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1. Definition. Let X = X(w) be continuous, differentiable, and monotonie 
increasing in (0, <») and let it tend to infinity as co —> œ. A series ]£™ a„ is 
summable \R, X, r\, where r > 0, if 

r 
r \ ' («) 

|X(«)} r+1 doû;< Z {X(Û.) - \ ( » ) | M H n K 

where 4 is a fixed positive number (6, Definition B). 
Let / ( / ) be a periodic function with period 2ir and Lebesgue integrable over 

( —7T, 7r) and let 
OO CO 

(1.1) /(/) ~ ia0 + X fa» c o s »* + *» sin »/) = | a 0 + X -4«(0-
» = 1 rc=l 

The series conjugate to (1.1), at t = x, is 
OO CD 

(1.2) ]C fan cos nx — aw sin wa;) = ^ Bn(x). 
n=l 7i=l 

In what follows we use the following notation: 

*(0 = *{/(* + 0 + /(* - 0}, *(0 = *{/(* + 0 -f(x - 0}, 

iM*) log "J" = 0(f) = g J ^(M) c o t iM ^M» 

A(0 = Ht)nog ^ , *(*) = P *(«) da, &(*) = t , Bk(x). 

By F(t) G BV(A, k) we mean that F(0 is of bounded variation over (A, &). 

2. Our aim in this paper is to obtain a criterion for the absolute Cesàro 
summability of negative order of the series 

(2.1) ^ - - & 6 ? ) -
tAn log(n + 1) " 

In the last section of this note we shall deduce a criterion for the \R, log co, 1| 
summability of the series (1.2) from our main theorem. Our main theorem 
reads as follows. 
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THEOREM. If 

(i) h(t) G BV(0 ,TT) , 

(ii) jl(\h(t)\/t) dt < co, and 
(iii) fl(\Mt)\/t) dt < oo, 

then the series (2.1) is summable \C, K\, K > — 1 . 

3. For the proof of the theorem, we require a number of lemmas. 

LEMMA 1 (10). If 0(0 6 BV(0, TT), then the series £ r An(x)/log(n + 1) 
is absolutely harmonic summable. 

LEMMA 2 (8, Lemma 2). / / 

1*(01 

r * < Jo Hog (2w/t) 
then fa® e BV(0, TT). 

LEMMA 3. If X) un is summable \C\ (i.e., absolutely Cesàro summable of any 
unspecified order), then a necessary and sufficient condition that it should be 
summable \C, K\, K > — 1 is that the sequence {nun} is summable \C, K + 1|. 

This is a particular case of a well-known result (5). 

LEMMA 4. If 

(i) h{t) e BV(0, TT) and 
(ii) jl(\h(t)\/t) dt < oo, 

then J^Z=i Bn(x)/log(n + 1) is summable \C, ô\, ô > 0. 

See (9, Theorem II) . 

LEMMA 5. For 0 S p ^ 1, the sequence {Snix)/log n\ is summable \C, p\ 
whenever the series ^Z=\ Bnix)/login + 1) is summable \C, p\. 

Proof of Lemma 5. I t is known (4) that \C, 1| ~ \R, co, 1|. Furthermore, by 
the second theorem of consistency for absolute summability (2), summability 
\R, co, 1| implies summability \R, log co, 1|. Thus, from the hypotheses, it 
follows that X)i° Bnix)/login + 1) is summable \R, log co, 1|, i.e., by the 
definition 

dco 

r E Bn(x) 
'2 w(iog«y 

from which it follows that 

< °°; 

We have that 

<3-2> & -

2 w(log w) 

logn log(w + 1) 

Snjx) lQg(l + tt"1) Bn+1jx) 
log n-login + 1) log(w + 1) " 
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Since log(l + n~l) = 0 (n _ 1 ) , the absolute convergence of the series 

g Sn(x) log(l + n~l) 
2 log»-log(w + 1) 

follows immediately from (3.1). Now, by virtue of the identity (3.2), the 
series YL? A(Sn(x)/logn) is summable |C, p\ whenever ]£i°° Bn(x)/\og(n + 1) 
is summable |C, p|, 0 ^ p ^ 1. This completes the proof of Lemma 5. 

Combining the results of Lemmas 4 and 5 we at once obtain the following 
result. 

LEMMA 6. The hypotheses of Lemma 4 imply that the sequence \Sn(x)/\og n) 
is summable \C, ô|, ô > 0. 

We show that hypothesis (i) of Lemma 4 alone cannot imply summability 
|C, ô\, ô > 0, of the sequence {Sn(x)/log n\. To do so, we need the following 
asymptotic formula 

log n 
sin nt at ~ —-— 

n (3.3) r ^ T 
Proof of (3.3). Write 

(3.4) log - f sin nt dt = + = h+ h, say. 

T 1 f/2. 2m . , ,, 
i i = - I log—~-sin tat 

n Jo t 

iog« r 2 . , , , , i r/2, 2 ^ . _ 
= —-— I sin / dt + ~ I log — sin / dt. 

n Jo n Jo t 
Thus, we have that 

(3.5) Ii = n~1logn + 0(n~l). 

