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ON THE DIFFERENCE PROPERTY OF THE CLASS
OF POINTWISE DISCONTINUOUS FUNCTIONS AND
OF SOME RELATED CLASSES

M. LACZKOVICH

1. Introduction. Let R denote the set of real numbers. For f:R — R and
h € R, the difference function A,f is defined by

A f(x) = f(x + h) = f(x) (x €R).

The function H:R — R is called additive if it satisfies Cauchy’s
equation

H(x + y) = H(x) + H(y) forevery x,y € R.

Let.# be a class of real valued functions defined on R..# is said to have
the difference property if, for every function /:R — R satisfying A, f € %
for every h € R, there exists an additive function H such that f — H &
F.

It was conjectured by P. Erdos that the class of continuous functions
has the difference property. This conjecture was proved by N. G. de Bruijn
in [1], where the difference property of several other classes was verified as
well. (For other references, see [6].)

In this paper we are going to investigate the classes of real functions
having bounded oscillation on a set everywhere dense in R. Let w(/f, x)
denote the oscillation of f'at x. For every K = 0, we shall denote by Ci the
class of those functions f:R — R for which {x € R; w(/f, x) = K} is
everywhere dense in R.

Then f € Cyif and only if fis continuous at the points of an everywhere
dense set i.e., if fis pointwise discontinuous ( [5], p. 105). If /' € Ck then
{x € R, w(f, x) < K + €} is everywhere dense and open for ¢ > 0 and
hence {x € R; w (f, x) = K} is an everywhere dense Gy set. Since the
intersection of countable many everywhere dense Gy sets is likewise
everywhere dense, it follows that

(l) C() = N CK and
K>0

(i) f € Ck,. g € Cg, implies f + g € Ck, 1k, (K;. Ky =0).
Our main purpose is to prove the following theorems.

THEOREM 1. The class Cy has the difference property.
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THEOREM 2. If K > 0 and if f:R — R satisfies Ayf € Cy for every h € R,
then there is an additive function H such that f — H € Cxy.

Let o denote the greatest lower bound of those positive numbers A for
which A)f € Cx(h € R) implies f — H € Cyx for some additive H. By
Theorem 2. a = 3. On the other hand, we shall prove in the next section
that « = 1.5. This implies, in particular, that for K > 0Cg does not have
the difference property. We do not know the exact value of a. It is very
likely that either « = 1.5 or a = 3 holds.

Theorem 2 might suggest that the class U g~(Ck has the difference
property. However, this is not the case. Let .# denote the class of those
functions /R — R which are bounded on some interval.

An example given by de Bruijn shows that no class between the class of
bounded functions and .# can have the difference property. We shall
discuss this example, together with some other classes not having the
difference property in Section 4.

The proof of Theorems 1 and 2, making use of the results of Section 2,
will be given in Section 3.

2. An example and some preliminary results. Suppose [A,f(x)]| = 1
holds for every & and x. Then diam R(f) = I and hence w(f, x) = 1 for
every x € R. Now suppose that, for every 4 € R, |A,f (x)| = | holds on R
except for at most finitely many x € R. Our next theorem shows that in
this case w(f, x) > 1 can hold for every x € R.

THEOREM 3. There exists a function f:R — R such that
(i)  {x € R; |A, f(x)]| > 1} is finite for every h € R,
(i) w(f, x) = 3 for every x € R.

Proof. Let Q denote the set of rationals and let {rn}iozl be an enumer-
ation of Q. Since R is a linear space over the field

QW\V2) = {r + V2sir s € Q}
we can select a basis U C R such that every x € R has a unique
representation of form

x = 2 ay(u) - u where ay(u) € Q(1/2)
uel

for every u € U and only a finite number of «,(u)’s is different from zero.
We can suppose 1 € U. Now we put

V2Q ={V2rir € Q},
4 = {X € R\(Q U \ﬁQ)’ a.\‘(l) = Tk + rm\/is k > m},
B = {x € R\(Q U V2Q); a(l) = rx + r,y\/2. k = m}
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and define
Oifx € Q
. lifx € 4
JOY =130ty e B

3if x € V2Q\{0}.

Then [ is well-defined and (ii) is fulfilled. In order to prove (i) we show
first that (Q + &) N Bis finite for every & € R. (X + A stands for {x + /:
x € X}) In fact, if 4(1) = r, + r,n/2 thenr € Q, r + h € B
implies

rtore€ {r, ., P}
and hence

[(Q + h)y N B = m.

