the text and figure 4.

We characterized the domains by their lengths Ld and Lf , thicknesses Wd and Wf , and
volumes Vd and Vf , as illustrated in figure 7. The subscripts denote drop (d) and film ( f ).
In order to measure domains inside the drop, it is convenient to unroll its shape with polar
coordinates so that positions (r, z) in the simulation are mapped to ρ =

√
r2 + (zc − z)2

and tan θ = r/(zc − z), where (0, zc) is the position of the drop’s centre at t = 0.
Figure 8 shows a plot of the length of the drop domain versus time for all 34 simulations.

Surprisingly, there is little variation in the magnitude of this quantity with any of the
simulation parameters Re, We, h. The small variation correlates most strongly with h:
following any one colour (corresponding to fixed Re and We) in figure 8(b) shows a 2–4 %
variation, whereas following any one symbol (corresponding to fixed h) in figure 8 shows
variation of at most 1 %. Henceforth, we adopt Ld rather than time as a measure of the
impact event’s progress.

Figure 9(a) is a plot of Wd versus Ld that includes all the simulations in our study.
Around any fixed value of Ld, or equivalently at a fixed time after impact, Wd shows large
variation. As an example, for Ld ≈ 0.6 shown in the inset of figure 9(a), Wd varies by
100–200 %. Figure 9(c) plots these variations versus h, We and Re, showing that they are
primarily due to h.

The same case can be made for the other parameters, Wf , Vd, Vf , Lf . The lack of
sensitivity to We and Re suggests searching for a collapse of the data with a scaling
relationship that depends only on h, of the form

y = hαf
(
Ldh−β

)
, (3.1)

where f (·) is an arbitrary function (Barenblatt 2003). Such a scaling exists and is shown
for Wd in figure 9(b), for Vd, Wf , Vf in figure 10, and for Lf in figure 11.
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Figure 7. (a) Domains of fluid elements backtracked to t = 0 from t = 0.9 for Re = 1000, We = 292, h = 0.1.
The dashed lines correspond to the drop surface (curved) and the film surface (upper flat) and the bottom
boundary (lower flat). We extract the quantities Ld and Wd corresponding to the length and thickness of domains
in the drop, and similarly Lf and Wf for the film. (b) Drop domain mapped to polar coordinates, where Wd is
defined as the radial difference between the surface at ρ = R and the tracer closest to the centre of the drop.
(c) Film domain, where Wf is defined as the distance between the film surface and the deepest tracer. The black
solid lines in (b,c) are the domain boundaries used to compute their volumes in the drop (Vd) and the film (Vf ),
factoring in the cylindrical geometry.

Rescaling Wd and Vd results in the data from all simulations collapsing onto a straight
line on a log-log plot. Fits to a power law yield

Wd = 0.058h5/8(Ldh−1/4)3.6 = 0.058h−0.28L3.6
d ∼ h−0.28(t − to)1.3, (3.2)

Vd = 0.071h(Ldh−1/4)5.1 = 0.071h−0.28L5.1
d ∼ h−0.28(t − to)1.8, (3.3)

where the time dependence follows from Ld ∼ (t − to)0.35. Rescaling Wf and Vf results in
the data from all simulations collapsing onto a single curve, but the functional form is not
readily apparent. These data give scaled forms

Wf = hF(Ldh−1/4), (3.4)

Vf = h7/4G(Ldh−1/4), (3.5)

Here, Lf differs significantly from other domain parameters. As shown in figure 11, for
thinner films Lf ∝ Ld, but not for thicker films (h ≥ 0.1). It is possible to collapse these
data (see figure 11c), but the rescaling differs from that of other parameters. Considering
the evolution of film domains in figure 6, one sees that they do not span the full depth
of the film in thicker cases, suggesting that the solid substrate constrains the growth of
the film domain for thinner films, and leads to qualitatively different growth in the two
different limits.

The results for the fluid entrained into the bulb of the corolla, Vfrac (ratio of the volume
of liquid from the drop to the total volume of the bulb), were compared to those of Stumpf
et al. (2022), who measured the secondary droplet composition. Since our axisymmetric
simulation does not produce droplets, we approximated the composition of the droplet by
measuring the composition of the bulb at the end of the corolla. We define the bulb to begin
where the corolla develops a neck as the beginning of the liquid torus that would fragment
into droplets. For Re = 2042, We = 500, h = 0.2 at t = 0.5, we observed Vfrac = 0.23
inside the bulb, which is within the observed range in Stumpf et al. (2022, figure 14).

