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COMPUTABLE PRESENTATIONS OF C*-ALGEBRAS

ALEC FOX

Abstract. We initiate the study of computable presentations of real and complex C*-algebras under the
program of effective metric structure theory. With the group situation as a model, we develop corresponding
notions of recursive presentations and word problems for C*-algebras, and show some analogous results
hold in this setting. Famously, every finitely generated group with a computable presentation is computably
categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every
finite-dimensional C*-algebra is computably categorical.

§1. Introduction. With his 1882 paper [11], Dyck began the study of presentations
of groups in terms of generators and relations, and in doing so laid the foundation for
what would become the field of combinatorial group theory. By the mid-twentieth
century, mathematical logic had been incorporated into the field to incredible
success. A success that was, perhaps, most exemplified by the independently proven
result of Boone [3] and Novikov [39] of the existence of finitely presented groups
with unsolvable word problem. In that same era, defining work by Fröhlich and
Shepherdson in effective field theory [17] and by Mal’tsev in effective algebra [27, 28]
established what would later be known as computable structure theory, i.e., the study
of the relationship between computability theoretic complexity and mathematical
structures. Although implicit in the 1989 text [40] by Pour-El and Richards, it
is only within the last decade that a program has emerged to extend computable
structure theory to the uncountable structures one might encounter in analysis. Now
known as effective metric structure theory, the program truly began with the work of
Melkinov and Nies [36] on the classification of compact metric spaces and the work
of Melnikov [34] on the categoricity of various metric spaces. Our goal is to apply
perspectives and techniques from both combinatorial group theory and effective
metric structure theory to C*-algebras.

Complex C*-algebras have become a fixture of modern mathematics, and while
real C*-algebras have not received the same attention, they represent a natural
class of objects for consideration from the viewpoint of computability theory.
Importantly, the classes of real and complex C*-algebras share similarities with
the class of groups. In particular, C*-algebras can be studied by their presentations
in terms of generators and relations, C*-algebras are principally determined by their
algebraic structure, and the universal contraction C*-algebras, while not truly free
objects, can fulfill some of the same roles as free groups. Furthermore, any discrete
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2 ALEC FOX

group has corresponding universal and reduced group C*-algebras, so theorems for
groups can often serve as a bound on theorems for C*-algebras.

Over the last decade, effective metric structure theory has been developed in the
context of metric spaces [15, 18], Polish spaces [1, 19, 20], �p spaces [30–32], and
Lp spaces [5]. This paper fills a remaining hole by initiating the study of real and
complex C*-algebras under the program of effective metric structure theory.

As combinatorial group theory and computable structure theory introduce con-
flicting terminology, we follow [33] in referring to presentations of groups in terms
of c.e. generators and c.e. relations as c.e. presentations instead of recursive presen-
tations. In Section 3, we adapt c.e. presentations and word problems from groups to
C*-algebras and develop the basic theory. Specifically, we give characterizations for
when c.e. presentations are actually computable in the sense of computable structure
theory, and show that the computability theoretic properties of a presentation can be
defined in terms of the word problem. We also investigate the connection between
computable presentations of groups and properties of the word problems of the
corresponding universal and reduced group C*-algebras. In Section 4, we describe
the relationship between real C*-algebras and their complexifications. Consequently,
we are able to transfer some already established results about C (X ;R) as a real
Banach space or algebra to C (X ;C) as a complex C*-algebra. Of particular
importance, using a result of Melnikov and Ng [35], we find that, as a complex
C*-algebra, C ([0, 1];C) is finitely generated and admits a computable presentation
but is not computably categorical. In Section 5, we show, on the other hand, that
every finite-dimensional C*-algebra is computably categorical.

§2. Preliminaries.

2.1. C*-algebras. Although, historically, real C*-algebras were rarely studied in
their own right, interest in real C*-algebras has grown as it has become clear that
the theory of real C*-algebras can not be subsumed under the theory of complex
C*-algebras (see [37] for an overview of some differences) and as new applications of
real C*-algebras have been found (see [42] for an overview of some applications). For
our purposes, the framework of real C*-algebras also provides a crucial link between
complex C*-algebras and previously established results for real Banach algebras. In
this section, we provide an introduction to real and complex C*-algebras. More
information can be found on real C*-algebras in [24] or [43], and on complex
C*-algebras in [10] or [38].

Throughout the paper, we let K denote the real numbers R or the complex
numbers C.

Definition 2.1. A C*-algebra over K is a Banach *-algebra over K which is
isometrically *-isomorphic to a norm-closed *-subalgebra of the set of bounded
operators B(H;K) on a Hilbert space H over K.

We have the following abstract characterizations. A complex Banach *-algebra A
is a complex C*-algebra if and only if it satisfies the C*-axiom ‖x‖2 = ‖x∗x‖ for
all x ∈ A. In the case of real C*-algebras, however, this is no longer enough. A real
Banach *-algebra A is a real C*-algebra if and only if ‖x‖2 ≤ ‖x∗x + y∗y‖ for all
x, y ∈ A.
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COMPUTABLE PRESENTATIONS OF C*-ALGEBRAS 3

If A is a unital complex C*-algebra and x ∈ A, then the spectrum �A(x) of x in A
is defined to be the set {� ∈ C : �1 – x is not invertible}, where 1 is the unit in A. For
any complex C*-algebra A, there is a unique unital complex C*-algebra Ã, called
the unitization of A, such that A is an ideal of Ã and Ã/A ∼= C. If A is a nonunital
complex C*-algebra and x ∈ A, then the spectrum �A(x) of x in A is defined to be
�Ã(x) where Ã is the unitization of A.

The primary tool connecting real and complex C*-algebras is that of complexifi-
cation.

Definition 2.2. Given a real C*-algebra A, its complexification Ac is the
complex C*-algebraA⊗R C = A+ iA equipped with the natural complex *-algebra
operations and the induced C*-norm.

Note Ac truly is a complexification of A. Namely, the norm on Ac extends the
norm on A, and ‖x + iy‖ = ‖x – iy‖ for all x, y ∈ A. We also have the useful
consequence that max(‖x‖ , ‖y‖) ≤ ‖x + iy‖ for all x, y ∈ A.

Through the complexification, we can define the spectrum of elements in a real
C*-algebra. If A is a real C*-algebra and x ∈ A, then the spectrum �A(x) of x in A
is defined to be the spectrum �Ac (x) of x in Ac . When A is unital, we can further
characterize the spectrum by noting that a + ib ∈ �A(x) if and only if (x – a)2 + b2

is not invertible in A, for a, b ∈ R.

Definition 2.3. Given a complex C*-algebra A, a conjugation on A is a conjugate-
linear map � : A→ A such that �(�(x)) = x, �(xy) = �(x)�(y), and �(x∗) = �(x)∗

for x, y ∈ A.

If A is a real C*-algebra, then there is a natural conjugation � on Ac given by
�(x + iy) = x – iy for x, y ∈ A. We can recover A from � as the set of fixed points
of �, {z ∈ Ac : �(z) = z}, with the induced operations and norm. In the same way,
every conjugation � on a complex C*-algebra A determines a real C*-algebra.

The natural maps between C*-algebras are those that preserve the *-algebraic
structure, namely *-homomorphisms. If � : A→ B is a real *-homomorphism
between real C*-algebras, then � extends to a conjugation-preserving complex
*-homomorphism �c : Ac → Bc given by �c(x + iy) = �(x) + i�(y) for x, y ∈ A.
Furthermore, the kernel of �c is the complexification of the kernel of �. Note any
*-homomorphism between C*-algebras is necessarily norm-decreasing. In particu-
lar, any *-isomorphism preserves the norm.

Let A be a C*-algebra over K. We say an element x ∈ A is self-adjoint if x∗ = x,
and skew-adjoint if x∗ =– x. Every z ∈ A can be uniquely expressed as x + y where
x is self-adjoint and y is skew-adjoint, just let x = 1

2 (z + z∗) and y = 1
2 (z – z∗). If

A is a complex C*-algebra, then z can also be uniquely expressed as a + ib where a
and b are both self-adjoint, just let a = 1

2 (z + z∗) and b = 1
2i (z – z∗).

In both the real and complex cases, we have a complete classification of the
finite-dimensional C*-algebras.

Fact 2.4. Every finite-dimensional complex C*-algebra is isomorphic to a direct
sum of matrix algebras

⊕k
i=1Mni (C) for some n1, ... , nk ∈ N.

We denote the ring of quaternions by H.
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Fact 2.5. Every finite-dimensional real C*-algebra is isomorphic to a direct sum of
matrix algebras

⊕k
i=1Mni (Di) for some n1, ... , nk ∈ N, where each Di is R, C, or H.

We also have a complete classification of the abelian C*-algebras.

Fact 2.6. Every abelian complex C*-algebra A is isomorphic to C0(X ;C), the
space of continuous complex-valued functions on X vanishing at infinity, where X is
the set of nonzero complex *-homomorphisms from A to C.

If X is a locally compact Hausdorff space and � : X → X is a homeomorphism
such that �(�(x)) = x for x ∈ X , then we let

C0(X, �) = {f ∈ C0(X ;C) : f(�(x)) = f(x) for x ∈ X}.
Fact 2.7. Every abelian real C*-algebra A is isomorphic to C0(X, �), where X is

the set of nonzero real *-homomorphisms from A to C, and � : X → X is defined by
�(x) = x.

