
Cite this article: Fresemann, C., Falbe, M., Stark, R. (2021) ‘Hash Functions Supporting Mechatronic Design Evolution’,
in Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16-20 August
2021. DOI:10.1017/pds.2021.431

ICED21 1697

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED21
16-20 AUGUST 2021, GOTHENBURG, SWEDEN

ICED21 1

HASH FUNCTIONS SUPPORTING MECHATRONIC DESIGN
EVOLUTION

Fresemann, Carina;
Falbe, Max;
Stark, Rainer

Technische Universität Berlin

ABSTRACT
Both industry and science point out the need to integrate PLM and ALM since products evolve from
mechatronic to smart products. This paper investigates data management tasks fulfilled when creating
or improving design. Particularly, the differences and commonalities in design evolution management
of the software and hardware disciplines are considered.
This paper introduces a beta version of a hash function based tool, applying the software management
mechanism on mechanical revision management.

Keywords: Product Lifecycle Management (PLM), Application Lifecycle Management, Design
management, Hash Function, Information management

Contact:
Fresemann, Carina
Technische Universität Berlin
Chair of Industrial Information Technology
Germany
carina.fresemann@tu-berlin.de

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

1698 ICED21

1 INTRODUCTION

Software and hardware discipline manage design evolutions in a different manner. This conflicts for

mechatronic or cyber-physical systems (CPS) (Anderl (2014)) where software and hardware

components need to match. This research explores solution elements for the management of design

evolution supporting the need of both disciplines.

Traditional products were either software or hardware. The corresponding data management

environments have been established accordingly in co-existence, namely Product Data Management

(PDM) for mechanical products and Software Configuration Management (SCM) for software

applications. PDM is defined as the consistent storage, provision and management of information

about products and the associated development processes (VDI 2219). SCM is the discipline of

managing the evolution of large and complex software systems (Conradi (1998)). The larger concepts

of Application Lifecycle Management (ALM) (Kääriäinen et al (2009)) and Product Lifecycle

Management (PLM) (Saaksvuori and Immonen (2008)) have been put in place introducing the goal of

supporting the entire lifecycle from the early ideas until the deployment use or even re-use with

processes and tools. This extension along the life cycle results in still parallel hardware and software

concepts, treating aspects in comparable but not identical manner.

The need for an integration of PDM and SCM is brought-up by several authors (e.g. by Deuter and

Rizzo (2016), Eigner, Koch and Muggeo (2017), Hehenberger et al (2016)). They all argue with the

enhancement of products from mechatronic products including software and hardware to cyber-

physical systems. An integration has to consider several dimensions, such as processes, engineering

tasks and methods, relevant data and documents, data and model interconnectivity as well as a

supportive tool environment (Hehenberger et al (2015)). The methodological approach as well as the

tool support for design evolution still differs between hardware and software as described by

Dahlqvist, Crnkovic and Alkslund (2004) and therefore hinders from close collaboration. This

contribution aims at bringing both disciplines closer together by supporting the mechanical design

evolution with currently lacking tool functionalities as requested by Hehenberger et al (2016). The

proposed hash function based approach visualizes the hardware design evolution in the same manner

as the software design evolution.

The remainder of this paper details already carried out work on how to bride hardware and software

disciplines. A following section provides details on the way SCM tools support the version control

process applying hash functions and how the version graph traces design evolution. Finally, the

proposed prototype applying the hash function concept to mechanical data management is described.

2 STATE OF THE ART IN VERSION MANAGEMENT

This section first gives a literature-based overview in the area of PDM and SCM integration with a

focus on version management. Furthermore, it presents solution approaches as well as remaining

needs.

2.1 Literature Review

For this review, the key words PLM/ALM integration, SCM/PDM integration, version management,

hash function and PDM have been searched in combinations in google scholar database. For an initial

choice the title as well as the provided abstract served as decision base, double entries resulting from

the different combinations were removed from the data set. In total 31 papers were chosen as relevant.

They were grouped into IT architecture and integration, collaboration, process and methods, hash

function related mechanisms and others, e.g. focussing one tool only.

