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Unobserved heterogeneous treatment effects have been emphasized in the recent pol-
icy evaluation literature (see, e.g., Heckman and Vytlacil (2005, Econometrica 73,
669–738)). This paper proposes a nonparametric test for unobserved heterogeneous
treatment effects in a treatment effect model with a binary treatment assignment,
allowing for individuals’ self-selection to the treatment. Under the standard local
average treatment effects assumptions, i.e., the no defiers condition, we derive
testable model restrictions for the hypothesis of unobserved heterogeneous treatment
effects. Furthermore, we show that if the treatment outcomes satisfy a monotonicity
assumption, these model restrictions are also sufficient. Then, we propose a modified
Kolmogorov–Smirnov-type test which is consistent and simple to implement. Monte
Carlo simulations show that our test performs well in finite samples. For illustration,
we apply our test to study heterogeneous treatment effects of the Job Training
Partnership Act on earnings and the impacts of fertility on family income, where
the null hypothesis of homogeneous treatment effects gets rejected in the second
case but fails to be rejected in the first application.
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1. INTRODUCTION

Heterogeneous treatment effects due to unobserved latent variables have been
emphasized in the policy evaluation literature. See, e.g., Imbens and Angrist
(1994), Heckman, Smith, and Clements (1997), Heckman and Vytlacil (2001,
2005), Abadie, Angrist, and Imbens (2002), Abadie (2002, 2003), Blundell and
Powell (2003), Matzkin (2003), Chesher (2003, 2005), Chernozhukov and Hansen
(2005), Florens et al. (2008), Imbens and Newey (2009), Frölich and Melly
(2013), D’Haultfœuille and Février (2015), and Torgovitsky (2015), among many
others. In the empirical study of treatment effects using observational data, the
interpretation of the widely used instrumental variable (IV) estimation relies on
the key assumption that after we control for covariates, treatment effects are
homogeneous across individuals. In the presence of unobserved heterogeneous
treatment effects, the standard IV approach only estimates the local average
treatment effects (LATEs), rather than the average treatment effects (ATEs); see
Imbens and Angrist (1994) and Imbens (2010).

In this paper, we develop a nonparametric test for the (unobserved) hetero-
geneous treatment effects. We model the unobserved heterogeneous treatment
effects by a nonparametric and nonseparable model, i.e., the error terms are not
additively separable from the treatment indicator. Together with the endogeneity
issue introduced due to individuals’ self-selection to treatment, it is well known
in the literature that identification and estimation of nonseparable models are
challenging. On the other hand, the homogeneous treatment effects assumption
substantially simplifies econometrics analysis of treatment effects, since it implies
that ATE is the same as LATE, after controlling for observed heterogeneity
(i.e., covariates). For instance, Angrist and Krueger (1991) use a two-stage
least-squares approach to estimate treatment effects of compulsory schooling on
earnings. Therefore, if ATE is the main object of research interest, by testing for
heterogeneous treatment effects, our method can assess whether the complicated
nonparametric and nonseparable treatment effect model is more appropriate (than,
e.g., the two-stage least-squares approach) for a program evaluation assignment.

Though important, there are only a handful of papers on testing for such
unobserved heterogeneity.1 In the context of ideal social experiment data, i.e., lack
of endogeneity, Heckman et al. (1997) develop a lower bound for the variance of
heterogeneous treatment effects, thereby providing a test for whether the data are
consistent with the identical treatment effects model. Moreover, Hoderlein and
Mammen (2009) discuss specification tests for endogeneity as well as unobserved
heterogeneity in nonseparable triangular models. Recently, Lu and White (2014)
and Su, Tu, and Ullah (2015) establish nonparametric tests for unobserved hetero-
geneous treatment effects under the unconfoundedness assumption. In particular,

1There exists a substantial literature for testing observed heterogeneity, i.e., whether (conditional) ATEs vary across
different subpopulations defined by observed covariates. For example, see Heckman et al. (1997), Crump et al. (2008),
Chang, Lee, and Whang (2015), Abrevaya, Hsu, and Lieli (2015), Athey and Imbens (2016), Hsu (2017), and Lee,
Okui, and Whang (2017), among many others.
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Lu and White (2014) test unobserved heterogeneity in treatments effects via testing
an equivalent independence condition on observables. Another closely related
paper is by Heckman, Schmierer, and Urzua (2010), who test the absence of
self-selection on the gain to treatment in the generalized Roy model framework,
allowing for unobserved heterogeneous treatment effects. Furthermore, our paper
is also related to Heckman and Vytlacil (2005), who suggest an approach to
test heterogeneity of the marginal treatment effects (MTEs). Our test object of
interest, however, focuses on whether there exists individual-level unobserved
heterogeneity in treatment effects, rather than group-level (defined by a margin)
unobserved heterogeneity, i.e., whether MTE varies across margins.

Motivated by Lu and White (2014), we show that in the presence of endogeneity,
model restrictions arising from the homogeneous treatment effects hypothesis can
also be characterized by a set of independence conditions that involve LATE.
These testable implications are related to important literature on testing whether
the distributions of potential outcomes are affected by the treatment. In the LATE
framework, Abadie et al. (2002) considers the null hypothesis of the equality
between distribution functions of the potential outcomes among the compliers
in treatment and control groups, and also first-order and second-order stochastic
dominance of the two distribution functions. Lee and Whang (2009) and Chang
et al. (2015) generalize Abadie et al.’s (2002) test for conditional distributional
effects by allowing for observed treatment effects heterogeneity.2 Our test problem
differs from that literature in that we investigate whether the distribution function
of the treatment group is an (unknown) constant shift from the control group’s
distribution. Specifically, the equality hypothesis on the two distribution functions
is a special case of our test implication.

Nonparametric tests for conditional independence restrictions have been well
studied in different contexts. See, e.g., Andrews (1997), Dauxois and Nkiet (1998),
Su and White (2007, 2008, 2014), Huang (2010), Bouezmarni and Taamouti
(2014), Hoderlein and White (2012), Linton and Gozalo (2014), and Huang, Sun,
and White (2016), among many others. When one tests independence restrictions
of variables that are nonparametrically constructed, a key technical issue arises in
the case, in particular, in which the nonparametric components are functions of
continuous covariates (see, e.g., Lu and White, 2014). Motivated by Stinchcombe
and White (1998), we modify the classic Kolmogorov–Smirnov tests by using
the primitive function of cumulative distributive functions. Such a modification is
novel and plays a key role in our approach. Moreover, we establish the asymptotic
properties of the proposed tests under the null and alternative hypotheses.

The remainder of this paper is organized as follows. In Section 2, we introduce
the model and derive testable model restrictions. Section 3 discusses our test
statistics and their asymptotic results. We distinguish whether the covariates
include continuous variables. In Section 4, we conduct Monte Carlo experiments
to study the finite-sample performance of the proposed test. Section 5 illustrates

2See also, e.g., Jun, Lee, and Shin (2016) and Hsu (2017) for further extensions, and the references therein.
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our testing approach by two empirical applications. All proofs are collected in
Appendix A.

2. MODEL AND TESTABLE RESTRICTIONS

We consider the following nonseparable treatment effect model:

Y = g(D,X,ε), (1)

where Y ∈ R is the outcome variable, D ∈ {0,1} denotes the treatment status,
X ∈ RdX is a vector of covariates, ε is an unobserved random disturbance of general
form (e.g., without invoking any restriction on the dimensionality of ε), and g is an
unknown but smooth function defined on {0,1}×SXε .3 In particular, the treatment
variable D is allowed to be correlated with ε to allow for selection to the treatment;
see, e.g., Heckman et al. (1997). To deal with endogeneity, we introduce a binary
IV Z ∈ {0,1}. Throughout the paper, we use uppercase letters to denote random
variables, and their corresponding lowercase letters to stand for realizations of
random variables.

As is motivated in the seminal paper by Matzkin (2003), the nonadditivity of
the structural relationship g in ε captures the idea of unobserved heterogeneous
treatment effects in that the individual treatment effect, g(1,X,ε) − g(0,X,ε),
would depend on the unobserved individual heterogeneity ε, even after controlling
for covariates X. Therefore, we have the following proposition.

PROPOSITION 1. Suppose (1) holds, then the homogeneous treatment effects
hypothesis, i.e., for some measurable function δ(·) : SX �→ R,

H0 : g(1,X,·)−g(0,X,·) = δ(X) (2)

holds if and only if the structural relationship g is additively separable in ε (w.r.t.
D), i.e.,

g(D,X,ε) = m(D,X)+ν(X,ε), (3)

where m : SDX �→ R and ν : SXε �→ R.

Proposition 1 directly follows Lu and White (2014). Note that if (3) holds,
δ(x) = m(1,x) − m(0,x) in (2), which is the homogenous individual treatment
effects across individuals with covariates X = x.

The key insight in Lu and White (2014) is that they further show the equivalence
between the additive separability hypothesis and a conditional independence
restriction on observables. In the presence of treatment endogeneity, we derive
a similar result. Let p(x,z) = P(D = 1|X = x,Z = z) be the propensity score for
each x ∈ SX and z ∈ {0,1}.

3For a generic random vector A, SA denotes the support of A.
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Assumption 1. Suppose Z ⊥⊥ ε|X. For all x ∈ SX , P(Z = 1|X = x) is bounded
away from zero and one, and p(x,0) �= p(x,1).

Assumption 1 is standard in the literature and requires the IV Z to be (con-
ditionally) exogenous and relevant. See, e.g., Imbens and Angrist (1994) and
Chernozhukov and Hansen (2005). Throughout, we maintain Assumption 1.
Moreover, let μ(x,z) = E(Y|X = x,Z = z). Under H0 and Assumption 1, we have

μ(x,z) = E [g(0,X,ε)+ δ(X)×D|X = x,Z = z]

= E [g(0,X,ε)|X = x]+ δ(x)p(x,z), for z = 0,1.

In the above system of equations, we treat E [g(0,X,ε)|X = x] and δ(x) as two
unknowns. Solving the equations, we then identify LATE δ(x) as follows:

δ(x) = μ(x,1)−μ(x,0)

p(x,1)−p(x,0)
= Cov(Y,Z|X = x)

Cov(D,Z|X = x)
. (4)

See Imbens and Angrist (1994) for the LATE interpretation of (4). Note that δ(x)
is well defined given p(x,0) �= p(x,1) under Assumption 1 and identified as well
directly from the data regardless of the monotonicity of the selection. Furthermore,
let

W ≡ Y + (1−D)× Cov(Y,Z|X)

Cov(D,Z|X)
. (5)

Under the null hypothesis H0, we have

W = g(D,X,ε)+ (1−D)× [g(1,X,ε)−g(0,X,ε)] = g(1,X,ε),

which implies that W is conditionally independent of Z given X under Assump-
tion 1. Therefore, we obtain the following lemma.

LEMMA 1. Suppose (1) and Assumption 1 hold. Then, H0 implies that W ⊥⊥
Z|X. On the other hand, if W ⊥⊥ Z|X, then the observed data can be rationalized
by a structure that satisfies H0.

Lemma 1 shows that the conditional independence condition is all the testable
restrictions of H0, i.e., it is sharp in the sense of Definition 1 of Hsu, Liu, and
Shi (2019). Regarding the first part of Lemma 1, intuitively, if treatment effects
are homogeneous, we can estimate them by the IV method, and further construct
potential outcomes that are independent of the IV.4 Note that the conditional
independence condition in Lemma 1 can be equivalently rewritten as

P(Y ≤ y;D = 1|X,Z = 1)−P(Y ≤ y;D = 1|X,Z = 0)

p(X,1)−p(X,0)

= P(Y ≤ y− δ(X);D = 0|X,Z = 0)−P(Y ≤ y− δ(X);D = 0|X,Z = 1)

p(X,1)−p(X,0)
,

4Note that one could also define Wa = Y −D× δ(X), which is equal to g(0,X,ε) under Assumption 1.
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provided p(X,1) �= p(X,0) almost surely. Under the additional monotonicity
condition on the selection, both sides in the above equation can be interpreted as
the conditional distribution of “potential outcomes” given the compliers group in
Imbens and Rubin (1997).

According to Lemma 1, rejecting W ⊥⊥ Z|X suggests the presence of unob-
served heterogeneous treatment effects. It is worth pointing out, however, that the
other direction of the above statement is also true under additional assumptions
given below. These additional assumptions have been widely used for obtaining
identification of quantile treatment effects and LATEs in the IV literature (see,
e.g., Imbens and Angrist, 1994; Chernozhukov and Hansen, 2005).

Assumption 2 (Single-index error term). There exists a measurable function
g̃ : SDX ×R �→ R and ν : SXε �→ R such that

g(D,X,ε) = g̃(D,X,ν(X,ε)).

Moreover, g̃(d,x,·) is strictly increasing in the scalar-valued index ν.