Universal C*-algebras are often difficult to realize concretely, but as we will see
further on, their definition in terms of generators and relations grants access to an
effective perspective.

Let G be a set of noncommuting indeterminates, which we call generators. Let R
be a set of relations in G; specifically, relations of the form ‖p(x1, ... , xn)‖ ≤ a where
p is a *-polynomial over K in n noncommuting variables with no constant term,
x1, ... , xn belong to G, and a is a nonnegative real number. We also require that for
every generator x ∈ G there is a relation of the form ‖x‖ ≤M in R. We will often
follow the convention of writing p = q for the relation ‖p – q‖ ≤ 0. A representation
of (G,R) is an assignment of generators j : G → A, where A is a C*-algebra over K,
such that ‖p(j(x1), ... , j(xn))‖A ≤ a for every relation ‖p(x1, ... , xn)‖ ≤ a in R.

Definition 2.8. The universal C*-algebra of (G,R) over K is a C*-algebra
C*〈G |R;K〉 over K, along with a representation � : G → C*〈G |R;K〉 of
(G,R), such that for all representations j : G → A of (G,R) there is a unique
*-homomorphism ϕ : C*〈G |R;K〉 → A for which ϕ(�(x)) = j(x) for all x ∈ G.

If C*〈G |R;K〉 exists, then it is unique up to isomorphism, and it is generated
by �(G) as a C*-algebra over K. The existence of universal complex C*-algebras
is well-established (see [2] or [26]), and the existence of universal real C*-algebras
follows by the same argument. It may be of interest to model theorists that, in both
cases, existence of universal C*-algebras is just an application of the continuous
form of the classical fact that strict universal Horn theories admit all initial term
models.

Note that if G is a set of generators and R is a set of relations over R, then
C*〈G |R;C〉 is the complexification of C*〈G |R;R〉.

We have not required that the C*-algebras be unital. If we want to speak of
universal C*-algebras among unital C*-algebras, we often need to explicitly require
a generator for the identity and relations describing that it is indeed the identity. To
that end, we define here

Iden(e;X ) = {e2 = e∗ = e} ∪ {ex = xe = x : x ∈ X}
for all indeterminates e and sets of indeterminates X.
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COMPUTABLE PRESENTATIONS OF C*-ALGEBRAS 5

Let G be a countable discrete group with identity e.

Definition 2.9. If we let G = G and let

R = {x∗x = xx∗ = e : x ∈ G} ∪ {xy = z : x, y, z ∈ G and xy = z in G},

then the universal C*-algebra of (G,R) over K is called the universal group
C*-algebra of G over K and denoted C*

uni(G ;K).

There is another important way to form group C*-algebras. Let �2G be the Hilbert
space of all square summable functions from G to C. Then G acts on �2G by left
multiplication on the standard orthonormal basis, and in this way can be embedded
as a set of operators in B(�2G ;K).

Definition 2.10. The C*-algebra over K generated by G in B(�2G ;K) is called
the reduced group C*-algebra of G over K and denoted C*

red(G ;K).

The following lifting property will come in handy. A proof for the complex case
can be found in [41] (2.2.10), and the real case follows from complexification.

Fact 2.11. Let A and B be C*-algebras over K. If 
 : A→ B is a surjective
∗-homomorphism, then for all b ∈ B there exist a ∈ A such that ‖a‖A = ‖b‖B and

(a) = b.

When dealing with finite-dimensional C*-algebras, it will be useful to remember
they are von Neumann algebras.

Definition 2.12. Let H be a Hilbert space over K. For S ⊆ B(H;K), we define
the commutant S ′ of S in B(H;K) by

S ′ = {x ∈ B(H;K) : xs = sx for s ∈ S}.

Definition 2.13 (Von Neumann double commutant theorem). LetHbe a Hilbert
space over K. If A ⊆ B(H;K) is a C*-algebra over K which contains the identity,
then A is a von Neumann algebra if and only if A′′ = A in B(H;K).

2.2. Computability. We present the basics of effective metric structure theory in
the context of C*-algebras. Our presentation is an instance of the general framework
for arbitrary metric structures developed by Franklin and McNicholl in [15]. See
also [7] for a treatment of Banach spaces.

Definition 2.14. Given a separable C*-algebra A over K, a presentation of A is a
pair (A, a), where a is a countable sequence of elements of A such that a generates
A as a C*-algebra over K.

Every separable C*-algebra admits a presentation, just consider any countable
dense subset. The presentation is finitely generated if the length of a is finite. We
refer to the elements of a as the special points of the presentation.

We restrict our attention to the class of rational polynomials, where a real
polynomial is rational if its coefficients belong to Q, and a complex polynomial
is rational if its coefficients belong to Q(i). If p is a rational *-polynomial in n
noncommuting variables with no constant term, and (A, a) is a presentation of A,
then we say p(ai1 , ... , ain ) is a rational point of (A, a) for i1, ... , in ∈ N.
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6 ALEC FOX

Definition 2.15. A presentation A† of a C*-algebra A over K is computable if
there is an effective procedure which, when given a rational point r ofA† and k ∈ N,
returns a rational q ∈ Q such that | ‖r‖ – q| < 2–k .

Here are some standard computable presentations.

Examples 2.16.

(i) (C ([0, 1];K), (1, x)), where x : [0, 1] → K is the identity function. The rational
points are the rational *-polynomials in x, which are dense by Stone–Weierstrass.

(ii) (Mn(K), (eij)1≤i,j≤n), where each eij is 1 in the (i, j) entry and 0 in all others.
The rational points are the rational *-polynomials in (eij)1≤i,j≤n, which are
clearly dense.

Let A be a C*-algebra over K with computable presentation A†. We say x ∈ A is
a computable point of A† if there is an effective procedure which, when given k ∈ N,
returns a rational point r of A† such that ‖x – r‖ < 2–k . Trivially, every rational
point of A† is a computable point of A†. A sequence (xn)n∈N of computable points
of A† is uniformly computable from A† if there is an effective procedure which, when
given n ∈ N and k ∈ N, returns a rational point r of A† such that ‖xn – r‖ < 2–k .

Let A and B be C*-algebras over K with computable presentations A† and
B†, respectively. Let ϕ : A→ B be a *-homomorphism. Then ϕ is a computable
*-homomorphism from A† to B† if the images of rational points of A† are uniformly
computable with respect to B†. Note this notion of computable map agrees with the
usual one, as in [15], since *-homomorphisms are Lipschitz. If ϕ is bijective and ϕ is
computable, thenϕ–1 is computable, and we sayϕ is a computable isomorphism from
A† to B†. A C*-algebra A over K is computably categorical if for all computable
presentations A† and A+ of A, there exists a computable isomorphism from A†

to A+.
We also consider computability properties of closed subsets of C*-algebras

as in [4].
Let A be a C*-algebra over K with computable presentation A†. An open (resp.

closed) rational ball ofA† is an open (resp. closed) ball in A whose center is a rational
point of A† and whose radius is a positive dyadic rational. We require the radius
to be dyadic to better integrate with the framework of continuous first-order logic
established in [45].

Let S be a closed subset of A. If the set of all open rational balls of A† that
intersect S is c.e., then S is c.e. closed. If there is a c.e. set of open rational balls of
A† whose union is the complement of S, then S is co-c.e. closed. Together, if S is c.e.
closed and co-c.e. closed, then S is computable closed. If the set of all closed rational
balls of A† that do not intersect S is c.e., then S is strongly co-c.e. closed. Similarly,
if S is c.e. closed and strongly co-c.e. closed, then S is strongly computable closed.

Here are some fundamental propositions in the computable structure theory for
C*-algebras. The straightforward proofs are left to the reader.

Proposition 2.17. There is an effective procedure which, when given a rational
noncommutative *-polynomial over K with no constant term q(z1, ... , zn), a rational
bound M, and k ∈ N, returns j ∈ N such that, for all Banach *-algebras B and all
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v1, ... , vn, w1, ... , wn ∈ B , if maxi ‖vi‖ ≤M , maxi ‖wi‖ ≤M , and maxi ‖vi – wi‖ ≤
2–j , then

‖q(v1, ... , vn) – q(w1, ... , wn)‖ < 2–k.

Proposition 2.18. Let A be a C*-algebra over K and let A† be a computable
presentation of A. Let x be a sequence of uniformly computable points of A†. Let B =
C*

gen(x;K) ⊆ A, the C*-algebra over K generated by x. Then (B, x) is a computable
presentation of B and the inclusion map from (B, x) to A† is computable.

Corollary 2.19. Let A be a C*-algebra over K and let A† be a computable
presentation of A. Let x be a uniformly computable sequence of points of A† such that
C*

gen(x;K) = A. Then (A, x) is a computable presentation of A which is computably
isomorphic to A† via the identity map.

2.3. Linear algebra. When working with real C*-algebras, we will need to do
linear algebra over H. Let D be one of R, H, or C, viewed as a C*-algebra over
corresponding K. We develop basic linear algebra facts over D for that purpose.
See [8] or [25] for the fundamentals of linear algebra, and [14] for an exploration of
linear algebra for quaternions.