Observing the PDM/SCM integration work performed in the early 2000s e.g. Crnkovic, Alkslund and

Dahlqvist (2003) proposed different API based tool couplings and direct data exchange. Newer research

for example by Nardone et al (2020) implements and tests OSLC based information exchange between

PDM and SCM. Proposals aiming at improving the processes and methods arise from Model Based

Systems Engineering (e.g. Hehenberger et al 2015 or Eigner, Koch and Muggeo (2017)). Dahlqvist,

Crnkovic and Alkslund (2004) or Nguyen (2006) mention version management as one currently differing

element between hardware and software in terms of SCM and PDM but also in terms of processes and

methods. Currently the use of hash functions in the context of PDM, SCM and CAD proposes data

integrity applications for models and their relations (e.g. by Yu, Au and Chiu (2016) or Lemes and

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

ICED21 1699

Lemes (2019)). This contribution aims at extending these approaches. The following sections detail

the literature findings with a focus on version management.

2.2 PDM/SCM integration

Hehenberger et al (2015) order the integration of PDM and SCM in three categories, see Figure 1. The

first one is on IT level supporting the connection of IT tools and the information exchange between

them, the second one mentioned is the understanding and semantics of sent data and the third one is on

an organisational level ensuring the information reuse in the respective process surrounding.

Ebeling and Eigner (2017) or Nardone et al (2020) approach the integration from an IT perspective

applying Open Servies for Lifecylce Integration (OSLC). The OSLC standard supports linking of

design artefacts (Ryman, Le Hors and Speicher (2013)) and thus strongly supports traceability.

However, the method and organizational perspective are not covered, Reichwein and Lopez (2019).

Deuter and Rizzo (2016) state that due to the different underlying understanding and data models a

pure data exchange will not solve the convergence gap. For example is the proposed solution of

Eigner, Koch and Muggeo (2017, p.171) supporting the "PDM way" of design evolution, neglecting

the merge aspects of SCM. Deuter (2020) proposes a data model in order to allow data manipulation

from one tool into another, extending current OSLC limitations. Hehenberger et al (2015) present a

data model on a meta level, where they introduce new configuration objects and their relations. Both,

Deuter and Hehenberger, do not explicitly describe the influence of their data model on version

management principles.

Figure 1: Dimensions of SCM/PDM integration, according to Hehenberger et al 2015

2.3 Design Evolution

This sub-chapter compares the understanding and way of working for design evolutions as well as the

underlying tool mechanisms in hardware and software discipline based on Crnkovic, Asklund and

Dahlqvist (2003). The evolution of a mechanical design object is document focused and regularly

improves it, usually treating so-called "minor changes". Correction of errors or improvement are typical

driver for the design modification, which are often introduced officially after a first release and supersede

their predecessors. Conradi and Westfechtel (1998) explains that software versions may be

improvements, new variants of a software item and may be established for the purpose of collaboration.

Building a software variant means for example combining software code from several former software

configuration items, or probably removing certain content. Software versions are developed in private

via branch and check-out by several persons in parallel (Bricogne et al (2012)). Usually one hardware

design engineer only carries out the work a via check-out and check-in.

The design understanding and philosophy differs between software and hardware (Dahlqvist, Crnkovic

and Alkslund (2004)). For example, where a software engineer establishes a new version a mechanical

engineer creates a new object. The data model differs as well: software version control relates

predecessor and successor whereas mechanical version control usually follows a sequential approach,

which does not necessarily reflect the actual design content evolution (Bergsjö, Malmqvist and Ström

(2006 b)). A software version is composed of the predecessor and successor items, their identification, a

link plus an indication of the equality between both Conradi (1998), whereas the mechanical item lacks

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

1700 ICED21

any differentiation hints Bricogne et al (2012). Several software versions may be applicable at a time and

under configuration control indicating the product compilation Conradi (1998). The management of the

product compilation is in the mechanical context regularly carried out on a level above the version. The

Table 1 summarizes commonalities and differences for version management between the hardware and

software way of working including the tool environment as described before. The "Delta" column

concludes on the differences and commonalities.