Assumption 2 imposes the monotonicity of the single-index error term, of
which various simplified assumptions have also been made in the literature for
identification and estimation of nonseparable functions. For instance, among many
others, Matzkin (2003) and Chesher (2003) assume that the structural function g is
strictly increasing in the scalar-valued error term ε. Note that Assumption 2 holds
under the null hypothesis H0 because (3) would hold under H0. Assumption 2
narrows down the space of alternatives such that the model restrictions derived in
Lemma 1 are also sufficient to distinguish the null and alternative hypotheses.

Assumption 3 (Monotone selection). The selection to the treatment is given by

D = 1 [θ(X,Z)−η ≥ 0], (6)

where θ is an unknown function, and η ∈ R is an error term satisfying Z ⊥⊥ (ε,η)|X.

Imbens and Angrist (1994) first introduce the monotone selection assumption,
which is essentially the “no defier” condition. Moreover, Vytlacil (2002) shows
that such a monotonicity condition is observationally equivalent to the weak
monotonicity of (6) in the error term η.

For any x ∈SX , let Cx ≡{η ∈ R : min{θ(x,0),θ(x,1)} <η ≤ max{θ(x,0),θ(x,1)}}.
Note that Cx is called the “complier group” if p(x,0) < p(x,1) (see Imbens and
Angrist, 1994, for the concept of the “complier group.”)

Assumption 4. The support of g(d,x,ε) given X = x and the complier group Cx

is equal to the support of g(d,x,ε) given X = x, i.e., Sg(d,x,ε)|X=x,η∈Cx = Sg(d,x,ε)|X=x.

Assumption 4 is a support condition, first introduced by Vuong and Xu (2017)
as the effectiveness of the IV. It implies that Sg(d,x,ε)|X=x,η∈Cx = SY|D=d,X=x.5 Note
that the distribution of g(d,x,ε) given X = x and η ∈ Cx can be identified; see,

5To see this, note that Sg(d,x,ε)|X=x,η∈Cx ⊆ Sg(d,x,ε)|D=d,X=x ⊆ Sg(d,x,ε)|X=x.
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e.g., Imbens and Rubin (1997). Thus, Assumption 4 is testable. Specifically, for
all t ∈ R,

P[g(d,x,ε) ≤ t|X = x,η ∈ Cx]

= P(Y ≤ t,D = d|X = x,Z = 1)−P(Y ≤ t,D = d|X = x,Z = 0)

P(D = d|X = x,Z = 1)−P(D = d|X = x,Z = 0)
,

from which we can identify the support Sg(d,x,ε)|X=x,η∈Cx .
Assumption 4 allows one to use the data to address questions involving coun-

terfactuals of outcomes of the “always-takers” and the “never-takers” groups. It is
possible to provide sufficient primitive conditions for Assumption 4. For instance,
if one assumes Sε|X=x,η∈Cx = Sε|X=x, or even a stronger condition that (ε,η) has a
rectangular support conditional on X = x, then Assumption 4 holds.

THEOREM 1. Suppose that (1) and Assumptions 1–4 hold. Then, H0 holds if
and only if W ⊥⊥ Z|X.

Recall the definition of W in (5). Theorem 1 shows that testing the null
hypothesis H0 should just rely on the information from the compliers group. It
is worth pointing out that Theorem 1 is related to Lu and White (2014), who show
that H0 holds if and only if Y − E(Y|D,X) ⊥⊥ D|X under the unconfoundedness
condition (i.e., D ⊥⊥ ε|X) and Assumption 2.

It should also be noted that Assumption 2 is a crucial condition for the equiva-
lence between the null hypothesisH0 and the testable model restrictions W ⊥⊥ Z|X.
Chernozhukov and Hansen (2005) show that this assumption is observationally
equivalent to the rank similarity assumption. In the current literature, Assumption
2 (or the rank similarity assumption) has been widely used for identifying hetero-
geneous treatment effects. See, e.g., Chernozhukov and Hansen (2005) and Vuong
and Xu (2017).

We also note that throughout, we maintain the validity of the instrument, i.e.,
Assumption 1. If this assumption is questionable, then our test should be more
carefully interpreted as a joint test of Assumption 1 and the homogeneity of
treatment effects.

3. CONSISTENT TESTS

Based on Theorem 1, we now propose tests for unobserved treatment effect
heterogeneity via testing the conditional independence restriction. Because Z is
binary, the conditional independence restriction in Theorem 1 is equivalent to

FW|XZ(·|x,0) = FW|XZ(·|x,1), ∀ x ∈ SX .

Note that the variable W needs to be nonparametrically constructed from the
data. In the following discussion, we distinguish the cases where the covariates X
are continuous random variables because the continuous-covariates case is more
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difficult to deal with due to the nonparametric function δ(·) in the construction
of W.

3.1. Case 1: Discrete Covariates

We first discuss the case where X takes only a finite number of values. Let
{(Yi,Di,Xi,Zi) : i ≤ n} be a random sample of (Y,D,X,Z). By Theorem 1, we test
H0 via the following model restrictions:

FW|XZ(· |x,0) = FW|XZ(· |x,1), ∀ x ∈ SX,

where W = Y + (1−D)× δ(X) is generated from the observables.
For a generic k-dimensional random vector (A1, . . . ,Ak), we let 1A1···Ak(a1, . . . ,

ak) ≡ 1(A1 = a1, . . . ,Ak = ak), and let 1(·) be the indicator function. We estimate
δ(Xi) as follows:

δ̂(x) =
∑n

i=1 Yi1XiZi(x,1)×∑n
i=11Xi(x)−∑n

i=1 Yi1Xi(x)×∑n
i=11XiZi(x,1)∑n

i=1 Di1XiZi(x,1)×∑n
i=11Xi(x)−∑n

i=1 Di1Xi(x)×∑n
i=11XiZi(x,1)

,

and further let Ŵi = Yi + (1−Di)× δ̂(Xi). We now define our test statistic:

T̂n = sup
(w,x)∈SWX

√
n
∣∣F̂W|XZ(w|x,0)− F̂W|XZ(w|x,1)

∣∣,
where F̂W|XZ(w|x,z) =

∑n
i=1 1(Ŵi≤w)Zi1Xi (x)∑n

i=1 Zi1Xi (x)
.

Next, we establish the asymptotic properties of the test statistic T̂n. Let

fWD|XZ(w,d|x,z) ≡ fW|DXZ(w|d,x,z)×P(D = d|X = x,Z = z)

and

κ(w,x) ≡ − fWD|XZ(w,0|x,1)− fWD|XZ(w,0|x,0)

p(x,1)−p(x,0)
.

Note that, under Assumptions 1 and 3, κ(w,x) ≥ 0 since it becomes the conditional
density of g(0,x,ε) given the complier group and X = x.

Assumption 5. Assume that

(i) X is discrete and takes a finite number of values and P(X = x,Z = z) > 0, for
all (x,z) ∈ SXZ ;

(ii) p(x,1)−p(x,0) > 0, for all x ∈ SX;
(iii) W has a compact support, and ∂fWD|XZ(w,0|x,z)/∂w is bounded above uni-

formly over (w,x,z) ∈ SWXZ .

Moreover, let

ψwx ≡
[
1(W ≤ w)−FW|XZ(w|x,1)

]
× 1XZ(x,1)

P(X = x,Z = 1)

−
[
1(W ≤ w)−FW|XZ(w|x,0)

]
× 1XZ(x,0)

P(X = x,Z = 0)
, (7)
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φwx ≡ κ(w,x)
[
W −E(W|X = x,Z = 0)

]
× 1XZ(x,1)

P(X = x,Z = 1)

−κ(w,x)
[
W −E(W|X = x,Z = 1)

]
× 1XZ(x,0)

P(X = x,Z = 0)
. (8)

We now derive the asymptotic behavior of the test statistic.

THEOREM 2. Suppose that (1) and Assumptions 1–5 hold. Then, under H0,

T̂n
d→ sup

(w,x)∈SWX

|Z(w,x)|,

where Z(·,·) is a mean-zero Gaussian process with a covariance kernel:

Cov
[
Z(w,x),Z(w′,x′)

]= E[(ψwx +φwx)(ψw′x′ +φw′x′)], ∀(w,x),(w′,x′) ∈ SWX .

Moreover, under H1, we have

n− 1
2 T̂n

p→ sup
(w,x)∈SWX

∣∣FW|XZ(w|x,0)−FW|XZ(w|x,1)
∣∣> 0.

In Appendix A, we show that the influence function for
√

n[F̂W|XZ(w|x,0) −
F̂W|XZ(w|x,1) − FW|XZ(w|x,0) + FW|XZ(w|x,1)]is ψwx + φwx, in which ψwx is the
influence function when δ(x) is known, and φwx accounts for the estimation
effect of estimating δ(x). By Theorem 2, our test is one-sided: reject H0 at
significance level α if and only if T̂n > cα , where cα is the (1 −α)th quantile of
sup(w,x)∈SWX

|Z(w,x)|.
Since the asymptotic distribution of sup(w,x)∈SWX

|Z(w,x)| is nonpivotal and
complicated, we apply the multiplier bootstrap method to approximate the entire
process to construct the critical value. See, e.g., van der Vaart and Wellner (1996),
Delgado and Manteiga (2001), Barrett and Donald (2003), and Donald and Hsu
(2014). Specifically, we simulate a sequence of i.i.d. pseudorandom variables
{Ui : i = 1, . . . ,n} that is independent of the random sample path {(Yi,Xi,Di,Zi) :
i = 1,2, . . .} with E[U] = 0, E[U2] = 1, and E[U4] < +∞. Then, we obtain the
following simulated empirical process:

Ẑu(w,x) = 1√
n

n∑
i=1

Ui × (ψ̂wx,i + φ̂wx,i),

where ψ̂wx,i + φ̂wx,i is the estimated influence function. Namely,

ψ̂wx,i =
[
1(Ŵi ≤ w)−

∑n
j=11(Ŵi ≤ w)1XjZj(x,1)∑n

j=11XjZj(x,1)

]
× 1XiZi(x,1)

P̂(X = x,Z = 1)

−
[
1(Ŵi ≤ w)−

∑n
j=11(Ŵi ≤ w)1XjZj(x,0)∑n

j=11XjZj(x,0)

]
× 1XiZi(z,0)

P̂(X = x,Z = 0)
,
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φ̂wx,i = κ̂(w,x)

[
Ŵi −

∑n
j=1 Ŵj1XjZj(x,0)∑n

j=11XjZj(x,0)

]
× 1XiZi(x,1)

P̂(X = x,Z = 1)

− κ̂(w,x)

[
Ŵi −

∑n
j=1 Ŵj1XjZj(x,1)∑n

j=11XjZj(x,1)

]
× 1XiZi(x,0)

P̂(X = x,Z = 0)
,

where P̂(X = x,Z = z) and κ̂(w,x) = − f̂WD|XZ (w,0|x,1)−f̂WD|XZ (w,0|x,0)

p̂(x,1)−p̂(x,0)
are uniformly

consistent nonparametric estimators for P(X = x,Z = z) and κ(w,x), respectively.
For a given significance level α, the critical value ĉn(α) is obtained as the (1−α)-
quantile of the simulated distribution of sup(w,x)∈SWX

∣∣Ẑu(w,x)
∣∣.

Now, we give additional conditions for the validity of the multiplier bootstrap
critical value.

Assumption 6. Assume that {Ui : i = 1, . . . ,n} is a sequence of i.i.d. pseudoran-
dom variables that is independent of the random sample path {(Yi,Xi,Di,Zi) : i =
1,2, . . .} with E[U] = 0, E[U2] = 1, and E[U4] < ∞.

In simulations and empirical studies, we set Ui’s as standard normals so that
Assumption 6 is satisfied.

Assumption 7. Assume that, for z = 0,1,

(i) supx∈SX
|̂P(X = x,Z = z)−P(X = x,Z = z)| p→ 0;

(ii) supx∈SX
|p̂(x,z)−p(x,z)| p→ 0;

(iii) f̂WD|XZ(w,0|x,z) is continuous in w for all x ∈ SX andsup(w,x)∈SWX
|f̂WD|XZ(w,

0|x,z)− fWD|XZ(w,0|x,z)| p→ 0;

(iv) supx∈SX
|δ̂(x)− δ(x)| p→ 0.

THEOREM 3. Suppose Assumptions 1–7 hold. Then,

(a) under H0, limn→∞ P(T̂n ≥ ĉn(α)) = α;
(b) under H1, limn→∞ P(T̂n ≥ ĉn(α)) = 1.

Theorem 3 shows the size and power of our test for the discrete case. The
proof of Theorem 3 follows standard arguments once we establish the validity
of the multiplier bootstrap for the processes in that Ẑu(·,·) ⇒ Z(·,·) conditional
on the sample path {(Yi,Xi,Di,Zi) : i = 1,2, . . .} with probability approaching one.
Assumption 7 contains high-level conditions, and we provide estimators and give
low-level conditions in Appendix A. Please see the discussion after the proof of
Theorem 3.