A vector space V over D is a right D-module. Any vector space over D can be
viewed as a vector space over K by restricting scalars to K1 inside D. An inner
product space over D is a vector space V over D equipped with an inner product
〈 , 〉 : V × V → D that has the following properties for x, y, z ∈ V and a ∈ D:

(i) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
(ii) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉,
(iii) 〈xa, y〉 = a∗〈x, y〉,
(iv) 〈x, ya〉 = 〈x, y〉a,
(v) 〈x, y〉∗ = 〈y, x〉,

(vi) 〈x, x〉 ≥ 0 and if 〈x, x〉 = 0, then x = 0.

The inner product determines a norm on V given by x �→
√
〈x, x〉, where we identify

the self-adjoint elements of D with R. A Hilbert space H over D is an inner product
space over D which is complete with respect to the induced norm. Note H can
also be viewed as a Hilbert space over R when equipped with the inner product
(x, y) �→ 1

2 (〈x, y〉 + 〈x, y〉∗).
We view D as a vector space over itself. The set of n by n matrices Mn(D) with

entries in D can be identified with the set of D-linear operators B(Dn;D) on Dn.
Rank is well-defined since D is a division ring so has the invariant basis number
property. Any D-linear operator on a Hilbert space H over D is also K-linear, so we
can view B(H;D) as a subspace of B(H;K). For all a ∈ D, define Ra : H → H to
be multiplication on the right by a. Then the commutant B(H;D)′ of B(H;D) in
B(H;K) is {Ra : a ∈ D}. In particular, the center of B(H;D) can be identified with
the center of D.

Of course, D itself is a Hilbert space over K when equipped with the natural inner
product. We identify a standard orthonormal basis Z ofDoverK as follows. We let:

• Z = {1} if D = K = R or D = K = C,
• Z = {1, i} if D = C and K = R,
• Z = {1, i, j, k} if D = H and K = R.
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We also define a system of matrix units which characterize Mn(D) as a
C*-algebra over K up to isomorphism. For any element t in Z ∪ {– z : z ∈ Z}, we
define �(t) ∈ {1, – 1} and b(t) ∈ Z such that t = �(t)b(t). We say (fzrs : 1 ≤ r, s ≤
n, z ∈ Z) is a system of matrix units for Mn(D) over K if (fzrs)

∗ = �(z∗)fzsr and
fzrsf

w
uv = �(zw)�suf

b(zw)
rv for 1 ≤ r, s, u, v ≤ n and z, w ∈ Z. The standard system

of matrix units is then just (ezrs : 1 ≤ r, s ≤ n, z ∈ Z) where ezrs is the matrix with z
in the (r, s) entry and 0 in all other entries for 1 ≤ r, s ≤ n and z ∈ Z. When the
superscript of a matrix unit is 1, we will often suppress it.

We will use Skolem–Noether to characterize the ∗-automorphisms ofMn(D).

Fact 2.20 (Skolem–Noether). Let k be a field. Let A be a finite-dimensional k-
algebra which is simple and has center k. Then every automorphism of A is of the form
x �→ v–1xv for some unit v ∈ A.

Corollary 2.21. If the center of D is exactly K, then every ∗-automorphism of
Mn(D) is of the form x �→ u∗xu for some unitary u ∈Mn(D).

Proof. Let ϕ be a ∗-automorphism of Mn(D). It can be observed that Mn(D)
is a simple finite-dimensional K-algebra with center K, so, by the previous fact,
there exists an invertible v ∈Mn(D) such that ϕ(x) = v–1xv for x ∈Mn(D). For
x ∈Mn(D),

xvv∗ = v(v–1xv)v∗ = vϕ(x)v∗ = vϕ(x∗)∗v∗ = v(v∗x(v–1)∗)v∗ = vv∗x.

Hence vv∗ belongs to the center ofMn(D), so is of the form Ra for some a ∈ K. In
fact, since vv∗ is self-adjoint and nonzero, it must be that a > 0. Let b = a–1/2 and let
u = Rbv. Then uu∗ = Rbvv∗Rb = RbRaRb = I . By uniqueness of the inverse, u is
unitary. Furthermore, for x ∈Mn(D), u∗xu = v–1R1/bxRbv = v–1xv = ϕ(x). �

§3. C.e. presentations and word problems. Here we introduce c.e. presentations
for C*-algebras, borrowing the terminology from [33], and explore their similarity
to the group situation.

We consider universal C*-algebras where the set of generators forms a sequence.
Let C*〈x |R;K〉 be a universal C*-algebra over K, where we identify the elements of
x with their image under the associated representation. The standard presentation
of C*〈x |R;K〉 is then (C*〈x |R;K〉, x), which we simply denote by C*〈x |R;K〉.

On a set of generators, a relation ‖p(x1, ... , xn)‖ ≤ a is rational if p is rational
and a is a positive dyadic rational.

Definition 3.1. A presentation A† of a C*-algebra A over K is c.e. if A† is the
standard presentation C*〈x |R;K〉 for some c.e. set of rational relations R.

If x and R are finite, we say A† is finitely c.e.
There is another c.e. notion for presentations that one might consider in any

presented metric structure. We give the definition for C*-algebras (see [1] for the
definition for Polish metric spaces).

Definition 3.2. A presentation A† of a C*-algebra A over K is right-c.e. if there
is an effective procedure which, when given a rational point r of A†, enumerates a
decreasing sequence (qn)n∈N of rationals such that limn→∞ qn = ‖r‖.
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In the following theorem, we show the two notions agree. We use the framework of
continuous first-order logic (see [45] for an overview of the underlying logic and [13]
for a reference on its applications to complex C*-algebras).

Theorem 3.3. Let A be a C*-algebra over K with presentationA†. ThenA† is c.e. if
and only if it is right-c.e. Furthermore, ifA† = C*〈x |R;K〉 for some c.e. set of rational
relations R in x, we can effectively determine a procedure which witnesses that A† is
right-c.e. from a computable enumeration of R.

Proof. Suppose A† is c.e., so A† is the standard presentation C*〈x |R;K〉 for
some c.e. set of rational relations R in x.

Let T be the continuous first-order theory of C*-algebras over K. We expand
our language to include additional constants for the generators x. Note if xi is a
member of x, then there is a relation of the form ‖xi‖ ≤M in R, so we can put
xi in an appropriate sort. Given a rational point r(x) of A†, we enumerate through
all formal deductions from T ∪R. For each formal deduction, we output a positive
dyadic rational qn if qn ≤ qi for all i < n and the formal deduction witnesses that
T ∪R � ‖r(x)‖ ≤ qn. Note this procedure is defined uniformly in the computable
enumeration of R. By Pavelka-style completeness, ‖r(x)‖ is the infimum of all
positive dyadic rationals d such thatT ∪R � ‖r(x)‖ ≤ d . Thus, we have enumerated
a decreasing sequence of rationals (qn)n∈N such that limn→∞ qn = ‖r(x)‖.

Conversely, suppose A† is right-c.e. Then there is an effective procedure which,
when given a rational point r of A†, enumerates a decreasing sequence (qn)n∈N

of dyadic rationals such that limn→∞ qn = ‖r‖. Let a be such that A† = (A, a),
and let x be a sequence of generators of the same length. Let R be the set of
relations ‖r(x)‖ ≤ d where r(a) is a rational point of A† and d is one of the
positive dyadic rationals enumerated by the procedure given r(a). Then R is c.e.,
and A† = C*〈x |R;K〉. �

It may interest some that the statement and proof directly generalize from C*-
algebras to metric models of a c.e. strict universal Horn theory.

Essentially, with Theorem 3.3, we have rephrased c.e. in terms of the norm so that
it mirrors the definition of computable. From this, it becomes clear that if A† is a
computable presentation of a C*-algebra A over K, then A† is also c.e.

If a finitely presented group is residually finite, then it has solvable word problem,
as shown by Dyson in [12]. We want to establish an analogous result for C*-algebras.

Definition 3.4. A C*-algebra over K is called RFD if its finite-dimensional
representations form a separating family.

In [16], the authors showed that the standard presentation for a universal group
C*-algebra of a finitely presented RFD group is computable, and noted that their
result generalizes to arbitrary finitely-presented *-algebras. Their proof works for
finitely c.e. presentations of C*-algebras over K with only a small modification. We
include the proof here to emphasize that their use of semidefinite programming is
not required, and that the argument is uniform in the sense we describe.

Theorem 3.5. If A is an RFD C*-algebra over K, then any finitely c.e. presentation
A† = C*〈x |R;K〉 of A is computable. Furthermore, from R one can effectively
determine a procedure which witnesses that the presentation is computable.
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Proof. We write ‖·‖f for the norm on the direct sum of all finite-dimensional
representations of A. Since A is RFD, we have ‖·‖A = ‖·‖f .

For any n ∈ N, consider the set Xn = {m ∈Mn(K)|x| : R[m] holds inMn(K)} as
a subset of Rk|x|n

2
, where k is the dimension of K over R. Note Xn is compact since

every relation in R is a closed condition and we require for every generator xi that
there is a relation of the form ‖xi‖ ≤Mi in R. Furthermore, Xn is definable in the
language of real closed fields since R is finite and if ‖p(x)‖ ≤ d is a relation in R,
then ‖p(m)‖ ≤ d holds inMn(K) if and only if

(∀� ∈ R)[detn
(
p(m)∗p(m) – �I

)
= 0 → � ≤ d 2].