Integrating by parts, we have that 

T . 2ir cos nt 1 Ç* cos nt 1± 

h = - log — - I — — dt 
L t n Xl2n n Jx/2n t 

t ^cosnw 1 Cnir cos t J± 

= - l o g 2 — - ——dt. 
n n JT/2 t 

Thus, 
(3.6) 12 = O(n-i). 
Collecting (3.4), (3.5), and (3.6) we obtain (3.3). We choose an odd function 
\f/(t) = log 2ir/t (0 < t < 7r), defined elsewhere by periodicity. Using (3.3), 
we find that 

2 Ç\J±sink)dt^^^°^. 
IT Jo \ A=l / IT 2 IT 
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Thus, it follows that the partial sum of the series conjugate to the Fourier 
series of the same function at / = 0 (i.e., Sn(x)) is asymptotic to (log n)2/ir. 
Thus, 

8n(x) _ log ft 
log n 7T 

and hence the sequence {Sn(x)/logn} is not summable \C, ô|, ô > 0. 

LEMMA 7. If yp(t) Ç L(0, TT), then the series Y,™ Sn(x)/n logn is summable 
\C, 5|, 8 > 0, if and only if the series X]2°° cn/\og n is summable \C, 5|, w/zere ĉ  
is the coefficient of the Fourier sine series of 

= \ r, *<«> 6(t) = - I \£(^) cot \udu. 

Proof of Lemma 7. Since ^(/) 6 i ( 0 , TT), it follows (3) that 0(t) G L(0, TT) 
and td(t) —> 0 as / —» + 0 . Hence, integrating by parts, we obtain the identity 

(3.7) Sn(x) — %Bn(x) = ncn. 

The corresponding formula for Fourier series is well known (3). Integration 
by parts yields 

2 n log n T Jo loe n logn T Jo logn 

ty(t) being an integral is absolutely continuous, and therefore by Lemma 1, 
5̂ 2° Bn(x)/n log n is absolutely harmonic summable, and hence a fortiori 
summable \C, <5|, 8 > 0. Hence, by the identity (3.7), the series Y^Sn{x)/n logn 
is summable |C, 8\, 8 > 0, if and only if ^2°° cjlogn is summable \C, 8\. 

LEMMA 8. / / 

(i) xp^t) G BV(0, TT) and 
(ii) jl(\Mt)\/t)dt< co, 

then the series £ " Sn(x)/n log n is summable \C, 8\, 5 > 0. 

Proof of Lemma 8. Since 

^ = ~ I *AiOO log — sin ?z/ d/, 
7T t / o î 

r 0 

we notice that by Lemma 4 (writing \//i(t) in place of h(t)) the series 
S200 ^n/log n is summable |C, 5|, 8 > 0, with the hypotheses. Hence, by 
Lemma 7, our result follows. 

4. Proof of the theorem. By Lemma 2, condition (ii) of the theorem 
implies condition (i) of Lemma 8. Thus, by Lemma 8, (ii) and (iii) of the 
theorem ensure summability \C, 8\, 8 > 0, of £2° Sn(x)/n log n. By Lemma 6, 
(i) and (ii) of the theorem ensure summability \C, K + 1|, K > — 1 , of the 
sequence \Sn(x)/log n}, that is, the sequence {n • Sn(x)/n log n}. Thus, it 
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follows that our hypotheses at the same time ensure the summability 
\C,K+1\,K> — 1, of the sequence \Sn(x)/logn], i.e., the sequence 
{n • Sn(x)/n log n], as also the summability \C, ô|, 5 > 0, of the series 
S ? Sn(x)/n log w, and hence, by Lemma 3, the series X)? Sw(x)/^logw is 
summable \C, K\f K > — 1 . 

5. LEMMA 9 (7, lemma). //* /fee s m w Y^n = i un is summable \R, logco, 1|, then 
the necessary and sufficient condition that it should be absolutely convergent is that 
the sequence \n log n • un] is summable \R, log w, 1|. 

The conclusion of the main theorem ensures the absolute convergence 
of the series ]££ Sn(x)/n log n, and hence by Lemma 9 the sequence 
{nlogn - Sn(x)/nlogn}, i.e. the sequence {Sn(x)}, is summable \Ry log co, 1|. 
Thus, we obtain the following result. 

COROLLARY. If 

(i) h(t) G BV(0 ,TT) , 

(ii) Jo(\h(t)\/t)dt < oo, and 
(hi) fc(l*i(0l/*)*< oo, 

then X ? ^ B W W summable \R, log co, 1|. 

Remark. Conditions (ii) and (iii) of the above corollary taken together 
cannot ensure the summability \R, log co, 1| of the series (1.2), which is a 
non-local property of the generating function. Our result can be compared 
with the following result of Bosanquet and Hyslop (1): If 

(i) M ) £ BV(0, TT) and 
(ii) jl(\^(t)\/t) dt < oo, 

then X5° Bn(x) is summable |C, 5|, 5 > 0. 
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