By Assumption 5, X is assumed to be a discrete random variable taking a finite
number of values. In this case, we literally conduct the test by sample splitting in
that we test the equality of conditional distributions over all subpopulations defined
by covariate value x. As a result, it is straightforward to extend our test to the case
of discrete random vector X. Therefore, we omit the details for brevity.
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3.2. Case 2: Continuous Covariates

We now consider the case where X is a vector of continuous covariates. To extend
the empirical process argument used in the proof of Theorem 2 to this case, we
propose a modified Kolmogorov–Smirnov test statistic. Such a modification allows
us to account for the estimation effects from the generated variable W, which is
constructed from the unknown function δ(·) as an infinite-dimensional parameter.

Let λ(t) = −t × 1(t ≤ 0) and (w|x,z) = E[λ(W − w)|X = x,Z = z]. Note that
λ(·) is continuous and has a directional derivative. By definition, (·|x,z) is the
primitive function of the FW|XZ(·|x,z), i.e.,

∂

∂w
(w|x,z) = FW|XZ(w|x,z).

Thus, the model restriction W ⊥⊥ Z|X can be characterized as follows:

∂

∂w
(w|x,0) = ∂

∂w
(w|x,1), ∀(w,x) ∈ SWX,

which holds if and only if (w|x,0) = (w|x,1), for all (w,x) ∈ SWX .6

In terms of the probability distribution of W given (X,Z) = (x,z), both
FW|XZ(·|x,z) and (·|x,z) contain the exact same amount of information. The
latter, however, allows us to derive a test statistic and establish its limiting
distribution when W has to be nonparametrically generated. When covariates
X are continuously distributed, the generated sample {Ŵi : i ≤ n} involves the
nonparametric component δ̂(Xi). We exploit the smoothness of λ(·) and show that
this first-stage estimation error can be further aggregated out at the

√
n-rate in

our test statistic defined on {Ŵi : i ≤ n}. It should be noted that when covariates
X are discrete as discussed in the last subsection, we can also apply a similar
testing procedure via testing (·|x,1) = (·|x,0). Moreover, we assume that SW

is compact for expositional simplicity.
We denote fXZ(x,z) ≡ fX|Z(x|z)× P(Z = z). We also let 1∗

A(a) ≡ 1(A ≤ a). For
z ∈ {0,1}, let z′ = 1− z and

G(w,x,z) = E
[
λ(W −w)1∗

X(x)1Z(z)fXZ(X,z′)
]

.

Motivated by Stinchcombe and White (1998), we rewrite the above conditional
expectation restrictions by the following unconditional ones:

G(w,x,0) = G(w,x,1), ∀(w,x) ∈ SWX . (9)

To see the equivalence, first note that

G(w,x,z) = E
[
λ(W −w)1(X ≤ x)fX|Z(X|z′)|Z = z

]
P(Z = 0)P(Z = 1).

6The equivalence holds by the fact that for a continuous function f (t), f (t) = 0, for all t ∈ [0,1], if and only if∫ t
0 f (s)ds = 0, for all t ∈ [0,1].
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Moreover, by the law of iterated expectation,

∂

∂x
E[λ(W −w)1(X ≤ x)fX|Z(X|z′)|Z = z] = (w|x,z)fX|Z(x|0)fX|Z(x|1).

Therefore, we obtain the conditional expectation restrictions as the derivatives of
(9). Note that the estimation of G(w,x,z) avoids any denominator issues, which
thereafter simplifies our asymptotic analysis.

For a random variable A and a value a, let KA,h(a) ≡ K((A − a)/h)/h, where
K and h are a kernel function and a smoothing bandwidth, respectively. For a dX-
dimensional random vector A, we let KA,h(a) = 

dX
j=1KAj,h(aj) = h−dX K((A−a)/h).

We estimate δ(Xi) by

δ̂(Xi) =
∑

j�=i YjZjKXj,h(Xi)
∑

j�=i KXj,h(Xi)−∑j�=i YjKXj,h(Xi)
∑

j�=i ZjKXj,h(Xi)∑
j�=i DjZjKXj,h(Xi)

∑
j�=i KXj,h(Xi)−∑j�=i DjKXj,h(Xi)

∑
j�=i ZjKXj,h(Xi)

.

Note that in this paper, we consider a kernel estimator for the nonparametric
components of the test. To avoid the boundary issue, we follow the literature
to trim the support of X. To be specific, we will assume that the support of
covariates X is a Cartesian product of compact intervals, SX =∏dX

j=1[x�j,xuj], and

Sξ

X =∏dX
j=1[x�j + ξ,xuj − ξ ], where ξ > 0 is a small positive number. Moreover, let

Ŵi = Yi + (1−Di)× δ̂(Xi), and

Ĝ(w,x,z) = 1

n

n∑
i=1

1(Xi ∈ Sξ

X)λ(Ŵi −w)1∗
Xi

(x)1Zi(z)f̂XZ(Xi,z
′),

f̂XZ(Xi,z) = 1

n

∑
j�=i

KXj,h(Xi)1Zj(z).

Thus, we define our test statistic as follows:

T̂ c
n = sup

w∈SW,x∈Sξ
X

√
n
∣∣Ĝ(w,x,0)− Ĝ(w,x,1)

∣∣ .
In the above definition, the supports of W and X are assumed to be known for
simplicity. In practice, this assumption can be relaxed by using consistent set
estimators ŜW and ŜX .

We show that the proposed test statistic T̂ c
n converges in distribution at the

regular parametric rate under the null. The key step of our proof is to show that

sup
w∈SW,x∈Sξ

X

∣∣Ĝ(w,x,z)− G̃(w,x,z)
∣∣= op

(
n−1/2), (10)

where G̃(w,x,z) = 1
n

∑n
i=11(Xi ∈ Sξ

X)(Ŵi − w)1(Wi ≤ w)1∗
Xi

(x)1Zi(z)f̂XZ(Xi,z′).
The above result requires that the nonparametric elements in the estimation of δ̂(·)
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should converge to the corresponding true values uniformly at a rate faster than
n−1/4.

Assumption 8. Assume that

(i) the support of the dX-dimensional covariates X is a Cartesian product of
compact intervals, SX =∏dX

j=1[x�j,xuj];
(ii) for z = 0,1, infx∈SX fX|Z(x|z) > 0, supx∈SX

fX|Z(x|z) < ∞, and infx∈SX |p(x,1)−
p(x,0)| > 0.

Assumption 9. For z = 0,1, fX|Z(x|z), p(x,z), and μ(x,z) are continuous in x ∈
SX .

Assumption 10. For some ι > 1
4 , we have h → 0, and nι/

√
nhdX → 0 as n → ∞.

Moreover, the first-stage estimators satisfy the condition that, for z = 0,1,

sup
x∈Sξ

X

∣∣∣∣E[1

n

n∑
j=1

1Zj(z)KXj,h(x)

]
− fXZ(x,z)

∣∣∣∣= O(n−ι),

sup
x∈Sξ

X

∣∣∣∣E[1

n

n∑
j=1

Dj1Zj(z)KXj,h(x)

]
−p(x,z)fXZ(x,z)

∣∣∣∣= O(n−ι),

sup
x∈Sξ

X

∣∣∣∣E[1

n

n∑
j=1

Yj1Zj(z)KXj,h(x)

]
−E(Y|X = x,Z = z)fXZ(x,z)

∣∣∣∣= O(n−ι).

Assumptions 8 and 9 are standard in the nonparametric estimation literature.
Assumption 10 is a high-level condition that requires the nonparametric estimation
bias to diminish uniformly at a rate faster than n1/4. Such a condition on the bias
term can be satisfied under additional primitive conditions on the kernel function
K(·) and the bandwidth h, respectively, as well as the smoothness of the underlying
structural functions. See, e.g., Pagan and Ullah (1999).

LEMMA 2. Suppose that Assumptions 1–4 and 8–10 hold. Then, (10) holds for
z = 0,1.

By Lemma 2, it suffices to establish the limiting distribution of G̃(w,x,1) −
G̃(w,x,0) for the asymptotic properties of our test statistics. Note that in the
definition of G̃(w,x,z), there are no nonparametric elements estimated in the
indicator function.

To establish asymptotic properties for our test, we make the following assump-
tion.

Assumption 11. Assume that, for z = 0,1,

sup
x∈Sξ

X

∣∣E[δ̂(x)]− δ(x)
∣∣= o(n−1/2) and sup

x∈Sξ
X

∣∣E[f̂XZ(x,z)]− fXZ(x,z)
∣∣= o(n−1/2).
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Assumption 11 strengthens Assumption 10 by requiring the bias term in the
first-stage nonparametric estimation to be smaller than op(n−1/2), which can be
established by using higher-order kernels (see, e.g., Powell, Stock, and Stoker,
1989).

Next, we establish the asymptotic properties of the test statistic T̂ c
n . Let

F∗
WD|XZ(w,d|x,z) ≡ FW|DXZ(w|d,x,z)×P(D = d|X = x,Z = z) and

κc(w,x) = −F∗
WD|XZ(w,0|x,1)−F∗

WD|XZ(w,0|x,0)

p(x,1)−p(x,0)
.

Moreover, we define

ψc
wx = 1(X ∈ Sξ

X)

{[
λ(W −w)−E[λ(W −w)|X,Z = 1]

]
× 1∗

X(x)1Z(0)

fXZ(X,0)

−
[
λ(W −w)−E[λ(W −w)|X,Z = 0]

]
× 1∗

X(x)1Z(1)

fXZ(X,1)

}
fXZ(X,0)fXZ(X,1),

(11)

φc
wx = 1(X ∈ Sξ

X)κc(w,X)

{[
W −E(W|X,Z = 0)

]
× 1∗

X(x)1Z(1)

fXZ(X,1)

−
[
W −E(W|X,Z = 1)

]
× 1∗

X(x)1Z(0)

fXZ(X,0)

}
fXZ(X,0)fXZ(X,1). (12)

THEOREM 4. Suppose that Assumptions 1–4 and 8–11 hold. Then, under H0,

T̂ c
n

d→ sup
w∈SW,x∈Sξ

X

|Zc(w,x)|,

where Zc(·,·) is a mean-zero Gaussian process with covariance kernel

Cov
[
Zc(w,x),Zc(w′,x′)

]= E
[
(ψc

wx +φc
wx)(ψ

c
w′x′ +φc

w′x′)
]
, ∀w,w′ ∈ W, x,x′ ∈ Sξ

X .

Moreover, under H1, we have

n− 1
2 T̂ c

n
p→ sup

w∈SW,x∈Sξ
X

|G(w,x,0)−G(w,x,1)| > 0.

We also show in Appendix A that the influence function for
√

n(Ĝ(w,x,0) −
Ĝ(w,x,1) − G(w,x,0) + G(w,x,1)) is ψc

wx + φc
wx, in which ψc

wx is the influence
function when δ(x) and fXZ(x,z) are known, and φc

wx accounts for the estimation
effect of δ(x) and fXZ(x,z). Note that the 1(X ∈ Sξ

X) term in the influence function
accounts for the fact that we consider a trimmed support of X.

Let the simulated empirical process for the continuous case be

Ẑc,u(w,x) = 1√
n

n∑
i=1

Ui × (ψ̂c
wx,i + φ̂c

wx,i),
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where ψ̂c
wx,i + φ̂c

wx,i is the estimated influence function such that

ψ̂c
wx,i = 1(Xi ∈ Sξ

X)

{[
λ(Ŵi −w)− Ê[λ(W −w)|Xi,Zi = 1]

]× 1∗
Xi

(x)1Zi(0)

f̂XZ(Xi,0)

− [λ(Ŵi −w)− Ê[λ(W −w)|Xi,Zi = 0]
]× 1∗

Xi
(x)1Zi(1)

f̂XZ(Xi,1)

}
f̂XZ(Xi,0)f̂XZ(Xi,1),

φ̂c
wx,i = 1(Xi ∈ Sξ

X)κ̂c(w,Xi)

{[
Ŵi − Ê[W|Xi,Z = 0]

]
× 1∗

Xi
(x)1Zi(1)

f̂XZ(Xi,1)

−
[
Ŵi − Ê[W|Xi,Zi = 1]

]
× 1∗

Xi
(x)1Zi(0)

f̂XZ(Xi,0)

}
f̂XZ(Xi,0)f̂XZ(Xi,1),

where f̂XZ(Xi,z), Ê[W|Xi,Z = z], F̂W|DXZ(w|0,Xi,z), and p̂(Xi,z) are uniformly con-
sistent nonparametric estimators for fXZ(X,z), E[W|X,Z = z], FW|DXZ(w|0,X,z),
and p(X,z), respectively. For a given significance level α, the critical value
ĉc

n(α) is obtained as the (1 − α)-quantile of the simulated distribution of
sup

w∈SW,x∈Sξ
X

∣∣Ẑu,c(w,x)
∣∣. We would reject H0 at significance level α when

T̂ c
n > ĉc

α .
Now, we give additional conditions for the validity of the multiplier bootstrap

critical value.