Let Dn = { ∈ Kn : ‖‖ ≤ 1}. Fix a rational point q(x) ∈ A†. Define Fn,q : Xn ×
Dn → R by Fn,q(m, ) = ‖q(m)‖2, and let αn,q be the maximum value of Fn,q .
Following closely, we see there is actually an effective procedure which, when given
inputs n and q, returns a formula that defines αn,q in the language of real closed
fields. Applying the effective quantifier elimination given by Tarski–Seidenberg, we
see this formula can even be made quantifier-free, so αn,q is computable uniformly
in n and q.

Observe ‖q(x)‖A = ‖q(x)‖f ≤ sup{α1/2
n,q : n ∈ N} since every finite-dimensional

representation of A can be embedded in Mn(K) for sufficiently large n. By the
universality of C*〈x |R;K〉, we also have ‖q(x)‖A ≥ sup{α1/2

n,q : n ∈ N}. Hence

‖q(x)‖A = sup{α1/2
n,q : n ∈ N}, so along with Theorem 3.3 we can conclude that

‖q(x)‖ is computable uniformly in q. Thus A† is computable. This procedure is
uniform in R since the formula which defines αn,q can be effectively determined
uniformly in R, and the procedure from Theorem 3.3 is uniform in R. �

We would like to study word problems associated with presentations of
C*-algebras. Although the category of C*-algebras over K does not admit-free
objects, we can recover a lot of their utility for word problems by considering
universal contraction algebras.

Definition 3.6. For n ∈ N, we let F(n;K) denote C*〈c1, ... , cn | ‖cj‖ ≤ 1;K〉, the
universal contraction C*-algebra over K on n generators. Similarly, we let F(�;K)
denote C*〈{cj : j ∈ N} | ‖cj‖ ≤ 1;K〉, the universal contraction C*-algebra over K
on infinitely many generators.

To avoid confusion, we will always use c to refer to the generators of a universal
contraction C*-algebra.

In order to study the computability properties of subsets of the standard
presentation F(n;K), we first need to establish that the presentation is computable.
The following is a standard fact (see [26] for details).

Fact 3.7. F(n;K) is RFD for every n ∈ N ∪ {�}.

Together with the previous theorem, we have the following.

Corollary 3.8. The standard presentation F(n;K) is computable for every n ∈ N.

Not only that, but the effective procedure which witnesses that F(n;K) is
computable is uniform in n. If p(c1, ... , ck) is a rational point of F(�;K), then
‖p(c1, ... , ck)‖F(�;K) = ‖p(c1, ... , ck)‖F(k;K), so we have the following.
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Corollary 3.9. The standard presentation F(�;K) is computable.

Now we are in a position to define the word problem. When considering the word
problem, it is convenient if we assume every presentation (A, a) satisfies ‖aj‖ ≤ 1
for all j.

Definition 3.10. Let A be a C*-algebra over K with presentation (A, a). The
word problem of (A, a) is the kernel of the natural quotient map from F(|a|;K)
onto A.

As with groups, there are relationships between the word problem and the
presentation.

Theorem 3.11. Let A be a C*-algebra over K with presentation A†. The following
are equivalent:

(a) A† is the standard presentation C*〈x | S;K〉 where S is a computable set of
relations.

(b) the word problem of A† is c.e. closed.
(c) A† is a c.e. presentation.

Proof. (a) =⇒ (c) clearly holds.
(c) =⇒ (a). This follows by the standard argument known as Craig’s trick. Since

A† is c.e., A† is the standard presentation C*〈x |R;K〉 for some c.e. set of rational
relationsR. For every relation ‖p(x)‖ ≤ d in R, include the relation ‖p(x) + k0‖ ≤
d in S, where k encodes a Turing computation which witnesses that ‖p(x)‖ ≤ d
belongs toR. ThenS is computable andA† is the standard presentation C*〈x | S;K〉.

Let a be such that A† = (A, a), and let c be the corresponding sequence of
generators for F(|a|;K). Let N be the word problem of A†.

(b) =⇒ (c). Given a rational point r(a) of A†, we enumerate the set of all
open rational balls of F(|a|;K) that intersect N. For each rational ball, we output
a positive dyadic rational qn if qn ≤ qi for all i < n, and the open rational ball is
of the form B(r(c), qn). Note B(r(c), qn) intersects N if and only if ‖r(a)‖ < qn.
Then (qn)n∈N is a decreasing sequence of rationals such that limn→∞ qn = ‖r(a)‖.
By Theorem 3.3, we conclude the presentation A† is c.e.

(c) =⇒ (b). We enumerate through all rational points ofF(|a|;K) and all positive
dyadic rationals. For each rational point r(c) and positive dyadic rational d, we
begin an enumeration of the decreasing sequence (qn)n∈N of rationals determined
by Theorem 3.3 on input r(a), and output B(r(c), d ) if ever qn < d for some n ∈ N.
Since B(r(c), d ) intersects N if and only if ‖r(a)‖ < d , we have shown N is c.e.
closed. �

We can even define when a presentation is computable in terms of the word
problem.

Theorem 3.12. Let A be a C*-algebra over K with presentation A†. Then A† is
computable if and only if the word problem of A† is strongly computable closed.

Proof. Let a be such that A† = (A, a), and let c be the corresponding sequence
of generators for F(|a|;K). Let N be the word problem of A†.

Suppose A† is a computable presentation. Then A† is a c.e. presentation, so N is
c.e. closed by Theorem 3.11. We show N is strongly co-c.e. closed. We enumerate
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through all rational points r(a) of A†, positive dyadic rationals d, and k ∈ N. The
computable presentation A† determines a rational q such that | ‖r(a)‖ – q| < 2–k .
If d ≤ q – 2–k , then we output the closed rational ball B̂(r(c), d ). If d is a positive
dyadic rational such that B̂(r(c), d ) ∩N = ∅, then ‖r(a)‖ > d by Fact 2.11. So, if
k ∈ N is such that 2–k+1 < ‖r(a)‖ – d , then d ≤ q – 2–k for any rational q such that
| ‖r(a)‖ – q| < 2–k . Hence B̂(r(c), d ) is eventually output.

Conversely, suppose N is strongly computable closed. If B(r(c), d ) is an open
rational ball, then it intersects N if and only if ‖r(a)‖ < d . Similarly, if B̂(r(c), e) is a
closed rational ball, then B̂(r(c), e) ∩N = ∅ if and only if ‖r(a)‖ > e by Fact 2.11.
We define an effective procedure which witnesses that A† is computable. Given a
rational point r(a) ∈ A† and k ∈ N, we begin enumerating all open rational balls
B(r(c), di), centered at r(c), that intersect N. We also begin enumerating all closed
rational balls B̂(r(c), ej), centered at r(c), such that B̂(r(c), ej) ∩N = ∅. If ever
di – ej < 2–k+1 for some i, j ∈ N, we return 1

2 (di – ej). �
Consequently, if A† is a computable presentation of a C*-algebra A over K, then

the word problem of A† is computable closed. In the group situation, we know the
converse holds.

Question 3.13. Is there a presentation A† of a C*-algebra A over K such that A†

is not computable but has computable closed word problem?

In [23], Kuzntsov proved that a recursively presented simple group has solvable
word problem. Analogously, we have the following theorem.

Theorem 3.14. If A is a simple C*-algebra over K, then any c.e. presentation A†

of A is computable.

Proof. Let R be a c.e. set of rational relations such that A† is C*〈x |R;K〉.
Let T be the continuous first-order theory of C*-algebras over K. We expand

our language to include additional constants for the generators x. Fix a rational
point q(x) of A† and a positive dyadic rational � such that ‖q(x)‖ > �. Since A
is simple, if r(x) is a rational point of A† and d is a positive dyadic rational, then
C*〈x |R ∪ {‖r(x)‖ ≤ d};K〉 is just A if ‖r(x)‖ ≤ d and {0} if ‖r(x)‖ > d . Hence
by Pavelka-style completeness, ‖r(x)‖ > d if and only if T ∪R ∪ {‖r(x)‖ ≤ d} �
‖q(x)‖ ≤ �.

We define an effective procedure which witnesses that A† is computable. Given
a rational point r(x) ∈ A† and k ∈ N, we apply Theorem 3.3 and enumerate a
decreasing sequence (qn)n∈N of positive dyadic rationals such that limn→∞ qn =
‖r(x)‖. Let a .– b be a – b if a ≥ b and 0 otherwise for a, b ∈ R. For each qn, we begin
enumerating through all formal deductions from T ∪R ∪ {‖r(x)‖ ≤ qn .– 2–k}, and
we return qn if the formal deduction witnesses that T ∪R ∪ {‖r(x)‖ ≤ qn .– 2–k} �
‖q(x)‖ ≤ �. �

The computability of several standard presentations follows as a direct conse-
quence.

Definition 3.15. For 2 ≤ n <∞, the Cuntz algebra O(n;K) over K is the
universal C*-algebra given by

C*〈s1, ... , sn, 1 | Iden(1; s1, ... , sn) ∪R;K〉,
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where

R = {s∗i sj = �ij1: i, j ≤ n} ∪ {s1s∗1 + ··· + sns∗n = 1}.

We also consider n = ∞ and define O(∞;K) to be the universal C*-algebra given by

C*〈{si : i ∈ N}, 1 | Iden(1; {si : i ∈ N}), s∗i sj = �ij1 (i, j ∈ N);K〉.

It is known that O(n;C) is simple (see [9] for details). Note then O(n;R) is simple
by complexification.