This implies that Q N (B + h) = [(Q — h) N B] + his finite for every h
as well. We can see in the same way that (1/2Q + h) N A and \/2Q N
(A + h) are finite for every h € R. Since

[(Q + h) N V2Q| = 1,
we obtain that the set
Vi =1Q + h) 0 BlUQ N (B + )] U[V2Q N (A + h)]
UL(V2Q + h) n Al U [(Q + h) N /2Q]
UIQ N (v2Q + ]
is finite. Now x + h & V), implies A,f (x) = —1, 0 or 1 which proves
().
CoROLLARY 4. [f K > 0 then the class Cy does not have the difference

property. Moreover, there exists a function [:R — R such that A,f € Cy
Jor every h € R and there is no additive function H with

S—He U (.
L<15K
Proof. We can suppose K = 2. If f denotes the function constructed in
Theorem 3 then A,f € C, for every h. If H is additiveand g = f — H
C, then

H=f-g€CizC M

By a well-known theorem, this implies that H is linear. Therefore f = g
+ H € (C; from which, according to (ii) of Theorem 3, it follows that
L = 3.

Our next theorem shows that the constant 3 in (ii) of Theorem 3 is the
best possible. In the sequel, / and J will denote non-degenerate
intervals.
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If fis defined on I, then we denote
I(f>¢)={xeLf(x)>c} (c €R).
The definition of I(f < ¢), I(f = ¢), I(f = ¢) is similar.

TuroREM 5. Let f be defined on the interval I and let K = 0 be given.
Suppose that the set

{(x eI nd— h)ylAf(x)] > K}
is nowhere dense for every h € R. Then there exists a ¢y € R such that 1(f

< ¢y — € and I(f > ¢y +3K + ¢€) are nowhere dense for every € > 0. In
particular, o(f, x) = 3K holds on an everywhere dense subset of 1.

For the proof we shall need the following simple lemma.

LEMMA 6. Let f:1 — R, d = 0 be given and suppose that for every ¢ € R,
at least one of the sets 1(f < ¢), I(f > ¢ + d) is nowhere dense. Then there
exists a ¢y € R such that 1(f < ¢y — € and I(f > ¢y + d + €) are both
nowhere dense for every € > 0.

Proof. We put

A = {c € R; I(f < ¢) is nowhere dense}.

Obviously, ¢y € A4, ¢; < ¢ implies ¢; € A. Since
(o]

1= U I(f<n)

n=1

hence, by Baire’s category theorem, there is an n & A. Therefore A4 is
bounded from above. On the other hand,

I = U I(f> —n)

n=1

and thus there is an n such that I(f > —n) is not nowhere dense. By
assumption, this implies —n — d € A which proves 4 # §. Now it is easy
to check that ¢y = sup A4 satisfies the requirement of the lemma.

Proof of Theorem 5. Suppose that I, f, K satisfy the conditions of
Theorem 5. By Lemma 6, it is enough to show that for every ¢ € R, at
least one of the sets

C=1I1I(f<c¢) and D = I(f> ¢ + 3K)

is nowhere dense. Suppose this is not true. Then there are bounded closed
intervals J,, J, C int I such that C and D are everywhere dense in J; and
J,, respectively. We select countable and dense subsets

{Cn}:ozl ccn Jl and {dnl}ilo:l cDbn J2
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and define
A/z.m = {X eln (1 + (dm - Cn));
lf(x + ¢, —d,) —fx)|>K}n,m=1,2,...).

By our assumption, 4,,,, is nowhere dense for every n, m and hence

[ee) [ee)
A - U U (Amn - dm)

n=1 m=1
is of first category. Let § > 0 be such that
Ji+8dcl and J, +6C 1
and let a point y € (0, §)\A4 be selected. Then
y+c, €ly+d,€l and y +d, & A,
for every n, m = 1,2,.... Hence. by the definition of 4, ,, we have
lf(y +¢) —fly +dy,)| =K (n,m=1,2...).
By assumption, the set
B={xelnd—y;l/f(x+y —f(x)]>K}
is nowhere dense. On the other hand, {c,}, , is dense in J|, therefore
there is a ¢, & B. Since ¢, € I N (I — y), this implies
[fep +¥) = fle) | = K
Similarly
f(dy + ) = fld)]| = K

holds true for at least one m. For these ¢,, d,, we have

|f(dn) — fle)| = 1f(dp) = fldy + p) ]
+ 1 fdn +y) = flen + )]
+ 1S, + ) = fle)) | = 3K
However, d,, € I(f > ¢ + 3K) and ¢, € I(f < ¢), from which
S(dy) = f(en) > 3K,
a contradiction. This completes the proof of Theorem 5.