In addition to the power-law scaling of the characteristics of the domain in the drop,
we find that the shape tends to a self-similar limit. Figure 12 plots the scaled domain
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Figure 8. (a) Plot of Ld versus t for all 34 simulations. A fit to B(t − to)ξ is overlaid on the data (red
dashed line), with B = 0.96, to = 0.032, ξ = 0.35. (b) Plots of %�Ld ≡ (Ld/Ld − 1) at t = 0.3 versus (i) h,
(ii) We, (iii) Re. Combinations of Re and We are indicated by colour: green for Re = 2042, We = 292; red for
Re = 1000, We = 500; blue for Re = 1000, We = 292; grey for Re = 2042, We = 500; yellow for Re = 3000,
We = 292; fuchsia for Re = 3000, We = 292; cyan for Re = 500, We = 292; purple for Re = 2000, We = 150.
Thickness h is indicated by symbols: � for 0.015, 	 for 0.025, ◦ for 0.035, � for 0.05, � for 0.1, � for 0.2. See
supplementary material figure S4 available at https://doi.org/10.1017/jfm.2024.766.

boundaries, in polar coordinates as in figure 7, from all simulations with h = 0.2. We
scale the raw shape (θ, ρ), which generally displays a single peak, by normalizing the peak
height (ρ → (1 − ρ)/Wd), zeroing the peak position θ → 1 − θ/θmax, where θmax is the
angular position of the peak, and scaling the peak width by L2

d. As shown in figures 12(a,b),
the domain shape evolves towards the same shape irrespective of the Weber and Reynolds
numbers in these scaled coordinates. We take the shape at t = 0.9 and h = 0.2 to be
representative of the asymptotic form of the domain shape (see figure 12c), and compare
this with the other depths in figure 13. These data suggest that all depths tend towards the
same asymptotic form.

4. Summary and discussion

The corolla is composed of fluid that comes from both the drop and the pool. This
is well-established fact corroborated by computations (e.g. Josserand & Zaleski 2003),
experiments (e.g. W. van Hoeve, T. Segers, H. Kroes, D. Lohse & M. Versius, A splash
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Figure 9. (a) Width versus length of drop domain, with the inset showing the same for t = 0.3 only. (b) Data
in (a) scaled with h using the form of (3.1) with α = 5/8 and β = 1/4. The red line is the best fit to a power
law, yielding prefactor 0.059 and exponent 3.6. (c) Data at a fixed time (inset in a) plotted versus (i) h, (ii) We,
(iii) Re. Symbols and colours are as in figure 8.

of red, private communication 2011; Versluis 2013), and theory (e.g. Cooker & Peregrine
1995; Howison et al. 2005). Recent work, particularly for the case where the drop and film
are different fluids, has focused on quantifying the volumetric contribution from the drop
versus that from the film (Fudge et al. 2023; Stumpf et al. 2022, 2023).

Using direct numerical simulations on an axisymmetric domain, we find that the fluid
in the corolla at any moment of time produced by the impact of a spherical drop on a film
comes from a thin layer on the drop’s surface and a surface layer in the film that spans
the film’s full depth for thinner films. The novelty of our results is that they pinpoint the
volume elements in each of the fluid bodies prior to impact from which the corolla is
formed.

The shape of the domains that go on to form the corolla scales with the film thickness
and is insensitive to the Weber and Reynolds numbers. A collapse of the data shows that
the data for the drop domain are well modelled by a power law, and moreover, the boundary
of the domain approaches a self-similar form. The contribution from the film also displays
scaling with the thickness and insensitivity to the Reynolds and Weber numbers, but the
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Figure 10. (a) Volume versus length of drop domain. (b) Same data as in (a) plotted with scaled variables
with β = 1/4 and α = 1. The red line is the best fit to a power law, yielding prefactor 0.071 and exponent 5.1.
(c) Width of drop domain versus length of drop domain. (d) Same data as in (c) plotted with scaled variables
with β = 1/4 and α = 1. (e) Volume of drop domain versus length of drop domain. ( f ) Same data as in
(e) plotted with scaled variables with β = 1/4 and α = 7/4. Symbols and colours are as in figure 8.

collapsed data follow a more complex form that we attribute to the presence of a solid
boundary beneath the film that limits the downward growth of the domain.