Assumption 12. Assume that, for z = 0,1,

(i) sup
x∈Sξ

X
|f̂XZ(x,z)− fXZ(x,z)| p→ 0;

(ii) sup
x∈Sξ

X
|Ê[W|X = x]−E[W|X = x]| p→ 0;

(iii) sup
x∈Sξ

X
|p̂(x,z)−p(x,z)| p→ 0;

(iv) sup
x∈Sξ

X,w∈SW
|̂FW|DXZ(w|0,x,z)−FW|DXZ(w|0,x,z)| p→ 0, and F̂W|DXZ(w|0,x,z)

is nondecreasing in w for all x and z;

(v) sup
x∈Sξ

X
|δ̂(x)− δ(x)| p→ 0.

THEOREM 5. Suppose Assumptions 1–4, 6, and 8–12 hold. Then,

(a) under H0, limn→∞ P(T̂ c
n ≥ ĉc

n(α)) = α;
(b) under H1, limn→∞ P(T̂ c

n ≥ ĉc
n(α)) = 1.

Theorem 5 shows the size and power of our test for the continuous case. The
proof of Theorem 5 is similar to that of the discrete case. Note that Assumptions
10–12 are high-level conditions, and we provide estimators and give low-level
conditions in Appendix A. Please see the discussion after the proof of Theorem 5.

We can extend our test to cases where the covariate vector contains both discrete
and continuous variables as in our second empirical study. We leave the details to
Appendix C.

https://doi.org/10.1017/S0266466622000147 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000147


TESTING FOR UNOBSERVED HETEROGENEOUS TREATMENT EFFECTS 597

3.3. Computational Issue

When the dimension of the covariates X is large, there will be a computational
issue. For example, suppose that X = (X1,X2,X3) contains three continuous
variables. If we use 100 grids in W and 100 grids in each element of X, it will result
in 1004 points of (w,x) when we calculate the test statistic and the simulated critical
value. Therefore, the computation burden can be too heavy to be practical when the
number of grids we use in each dimension is large, or the dimension of covariates
is large. We suggest conducting the test based on the test statistic calculated by
all combinations of two covariates only to reduce the burden. Specifically, we
calculate the test statistic based on the supremum of 1003 grids in (W,X1,X2),
(W,X1,X3), and (W,X2,X3), respectively, so that we just need to use 3 × 1003

grids to calculate the test statistic and the simulated critical value. The procedure
is similar to the one recommended by Andrews and Shi (2013).

4. MONTE CARLO SIMULATIONS

In this section, we investigate the finite-sample performance of our tests with a
simulation study. The data are simulated as follows:

Y = D+X + [γ + (1−γ )D]× ε1,

D = 1 [�(η) ≤ 0.5×Z],

η = ρ × ε +
√

1−ρ2 × ε2,

where both ε1 and ε2 conform to a uniform distribution on [−2,2], ρ = 0.7, and
Z ∼ Bernoulli(p) with p = 0.25, 0.5, and 0.75, respectively.7 For simplicity, X,
Z, and (ε,η) are mutually independent. Moreover, X is uniformly distributed on
{1,2,3,4} and on [0,1] in the discrete covariates and the continuous covariates
cases, respectively. Furthermore, γ ∈ [0,1] describes the degree of unobserved
heterogeneous treatment effects in our specification. In particular, H0 holds if and
only if γ = 1. Intuitively, the smaller γ is, the more power we expect from our
tests. To investigate the size and power of our tests, we choose γ ∈ {1,0.75,0.5}.

We consider sample size n = 1,000,2,000,4,000, a nominal level of α =
5%, and 1,000 Monte Carlo repetitions. Given Xi = x, to compute the suprema
of the simulated stochastic processes, we use n/20 grids on the support of
[min(Ŵi:Xi=x), max(Ŵi:Xi=x)]. Moreover, we use 1,000 multiplier bootstrap sam-
ples to simulate the p-values. Regarding the estimation of κ(w,x), we choose
the second-order Epanechnikov kernel function with the bandwidth hx = c ×
std(Ŵi:Xi=x) × n−1/4.5, and we set c ∈ {1.7,2,2.34,2.6} to study the sensitivity of
the test to the bandwidth.

Table 1 reports rejection probabilities of our simulations in the discrete-
covariates case under the null hypothesis (i.e., γ = 1) and alternative hypotheses

7Note that we also try different values for the correlation coefficient, and all the results are qualitatively similar.
Additional Monte Carlo simulation results are available upon request.
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Table 1. Rejection probabilities (α = 5%) in the discrete-covariates case.

p n c = 1.7 c = 2 c = 2.34 c = 2.6

Panel A: at null hypothesis with γ = 1
1,000 0.0040 0.0060 0.0150 0.0150

0.25 2,000 0.0190 0.0280 0.0270 0.0460

4,000 0.0420 0.0360 0.0440 0.0470

1,000 0.0140 0.0210 0.0200 0.0350

0.5 2,000 0.0260 0.0330 0.0500 0.0410

4,000 0.0300 0.0560 0.0430 0.0630

1,000 0.0050 0.0130 0.0150 0.0310

0.75 2,000 0.0220 0.0180 0.0290 0.0260

4,000 0.0390 0.0350 0.0420 0.0430

Panel B: at alternative hypothesis with γ = 0.75
1,000 0.0230 0.0290 0.0480 0.0410

0.25 2,000 0.2070 0.2750 0.3070 0.3300

4,000 0.7720 0.7980 0.8030 0.8190

1,000 0.0700 0.1140 0.1550 0.1620

0.5 2,000 0.4740 0.5350 0.5590 0.5870

4,000 0.9470 0.9500 0.9670 0.9520

1,000 0.0480 0.0640 0.1140 0.1160

0.75 2,000 0.2580 0.3490 0.4020 0.4040

4,000 0.8080 0.8340 0.8600 0.8670

Panel C: at alternative hypothesis with γ = 0.50
1,000 0.2560 0.3750 0.4900 0.6010

0.25 2,000 0.9620 0.9880 0.9950 0.9970

4,000 1.0000 1.0000 1.0000 1.0000

1,000 0.8010 0.8840 0.9470 0.9620

0.5 2,000 1.0000 1.0000 1.0000 1.0000

4,000 1.0000 1.0000 1.0000 1.0000

1,000 0.5100 0.6890 0.8010 0.8600

0.75 2,000 0.9990 0.9990 1.0000 1.0000

4,000 1.0000 1.0000 1.0000 1.0000

(i.e., γ = 0.75,0.5). From Panel A, the level of our test is fairly well behaved:
It gets closer to the nominal level as the sample size increases, and the rejection
probabilities are not sensitive to the constant c for the bandwidth choice. Panels
B and C show that the power of the test is reasonable. In particular, when γ is
closer to 1, it is more difficult to detect such a “local” alternative. Therefore,
we obtain relatively low power even when the sample size reaches n = 2,000 in
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Panel B. For relatively “small” sample size, e.g., n = 1,000, our results show that
our test performs better with a larger bandwidth choice. Moreover, when p (i.e.,
the probability of Z = 1) is 0.5, all the results for size and power dominate the
other two cases with p = 0.25,0.75, which is expected by our asymptotic theory.

Next, we evaluate the performance of our tests in the case where the covariates
X are continuous. To compute the suprema, we calculate the test statistic by
using n/20 grid points in the support [minn

i=1(Xi), maxn
i=1(Xi)], as well as in the

support [QŴi
(0.05),QŴi

(0.95)], where QŴi
(·) is the quantile function of Ŵi. In

the estimation of δ(Xi) and G(w,x), we choose the fourth-order Epanechnikov
kernel function with the bandwidth hn = c × std(Xi) × n−1/3 to reduce the bias.
Furthermore, we study the sensitivity of the test to the bandwidth with c ∈
{1.7,2,2.34,2.6}. Table 2 reports the size and power properties of our test, which
are qualitatively similar to those in the discrete-covariates case.

5. EMPIRICAL APPLICATIONS

5.1. Effect of Job Training Program on Earnings

We now apply our tests to study the effects of a job training program on earnings,
i.e., the National Job Training Partnership Act (JTPA), commissioned by the
Department of Labor of the United States. This program funded training from 1983
to the late 1990s to increase employment and earnings for participants. The major
component of JTPA aims to support training for the economically disadvantaged.
The effects of JTPA training programs on earnings have also been studied by,
e.g., Heckman et al. (1997) and Abadie et al. (2002) under a general framework
allowing for unobserved heterogeneous treatment effects.

Our sample consists of 11,204 observations from the JTPA, a survey dataset
from over 20,000 adults and out-of-school youths who applied for the JTPA in
16 local areas across the country between 1987 and 1989.8 ,9 Each participant
was randomly assigned to either a program group or a control group (one out
of three on average). Members of the program group were eligible to participate
in JTPA services, including classroom training, on-the-job training or job search
assistance, and other services, whereas members of the control group were not
eligible for JTPA services for 18 months. Following the literature (see, e.g., Bloom
et al., 1997), we use the program eligibility as an IV for the endogenous individual
participation decision.

The outcome variable is individual earnings, measured by the sum of earnings
in the 30-month period following the offer. The observed covariates include a set
of dummies for race, high-school graduate or the general educational development
(GED) holder, and marriage, whether the applicant worked at least 12 weeks in the

8The data are publicly available at https://www.upjohn.org/data-tools/employment-research-data-center/national-jtpa
-study.
9JTPA services are provided at 649 sites, which might not be randomly chosen. For a given site, the applicants were
randomly selected for the JTPA dataset.
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Table 2. Rejection probabilities (α = 5%) in the continuous-covariates case.

p n c = 1.7 c = 2 c = 2.34 c = 2.6

Panel A: at null hypothesis with γ = 1
1,000 0.0140 0.0500 0.0580 0.0940

0.25 2,000 0.0940 0.1180 0.1120 0.1200

4,000 0.1400 0.1240 0.0940 0.0720

1,000 0.0320 0.0280 0.0360 0.0620

0.5 2,000 0.0048 0.0440 0.0620 0.0360

4,000 0.0460 0.0380 0.0660 0.0440

1,000 0.0100 0.0060 0.0060 0.0260

0.75 2,000 0.0340 0.0300 0.0200 0.0220

4,000 0.0700 0.0580 0.0320 0.0480

Panel B: at alternative hypothesis with γ = 0.75
1,000 0.0420 0.0420 0.1060 0.1120

0.25 2,000 0.1520 0.2980 0.3540 0.4380

4,000 0.7420 0.8220 0.8700 0.8620

1,000 0.0220 0.0440 0.0880 0.1060

0.5 2,000 0.2960 0.3820 0.4740 0.5320

4,000 0.8780 0.9100 0.9480 0.9460

1,000 0.0020 0.0000 0.0140 0.0120

0.75 2,000 0.0240 0.0000 0.0920 0.1180

4,000 0.3980 0.5260 0.5980 0.7000

Panel C: at alternative hypothesis with γ = 0.50
1,000 0.1780 0.3680 0.5980 0.7280

0.25 2,000 0.8360 0.9480 0.9860 0.9960

4,000 1.0000 1.0000 0.9980 1.0000

1,000 0.8500 0.8460 0.9780 0.9940

0.5 2,000 1.0000 1.0000 1.0000 1.0000

4,000 1.0000 1.0000 1.0000 1.0000

1,000 0.2660 0.5300 0.6900 0.8240

0.75 2,000 0.9960 1.0000 1.0000 1.0000

4,000 1.0000 1.0000 1.0000 1.0000

12 months preceding random assignment, and also five age-group dummies (22–
24, 25–29, 30–35, 36–44, and 45–54), among others. Descriptive statistics can be
found in Table 3. For simplicity, we group all applicants into three age categories
(22–29, 30–35, and 36 and above), and pool all non-White applicants as minority
applicants.

To implement the test, given Xi = x, we use the second-order Epanechnikov
kernel and set the smoothing parameter to 2.34 × std(Ŵi:Xi=x)× n−1/4.5 when we
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Table 3. Descriptive statistics for the National JTPA Study.