Corollary 3.16. The standard presentation of O(n;K) is computable for
2 ≤ n ≤ ∞.

Definition 3.17. For irrational � ∈ (0, 1), the irrational rotation algebra A� is
the complex universal C*-algebra given by

C*〈u, v, 1 | Iden(1; u, v) ∪R;C〉,

where

R = {u∗u = uu∗ = v∗v = vv∗ = 1} ∪ {uv = e2i
�vu}.

It is known that A� is simple (see [10] for details).

Corollary 3.18. Let � ∈ (0, 1) be irrational. The following are equivalent:

(a) � is computable.
(b) The standard presentation A� is c.e.
(c) The standard presentation A� is computable.

Proof. (a) =⇒ (b). Since � is computable, cos(2
�) and sin(2
�) are also
computable. Let (ak)k∈N be a computable enumeration of rationals such that
| cos(2
�) – ak | ≤ 2–k for k ∈ N, and let (bk)k∈N be a computable enumeration
of rationals such that | sin(2
�) – bk | ≤ 2–k for k ∈ N. Let

S = Iden(1; u, v) ∪ {u∗u = uu∗ = v∗v = vv∗ = 1}
∪ {‖uv – (ak + ibk)vu‖ ≤ 2–k+1 : k ∈ N}.

Then S is c.e. and A� is the standard presentation C*〈u, v, 1 | S;K〉.
(b) =⇒ (c). Since A� is simple, by Theorem 3.14, A� is computable.
(c) =⇒ (a). Note that uvu∗v∗ – vuv∗u∗ = 2i sin(2
�)1 is a rational point ofA� ,

so sin(2
�) is computable. Similarly, uvu∗v∗ + vuv∗u∗ = 2i cos(2
�)1 is a rational
point ofA� , so cos(2
�) is computable. The angle � can be calculated from sin(2
�)
and cos(2
�) with use of the arctangent function. Thus � is computable. �

We now investigate the connections between a group and its group C*-algebras.
We cover some of the same ground as in [16], but our perspective has the advantage
of avoiding the use of semidefinite programming.

When working with arbitrary countable groups, we adopt the same language of
presentations that we have used for C*-algebras. We can again use the framework
for arbitrary metric structures developed in [15] if we view discrete groups as metric
structures equipped with the discrete metric.
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Definition 3.19. Given a countable discrete group G with identity e, we say
(G, g) is a presentation of G if g is a countable sequence of elements from G that
generates G as a group. The presentation (G, g) is computable if the set of all words
w, on generators g, for which w = e in G is computable.

We say a presentation of G is c.e. if the presentation witnesses that G is recursively
presented, and is finitely c.e. if the presentation witnesses that G is finitely presented.

Let G be a countable discrete group with presentation G†. We denote by
C*

uni(G
†;K) the induced presentation of C*

uni(G ;K), and by C∗
red(G†;K) the induced

presentation of C*
red(G ;K). From the definition of C*

uni(G ;K), it is clear that if G†

is c.e., then C*
uni(G

†;K) is c.e. Furthermore, if G† is finitely c.e., then C*
uni(G

†;K) is
finitely c.e.

Theorem 3.20. Let G be a countable discrete group with presentation G†. Let
Nuni and Nred be the word problems of C*

uni(G
†;K) and C*

red(G†;K), respectively. The
following are equivalent:

(a) G† is a computable presentation.
(b) Nuni is c.e. closed and Nred is strongly co-c.e. closed.
(c) Nuni is c.e. closed and the set of rational points which belong to the complement
Ncuni is c.e.

(d) Nred is co-c.e. closed and there is a c.e. set of open rational balls, each which
intersects Nred, such that the set contains all balls centered at rational points
belonging to Nred.

Proof. Let g be such that G† = (G, g). Let c be the corresponding sequence of
generators for F(|g|;K). Let e be the identity in G.

(a) =⇒ (b). Since G† is c.e., C*
uni(G

†;K) is c.e. By Theorem 3.11, Nuni is c.e.
closed.

We showNred is strongly co-c.e. closed. We enumerate through all rational points
r(g) of C*

red(G†;K) and all positive dyadic rationals d. Since G† is computable, for
each pair r(g) and d, we can begin an enumeration of all finite sums

∑n
i=1 aihi where

a1, ... , an are nonzero rationals of K, h1, ... , hn are words on g such that hi �= hj in
G for 1 ≤ i < j < n, and ∥∥∥∥∥

n∑
i=1

aihi

∥∥∥∥∥
2

�2(G)

=
n∑
i=1

a2
i ≤ 1.

Again using that G† is computable, we can effectively rewrite the action of r(g) on∑n
i=1 aihi into the form

∑m
i=1 bifi where b1, ... , bm are nonzero rationals of K, and

f1, ... , fm are words on g such that fi �= fj in G for 1 ≤ i < j ≤ m. Note

‖r(g)‖red ≥
∥∥∥∥∥
m∑
i=1

bifi

∥∥∥∥∥
�2(G)

=
( m∑
i=1

b2
i

)1/2

.

If d < (
∑m
i=1 b

2
i )

1/2, we output B̂(r(c), d ). Since ‖r(g)‖red is the supremum of all
such

∥∥∑m
i=1 bifi

∥∥
�2(G), by Fact 2.11, we have shown Nred is strongly co-c.e. closed.

https://doi.org/10.1017/jsl.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.23


COMPUTABLE PRESENTATIONS OF C*-ALGEBRAS 15

(b) =⇒ (c). Since Nred is strongly co-c.e. closed, we can enumerate all rational
points r such that ‖r‖red > 0. Now, we just observe that ‖r‖uni > 0 if and only if
‖r‖red > 0 for rational points r.

(c) =⇒ (a). Let w be a word on generators g. Then ‖w – e‖uni = 0 or
‖w – e‖uni ≥

√
2. Since Nuni is c.e. closed, we can enumerate all open rational balls

B(r(c), d ) that intersectNuni. If ever r(g) = w – e and d <
√

2, we have determined
thatw = e in G. Simultaneously, we enumerate all rational points q(c) which belong
Ncuni. If ever q(g) = w – e, then ‖w – e‖uni > 0, so w �= e in G.

(b) =⇒ (d). Since Nuni is c.e. closed, we can enumerate all open rational balls
B(r(c), d ) such that ‖r(g)‖uni < d . Any such open rational ball intersectsNred since
‖·‖red ≤ ‖·‖uni. If r(c) belongs to Nred, then ‖r(g)‖red = 0, so ‖r(g)‖uni = 0. Hence
B(r(c), d ) will be enumerated for all positive dyadic rationals d.

(d) =⇒ (a). Let w be a word on generators g. Then ‖w – e‖red = 0 or
‖w – e‖red ≥

√
2. We express w – e as a rational point q(g). Since Nred is co-c.e.

closed, we can enumerate a sequence of open rational balls B(r(c), d ) whose
union is Ncred. If ever ‖q(c) – r(c)‖ < d , then q(c) belongs to Ncred, so we have
determined w �= e in G. Simultaneously, we enumerate a sequence of open rational
balls B(s(c), e), each which intersectsNred, such that the sequence contains all balls
centered at rational points belonging to Nred. If ever s(g) = w – e and d <

√
2, we

have determined that w = e in G. �

The properties (c) and (d) may fail to be computably robust for an arbitrary
C*-algebra. However, in theorem above, the properties are robust in the sense that
they are preserved between computably isomorphic presentations of G.

Observe if C*
uni(G

†;K) has computable closed word problem, then (c) is satisfied,
soG† is computable. Similarly, if C*

red(G†;K) has computable closed word problem,
then (d) is satisfied, so G† is computable.

Question 3.21. Is there a computable presentation G† of a countable discrete
group G such that C*

uni(G
†;K) or C*

red(G†;K) does not have computable closed word
problem?

If G is amenable, then C*
uni(G

†;K) = C*
red(G†;K) (see [10]), so we have the

following stronger characterization.

Corollary 3.22. Let G be an amenable discrete group with presentationG†. Then
G† is computable if and only if C*

uni(G
†;K) = C*

red(G†;K) is computable.

For finitely generated groups, we can thus restate the theorem as follows.

Corollary 3.23. Let G be a finitely generated discrete group. Then G has solvable
word problem if and only if the word problem of C*

uni(G
†;K) is c.e. closed and the word

problem of C*
red(G†;K) is strongly co-c.e. closed for all ( for some) presentations G†

of G. If in addition G is amenable, then G has solvable word problem if and only if
C*

uni(G
†;K) = C*

red(G†;K) is computable for all ( for some) presentations G† of G.

By Boone [3] and Novikov [39], there are finitely presented groups with unsolvable
word problem. If G is such a group with corresponding presentation G†, then
C*

uni(G
†;K) is finitely c.e. but not computable, in fact, the word problem is not even

computable closed.
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§4. The relationship between real and complex C*-algebras. In this section, we
investigate the relationship between presentations of real C*-algebras and their
complexifications. The main benefit is the ability to extend results already established
for real Banach algebras to real and complex C*-algebras. In particular, using a result
of Melnikov and Ng [35], we show C ([0, 1];K) is not computably categorical as a
C*-algebra over K.

First, we include a result about presentations of abelian C*-algebras C0(X ;K)
induced from presentations of X. By Fact 2.6, every abelian complex C*-algebra is
of this form. However, by Fact 2.7, only those abelian real C*-algebras with trivial
∗-operation are of this form.