Remark 7. The argument we used above is a refinement of that used in
[2] and [3]. Accordingly, our theorem is a generalization of the following
result mentioned in [2]: if A C R is such that (4 + h)\ 4 is nowhere dense
for every h then either A or R\4 is nowhere dense. In fact, let f denote the
characteristic function of 4. If (4 + h)\A is nowhere dense for every A
then it is easy to check that
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{x € R:A,f(x) # 0}

is also nowhere dense for every 4. Hence, applying Theorem 5 with K = ¢
= 1/5,we getac € Rwith R(f < ¢) and R(f > ¢ + 4/5) nowhere dense.
Since f only takes the values 0 and 1, this implies that either 4 or R\ A is
nowhere dense.

Our next theorem establishes a special case of Theorem 2. We recall that
M stands for the class of functions which are defined on R and are
bounded on some interval.

THEOREM 8. If K > 0, f € M and A,f € Cg for every h € R, then
/€ G
Proof. Suppose that f is bounded on J. Since
f(x + h) = f(x) + &f(x) and A,/ € Ck.

this implies that w(f. x) < oo holds on an everywhere dense subset of
J + h. This is true for every &, hence {x € R; w(/. x) < co} is everywhere
dense in R.

We have to show that {x € R: (/. x) = 3K} is everywhere dense.
Suppose this is not true and let I be an interval with w(f, x) > 3K (x € I).
By our preceding remark, there is a point x € I with w(f, x) < oo and
hence there is an interval I, C I such that fis bounded on I,.

The (finite) function w(f, x) is upper semi-continuous on /; so it has a
continuity point xy € int I;. Let o(f, xo) = a > 3K and put

a — 3K

€ = .

13

Let /5 be an open interval such that
xo € I, € I, diam f(l,) < a + ¢ and
w(fo x) >a — e(x € I).

If u = inf,c, f(x)then it follows that
USEf(X)<u+a+e(x el

and the sets

def . def ‘
A= L(f<u+3 and B = IL(f>u+ a — 2

are everywhere dense in /.
Let & be arbitrary. Then x € A, x + h € I, implies

fx 4+ h)y —f(x) >u— (u+ 3¢ = —3e

and hence {x; A,f (x) > —3e} is everywhere dense in I, N (I, — h). Since
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A,f € Cy this implies that
{(x € Ln (I, = h) Af(x) < —K — 4e}
is nowhere dense. Similarly, if x € B, x + h € I, then
fx+h) —fx)<u+a+e — (u+a— 2 = 3e
implying that
{x € I, N (I, — h), Af(x) > K + 4e}
is nowhere dense. Therefore, by Theorem 5, there is a point x € [, with
W(fix)=3K + 12¢ = a — ¢
which is impossible, since
o(f. x) > a — e forevery x € I.

This contradiction proves Theorem 8.

3. Proof of theorems 1 and 2. First we deduce Theorem 1 from Theorem
2. Suppose Theorem 2 and let f:R — R be such that A, f € C; for every
h € R. Then for every K > 0 we have an additive function Hy such
that

gk =/ — Hg € Cy.
Then g, + H, = gx + Hg and hence

}1[ - Ilk = gk — (S (T'}K%,} c # for every K > 0.
This implies that H; — Hy is linear and thus

S—H =g =gk + (Hg — H) € Cyg
for every K > 0. Therefore

f—H € N Cix=C
K>0

which proves Theorem 1.

LEMMA 9. Let F:1 — R, G:J — R and K > 0 be given and suppose that
the set

A={(x,y) el XJ,|F(x) — G(y)| > K}

is nowhere dense in I X J. Then for every € > 0 there is a ¢ € R such that
I(|F — ¢| > K + ¢€) is nowhere dense.

Proof. By Lemma 6 it is enough to show that for every ¢ € R, at least
one of the sets I(F < a), I[(F > a + 2K) is nowhere dense. Since

B UF<a)x 1(G=a+ K)]
UIF>a+2K)] XJ(G<a+ K)]C 4,
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B 1s nowhere dense. On the other hand,
JGZa+ KYuJ(G<a+ K)=1J

and hence either J(G = a + K) or J(G < a + K) is not nowhere dense.
Thus B can be nowhere dense only if either I(F < a)or I(F > a + 2K)is
nowhere dense.

Our next lemma states the global and local stability of Cauchy’s
functional equation. The global stability was proved by Hyers [4] and
rediscovered by de Bruijn [1]. For the sake of completeness (and, since the
proofs given by Hyers and de Bruijn are not the simplest), we provide a
simple proof.