All
Z = 1 Z = 0

(eligible) (not eligible)

Men

Number of observations 5,102 3,399 1,703

Training (D = 1) 41.87% 62.28% 1.12%

High school or GED 69.32% 69.26% 69.43%

Married 35.26% 36.01% 33.75%

Minorities 38.38% 38.69% 37.76%

Worked less than 13 weeks in the past year 40.02% 40.28% 39.05%

30-month earnings 19,147 19,520 18,404

Women

Number of observations 6,102 4,088 2,014

Training (D = 1) 44.61% 65.73% 1.74%

High school or GED 72.06% 72.85% 70.45%

Married 21.93% 22.48% 20.82%

Minorities 40.41% 40.58% 51.86%

Worked less than 13 weeks in the past year 51.79% 51.75% 51.86%

30-month earnings 13,029 13,439 12,197

Note: Means are reported in this table for the National JTPA Study 30-month earnings sample.

estimate κ(x,w). For the critical value, we use 10,000 multiplier bootstrap samples
and search for the suprema by using 5,000 grid points. The p-value of our test is
0.5732. Therefore, the null hypothesis (i.e., no unobserved heterogenous treatment
effects) cannot be rejected at the 10% significance level. Our results are robust
to the size of bootstrap samples, the number of grid points, and the choices of
bandwidth. Note that our results are consistent with Abadie et al. (2002), who
estimate quantile treatment effects under a linear specification. In particular, one
cannot reject the null hypothesis that quantile treatment effects are invariant across
different quantile levels.10

5.2. The Impact of Fertility on Family Income

The second empirical illustration considers the heterogeneous impacts of children
on parents’ labor supply and income. Recently, Frölich and Melly (2013) studied
the heterogeneous effects of fertility on family income within the general LATE

10We obtain a pointwise 95% confidence interval for each of the quantile treatment effects from Table III of Abadie
et al. (2002) and find that these confidence intervals overlap. We can conclude no evidence against homogeneous
treatment effects because a joint confidence band is, in general, wider than a pointwise confidence band.
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framework. To deal with the endogeneity of fertility decisions, Rosenzweig and
Wolpin (1980), Angrist and Evans (1998), Bronars and Grogger (1994), and
Jacobsen, Pearce, and Rosenbloom (1999), among many others, suggest using twin
births as an IV.

Our data use the 1% and 5% Census Public Use Micro Sample (PUMS)
from 1990 and 2000 censuses, consisting of 602,767 and 573,437 observations,
respectively.11 Similar to Frölich and Melly (2013), our sample is restricted to 21-
to 35-year-old married mothers with at least one child, since we use twin birth as
an instrument for fertility. The outcome variable of interest is the family’s annual
labor income.12 The treatment variable is a dummy variable that takes the value
1 to indicate when a mother has two or more children. The IV is also a dummy
variable and it equals 1 if the first birth is a twin. The covariates include mother’s
age, race, and educational level. Some covariates, i.e., age and years in education,
are treated as continuous variables. Summary statistics can be found in Table 4.

Similar to the previous empirical illustration, we use the fourth-order Epanech-
nikov kernel and set the smoothing parameter to 2.34 × std(Xi)× n−1/3 when we
estimate the influence function. For the critical value, we use 5,000 bootstrapped
samples and search for the suprema by using 1,000 grids for each of the supports
of both W and X’s. The bandwidths are selected in the same manner as those in
the JTPA case. The p-values of our tests are 0.0013 and 0.0007 for the 1990 and
2000 censuses, respectively. These results suggest that the null hypothesis, i.e.,
homogeneous treatment effects, should be rejected at all usual significance levels.

5.3. Extensions

When Z takes multiple values rather than being binary, one could extend our
approach of testing for unobserved heterogeneous treatment effects. Namely, let
W = Y + (1 − D)δ(X), where δ(x) = Cov(Y,Z|X=x)

Cov(D,Z|X=x) . Then, we test H0 by testing
W ⊥⊥ Z|X. Since Z takes more than binary values in its support, this model
restriction can be equivalently written as

FW|XZ(·|x,z) = FW|X(·|x), ∀ (x,z) ∈ SXZ

or

(·|x,z) = E(λ(W −·)|X = x),∀ (x,z) ∈ SWXZ

depending on whether covariates X or instruments Z contain any continuously
distributed components or not.

Such a test, however, does not exploit model restrictions arising from multiplic-
ity of Z. For instance, suppose that SZ = {0,1,2}. Under H0 and Assumption 1, we
have

11The data are publicly available at https://www.census.gov/programs-surveys/acs/microdata.html.
12It includes wages, salary, armed forces pay, commissions, tips, piece-rate payments, cash bonuses earned before
deductions were made for taxes, bonds, pensions, union dues, etc. See Frölich and Melly (2013) for more details.
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Table 4. Descriptive statistics for the 1999 and 2000 censuses.

1990 2000

All Z = 1 Z = 0 All Z = 1 Z = 0

(twin birth) (no twin birth) (twin birth) (no twin birth)

Observations 602,767 6,524 596,243 573,437 8,569 564,868

Number of children 1.9276 2.5318 1.9209 1.8833 2.5196 1.8734

At least two children (D = 1) 0.6500 1.0000 0.6461 0.6163 1.0000 0.6104

Mother

Age in years 29.7894 29.9530 29.7876 30.0562 30.3943 30.0510

Years of education 12.9196 12.9623 12.9191 13.1131 13.2615 13.1108

Black 0.0637 0.0757 0.0636 0.0724 0.0816 0.07228

Asian 0.0326 0.0321 0.0326 0.0447 0.0335 0.0448

Other races 0.0537 0.0592 0.0536 0.0912 0.0806 0.0914

Currently at work 0.5781 0.5444 0.5785 0.5629 0.5132 0.5637

Usual hours per week 24.5660 23.3537 24.5795 25.1400 23.0491 25.1723

Wage or salary income last year 8,942 8,593 8,946 14,200 13,757 14,206
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Table 4. Continued.

1990 2000

All Z = 1 Z = 0 All Z = 1 Z = 0

(twin birth) (no twin birth) (twin birth) (no twin birth)

Father

Age in years 32.5358 32.7534 32.5333 32.9291 33.3102 32.9232

Years of education 13.0436 13.0748 13.0432 13.0331 13.1806 13.0308

Black 0.0671 0.0796 0.0670 0.0800 0.0945 0.0798

Asian 0.0291 0.0263 0.0292 0.0402 0.0318 0.0403

Other races 0.0488 0.0529 0.0488 0.0919 0.0802 0.0921

Currently at work 0.8973 0.8922 0.8974 0.8512 0.8584 0.8511

Usual hours per week 42.7636 42.7704 42.7635 43.8805 43.8789 43.8805

Wage or salary income last year 27,020 28,039 27,010 38,041 41,584 37,987

Parents

Wage or salary income last year 35,963 36,632 35,956 52,241 55,342 52,193

Note: Data from the 1% and 5% PUMS in 1990 and 2000. Own calculations using the PUMS sample weights. The sample consists of married mothers between 21
and 35years of age with at least one child.
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E(Y|X = x,Z = z)−E(Y|X = x,Z = z)

p(x,z)−E(D|X = x)
= δ(x), ∀x.

As a matter of fact, our test does not exploit such a model restriction.
Our analysis naturally extends the case where the treatment variable D takes

multiple values. For illustration, suppose SD = {0,1,2}. Under the homogeneous
treatment effects hypothesis, denote δ1(x) ≡ g(1,x,·) − g(0,x,·) and δ2(x) ≡
g(2,x,·)− g(0,x,·). For d = 1,2, let pd(X,Z) = P(D = d|X,Z) and Wd ≡ δd(X)+
Y −∑2

d′=11(D = d′)×δd′(X). Note that under H0, i.e., g(d,x,·)−g(0,x,·) = δd(x),
we have

Wd = g(d,X,ε).

By a similar argument, we test for unobserved heterogeneous treatment effects by
testing Wd ⊥⊥ Z|X, for d = 1,2. To complete our analysis, it suffices to establish
the identification of δd(x). Note that under H0 and Assumption 1, we have

E(Y|X = x,Z = z) = E[g(0,X,ε)|X = x]+ δ1(x)×p1(x,z)+ δ2(x)×p2(x,z), ∀z.

Therefore, δd is identified if {(p1(x,z),p2(x,z))′ : z ∈ SZ|X=x} has the full rank. Note
that such a rank condition requires SZ|X=x to contain at least three values.

APPENDIX

A. Proofs

A.1. Proof of Proposition 1. Proof: For the “if” part, under (3), we have

g(1,x,ε)−g(0,x,ε) = m(1,x)−m(0,x) ≡ δ(x), ∀x ∈ SX .

For the “only if” part, (2) implies

g(d,x,ε) = d × [g(1,x,ε)−g(0,x,ε)]+g(0,x,ε) = d × δ(x)+g(0,x,ε).

Therefore, (3) holds in the sense m(d,x) = d × δ(x) and ν(x,ε) = g(0,x,ε).

A.2. Proof of Lemma 1. Proof: The first part of Lemma 1 is straightforward given
the discussion before Lemma 1. We now show the second part. It suffices to construct a
structure that can rationalize the data and also satisfy (1), Assumption 1, and H0. Given the
observed data, denoted by F∗

YDXZ , we now construct a data generating structure for it. In
the following proof, we use Q∗

W|X to denote the quantile function of W given X, obtained

from F∗
YDXZ . Similarly, we define δ∗(x) and p∗(x,z). To begin with our construction, let

ε ∼ U[0,1], X ∼ F∗
X, and Z ∼ F∗

Z . Moreover, let X, ε, and Z be mutually independent for
FXZε . To complete our construction, it suffices to define the probability distribution P(D =
1|X,Z,ε) and the function g for Y. Let

g(d,x,τ ) = Q∗
W|X(τ |x)− (1−d)× δ∗(x),
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and Y = g(D,X,ε). Regarding P(D = 1|X,Z,ε), given that we have constructed Fε|XZ , we
can equivalently define the joint distribution of (D,ε) given X and Z. Furthermore, let

P(D = 1;ε ≤ τ |X = x,Z = z) = p∗(x,z)×F∗
Y|DXZ(Q∗

W|X(τ |x)|1,x,z), ∀ x,z.

By construction, Assumption 1 and H0 are satisfied. Thus, it suffices to show the obser-
vational equivalence. First, let τ = 1 in the construction of P(D = 1;ε ≤ τ |X,Z), then it
follows that P(D = 1|X = x,Z = z) = p∗(x,z). Moreover, note that

P(Y ≤ y|D = 1,X = x,Z = z) = P(g(1,x,ε) ≤ y;D = 1|X = x,Z = z)

P(D = 1|X = x,Z = z)

=
P(Q∗

W|X(ε|x) ≤ y;D = 1|X = x,Z = z)

P(D = 1|X = x,Z = z)

= F∗
Y|DXZ(y|1,x,z).

A.3. Proof of Theorem 1. Proof: Because Proposition 1 provides the “only if” part,

then it suffices to show the “if” part. Suppose W ⊥⊥ Z|X. Let δ̃(X) = Cov(Y,Z|X)
Cov(D,Z|X)

. By the
definition of W,

W ≡ Y + (1−D)× Cov(Y,Z|X)

Cov(D,Z|X)
= Y + (1−D)δ̃(X).

Thus, for any y ∈ R,

P(Y ≤ y,D = 1|X,Z = 1)+P(Y + δ̃(X) ≤ y,D = 0|X,Z = 1)

= P(Y ≤ y,D = 1|X,Z = 0)+P(Y + δ̃(X) ≤ y,D = 0|X,Z = 0).

It follows that

P(Y ≤ y,D = 1|X,Z = 1)−P(Y ≤ y,D = 1|X,Z = 0)

= P(Y ≤ y− δ̃(X),D = 0|X,Z = 0)−P(Y ≤ y− δ̃(X),D = 0|X,Z = 1). (13)

Denote

�0(τ,x) ≡ P(ν(X,ε) ≤ τ,D = 0|X = x,Z = 1)−P(ν(X,ε) ≤ τ,D = 0|X = x,Z = 0),

�1(τ,x) ≡ P(ν(X,ε) ≤ τ,D = 1|X = x,Z = 0)−P(ν(X,ε) ≤ τ,D = 1|X = x,Z = 1).

By Assumptions 1 and 3, we have

�0(τ,x) = P(ν(X,ε) ≤ τ,η ∈ Cx|X = x) = �1(τ,x),

which is strictly monotone in τ ∈Sν(X,ε)|X=x, η∈Cx . Moreover, there isSν(X,ε)|X=x, η∈Cx =
Sν(X,ε)|X=x under Assumptions 2 and 4.

Therefore, we have

P(Y ≤ y,D = 1|X = x,Z = 0)−P(Y ≤ y,D = 1|X = x,Z = 1)

= �1(g̃−1(1,x,y),x)

= �0(g̃−1(1,x,y),x)
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= P(Y ≤ g̃(0,x,g̃−1(1,x,y)),D = 0|X = x,Z = 1)

−P(Y ≤ g̃(0,x,g̃−1(1,x,y)),D = 0|X = x,Z = 0),

where g̃−1(1,x,·) is the inverse function of g̃(1,x,·), and g̃ is a monotone function introduced
in Assumption 2. Note that both sides are strictly monotone in y ∈ Sg̃(1,X,V)|X=x since
�d(·,x) is strictly monotone on Sν(X,ε)|X=x under Assumption 4.