Definition 4.1. Given a separable metric space X, a presentation of X is a pair
(X, x) where x is a countable sequence of elements from X which is dense in X. The
presentation (X, x) is computable if d (xi , xj) is computable uniformly in i and j.

We will only really be concerned with proper metric spaces, i.e., metric spaces
in which every closed ball is compact. Note proper metric spaces are both locally
compact and complete.

Definition 4.2. A computable presentation X † of a proper metric space X is
computably proper if there is an effective procedure which, when given a closed
rational ball K and i ∈ N, returns a finite sequence of open rational balls of radius
at most 2–i that covers K.

For those in computable analysis, this is simply a reformulation of the
effective covering property for metric spaces with compact closed balls (see [21]).
Furthermore, if X is compact then a computable presentation of X is computably
proper if and only if it is effectively compact as defined in [22].

We extend an observation made by Tim McNicholl in [1] and include a proof.

Theorem 4.3. Let X be a separable proper metric space which admits a computably
proper presentation. ThenC0(X ;K) admits a computable presentation as a C*-algebra
over K. In particular, C0(X ;R) admits a computable presentation as a real Banach
space.

Proof. Let X † = (X, (xn)n∈N
) be a computably proper presentation of

X. For each n ∈ N, let fn : X → K be defined by fn(z) = 1
1+d (xn,z)

, and
observe fn belongs to C0(X ;K). Since (fn)n∈N

separates points and vanishes
nowhere, C*

gen((fn)n∈N
;K) = C0(X ;K) by Stone–Weierstrass. Let C0(X ;K)† =

(C0(X ;K), (fn)n∈N
).

We show C0(X ;K)† is computable. We are given a rational point q(f�1 , ... , f�n )
of C0(X ;K)† and a positive integer k ∈ N. We must compute a rational r
such that |

∥∥q(f�1 , ... , f�n )∥∥ – r| < 2–k . By Proposition 2.17, we can effectively
determine j ∈ N so that, for all z, w ∈ X , if maxi |f�i (z) – f�i (w)| ≤ 2–j , then
|q(f�1 (z), ... , f�n (z)) – q(f�1 (w), ... , f�n (w))| < 2–(k+1). Let M a positive integer
which bounds the sum of the absolute values of the coefficients of q. Let K =⋃n
i=1{z ∈ X : d (x�i , z) ≤M2k+1}, so K is a finite union of closed rational balls. As
X † is computably proper, we can effectively determine a sequence of open rational
balls of radius at most 2–j , centered at points x�1 , ... , x�r , such that the sequence
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covers K. Let N = maxi |q(f�1 (x�i ), ... , f�n (x�i ))|, so N is computable since X † is
computable.

Now, for all z ∈ X , either there exists x�m such that d (x�m , z) < 2–j , or z �∈ K so
|q(f�1 (z), ... , f�n (z))| ≤ 2–(k+1). If d (x�m , z) < 2–j , then since

max
i

|f�i (x�m ) – f�i (z)| = max
i

∣∣∣∣ d (x�i , z) – d (x�i , x�m )
(1 + d (x�i , x�m ))(1 + d (x�i , z))

∣∣∣∣ ≤ d (x�m , z),

we can conclude |q(f�1 (z), ... , f�n (z))| < N + 2–(k+1). Hence

N ≤
∥∥q(f�1 , ... , f�n )∥∥ ≤ N + 2–(k+1).

Since N is computable, we can effectively determine a rational r such that
|
∥∥q(f�1 , ... , f�n )∥∥ – r| < 2–k , as required.

If C0(X ;R) admits a computable presentation as a real C*-algebra (real Banach
algebra), then the real Banach space presentation formed from a computable
sequence of the products of the special points is computable. �

Now, we begin our investigation of the relationship between real C*-algebras and
their complexifications.

We can easily extend our computability notions from complex C*-algebras
to complex C*-algebras with an associated conjugation operation. This is, once
again, an instance of the framework for arbitrary metric structures developed
in [15]. Let B be a complex C*-algebra and let � be a conjugation on B. We say
(B, �, (zn)n∈N) is a presentation of (B, �) if {zn : n ∈ N} ∪ {�(zn) : n ∈ N} generates
B as a complex C*-algebra. The rational points of (B, �, (zn)n∈N) take the form
p(zi1 , ... , zij ; �(zij+1 ), ... , �(zik )) for i1, ... , ik ∈ N where p is a rational ∗-polynomial
in k noncommuting variables with no constant term. We can then define computable
presentations and computable categoricity as we did for complex C*-algebras, where
we now require isomorphisms to preserve �.

Lemma 4.4. Let B be a complex C*-algebra and let � be a conjugation on B.
Let A = {b ∈ B : �(b) = b} be the real C*-algebra determined by (B, �). Then
any computable presentation of (B, �) induces a computable presentation of A.
Furthermore, if A is computably categorical as a real C*-algebra, then (B, �) is
computably categorical as a complex C*-algebra with conjugation.

Proof. If (B, �, (zn)n∈N) is a presentation of (B, �), then we consider the induced
presentation (A, (xn)n∈N) on A given by x2n–1 = 1

2 (zn + �(zn)) and x2n = 1
2i (zn –

�(zn)) for n ∈ N. Let (B, �)+ and (B, �)† be computable presentations of (B, �). Let
A+ and A† be the presentations of A induced by (B, �)+ and (B, �)†, respectively.
Then A+ and A† are also computable. As A is computably categorical, there exists
a computable isomorphism � : A+ → A†. Thus ϕ : B+ → B†, defined by ϕ(z) =
�
(

1
2 (z + �(z))

)
+ i�

(
1
2i (z – �(z))

)
, is a computable isomorphism. �

If B is abelian, then we can consider the ∗-operation as a conjugation on B, and
in this case, there is a strong converse.

Theorem 4.5. Let B be an abelian complex C*-algebra with a computable
presentation. Let A be the subset of self-adjoint elements of B. Then A is a real

https://doi.org/10.1017/jsl.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.23


18 ALEC FOX

C*-algebra, and any computable presentation of A induces a computable presentation
of B. Furthermore, the following are equivalent:

(a) B is computably categorical as a complex C*-algebra.
(b) A is computably categorical as a real C*-algebra.
(c) A is computably categorical as a real Banach algebra.

Proof. Note A is the real C*-algebra determined by (B, ∗). If (A, (xn)n∈N)
is a presentation of A, then we call (B, (xn)n∈N) the induced presentation of B.
Furthermore, if (A, (xn)n∈N) is computable, then (B, (xn)n∈N) is computable since

‖r + is‖ =
√
‖(r + is)∗(r + is)‖ =

√
‖r2 + s2‖

for all rational points r and s of (A, (xn)n∈N).
(b) ⇐⇒ (c). This follows since ∗ : A→ A is simply the identity map.
(b) =⇒ (a). By Lemma 4.4, if A is computably categorical as a real C*-algebra,

then (B, ∗) is computably categorical as a complex C*-algebra with conjugation.
Since the conjugation on B is just the ∗-operation, B is computably categorical as a
complex C*-algebra.

(a) =⇒ (b) Let A+ and A† be computable presentations of A. Let B+ and B†

be the computable presentations on B induced by A+ and A†, respectively. As B is
computably categorical, there exists a computable isomorphismϕ : B+ → B†. Then
ϕ � A : A+ → A† is a computable isomorphism. �

We can achieve a partial converse to Theorem 4.3 by extending the result, in [1],
which states that a separable Stone space Z is computably metrizable if and only
if C (Z;R) has a computable presentation as a real Banach space. Here, a Stone
space is a totally disconnected compact Hausdorff space, and we say a separable
Stone space Z is computably metrizable if it admits a metric d such that (Z, d ) has a
computable presentation.

Corollary 4.6. Let Z be a separable Stone space. Then the following are
equivalent:

(a) Z is computably metrizable.
(b) C (Z;R) has a computable presentation as a real Banach space.
(c) C (Z;R) has a computable presentation as a real C*-algebra.
(d) C (Z;C) has a computable presentation as a complex C*-algebra.

Proof. (a) ⇐⇒ (b) is the result in [1].
(c) ⇐⇒ (d) was established above.
As shown in [19], every computably metrizable Stone space has a computably

compact presentation. By Theorem 4.3, (a) =⇒ (d).
Finally, (c) =⇒ (b) follows by taking any real C*-algebra presentation which is

computable and considering a computable sequence of the products of the special
points. �

We also have the following.

Corollary 4.7. C ([0, 1];K) is not computably categorical as a C*-algebra over K.

Proof. By Theorem 4.5, C ([0, 1];K) is computably categorical as a C*-algebra
over K if and only ifC ([0, 1];R) is computably categorical as a real Banach algebra.
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Melnikov and Ng showed in [35] that C ([0, 1];R) is not computably categorical in
the language of real Banach algebras. �

This lies in contrast to the group situation, where every finitely generated group
that admits a computable presentation is computably categorical (see [27]), since
C ([0, 1];K) is finitely generated with a computable presentation, even one that is
finitely c.e. as witnessed by

C ([0, 1];K) ∼= C*〈1, x | Iden(1;x), x = x∗, ‖x‖ ≤ 1, ‖1 – x‖ ≤ 1;K〉,
but is not computably categorical.