Our characterization would be useful for developing techniques to selectively disperse
drop additives by seeding the parts of the drop that will later form the corolla. An
advantage of this approach revealed by our study is that such a dispersal mechanism would
be highly robust to variations of the Weber and Reynolds numbers.
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Figure 11. (a) Raw data for film length versus drop length. (b) Same data as in (a) on a log-log plot with
different thicknesses shifted arbitrarily to better display their trends. (c) Scaling of data with α = −5/8, β =
−1/2. Symbols and colours are as in figure 8.
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Figure 12. Profiles of the drop domains for h = 0.2 for all Re, We, and times shifted and scaled according to
the formulas in the axis label so that their peaks coincide. (a) Profiles at different times shifted vertically for
clarity with the topmost curve corresponding to t = 0.1, the next one down to t = 0.2, and so on up to t = 0.9.
(b) Same data as in (a) without the vertical offset. (c) Data for all five profiles at t = 0.9.

The collapse of the scaled domains and their characteristics shows that their shape is
predominantly governed by h, and the dependence on We and Re is all but negligible.
In contrast, we observe large changes in the time evolution of the corolla’s shape, and
base thickness and speed with variations in the Reynolds and Weber numbers (see e.g.
figure 14). Moreover, much of the literature on splashing revolves around correlating
splashing with the Reynolds or Weber numbers, or various combination of these two. To
give just two examples: Rioboo et al. (2003) showed that We sets a minimum threshold for
the formation of a jet, and Yarin & Weiss (1995) showed that We/Re sets a threshold for
splashing. Indeed, the most salient fact of drop impact is that speed matters: slow speeds
lead to coalescence, and high speeds lead to splashing. The conundrum is how to reconcile
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Figure 13. Profiles of the drop domains for all Re, We and h at t = 0.9 shifted and scaled according to
the formulas in the axis label so that their peaks coincide. (a) Profiles for different film thicknesses shifted
vertically for clarity, with topmost to bottommost corresponding respectively to h = 0.2, 0.1, 0.05, 0.025.
(b) Same data as in (a) without the vertical offset.

(a) (b)

Figure 14. Comparison of interfaces for same depth h = 0.025 and time t = 0.3 for Re = 1000, We = 292
(a) and Re = 3000, We = 500 (b). More comparisons are shown in supplementary material figure S3.

changes in the time evolution of the corolla with Re and We, and the seemingly invariance
to these values of the fluid elements that form the corolla.

The independence of Ld from all simulation parameters suggests looking for a physical
mechanism in the geometric length scales intrinsic to an impact event. The penetration
depth Ut/D (in unscaled units; just t in scaled units) is clearly not going to work as it
varies as t, whereas Ld ∼ t0.35. The next candidate is Lg, the arc length of the submerged
portion of the drop if the drop passed like a ghost through the film, i.e. the arc length on a
circle crossed by a line a distance t from its apex:

Lg = 1
2 arccos(1 − 2t). (4.1)

As shown in figure 15(a), Lg provides a reasonable description of the data, especially at
early times.

As an alternative avenue to explain our results, we considered the kinematic
discontinuity theory of Yarin & Weiss (1995). The central result of the theory is that
the radial distance at which the corolla emerges from the film scales as h−1/4 but is
otherwise independent of Re and We (Yarin & Weiss 1995; Rieber & Frohn 1999; Trujillo
& Lee 2001; Roisman & Tropea 2002; Stumpf et al. 2023). The striking similarity to our
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Figure 15. (a) Plot of Ld versus t. The green curved line is Lg(t), and the black straight line is t.
(b) Comparison of Ld and the crown radius rc for assumption rc = rA. Symbols and colours are as in figure 8.

observed scaling h−0.28 (see (3.3)), and Re and We independence, suggest that the theory
may account for our results.

To examine this possibility, we tested the hypothesis that Ld ∝ rc, where rc is the radial
distance of the kinematic discontinuity (Yarin & Weiss 1995). Corollas always have a finite
thickness, thus identifying rc, which is a mathematical point in theory, is ambiguous. We
tried two different schemes: (i) rc = rA and (ii) rc = 1

2 (rA + rC), where rA and rC are
the radial distances of points A and C in figure 4. Figure 15(b) shows that while Ld ≈
rc (for scheme (i)), there is clearly a spread of the data that varies with the simulation
parameters. The results were no better for scheme (ii). Thus the identification of Ld with
rc is not as good as with Lg. In the supplementary materials we show that the extension
of the Yarin & Weiss (1995) theory in Stumpf et al. (2023) compares fairly well with the
results of our simulations at the expense of introducing adjustable parameters that vary
with the simulation parameters. Thus even though the extended theory works, it displays
a dependence on Weber and Reynolds numbers that is at odds with our results.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.766.
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