Table 1. Commonalities and differences in the management of design evolution

No. Software Hardware Delta

1 A new version may be

established as improvement

or new variant from one or

several father artefacts.

A new version indicates

improvements or corrections of

one existing, already released

artefact.

Method: Software versions

contain broader changes

including variants and are

generated independent from the

release or readiness state.

2 The version evolution is

generated automatically

and shown in a graph.

The version evolution is created

manually and is represented in

the BOM structure.

Tool: automatic versus manual

evolution tracking.

3 Versions are concurrently

organized.

Versions are sequentially

organized.

Tool: The concurrent SCM data

model provides the design

evolution as add-on.

4 Branch and merge supports

modifying versions in

parallel.

Branch and merge concept does

not exist.

Tool: branch and merge in SCM

is based on a "commonality"

check and account.

5 Several persons develop a

version in parallel. ("copy-

modify-merge" approach)

One person develops a version.

("unlock-modify-lock"

approach)

Tool: the software approach is

feasible based on SCM "diff

and merge tools".

6 Several versions may be

applicable in parallel.

Usually the latest version of a

design artefact is considered

applicable; in this case,

applicability is inherited from

the father object.

Method: understanding of

version.

7 Configuration control

applies to versions.

Configuration control usually

applies to the father object.

Method.

Tools: support both approaches.

Some approaches are allocating the differences mentioned in the table. El-khoury (2005) proposes to

make product variants more explicit in SCM by using the part internal feature, function or class tree

and apply a model based approach. Bricogne et al (2012) handle the branch and merge aspects

indicated in lines 4 and 5 when he proposes a tool aiming at a geometric comparison and parallel work

of several persons. Nguyen (2006) proposes in his data model to compare CAD model internal

hierarchical structures for the branch and merge aspect.

Dahlqvist, Crnkovic and Alkslund (2004) request tools functionalities, data models and cultural

behaviour to be align for a strong integration. Line 2 in Table 1 describes the advantages of the SCM

based approach for the degin evolution visualization. Therefore, this paper aims at providing a

comparable service of automation for mechanical design in addition to the aforementioned diff and

merge approaches. The next section explains the hash function based functionalities in the SCM

environment in detail.

3 FUNCTIONAL PRINCIPLE OF HASH ALGORITHMS IN SCM

This section describes the basics of hash functions and their application for version control in SCM.

Hash functions are the underlying technology of bitcoin currency exchange, and are well known for

their cryptographic abilities (Yu, Au and Chiu (2016)). Damgard (1989) describes hash functions as

injective transformation of source data of arbitrary size into a standard length string, Figure 2 indicates

arrows in one direction only. The resulting string h(M) is called hash code.

This work applies the secure hash algorithm (SHA) SHA-1 (Standard FIPS Pub 180-1), analogue to

Git Chacon and Straub (2014). The SHA-1 transforms binary input of random length into 40

hexadecimal characters (0-9 and a-f). The hash function works in a way that one input file causes one

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

ICED21 1701

output file only, or the other way around different input files will always1 result in a different hash

codes. This property is applied in SCM during each check-in or save activity; the hash code serves as

internal data base identifier (Conradi 1998; Chacon and Straub, 2014). Like this, new versions are

differentiated from existing ones and the database is supposed to be free from double entries. The use

of hash functions for identification enables additionally to check the contents for integrity, since the

hash code of a correct and of a corrupted file will be different. Furthermore, the unique and short hash

codes support quick search functions.

Figure 2: Hash function principle, according to Damgard 1989

The version graph is generated during save and snapshot activities in SCM next to the hash function

application. Both concepts, the version graph and the hash code generation are applied to hardware

design in a prototype described in the next section.

4 APPLYING A HASH ALGORITHM TO A CAD ENVIRONMENT

The technical realization of integration a hash function in Autocad environment is described in the

following section. It is followed by a section on experimental execution and findings.