Combine the above result with (13), then we have

g̃(0,x,g̃−1(1,x,y)) = y− δ̃(x), ∀x ∈ SX, y ∈ Sg̃(1,x,ν(X,ε))|X=x.

Let y = g̃(1,x,τ ) for some τ ∈ Sν(X,ε)|X=x. Then, the above equation becomes

g̃(0,x,τ ) = g̃(1,x,τ )− δ̃(x).

A.4. Proof of Theorem 2. Proof: Let 1∗
WXZ(w,x,z) = 1(W ≤ w) ×1XZ(x,z) and

1∗̂
WXZ

(w,x,z) =1(Ŵ ≤ w)×1XZ(x,z). Furthermore, let1∗
W(δ̃)XZ

(w,x,z) =1(W(δ̃) ≤ w)×
1XZ(x,z), where W(δ̃) = Y + (1 − D)δ̃(X), be a function indexed by δ̃(·) ∈ RSX . By the
definition, 1∗

W(δ)XZ(w,x,z) = 1∗
WXZ(w,x,z), and 1∗

W(δ̂)XZ
(w,x,z) = 1∗̂

WXZ
(w,x,z).

We first derive the asymptotic of
√

n[F̂W|XZ(w|x,z)−FW|XZ(w|x,z)]. By the definition,

FW|XZ(w|x,z) = E[1∗
WXZ(w,x,z)]

E[1XZ(x,z)]
and F̂W|XZ(w|x,z) =

En[1∗̂
WXZ

(w,x,z)]

En[1XZ(x,z)]
.

In the expectation E[1∗
W(δ̂)XZ

(·,x,z)] discussed below, we treat δ̂ as an index rather than a

random object. Note that

En[1∗̂
WXZ

(·,x,z)] = En[1∗
WXZ(·,x,z)]−E[1∗

WXZ(·,x,z)]+E[1∗
W(δ̂)XZ

(·,x,z)]
+
{

En[1∗
W(δ̂)XZ

(·,x,z)]−E[1∗
W(δ̂)XZ

(·,x,z)]−En[1∗
W(δ)XZ(·,x,z)]+E[1∗

W(δ)XZ(·,x,z)]
}

= En[1∗
WXZ(·,x,z)]−E[1∗

WXZ(·,x,z)]+E[1∗
W(δ̂)XZ

(·,x,z)]+op(n−1/2),

where the last step follows from the fact that
√

n
(
En[1∗

W(δ)XZ(·,x,z)]+E[1∗
W(δ)XZ(·,x,z)])

is stochastically equicontinuous by the empirical process theory (see, e.g., van der Vaart and
Wellner, 2007). By the Taylor expansion,

√
n
{

E[1∗
W(δ̂)XZ

(·,x,z)]−FW|XZ(w|x,z)
}

=
∂E[1∗

W(δ)XZ(w,x,z)]

∂δ
×√

n(δ̂ − δ)+op(1).

Note that
∂E[1∗

W(δ)XZ(w,x,z)]
∂δ(x′) = 0, for all x′ �= x, and

∂E[1∗
W(δ)XZ(w,x,z)]

∂δ(x) = −fW|DXZ(w|0,x,z)×
P(D = 0,X = x,Z = z). Therefore, we have

√
n
{

E[1∗
W(δ̂)XZ

(·,x,z)]−FW|XZ(w|x,z)
}

+√
n
{
En[1∗

WXZ(·,x,z)]−E[1∗
WXZ(·,x,z)]}− fWDXZ(w,0,x,z)×√

n[δ̂(x)− δ(x)]+op(1).
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Moreover, En[1XZ(x,z)] = P(X = x,Z = z)+ Op(n−1/2) under the central limit theorem.
Thus, by Slutsky’s theorem, we have

√
n
[
F̂W|XZ(w|x,1)− F̂W|XZ(w|x,0)

]−√
n
[
FW|XZ(w|x,1)−FW|XZ(w|x,0)

]
=

√
n
{
En[1∗

WXZ(w,x,1)]−E[1∗
WXZ(w,x,1)]

}− fWDXZ(w,0,x,1)×√
n[δ̂(x)− δ(x)]

P(X = x,Z = 1)

−
√

n
{
En[1∗

WXZ(w,x,0)]−E[1∗
WXZ(w,x,0)]

}− fWDXZ(w,0,x,0)×√
n[δ̂(x)− δ(x)]

P(X = x,Z = 0)

+
√

nP(W ≤ w,X = x,Z = 1)

En1XZ(x,1)
−

√
nP(W ≤ w,X = x,Z = 0)

En1XZ(x,0)
+op(1).

By applying the Taylor expansion, we have

√
nP(W ≤ w,X = x,Z = z)

En1XZ(x,z)
−√

n FW|XZ(w|x,z)

= −FW|XZ(w|x,z)×
√

n
[
En1XZ(x,z)−P(X = x,Z = z)

]
P(X = x,Z = z)

+op(1).

Moreover, applying Lemma 3, we have

√
n
[
F̂W|XZ(w|x,1)− F̂W|XZ(w|x,0)

]−√
n
[
FW|XZ(w|x,1)−FW|XZ(w|x,0)

]
= √

nEn

{
[1(W ≤ w)−FW|XZ(w|x,1)]× 1XZ(x,1)

P(X = x,Z = 1)

}
−√

nEn

{
[1(W ≤ w)−FW|XZ(w|x,0)]× 1XZ(x,0)

P(X = x,Z = 0)

}
+κ(w,x)×√

nEn

{[
W −E(W|X = x,Z = 0)

]× 1XZ(x,1)

P(X = x,Z = 1)

}
−κ(w,x)×√

nEn

{[
W −E(W|X = x,Z = 1)

]× 1XZ(x,0)

P(X = x,Z = 0)

}
+op(1).

Under the null hypothesis, there is

√
n
[
F̂W|XZ(w|x,1)− F̂W|XZ(w|x,0)

]
= √

nEn

{
[1(W ≤ w)−FW|X(w|x)]×

[ 1XZ(x,1)

P(X = x,Z = 1)
− 1XZ(x,0)

P(X = x,Z = 0)

]}
+κ(w,x)×√

nEn

{[
W −E(W|X =x)

]×[ 1XZ(x,1)

P(X = x,Z = 1)
− 1XZ(x,0)

P(X = x,Z = 0)

]}
+op(1)

= 1√
n

n∑
i=1

(
ψwx,i +φwx,i

)+op(1),

where ψwx,i and φwx,i are defined by (7) and (8). Note that, for each x ∈ X , {1(W ≤ w)−
FW|X(w|x) : w ∈ W} is a type I class of functions according to Andrews (1994), and this
implies that {1(W ≤ w)−FW|X(w|x) : w ∈ W,x ∈ X } satisfies Pollard’s entropy condition

by Theorem 3 of Andrews (1994). Note that 1XZ(x,1)
P(X=x,Z=1)

− 1XZ(x,0)
P(X=x,Z=0)

is a measurable
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function, so it follows that{
ψwx = (1(W ≤ w)−FW|X(w|x))

×
(

1XZ(x,1)
P(X=x,Z=1)

− 1XZ(x,0)
P(X=x,Z=0)

)
: w ∈ W,x ∈ X

}

satisfies Pollard’s entropy condition. Furthermore, by Assumption 5, we have that, for all x,{
φwx = κ(w,x)(W −E[W|X = x])×

(
1XZ(x,1)

P(X = x,Z = 1)
− 1XZ(x,0)

P(X = x,Z = 0)

)
: w ∈ W

}
is a Vapnik-Chervonenkis (VC) class of function according to Kosorok (2008), and it
follows that{

φwx = κ(w,x)(W −E[W|X = x])

×
(

1XZ(x,1)
P(X=x,Z=1)

− 1XZ(x,0)
P(X=x,Z=0)

)
: w ∈ W,x ∈ X

}

is a VC class of function that satisfies Pollard’s entropy condition. It follows that {ψwx +
φwx : w ∈W,x ∈X } satisfies Pollard’s entropy condition. Then, combined with the previous
results and by Theorem 1 of Andrews (1994), we can show that

√
n(F̂Ŵ|XZ(w|x,0)− F̂Ŵ|XZ(w|x,1)− (FW|XZ(w|x,0)−FW|XZ(w|x,1))) ⇒ Z(w,x).

(14)

Then, by the continuous mapping theorem (see, e.g., van der Vaart and Wellner, 2007), and

under the null, we have T̂n
d→ supw∈R; x∈SX

|Z(w,x)|. In addition, (14) implies that

sup
(w,x)∈SWX

∣∣∣(F̂Ŵ|XZ(w|x,0)− F̂Ŵ|XZ(w|x,1)− (FW|XZ(w|x,0)−FW|XZ(w|x,1)))

∣∣∣ p→ 0.

It follows that under H1, we have n−1/2T̂n
p→ sup(w,x)∈SWX

|FW|XZ(w|x,0) −
FW|XZ(w|x,1)| > 0.

A.5. Proof of Theorem 3. The proof of Theorem 3 would follow standard arguments
once we establish the validity of the multiplier bootstrapped processes. Note that under
Assumption 7, we have that

∣∣∣1
n

n∑
i=1

(ψ̂wx,i + φ̂wx,i) · (ψ̂w′x′,i + φ̂w′x′,i)−Cov[Z(w,x),Z(w′,x′)]
∣∣∣ p→ 0

uniformly over ((w,x),(w′,x′)) ∈S2
WX by the uniform law of large numbers and the uniform

consistency of the various estimators in the estimated influence functions. That is, the
covariance kernel of the simulated processes converges to the covariance kernel of Z(w,x)

uniformly. Then, by similar arguments as in Hsu (2017), we can show thatZu(·,·) p⇒Z(·,·).
Given this result, the size and power properties of our test follow standard arguments such
as Andrews (1997).

Discussion on Assumption 7: Here, we provide estimators and low-level conditions
so that Assumption 7 would be satisfied. It is straightforward to see that δ̂(x) satisfies
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Assumption 7(iv). For x,z ∈ SXZ , let

P̂(X = x,Z = z) = 1

n

n∑
i=1

1XZ(x,z), (15)

p̂(x,z) = 1

n

n∑
i=1

1DXZ(1,x,z)/
1

n

n∑
i=1

1XZ(x,z).

Because X and Z take on a finite number of values, it is straightforward to see that P̂(X =
x,Z = z) and p̂(x,z) given in (15) satisfy Assumption 7(i) and (ii), respectively.

We propose an estimator for fWD|XZ(w,0|x,z). For w ∈ W = [w�,wu], let

f̃WD|XZ(w,0|x,z) =
∑n

i=1 KWi,h(w)1(Di = 0)1XiZi(x,z)∑n
i=11XiZi(x,z)

and

f̂WD|XZ(w,0|x,z) =
⎧⎨⎩

f̃WD|XZ(w� +h,0|x,z), if w ∈ [w�,w� +h),

f̃WD|XZ(w,0|x,z), if w ∈ (w� +h,wu −h),

f̃WD|XZ(wu −h,0|x,z), if w ∈ (wu −h,wu].
(16)

Assumption 13. Assume that

(i) K(u) is nonnegative and has support [−1,1]. K(u) is symmetric around 0 and is
continuously differentiable of order 1.

(ii) The bandwidth h satisfies h → 0, nh4 → ∞, and nh/ log(n) → ∞, as n → ∞.

Then, under Assumption 13 and by the argument of the proof of Lemma 3.2 of
Donald, Hsu, and Barrett (2012), we show that the f̂WD|XZ(w,0|x,z) given in (16) satisfies
Assumption 7. Finally, for kernel functions, we can pick an Epanechnikov kernel that would
satisfy Assumption 13(i), and for h, we can set h = σ̂w ×n−1/4.5.