§5. Computable categoricity of finite-dimensional C*-algebras. Although
Corollary 4.7 introduces a divergence between computable categoricity results
for C*-algebras and for groups, in this section, we establish that finite-dimensional
C*-algebras are, as one would expect, computably categorical.

The following is folklore for computable unital presentations, but since we may
not have a unit we have to work a little harder.

Lemma 5.1. Let A be a C*-algebra over K with computable presentation A†. Let x
be a computable point of A† which is self-adjoint and has finite spectrum �(x). Then
every element of �(x) is computable.

Proof. We proceed by induction on the size of �(x) \ {0}. Clearly, if card(�(x) \
{0}) = 0, then �(x) = {0} where 0 is computable.

Otherwise, let u ∈ �(x) \ {0} be such that |u| = maxt∈�(x) |t| = ‖x‖, so u is
computable. Let p(z) = z(z – u) ∈ R[z]. Then p(x) = x2 – ux is a self-adjoint
computable point of A† and

card(�(p(x)) \ {0}) = card(p[�(x)] \ {0}) < card(�(x) \ {0}).

By the inductive hypothesis, every element of �(p(x)) is computable. Since
�(p(x)) = p[�(x)], every element of �(x) is a real root of the computable
polynomial p(z) – w ∈ R[z] for some w ∈ �(p(x)). It is well known that the
computable reals form a real closed field (see [40] for details). Thus every element
of �(x) is computable. �

With this, we are ready to show computable categoricity for finite-dimensional
abelian real and complex C*-algebras.

Theorem 5.2. Every finite-dimensional abelian real C*-algebra is computably
categorical as a real C*-algebra.

Proof. Let A be an abelian finite-dimensional real C*-algebra, and let A† be a
computable presentation of A. By Fact 2.5, we can identify A with Rk ⊕ Cm for
some positive integers k and m.

Let X be the set of self-adjoint rational points of A†, and let Y be the set of
skew-adjoint rational points of A†, so the set of rational points of A† is X + Y . We
know X is dense in Rk ⊕ Rm and Y is dense in {0}k ⊕ (iR)m. In particular, there
must exist x ∈ X such that x has distinct nonzero entries, and y ∈ Y such that only
the first k entries are zero. We view Rk ⊕ Rm as a subspace of B(Rk ⊕ Rm;R) where
Rk ⊕ Rm acts on itself by multiplication. In this sense, the minimal polynomial
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of x must be of degree k +m with a nonzero constant term. Then x, ... , xk+m

are linearly independent over R, so C*
gen(x;R) = Rk ⊕ Rm. Also, we can find z ∈

Rk ⊕ Rm such that the last m entries of zy are i. Hence C*
gen(x, y;R) = Rk ⊕ Cm.

By Corollary 2.19, (A, x, y) is a computable presentation computably isomorphic
to A† via the identity map.

The entries of an element z ∈ A belong to �A(z) since if a + ib is an entry of z
for some a, b ∈ R, then (z – a)2 + b2 is not invertible in A. Every element of �(x) is
computable by Lemma 5.1, so in particular, every entry of x is computable. Similarly,
y2 is self-adjoint, so by Lemma 5.1, every element of �(y2) is computable. Then every
element of �(y) is computable, since �(y2) = �(y)2, and the computable complex
numbers form an algebraically closed field (see [44] for details). In particular, every
entry of y is computable. Thus, by Corollary 2.19, (A, x, y) is computably isomorphic
to the standard presentation Rk ⊕ Cm. �

Corollary 5.3. Every finite-dimensional abelian complex C*-algebra is com-
putably categorical as a complex C*-algebra.

Proof. By Fact 2.4, any abelian finite-dimensional C*-algebra can be identified
with Cn for some n ∈ N. It can be observed, with the use of Theorem 4.5, that Cn

is computably categorical as a complex C*-algebra if and only if Rn is computably
categorical as real C*-algebra. �

Since H is one of the building blocks of finite-dimensional real C*-algebras, but
is not abelian, we separately show it is computably categorical.

Lemma 5.4. H is computably categorical as a real C*-algebra.

Proof. Let H† be a computable presentation of H.
For any nonzero self-adjoint computable point x of H†, we know x ∈ R, and ‖x‖

is computable. Hence 1 = sgn(x) x‖x‖ is a computable point of H†.
We apply the Gram–Schmidt process to a pair of R-linearly independent

skew-adjoint computable points of H†, noting that 〈a, b〉R = 1
2 (a∗b + b∗a) is a

computable operation, to get a pair p, q ofR-orthonormal skew-adjoint computable
points of H†.

Then p2 =– p∗p =– 1 =– q∗q = q2, and 0 = 〈p, q〉R =– 1
2 (pq + qp) so pq =–

qp. Thus there is an automorphism ϕ of H which sends 1 �→ 1, p �→ i , q �→ j, and
pq �→ k. By Corollary 2.19, (H, 1, p, q) is a computable presentation computably
isomorphic to H†. Therefore, ϕ is a computable isomorphism from H† to the
standard presentation H. �

From the rigid characterization of subalgebras generated by a self-adjoint element,
we are able to find a finite set of computable minimal projections which spans the
set of self-adjoint elements.

Let A be a C*-algebra over K with computable presentation A†. Let p be a
computable projection in A†. Then pAp is a C*-algebra over K, and A† induces
a presentation pA†p on pAp formed from the products pz1 ··· znp where z1, ... , zn
are special points of A†. By Proposition 2.18, pA†p is a computable presentation of
pAp and the inclusion map from pA†p to A† is computable.
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Theorem 5.5. Let A be a finite-dimensional C*-algebra over K with computable
presentation A†. Then there is a finite set M of computable minimal projections in A†

such that span
R

(M ) is the set of self-adjoint elements of A.

Proof. We proceed by induction on the K-dimension of A. Let X be the set of
self-adjoint elements of A. Let Z be the subset of A†-computable points of X, so Z
is dense in X.

For z ∈ Z, C*
gen(z;K) ∼= Kn for some n ∈ N. By Theorem 5.2 or Corollary 5.3,

Kn is computably categorical as a C*-algebra over K. In particular, there must be
a family F of minimal projections in C*

gen(z;K), each computable with respect to
(C*

gen(z;K), z), such that z ∈ span
R

(F ). Since every projection in F is computable
with respect to (C*

gen(z;K), z), they must be also computable with respect to A† by
Proposition 2.18.

If 1 is a minimal projection in A, thenX = R = span
R

(1) and 1 isA†-computable.
In that case, we just letM = {1}.

Suppose 1 is not a minimal projection in A. Then there exists z ∈ Z such that
C*

gen(z;K) is not isomorphic to K, so must contain a copy of K⊕K. Hence, there
is a nontrivial computable projection q in A†. Let N be the set of all nontrivial
projections computable with respect to A†. If 1 is A†-computable, then 1 – q ∈ N ,
so span

R
(N ) = span

R
(N ∪ {1}) = span

R
(Z) = X . If 1 is not A†-computable, we

directly see span
R

(N ) = span
R

(Z) = X .
Let K be a finite subset of N such that span

R
(K) = span

R
(N ) =X . For any

p∈K , pAp is a C*-subalgebra of A over K of strictly less dimension. By the
inductive hypothesis, there is a finite setMp of computable minimal projections in
pA†p such that span

R
(Mp) is the set of self-adjoint elements of pAp. In particular,

p ∈ span
R

(Mp). Every projection r which is minimal in pAp is also minimal in A
since for t ∈ A if t ≤ r, then t ≤ p, so t ∈ pAp. Also, each r ∈Mp is computable
with respect toA†. If we letM =

⋃
p∈K Mp, then M satisfies the required conditions.

�

As an immediate application, we can reduce the computable categoricity of a
direct sum to the computable categoricity of its summands.

Let A and B be C*-algebras over K with computable presentations A† and B†,
respectively. These presentations induce a computable presentation A† ⊕ B† on
A⊕ B formed from points (z, 0) and (0, w) where z is a special point of A† and
w is a special point of B†.

Theorem 5.6. Let A and B be finite-dimensional C*-algebras over K which are
computably categorical as C*-algebras over K. ThenA⊕ B is computably categorical
as a C*-algebra over K.

Proof. Let (A⊕ B)+ be a computable presentation of A⊕ B . By Theorem 5.5,
there is a finite set M of computable minimal projections in (A⊕ B)+ such that
span

R
(M ) is the set of self-adjoint elements of A⊕ B . Any minimal projection

in A⊕ B must belong to either A or B by minimality. For X = A or X = B , let
MX be the subset of M which belongs to X. Also, let ZX be the set of products
qz1 ··· znp where z1, ... , zn are special points of (A⊕ B)+ and p, q ∈MX . Note
ZA ⊆ A and ZB ⊆ B . Since 1 ∈ span

R
(M ), we have C*

gen(ZA ∪ ZB ;K) = A⊕
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B . Hence C*
gen(ZA;K) = A and C*

gen(ZB ;K) = B . Then (A,ZA) and (B,ZB)
are computable presentations of A and B, respectively, by Proposition 2.18,
and (A,ZA) ⊕ (B,ZB) is a computable presentation computably isomorphic to
(A⊕ B)+ by Corollary 2.19.