4.1 Experimental set-up

Figure 3 depicts an architectural overview of the implemented experimental set-up. Autodesk Fusion

2018 serves as CAD environment; it provides an API supporting C# programming language. The

programmed API includes the user communication, the different version control and change

mechanisms, the hash function and hash code generation as well as the storage. EXCEL serves as data

storage for the hash codes and the links between CAD objects. The CAD files themselves are stored

locally via explorer folders in this experimental setting.

Figure 3: Version control integration in CAD environment

Figure 4 depicts a simplified sequence diagram detailing the implemented version control. When

opening or saving a mechanical part in the CAD environment a user-interface opens asking for a

decision about what kind of design evolution the designer foresees. Change/branch as well as

change/merge activities correspond to "major changes" in the mechanical approach, the revision

concept is considered equal in software and hardware. This distinction is supposed to be the intention

and responsibility of the designer - in line with current principles in mechanical and software

disciplines and even in a future scenario, where the tool might be able to fully and quickly analyse

commonalities and differences. The graphical user interface (GUI) box in Figure 4 indicates the

section relevant for the user interaction. The user has furthermore the option to describe the change

and give an easy to understand name, afterwards the save process for the link between predecessor and

successor is launched and the hash code is created.

1 Further reading on boundaries and exceptions e.g. in Preneel (1994).

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

1702 ICED21

The intention of SCM and PDM is to provide a framework where given rules in design teams are

supported. Therefore, the programmed demonstrator checks the status information as conventionally

applied in PDM and checks certain "common process rules". One example is that a released object

might only be branched/changed but no longer revised. Here a fix-programmed rule suggests design

evolution principles. It may be very useful to investigate and establish common design modification

principles between the disciplines for such cases.

The support environment first generates the hash code from the given CAD file and stores this hash

code according to the user input in the EXCEL file. The storage process thus indicates the branch and

revision link. A graphical representation as already given in SCM has not been implemented.

The light grey depicted boxes in Figure 4 have been foreseen in the concept but have not been

implemented. The check-in /check-out functionality is similar in SCM and PDM, thus an integration

does not bring benefit for the demonstration purpose; the change/merge functionality needs to be

developed based on the preliminary work of Bricogne et al (2012) and Nguyen (2006).

Figure 4: Overview on demonstrator functionality

The experiments are carried out with Autodesk proprietary part data (DWG) as well as the

corresponding STEP files. DWG files are converted into a binary file, in order to make it accessible

for the hash function. The binary files are not readable for a human being. Step files consist of a

header including attributes such as a time stamp and the file name. The content within a DWG and

Step file also contains the spatial orientation of the part, the colour coding as well as meta data such as

a material choice.

The applied hash function SHA-1 (Standard FIPS Pub 180-1, S. 7–15) takes the entire information

found in a file as input if not specified differently. Here the STEP header are excluded, colour and

material information as well. The spatial orientation of the model is overwritten by a standard view

orientation.

4.2 Results and findings

The EXCEL file representing the data base entries for design evolution is depicted in Figure 5.

Figure 5: Screenshot of several consecutive design modifications

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

ICED21 1703

The hash code is depicted in column F "successor hash code", the column I indicates a "predecessor

hash code" to each object. The automatically recorded relation between the hash code and its

predecessor traces the design evolution. The first columns A and B show the variant evolution. Figure

5 comprises two variants V-0 and V-1, each consisting of several revisions -or improvements of the

variant. The "comment" in column E indicates a hint why and what evolves, the user may detail it

optionally. In the case, a designer defines the design evolution as "new object" the EXCEL database

creates a new sheet, here named part B in Figure 5. The predecessor is stored for this case as well,

unlike the behaviour of PDM systems.

A visualization as usually given in SCM needs to be introduced for the version graph, supporting a

more comfortable user experience. The merge function in SCM as well as for STEP files starts with a

text based approach comparing two files line by line; the user adds differently indicated lines

according to design needs. An improvement compared to the proposed solution should visualize

differences in a geometrical representation.