LemMma 10. (i) If f:R — R satisfies the inequality
[f(x +p) = f(x) = f(y)| = K forevery x,y € R,
then there exists an additive function H such that
[f(x) — H(x)| = K forevery x € R.
(i) If 8 > 0, [ is defined on [0, 28] and
fx + ) = fx) = f(WI =K

holds for every x, y € [0, 8], then there exists an additive function H such
that

[f(x) — H(x)| = 2K for every x € [0, §].
Proof. (i) The condition implies
[f(nx) — nf(x)| = nK foreveryx € Randn =1,2,....
Let € > O be arbitrary. If n, m > 2K/e¢ then
'f(nx) _ fim) } _ ) — nfomx)
n m

nm

N ‘f(mnx) — nf(mx)
n

mf (nx) — f(mnx)

S |

nm m
K K 1 1
§m—+n—=K(-+—)<c
nm nm noom
(o]
and hence the sequence {&ﬂ} ,_, converges. We put
n n=
def
1o S gim L) ey,

For every x, y € R we have

https://doi.org/10.4153/CJM-1984-043-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-043-3

764 M. LACZKOVICH

[H(x +y) — H(x) — H(y)|

| f(nx+ny)y—=f(nx)—f(ny) |
= lim

n—00 n

=0

proving that /7 is additive. Finally,

f(x) = Hex) | = lim ML;/M

HnH—00

= K forevery x € R.
(i1) We can suppose § = 1. Subtracting from f a suitable linear function
we also can assume f(1) = 0. We put
g(x) = f({x}) (x € R),
where {x} denotes the fractional part of x. Then
lg(x +y) — g(x) — g(y)| = 2K forevery x,y € R.
Indeed, this is obvious if {x + y} = {x} + {y}. On the other hand, if
{x +y} = {x} + {y} — 1then
lg(x +p) = g(x) — g = f({x} + {»} = D — f({x}
—J{uDHl
S/Ex} + ) - D+ — S{x} + D]
x-S — ST = 2K
Thus, applying (1) to the function g, the result follows.

Now we turn to the proof of Theorem 2. We can suppose K = 1. Let /:R
— R be given and assume A,f € C) for every h € R. We define

G/, = {X € R; (A)(A;,j. x) < 2},
{(x.y) € REIAS(x) — AS ()| > 6}

I

Ah
and
B, = {(x,y) € R: AS(x) — AJS(»)| > 2} (h €R).

Since A,f € C), G, is an everywhere dense open subset of R for every A.
First we prove that, if 4; is dense in a rectangle / X J, then

(l) Bh > (1 X J) N (Gh X Gh)~

Indeed, if xo € I N Gy, yo € J N Gy, then there is n > 0 such that
Ix = xol < m, [y — yol < nimply

1A f(x) — Apf(xo) | <2 and [Af(y) — Ap(xp) | < 2.
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Since A is dense in [ X J, we can choose a point (x, y) € A, with [x — x;
<7, |y — vl < 1 and hence we get

1A (xo) — Af(yo) | = 1A/ (x) — A ()]
= A () — A (x0) |
— A (vo) — Af() I >6 -2 —-2=2
Thus (1) is proved.

Our next aim is to show that

(2) there are intervals, /, J and § > 0 such that A, is nowhere dense in
I X J for every |h| = 4.

Let {({,, J,) },C:O:, be an enumeration of all pairs of intervals with
rational end-points. Suppose that (2) is not true. Then for every n =
1,2, ... thereis |h,| < 1/n such that 4, is not nowhere dense in 7, X J,.
Let 4, be dense in the rectangle T7,, € I, X J,. Then, by our preceding
argument,

B, > T, N (G, X Gy) and int (B, N (I, X J,)) # 9.

[ee)

This implies that int (U By, is everywhere dense in R’ for every N and
n=N

def 2 &
B = N U8,
N=1n=N
is residual. By a well-known theorem, we can find a straight line

e = {(x.y)y =x+ k}

such that e, N [Rz\B] is of first category relative to e, ([5], p. 247). Then
the set {x € R; (x, x + k) € B} is everywhere dense in R and hence we
can select a point x, € G with

(XO, X0 + k) € B.