A.6. Proof of Lemma 2. Proof: Fix the value of X as x, and let z = 1 without loss
of generality. Note that

Ĝ(w,x,1)− G̃(w,x,1)

= En

{
1∗

XZ(x,1)f̂XZ(X,0)(w− Ŵ)
[
1(Ŵ ≤ w)−1(W ≤ w)

]}
= En

{
1∗

XZ(x,1)f̂XZ(X,0)(w− Ŵ)
[
1(Ŵ ≤ w)−1(W ≤ w)

]×1(|W −w| ≤ n−r)
}

+En

{
1∗

XZ(x,1)f̂XZ(X,0)(w− Ŵ)
[
1(Ŵ ≤ w)−1(W ≤ w)

]×1(|W −w| > n−r)
}

≡ T1 +T2,

where r ∈ ( 1
4,ι). It suffices to show both T1 and T2 are op(n− 1

2 ).
First, note that

T1 =En

{
1∗

XZ(x,1)f̂XZ(X,0)(w−W)
[
1(Ŵ ≤ w)−1(W ≤ w)

]×1(|W −w| ≤ n−r)
}

+En

{
1∗

XZ(x,1)f̂XZ(X,0)(W − Ŵ)
[
1(Ŵ ≤ w)−1(W ≤ w)

]×1(|W −w| ≤ n−r)
}

.
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This is because

E
{∣∣∣1∗

XZ(x,1)f̂XZ(X,0)(w−W)
[
1(Ŵ ≤ w)−1(W ≤ w)

]×1(|W −w| ≤ n−r)
∣∣∣}

≤ E
{∣∣∣f̂XZ(X1,0)× (w−W)×1(|W −w| ≤ n−r)

∣∣∣}= O(1)×O(n−2r) = o(n− 1
2 ),

where the last step holds when r > 1
4 . Moreover,

E
{∣∣∣1∗

XZ(x,1)f̂XZ(X,0)(W − Ŵ)
[
1(Ŵ ≤ w)−1(W ≤ w)

]×1(|W −w| ≤ n−r)
∣∣∣}

≤ E
{∣∣∣f̂XZ(X1,0)× (W − Ŵ)×1(|W −w| ≤ n−r)

∣∣∣}= O(1)×O(n−ι)×O(n−r) = o(n− 1
2 ).

Then, we have T1 = op(n− 1
2 ).

For term T2, note that

E[|T2|] ≤ K

h
×
√

E[(w− Ŵ)2]×
√

P
(|Ŵ −W| > n−r

)
≤ K

h
×
√

E[Ŵ2]−2w×E[Ŵ]+w2 ×
√

P
[
|δ̂(X)− δ(X)| > n−r

]
,

where K is the upper bound of K(·). Because W is a bounded random variable and w
belongs to a compact set, then

√
E[Ŵ2]−2w×E[Ŵ]+w2 = O(1). Moreover, by Lemma

4, E|T2| ≤ o(n−k), for any k > 0. Hence, T2 = op(n− 1
2 ).

A.7. Proof of Theorem 4. Proof: By Lemma 2, we have

T̂ c
n = √

n
∣∣G̃(w,x,1)− G̃(w,x,0)

∣∣+op(1).

Note that

G̃(w,x,z) = U1(w,x,z)+U2(w,x,z)+op(n−1/2),

where

U1(w,x,z) ≡ 1

n

n∑
i=1

1∗
Wi

(w)×1∗
XiZi

(x,z)× f̂XZ(Xi,z
′)× (Wi − Ŵi),

U2(w,x,z) ≡ 1

n

n∑
i=1

1∗
Wi

(w)×1∗
XiZi

(x,z)× f̂XZ(Xi,z
′)× (w−Wi).

Therefore,
√

n
[
G̃(w,x,1)− G̃(w,x,0)

]
= √

n {U1(w,x,1)−U1(w,x,0)− [EU1(w,x,1)−EU1(w,x,0)]}
+√

n {U2(w,x,1)−U2(w,x,0)− [EU2(w,x,1)−EU2(w,x,0)]}
+√

n [EU1(w,x,1)−EU1(w,x,0)]+√
n [EU2(w,x,1)−EU2(w,x,0)] .

We first discuss U2 terms. By definition,

U2(w,x,z) = 1

n(n−1)

n∑
i=1

∑
j �=i

{1∗
XiZi

(x,z)λ(Wi −w)×KXj,h(Xi)1(Zj = z′)}
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= 1

n(n−1)

n∑
i=1

∑
j �=i

ζn,ij(w,x,z),

where ζn,ij(w,x,z) = 1∗
XiZi

(x,z)×λ(Wi −w)×KXj,h(Xi)×1(Zj = z′).
Let ζ∗

n,ij(w,x,z) = 1
2

[
ζn,ij(w,x,z)+ ζn,ji(w,x,z)

]
. Then, ζ∗

n,ij is symmetric in indices i
and j. Therefore,

U2(w,x,z) = 1

n(n−1)

n∑
i=1

∑
j �=i

ζ∗
n,ij(w,x,z),

which is a U-process indexed by (w,x,z�). By Nolan and Pollard (1988, Thm. 5) and Powell
et al. (1989, Lem. 3.1),

U2(w,x,z)−E[U2(w,x,z)]

= 2

n

n∑
i=1

{
E[ζ∗

n,ij(w,x,z)|Yi,Di,Xi,Zi]−E[ζ∗
n,ij(w,x,z)]

}
+op(n−1/2),

where the op(n−1/2) applies uniformly over (w,x). Note that

E[ζ∗
n,ij(w,x,z)|Yi,Di,Xi,Zi]

= 1

2

{
1∗

XZ(x,z)fXZ(X,z′)λ(W −w)+1∗
XZ(x,z′)fXZ(X,z)(w|X,z)

}
+op(1).

Next, we derive E[ζ∗
n,ij(w,x,z)]. Let u1(w,x,z) = E[1∗

XZ(x,z)fXZ(X,z′)λ(W − w)] and

u2(w,x,z) = E[1∗
XZ(x,z′)fXZ(X,z)(w|X,z)]. Note that under H0

u1(w,x,z) = u2(w,x,z) =
∫

1(X ≤ x)(w|X)fX|Z(X|1)fX|Z(X|0)dX ×P(Z = 1)P(Z = 0),

invariant with z. Therefore, E[ζ∗
n,ij(w,x,z)] = 1

2 [u1(w,x,z) + u2(w,x,z)] is also invariant

with z. Let ue(w,x) = E[ζ∗
n,ij(w,x,z)]. Moreover, by Powell et al. (1989, Thm. 3.1),

2√
n

n∑
i=1

{
E[ζ∗

n,ij(w,x,z)|Yi,Di,Xi]−E[ζ∗
n,ij(w,x,z)]

}
= En

{
1∗

XZ(x,z)fXZ(X,z′)λ(W −w)−ue(w,x)
}

+En
{
1∗

XZ(x,z′)fXZ(X,z)(w|X,z)−ue(w,x)
}+op(n− 1

2 ),
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where the op(n−1/2) holds uniformly over (w,x). Moreover, under H0, there is (w|X,z) =
E(λ(W −w)|X). Thus,

U2(w,x,1)−U2(w,x,0)− [EU2(w,x,1)−EU2(w,x,0)]

= En

{[1∗
XZ(x,1)

fXZ(X,1)
− 1∗

XZ(x,0)

fXZ(X,0)

]
fXZ(X,0)fXZ(X,1)

[
λ(W −w)−E(λ(W −w)|X)

]}
+op(n− 1

2 ).

We now turn to U1(w,x,z). Note that

U1(w,x,z) = −1

n

n∑
i=1

{
1∗

WiXiZi
(w,x,z)fXZ(Xi,z

′)(1−Di)[δ̂(Xi)− δ(Xi)]
}

+op(n− 1
2 ),

provided that E
∣∣∣[f̂XZ(Xi,z

′)− fXZ(Xi,z
′)
]
×
[
δ̂(Xi)− δ(Xi)

]∣∣∣= op(n− 1
2 ) holds. By a simi-

lar decomposition argument on δ̂(X)− δ(X) in Lemma 4, we have

U1(w,x,z) = − 1

n(n−1)

n∑
i=1

∑
j �=i

ξn,ij(w,x,z)+op(n−1/2),

where ξn,ij(w,x,z) = 1∗
WiXiZi

(w,x,z)fXZ(Xi,z
′)(1 − Di)

[Wj−E(Wj|Xi)]KXj,h(Xi)

p(Xi,1)−p(Xi,0)

[
1(Zj=1)

fXZ(Xi,1)
−

1(Zj=0)

fXZ(Xi,0)

]
. Moreover, let ξ∗

n,ij(w,x,z) = 1
2 [ξn,ij(w,x,z)+ ξn,ji(w,x,z)].

By a similar argument for U2,

U1(w,x,z)−E[U1(w,x,z)]

= −2

n

n∑
i=1

{
E[ξ∗

n,ij(w,x,z)|Yi,Di,Xi,Zi]−E[ξ∗
n,ij(w,x,z)]

}
+op(n−1/2).

Note that E[ξn,ij(w,x,z)|Yi,Di,Xi,Zi] = 0 and

E[ξn,ji(w,x,z)|Yi,Di,Xi,Zi] = E
{
E[ξn,ji(w,x,z)|Xj,Zj,Yi,Di,Xi,Zi]

∣∣Yi,Di,Xi,Zi
}

= E
{
1∗

XjZj
(x,z)fXZ(Xj,z

′)P(W ≤ w;D = 0|Xj,Zj)[Wi −E(W|Xj)]

× KXj,h(Xi)

p(Xj,1)−p(Xj,0)

[
1(Zi = 1)

fXZ(Xj,1)
− 1(Zi = 0)

fXZ(Xj,0)

]∣∣∣Yi,Di,Xi,Zi

}

= F∗
WD|XZ(w,0|Xi,z)[Wi −E(W|Xi)]

fXZ(Xi,0)fXZ(Xi,1)

p(Xi,1)−p(Xi,0)

[
1∗

Xi,Zi
(x,1)

fXZ(Xi,1)
−

1∗
Xi,Zi

(x,0)

fXZ(Xi,0)

]
+op(1),

where the last step comes from Bochner’s lemma (see, e.g., Rudin, 1962) and uses the fact
the integrant equals zero if Zj = z′.
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Thus, we have

U1(w,x,z)−E[U1(w,x,z)]

= −En

{
[W −E(W|X)]

F∗
WD|XZ(w,0|X,z)

p(X,1)−p(X,0)

[
1∗

XZ(x,1)

fXZ(X,1)
− 1∗

XZ(x,0)

fXZ(X,0)

]
fXZ(X,1)fXZ(X,0)

}
+op(n− 1

2 ),

where the op(n−1/2) holds uniformly over (w,x). It follows that

U1(w,x,1)−EU1(w,x,1)− [U1(w,x,0)−EU1(w,x,0)] = Enφc
wx +op(n− 1

2 ).

By Assumption 9, we have E[U1(w,x;z)] = op(n− 1
2 ). Therefore, under H0,

√
n
[
G̃(w,x,1)− G̃(w,x,0)

]
= √

n {U1(w,x,1)−U1(w,x,0)−{E[U1(w,x,1)]−E[U1(w,x,0)]}}
+√

n {U2(w,x,1)−U2(w,x,0)−{E[U2(w,x,1)]−E[U2(w,x,0)]}}+op(1)

= √
n×En(ψc

wx +φc
wx)+op(1),

which converges to a zero-mean Gaussian process with the given covariance kernel.

A.8. Proof of Theorem 5. The proof is similar to that of Theorem 3, and we skip it
for brevity.

Discussion on Assumptions 10–12: By Masry (1996) and Lemma A.1 of Abrevaya et al.
(2015), we have the bias terms satisfying

sup
x∈Sξ

X

∣∣∣E[1

n

n∑
j=1

1Zj(z)KXj,h(x)
]
− fXZ(x,z)

∣∣∣= O(hk),

sup
x∈Sξ

X

∣∣∣E[1

n

n∑
j=1

Dj1Zj(z)KXj,h(x)
]
−p(x,z)fXZ(x,z)

∣∣∣= O(hk),

sup
x∈Sξ

X

∣∣∣E[1

n

n∑
j=1

Yj1Zj(z)KXj,h(x)
]
−E(Y|X = x,Z = z)fXZ(x,z)

∣∣∣= O(hk),

sup
x∈Sξ

X

∣∣E[δ̂(x)]− δ(x)
∣∣= O(hk),

where k is the order of kernel K. According to Assumptions 10 and 11, we require that
hk = o(n−1/2) and

√
nhdX diverges at a rate faster than nι with ι > 1/4. Therefore, if we pick

a kth order Epanechnikov kernel with k = 2dX + 2, h = O(n1/(2dX+1)), then Assumptions
10 and 11 will be satisfied. Note that under the same conditions, Assumption 12(i), (iii),
and (iv) is also satisfied.

We next consider Assumption 12(ii). To estimate E[W|X = x], we will replace Wi’s with
Ŵi’s in the kernel regressions. Because |Wi − Ŵi| = op(1) uniformly, we can show that
Assumption 12(ii) holds.
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We finally consider Assumption 12(iv). Define the estimator for FW|DXZ(w|0,x,z) as

F̂W|DXZ(w|0,x,z) =
∑n

i=11(Ŵi ≤ w)1(Di = 0,Zi = z)KF
Xi,hF

(Xi)∑n
i=11(Di = 0,Zi = z)KF

Xi,hF
(Xi)

,

where KF is a regular Epanechnikov kernel and hF is the bandwidth. It is straightforward to
see that if hF → 0 and nhdX → ∞, then we can show that sup

x∈Sξ
X,z∈SZ,w∈SW

|̂FW|DXZ(w|0,
x,z) − FW|DXZ(w|0,x,z)| p→ 0. Given that the regular Epanechnikov kernel is always
nonnegative, F̂W|DXZ(w|0,x,z) is monotonically increasing as well. Hence, Assumption
12(iv) also holds.