The DWG files are proprietary, therefore the relevant sequences detailing content such as colour

coding etc. cannot be excluded from the hash generation. These irrelevant differences could not be

properly managed for DWG files. Consequently, future applications need to consider the "relevant"

hash content only. This relevant content needs to be defined in detail with respect to use and meta data

of each file type or model. One way might be to understand the inner data model or structure of the

models as executed here for STEP files. Another approach establishes a "replacement model", for

example by taking screenshots from each side and applying picture recognition neural networks.

Bricogne et al (2012) suggest using CAD vendor built-in geometry similarity search and concludes,

that they do not fully support the establishment.

5 CONCLUSION

This contribution reviewed literature on convergence activities for SCM and PLM with a focus on design

evolution concepts in software and hardware disciplines. It was shown, that research lately focusses on

traceability between objects e.g. via OSLC integration. The convergence on semantic integration of data

models as well as the methods for establishing cross-discipline design evolution understanding is still

rare. An experimental set-up introduced a design evolution framework for CAD supported by a version

graph indicating predecessor and successor including a change indication. Like this, a tool functionality

is provided for mechanical design supporting software design evolution methods in a more integrated

manner.

Further experimental work should be carried out implementing the here established version control

mechanism to a programming shell, such as ECLIPSE. Like that, the application to different authoring

environments could be shown. This approach then opens up the field for conclusions on the level of

integration between authoring environment and support environment. A direct comparison to the

approach of Bergsjö, Malmqvist and Ström (2006 a) managing software in a PDM is suggested.

Furthermore, a professional database should replace the EXCEL setting in a way that both meta data and

use data from mechanical and software environments can be persisted. Such an experimental setting

supports the co-creation in one data management environment.

Further research covers the merge from two or more source files. Merging two mechanical source files is

a first step including a precise understanding of what needs to be under hash function control. An easy to

understand similarity and differences indication for example by colour coding a geometric or simulation

model and adding annotations to it builds a solid foundation. This includes meta data (such as header,

colour coding) and use data (e.g. the signal flow in simulation model) of the source files. An easy

selection process for carrying over certain geometric features and skipping others is included - similar to

the SCM discipline. These findings match and detail the work of Bricogne et al (2012).

Covering the entire data set of PDM makes it necessary to investigate on each data type (e.g.

simulations, documents, requirements) and their respective different file formats.

REFERENCES

Anderl, R. (2014) "Industrie 4.0 - Advanced Engineering of Smart Products and Smart Production", Proceedings of

International Seminar on High Technology, Vol. 19

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

1704 ICED21

Bergsjö, D., Malmqvist, J., Ström, M. (2006 a) "Implementing Support for Management of Mechatronic Product

Data in PLM Systems: Two Case Studies.", ASME International Mechanical Engineering Congress and

Exposition, Vol. 47675, pp. 1175–1183

Bergsjö, D., Malmqvist, J., Ström, M. (2006 b) "Architectures for mechatronic product data integration in PLM

Systems", In DS 36: Proceedings DESIGN 2006, the 9th International Design Conference, Dubrovnik,

Croatia. pp. 1065-1076

Bricogne, M., Rivest, L., Troussier, N., Eynard, B. (2012) "Towards PLM for Mechatronics System Design

Using Concurrent Software Versioning Principles", IFIP International Conference on Product Lifecycle

Management, pp. 339–348, Springer, Berlin, Heidelberg. http://doi.org/10.1145/280277.280280

Chacon, S., Straub, B., (2014) "Erste Schritte". In: Pro git, pp. 11–28, Springer Nature

Conradi, R., Westfechtel, B. (1998) "Version Models for Software Configuration Management", ACM

Computing Surveeys (CSUR), Vol. 30 No. 2, pp. 232-282

Crnkovic, I., Asklund, U., & Dahlqvist, A. P. (2003). "Implementing and integrating product data management

and software configuration management." Artech House. ISBN: 9781580536851

Dahlqvist, A. P., Crnkovic, I., Asklund, U. (2004) "Quality Improvements by Integrating Development

Processes", In proceedings of: 11th Asia-Pacific Software Engineering Conference, pp. 64-72.