Let A† and B† be computable presentations of A and B, respectively. Since A
is computably categorical, there exists a computable isomorphism ϕ from A† to
(A,ZA). Similarly, since B is computably categorical, there exists a computable
isomorphism � from B† to (B,ZB). Then ϕ ⊕ � : A† ⊕ B† → (A⊕ B)+ is a
computable isomorphism. �

Thus, by Facts 2.4 and 2.5, in order to prove computable categoricity for arbitrary
finite-dimensional C*-algebras, it suffices to consider the matrix algebras. We would
like to induct on the dimension of the matrix algebra, but first we need a way to
access matrix algebras of smaller dimension.

Let D denote R, H, or C as a C*-algebra over corresponding K.

Lemma 5.7. Let H be a Hilbert space over D. Let (pi)
n
i=1 be a sequence of

minimal projections inB(H;D). If pm+1 does not commute with qm :=
∨m
i=1 pi for any

1 ≤ m < n, then C*
gen(

⋃n
i=1 piB(H;D)pi ;K) ∼=Mn(D).

Proof. We proceed by induction on the length of the sequence. We denote
B(H;D) by A for clarity.

It can be observed that C*
gen(pAp;K) = pAp = B(pH;D) ∼= D for any minimal

projection p in A.
Now, let (pi)

n+1
i=1 be as stated such that C*

gen(
⋃n
i=1 piApi ;K) ∼=Mn(D). Since

Mn(D) ∼= C*
gen(

⋃n
i=1 piApi ;K) ⊆ B(qnH;D), by dimensionality we must have

C*
gen(

⋃n
i=1 piApi ;K) = B(qnH;D). Then qn must be of D-rank n, so qn+1 is of

D-rank n + 1 as pn+1 does not commute with qn. Hence

C*
gen

( n+1⋃
i=1

piApi ;K
)
⊆ B(qn+1H;D) ∼=Mn+1(D).

For each a ∈ D, we let Ra : H → H be multiplication on the right by a. Let
w ∈ B(qn+1H;K) commute with C*

gen(
⋃n+1
i=1 piApi ;K). In particular, wqn belongs

to the commutant of B(qnH;D) in B(qnH;K), so is of the form Rxqn for some
x ∈ D. Also, wpn+1 belongs to the commutant of B(pn+1H;D) = pn+1Apn+1 in
B(pn+1H;K), so is of the form Rypn+1 for some y ∈ D. As w commutes with pn+1,
we have that

Rxpn+1qn = pn+1Rxqn = pn+1wqn = wpn+1qn = Rypn+1qn.

Since pn+1 does not commute with qn, pn+1qn is nonzero, so x = y. Then w =
Rxqn+1 since qn+1H = pn+1H + qnH. Hence w commutes with B(qn+1H;D). Thus,
by Definition 2.13,

C*
gen

(n+1⋃
i=1

piApi ;K
)

= C*
gen

(n+1⋃
i=1

piApi ;K
)′′

= B(qn+1H;D)′′ = B(qn+1H;D).

�
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Now, we are ready to show matrix algebras are computably categorical.
We identify Mn(D) with the collection of matrices in Mn+1(D) which have all

zeros in their last column and row.

Theorem 5.8. Mn(D) is a computably categorical C*-algebra over K.

Proof. We proceed by induction on n.
Observe D is computably categorical as a C*-algebra over K by Theorem 5.2,

Corollary 5.3, or Lemma 5.4.
Now, assume Mn(D) is computably categorical. For ease of reading, we denote

Mn+1(D) by A. Let A† be a computable presentation of A.
To make use of the inductive hypothesis, we determine a subalgebra B isomorphic

toMn(D) which is computably included in A†. By Theorem 5.5, there is a finite set
M of computable minimal projections in A† such that span

R
(M ) is the set of self-

adjoint elements of A. We construct a sequence (pi)n+1
i=1 of minimal projections

from M so that pk+1 does not commute with qk for 1 ≤ k < n + 1, where qk =∨k
i=1 pi . Choose p1 ∈M . Suppose we have constructed (pi)ki=1 for some k ≤ n. If
qk commutes with every projection in M, then qk commutes with every self-adjoint
element of A, so qk = dI for some nonzero d ∈ D. However, qk has rank at most k,
while dI has rank n + 1. Thus, we may choose pk+1 ∈M which does not commute
with qk . Let B = C*

gen(
⋃n
i=1 piApi ;K). Let B† be the presentation of B formed

from the special points of p1A
†p1, ... , pnA

†pn. Then B† is computable and the
inclusion fromB† intoA† is computable by Proposition 2.18. By Lemma 5.7, we have
C*

gen(
⋃n+1
i=1 piApi ;K) ∼=Mn+1(D) and B ∼=Mn(D). Hence C*

gen(
⋃n+1
i=1 piApi ;K) =

A and B = B(qnDn+1;D).
Let Z be the standard orthonormal basis ofD overK. By the inductive hypothesis,

Mn(D) is computably categorical over K. In particular, there is a system of matrix
units (fzkj : 1 ≤ k, j ≤ n, z ∈ Z), computable with respect toB† so computable with

respect to A†, such that B = C*
gen({fzkj : 1 ≤ k, j ≤ n, z ∈ Z};K).

Let (ezkj : 1 ≤ k, j ≤ n + 1, z ∈ Z) be the standard system of matrix units for
Mn+1(D). We find a unitary U inMn+1(D) such thatU ∗fzkjU = ezkj for 1 ≤ k, j ≤ n
and z ∈ Z. To that end, observe we can extend a D-orthonormal basis on
(
∑n
k=1 fkk)(Dn+1) to one for Dn+1, so there exists a unitary V ∈Mn+1(D) such that

V ∗BV =Mn(D). Then (V ∗fzkjV : 1 ≤ k, j ≤ n, z ∈ Z) forms a system of matrix
units for Mn(D). Before we find U, we show there exists a unitary u in Mn(D)
such that u∗V ∗fzkjVu = ezkj for 1 ≤ k, j ≤ n and z ∈ Z. There are two cases. If
the center of D is K, then u exists by Corollary 2.21. If the center of D is not K, it
must be that D = C, K = R, and Z = {1, i}. Then

∑n
k=1 V

∗fikkV belongs to the

center ofMn(C), and (
∑n
k=1 V

∗fikkV )
2

=– I , so
∑n
k=1 V

∗fikkV = ±i . By possibly
replacing fikj by their negations for 1 ≤ k, j ≤ n, we may assume

∑n
k=1 f

i
kk = i .

Then there exists a unitary matrix u ∈Mn(C) such that u∗V ∗fkjVu = ekj for
1 ≤ k, j ≤ n, hence u∗V ∗fzkjVu = ezkj for 1 ≤ k, j ≤ n and z ∈ Z. For both cases,
we let U = V (u + e(n+1)(n+1)).

Using U, we show we can construct a system of matrix units for A that is
computable with respect toA†. AsU ∗pn+1U is a projection which does not commute
with the identity in Mn(D), there must exist 1 ≤ � ≤ n such that the (n + 1, �)th
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entry of U ∗pn+1U is nonzero. For z ∈ Z, let wz = pn+1f
z
�� –

∑n
k=1 fkkpn+1f

z
�� .

Then there exists a nonzero d ∈ D such that U ∗wzU = dez(n+1)� for z ∈ Z. Note
‖d‖ = ‖w1‖ is computable. Now, we are ready to extend the system of matrix units.
For z ∈ Z, let

fz(n+1)k =
1

‖d‖wzf�k for 1 ≤ k ≤ n,

fzk(n+1) =
1

‖d‖f
z
k�w

∗
1 for 1 ≤ k ≤ n,

and fz(n+1)(n+1) =
1

‖d‖2wzw
∗
1 .

Then for z ∈ Z, we observe

U ∗fzijU = ezkj for 1 ≤ k, j ≤ n,

U ∗fz(n+1)kU =
d

‖d‖e
z
(n+1)k for 1 ≤ k ≤ n,

U ∗fzk(n+1)U = ezk(n+1)
d∗

‖d‖ for 1 ≤ k ≤ n,

and U ∗fz(n+1)(n+1)U =
d

‖d‖e
z
(n+1)(n+1)

d∗

‖d‖ .

We only need to tweak our unitary conjugation. Let x1, ... , xn+1 be the standard
D-orthonormal basis for Dn+1. IfW ∈Mn+1(D) is the unitary matrix which sends
xi to itself for 1 ≤ i ≤ n and sends xn+1 to xn+1

d
‖d‖ , then (UW )∗fzkjUW = ezkj for

1 ≤ k, j ≤ n + 1 and z ∈ Z. Note each member of (fzkj : 1 ≤ k, j ≤ n + 1, z ∈ Z)
is computable with respect to A†, so by Corollary 2.19, (A, (fzkj : 1 ≤ k, j ≤ n + 1,
z ∈ Z)) is computably isomorphic to A† via the identity map. Thus conjugation
by UW gives a computable isomorphism from A† to the standard presentation
Mn+1(D). �

Corollary 5.9. Every finite-dimensional C*-algebra over K is computably
categorical as a C*-algebra over K.

Since the identity is computable with respect to the standard presentation of any
finite-dimensional C*-algebra, and automorphisms preserve the identity, we also
have the following.

Corollary 5.10. Let A be a finite-dimensional C*-algebra over K. The identity is
computable with respect to any computable presentation of A, and A is computably
categorical as a unital C*-algebra over K.
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[37] M. S. Moslehian, G. A. Muñoz-Fernández, A. M. Peralta, and J. B. Seoane-Sepúlveda,
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