B. Technical Lemmas

Let �p(x) ≡ p(x,1)−p(x,0), which is strictly positive by Assumption 5.

LEMMA 3. Suppose Assumptions 1 and 5 hold. Then, we have

√
n[δ̂(x)− δ(x)] = 1

�p(x)
×√

nEn

{[
W −E(W|X = x,Z = 0)

]× 1XZ(x,1)

P(X = x,Z = 1)

}
− 1

�p(x)
×√

nEn

{[
W −E(W|X = x,Z = 1)

]× 1XZ(x,0)

P(X = x,Z = 0)

}
+op(1).

(17)

Proof of Lemma 3: Fix X = x. For expositional simplicity, we suppress x in the
following proof. Moreover, let An(z) = En[Y1XZ(x,z)], Bn(z) = En[D1XZ(x,z)], Cn(z) =
En1XZ(x,z), A(z) = E[Y1XZ(x,z)], B(z) = E[D1XZ(x,z)], and C(z) = E1XZ(x,z) = P(X =
x,Z = z). By definition, note that

δ̂(x) = An(1)Cn(0)−An(0)Cn(1)

Bn(1)Cn(0)−Bn(0)Cn(1)
and δ(x) = A(1)C(0)−A(0)C(1)

B(1)C(0)−B(0)C(1)
.

It follows that

δ̂(x)− δ(x) = An(1)Cn(0)−An(0)Cn(1)− [A(1)C(0)−A(0)C(1)]

Bn(1)Cn(0)−Bn(0)Cn(1)

+
{

A(1)C(0)−A(0)C(1)

Bn(1)Cn(0)−Bn(0)Cn(1)
− A(1)C(0)−A(0)C(1)

B(1)C(0)−B(0)C(1)

}
≡ I+ II.

We first look at term I. By the central limit theorem and Assumption 5, we have An(z) =
A(z)+Op(n−1/2), Bn(z) = B(z)+Op(n−1/2), and Cn(z) = C(z)+Op(n−1/2). Therefore,

I = [An(1)−A(1)]C(0)+A(1) [Cn(0)−C(0)]

B(1)C(0)−B(0)C(1)

− [An(0)−A(0)]C(1)+A(0) [Cn(1)−C(1)]

B(1)C(0)−B(0)C(1)
+op(n−1/2)
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= An(1)C(0)−A(0)Cn(1)−An(0)C(1)+A(1)Cn(0)

B(1)C(0)−B(0)C(1)

+ 2[A(0)C(1)−A(1)C(0)]

B(1)C(0)−B(0)C(1)
+op(n−1/2).

Specifically, we have

I = En
{[

Y −E(Y|X = x,Z = 0)
]×1XZ(x,1)

}× P(X = x,Z = 0)

B(1)C(0)−B(0)C(1)

−En
{[

Y −E(Y|X = x,Z = 1)
]×1XZ(x,0)

}× P(X = x,Z = 1)

B(1)C(0)−B(0)C(1)

+ 2[A(0)C(1)−A(1)C(0)]

B(1)C(0)−B(0)C(1)
+op(n−1/2)

= 1

�p(x)
×En

{[
Y −E(Y|X = x,Z = 0)

]× 1XZ(x,1)

P(X = x,Z = 1)

}
− 1

�p(x)
×En

{[
Y −E(Y|X = x,Z = 1)

]× 1XZ(x,0)

P(X = x,Z = 0)

}
−2δ(x)+op(n−1/2).

For term II, by a similar argument, we have

II = −δ(x)

�p(x)
×En

{[
D−p(x,0)

]× 1XZ(x,1)

P(X = x,Z = 1)

}
+ δ(x)

�p(x)
×En

{[
D−p(x,1)

]× 1XZ(x,0)

P(X = x,Z = 0)

}
+2δ(x)+op(n−1/2).

By definition of W, we have W − E[W|X = x,Z = z] = Y − E[Y|X = x,Z = z] − [D −
p(x,z)]× δ(x). Summing up I and II, we obtain (17).

LEMMA 4. Suppose Assumptions 8–10 hold. Then, for any k > 0 and r ∈ ( 1
4,ι),

sup
x∈SX

nk ×P
[
|δ̂(x)− δ(x)| > n−r

]
→ 0.

Proof of Lemma 4: First, by a similar decomposition of δ̂(x)− δ(x) as that in the proof
of Lemma 3, it suffices to show

sup
x

nk ×P
{|an(x,z)−a(x,z)| > λa ×n−r}→ 0,

sup
x

nk ×P
{|bn(x,z)−b(x,z)| > λb ×n−r}→ 0,

sup
x

nk ×P
{|qn(x,z)−q(x,z)| > λq ×n−r}→ 0,

where λa, λb, and λq are strictly positive constants, and

an(x,z) = 1

n

n∑
j=1

YjKXj,h(x)1(Zj = z), a(x,z) = E(Y|X = x,Z = z)×q(x,z),

bn(x,z) = 1

n

n∑
j=1

DjKXj,h(x)1(Zj = z), b(x,z) = E(D|X = x,Z = z)×q(x,z),
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qn(x,z) = 1

n

n∑
j=1

KXj,h(x)1(Zj = z).

For expositional simplicity, we only show the first result. It is straightforward that the rest
follow a similar argument.

Let Tnxzj = YjK(
Xj−x

h )1(Zj = z) and τnxz = h × [λan−r −|E[an(x,z)]−a(x,z)|]. Note
that

P
[|an(x,z)−a(x,z)| > λa ×n−r]

≤ P
[|an(x,z)−E[an(x,z)]|+ |E[an(x,z)]−a(x,z)| > λa ×n−r]

= P

⎧⎨⎩1

n

∣∣∣∣∣∣
n∑

j=1

(
Tnxzj −E[Tnxzj]

)∣∣∣∣∣∣> τnxz

⎫⎬⎭ .

Moreover, by Bernstein’s tail inequality,

P

⎧⎨⎩1

n

∣∣∣∣∣∣
n∑

i=1

(
Txzj −E[Txzj]

)∣∣∣∣∣∣> τnxz

⎫⎬⎭≤ 2exp

(
− n× τ2

nxz

2Var
(
Tnxzj

)+ 2
3 K × τnxz

)
,

where K is the upper bound of kernel K.
By Assumption 10, |E[an(x,z)]−a(x,z)| = O(n−ι) = o(n−r). Then, for sufficiently large

n, there is 0.5λan−rh ≤ τn(x,z) ≤ λan−rh. Moreover,

Var
(
Tnxzj

)≤ E[T2
nxzj] ≤ E

[
E(Y2|X)K2(

X − x

h
)
]≤ Ch,

where C = supx E[Y2|X = x]× supx fX(x)×K × ∫ |K(u)|du < ∞. It follows that

P

⎧⎨⎩1

n

∣∣∣∣∣∣
n∑

�=1

(
Txzj −E[Txzj]

)∣∣∣∣∣∣> τnxz

⎫⎬⎭≤ 2exp

(
−

λa
4 nhn−2r

2C + 2
3 Kλan−r

)
.

For sufficiently large n, we have 2
3 Kλan−r ≤ 1. Therefore, for sufficiently large n,

P

⎧⎨⎩1

n

∣∣∣ n∑
�=1

(
Txzj −E[Txzj]

) ∣∣∣> τnxz

⎫⎬⎭≤ 2exp

(
− n2ι−2r

2C +1

)
= o(n−k),

where the inequality comes from Assumption 10. Note that the upper bound does not depend
on x or z. Therefore,

sup
x,z

P
[|an(x,z)−a(x,z)| > λa ×n−r]= o(n−k).

C. Testing with Both Discrete and Continuous Covariates

We briefly discuss how to implement our test when the covariates contain both discrete and
continuous variables. Let X = (X′

d,X
′
c), where Xd is a dXd -dimensional vector of discrete

variables taking a finite number of values in Xd , and Xc is a dXc -dimensional vector of
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continuous covariates with support Xc = ∏dXc
j=1[xc,�j,xc,uj]. Define X ξ

c = ∏dXc
j=1[xc,�j +

ξ,xc,uj − ξ ].
Note that in this case, W ⊥⊥ Z|X is equivalent to

(w|xc,xd,0) = (w|xc,xd,1), ∀(w,xc,xd) ∈ SWXcXd . (18)

With a similar argument, we can further show that (18) is equivalent to

G(w,xc,xd,0) = G(w,xc,xd,1), ∀(w,xc,xd) ∈ SWXcXd, (19)

where, for z = 0,1,

G(w,xc,xd,z) = E[λ(W −w)1∗
Xc

(xc)1XdZ(xd,z)fXc|XdZ(xc|xd,z
′)Pr(Xd = xd,Z = z′)].

To see this, by the same arguments as in the previous subsection, we have

G(w,xc,xd,z) =E
[
λ(W −w)1∗

Xc
(xc)fXc|XdZ(Xc|xd,z

′)|Xd = xd,Z = z
]

×P(Xd = xd,Z = 0)P(Xd = xd,Z = 1).

We estimate δ(Xdi,Xci) by δ̂(Xdi,Xci) = δ̂1(Xdi,Xci)/δ̂2(Xdi,Xci), where

δ̂1(Xdi,Xci) =
∑

j �=i,Xdj=Xdi

YjZjKXcj,h(Xci)×
∑

j �=i,Xdj=Xdi

KXcj,h(Xci)

−
∑

j �=i,Xdj=Xdi

YjKXcj,h(Xci)×
∑

j �=i,Xdj=Xdi

ZjKXcj,h(Xci),

δ̂2(Xdi,Xci) =
∑

j �=i,Xdj=Xdi

DjZjKXcj,h(Xci)×
∑

j �=i,Xdj=Xdi

KXcj,h(Xci)

−
∑

j �=i,Xdj=Xdi

DjKXcj,h(Xci)×
∑

j �=i,Xdj=Xdi

ZjKXcj,h(Xci).

Moreover, let fXdXcZ(xc,xd,z
′) = fXc|XdZ(x|xd,z)P(Xd = xd,Z = z), which can be estimated

by

f̂XcXdZ(Xci,Xdi,z) = 1

n

∑
j �=i,Xdj=Xdi

KXcj,h(Xci)1Zj(z).

In turn, we let Ŵi = Yi + (1−Di)× δ̂(Xci,Xdi) and can estimate G(w,xc,xd,z) as

Ĝ(w,xc,xd,z) = 1

n

∑
{i:Xci∈X ξ

c }
λ(Ŵi −w)1∗

Xc
(xc)1XdZ(xd,z)f̂XcXdZ(Xci,Xdi,z

′),

and define our test statistic as follows:

T̂ m
n = sup

w∈SW,xc∈X ξ
c ,xd∈Xd

√
n
∣∣Ĝ(w,xc,xd,0)− Ĝ(w,xc,xd,1)

∣∣ .
Here, we provide the influence functions for

√
n(Ĝ(w,xc,xd,0) − Ĝ(w,xc,xd,1) −

G(w,xc,xd,0)−G(w,xc,xd,1)).Let F∗
WD|XcXdZ(w,d|xc,xd,z)≡ FW|DXCXdZ(w|d,xc,xd,z)×
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P(D = d|Xc = xc,Xd = xd,Z = z) and

κm(w,xc,xd) = −
F∗

WD|XcXdZ(w,0|xc,xd,1)−F∗
WD|XcXdZ(w,0|xc,xd,0)

p(xc,xd,1)−p(xc,xd,0)
.

Moreover, we define

ψm
wx = 1(X ∈ Sξ

Xc
)

{[
λ(W −w)−E[λ(W −w)|Xc,Xd = xd,Z = 1]

]
× 1∗

Xc
(xc)1XdZ(xd,0)

fXcXdZ(Xc,xd,0)

−
[
λ(W −w)−E[λ(W −w)|Xc,Xd = xd,Z = 0]

]
× 1∗

Xc
(xc)1XdZ(xd,1)

fXcXdZ(Xc,xd,1)

}
× fXcXdZ(Xc,xd,0)fXcXdZ(Xc,xd,1);

φm
wx = 1(X ∈ Sξ

Xc
)κc(w,Xc,xd)

{[
W −E[W|Xc,Xd = xd,Z = 0]

]
× 1∗

Xc
(xc)1XdZ(xd,1)

fXcXdZ(Xc,xd,1)

−
[
W −E[W|Xc,Xd = xd,Z = 1]

]
× 1∗

Xc
(xc)1XdZ(xd,0)

fXcXdZ(Xc,xd,0)

}
× fXcXdZ(Xc,xd,0)fXcXdZ(Xc,xd,1).

Given such influence function representations, we can implement our test as before, so we
omit the details.
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