Deuter, A., Rizzo, S. (2016) "A critical view on PLM/ALM convergence in practice and research" Procedia

Technology, Vol. 26, pp. 405–412

Ebeling, R., Eigner, M. (2017) "OSLC based approach for product appearance structuring.", Proceedings of the

21st International Conference on Engineering Design (ICED), Vol. 4: Design Methods and Tools,

Vancouver, Canada

Eigner, M., Koch, W., Muggeo, C., (Eds.) (2017) "Modellbasierter Entwicklungsprozess cybertronischer

Systeme- Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme",

Springer Berlin. http://doi.org/10.1007/978-3-662-55124-0

El-Khoury, J. (2005) "Model data management: towards a common solution for PDM/SCM systems" In:

Proceedings of the 12th international workshop on Software configuration management, pp. 17-32

Hehenberger, P., Bricogne, M., Le Duigou, J., Eynard, B. (2015) "Meta-Model of PLM for Design of Systems of

Systems", IFIP-International Conference on Product Lifecycle Management, pp. 301–310, Springer, Cham

Hehenberger, P. Vogel-Heuser, B., Bradley, Tomiyama, T., Achiche, S., D., Eynard, B., (2016) "Design,

Modelling, Simulation and Integration of Cyber Physical Systems: Methods and Applications", Computers

in Industry, Vol. 82, pp. 273–289. http://doi.org/10.1016/j.compind.2016.05.006

Kääriäinen, J., Välimäki, A. (2009) "Applying application lifecycle management for the development of

complex systems: experiences from the automation industry." In: O’Connor, R.V., Baddoo, N., Cuadrago

Gallego, J., Rejas Muslera, R., Smolander, K., Messnarz, R., (Eds.) EuroSPI CCIS, Vol. 42, pp. 149–160,

Springer, Heidelberg

Lemeš S., Lemeš L. (2020) "Blockchain in Distributed CAD Environments". In: Karabegović I. (eds) New

Technologies, Development and Application II. NT 2019. Lecture Notes in Networks and Systems, Vol. 76.

Springer, Cham. https://doi.org/10.1007/978-3-030-18072-0_3

Nardone, R., Marrone, S., Gentile, U., Amato, A., Barberio, G., Benerecetti, M., De Guglielmo, R., Di Martino,

B., Mazzocca, N., Peron, A., Pisani, G., Velardi, L., Vittorini, V. (2020) "An OSLC-based environment for

system-level functional testing of ERTMS/ETCS controllers"; Journal of Systems and Software, Vol. 161.

https://doi.org/10.1016/j.jss.2019.110478

Nguyen, T. N. (2006). "A unified model for product data management and software configuration management".

In: 21st IEEE/ACM International Conference on Automated Software Engineering (ASE'06), pp. 269-272

Reichwein, A., Lopez, F. (2019) "Open Services for Lifecycle Collaboration (OSLC)-Extending REST APIs to

Connect Data.", ISWC Satellites. pp. 329–330

Ryman, A. G., Le Hors, A., Speicher, S. (2013) "OSLC Resource Shape: A language for defining constraints on

Linked Data" LDOW, Vol. 996.

Saaksvuori, A., Immonen, A. (2008) "Product Lifecycle Management." Springer, Berlin

Standard FIPS Pub 180-1, (1995) "Secure Hash Standard." Online available: nvlpubs.nist.gov, last access:

15.07.2020.

VDI 2219 (2016) "Information technology in product development - Introduction and usage of PDM systems";

VDI-Gesellschaft Produkt- und Prozessgestaltung

Yu, K.M., Au, K.M., Chiu, W.K. (2016) "Watermarking scheme for geometric data protection and detection on

3D CAD assembly model", Computer-Aided Design and Applications, Vol. 13, 2016 - Issue 6, pp. 845-854.

https://doi.org/10.1080/16864360.2016.1168232

https://doi.org/10.1017/pds.2021.431 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.431