Now we arrive at a contradiction as follows. Since x, € Gy, there is an N
such that

. . . 1
A (x) = Af(xo) | <2 if [x — xol = N
On the other hand, by
(xg, x9g + k) € B C %On:N By, .

we have (xg. x, + k) € B), for some m = N. Hence, by the definition of
B, and, by |h,| = 1/N, we obtain
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2 <A, flxg + k) = Ay f(xo) | = 1A, f(xg + hy) — A f(xo)
<2

which is impossible. This contradiction proves (2).
Suppose that the intervals I, J and & > 0 satisfy the condition
formulated in (2). Applying Lemma 9 with

F(x) = G(x) = Ay f(x), K = 6, ¢ = 1,
we get a real number ¢(h) for every || = § such that

Dy, = {x € I: |Af(x) — c(h)| > T}

1
is nowhere dense. Let §; = min (8/2, 3 [1]) and let h, k € [0, §,]. We
prove
(3) leth + k) — cth) — c(k)| = 21.

Indeed, the sets Dy, D, D), are nowhere dense, therefore we can select
a point

xe[InNnU—=kyYN D, — k)yU D, U Dyl
For this x we have
Af(x + k) —cth)| =7, |0 f(x) — ¢(k)] =7 and
1Ay k f(x) = eth + k)| =7
from which we obtain
lcth + k) — ¢(h) — c(k) |
Sleth + k) = [f(x + h + k) — f(x)]]
+ | f(x +h+ k) — fix + k)y—ch)l
+ | f(x + k) — f(x) — ck)| = 21

proving (3).
By Lemma 10, (i1) there is an additive function H such that

le(h)y — H(h)| = 42

holds for every h € [0, §,].
Now we define g = f — H; we prove g € Cs. Since

Ag = Ayf — H(h) € C, for every h,

hence, by Theorem 8, it is enough to show g € Z If h € [0, §,] and x €
I\Dj, then

'Ahg(x)l = |Al1f(x) - 11(/1)]
= A f(x) — c(h)| + leth) — H(h)| = 7 + 42 = 49.
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Therefore the set {x € I; |A,g(x)| > 49} is nowhere dense for every
h € [0, §;]. Let [, be a subinterval of [ with |/;| < §,. Then

Ly, ={x €, " — h)[Agx)| > 49}

is nowhere dense for every h € R. In fact, for h € [0, §,] we have just

proved it. For h > 8, we have E, = . If 1 < 0, then the identity
Ag(x) = —A_,g(x + h)

proves the assertion. Hence, by Theorem 5, there is a point x € I, with
w(g. x) = 147.

Then g is bounded in a neighbourhood of x and thus g € .# which
completes the proof of Theorem 2.

4. A family of classes not having the difference property. The following
example, showing that the class .# does not have the difference property. is

due to de Bruijn [1]. Let U be a Hamel-basis in R and let
uel

X = > where a (1) € Q for every u € U and only a
a(u) u(x € R),

finite number of a,(u)’s is different from zero. Let u, € U be fixed. Then
the function

fx) = log | (ay(u))* + 1
has the following properties:
(i) A,fis bounded for every h € R;
(i) [ — H & A for every additive H.

This proves that, if a class #contains the bounded functions and % C .#
(for example, # = U g~ Ck is such a class), then # does not have the
difference property.

Our next theorem gives another family of classes not having the
difference property. In particular, it will follow that the class of functions
having at least one continuity point does not have the difference
property.

THEOREM 11. Let & denote the class of functions f:R — R for which f(x)
= 0 holds on an open set not bounded from above or below. If ¥ C F C M,
then F does not have the difference property.

Proof. Let U be a Hamel-basis and let u, be different elements of
U(n = 1,2,...). Using the same notation as above, we define f by

f(x) = (ac(u,)) if(n — 1) = xl<n®> n=12..).
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We shall prove that

(i) A,f € Zforevery h € R and

(i) f — H & M for every additive H.

Let & € R be given. If N is large enough then

ap(u,) = 0 for every n > N.

This implies
S+ h) = [(x) =0

for every

xem —nmnr—n+1) and x € (—n +n— I, — n” + n)
(n > max (N, |h| + 1)).

Thus (i) holds. If H is additive and / — H is bounded on some interval
then. by f = 0, H is bounded from below on this interval. Then / must be
linear. On the other hand, for every fixed u € U, a (1) is not bounded on
any interval and hence the same is true for / — H which is impossible. This
proves (i1) and Theorem 11.

Remark 12. The class 2 in Theorem 11 cannot be substituted by the
class of functions f:R — R for which f(x) = 0 if |x| is large enough. It can
be proved that the class of those functions f:R — R for which there exist
¢ € R and K > 0 such that

f(x) = cif ix] > K.

possesses the difference property.
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