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We set up a formal framework to characterize encompassing of nonparametric mod-
els through the L2 distance. We contrast it to previous literature on the comparison
of nonparametric regression models. We then develop testing procedures for the
encompassing hypothesis that are fully nonparametric. Our test statistics depend
on kernel regression, raising the issue of bandwidth’s choice. We investigate two
alternative approaches to obtain a “small bias property” for our test statistics. We
show the validity of a wild bootstrap method. We empirically study the use of a
data-driven bandwidth and illustrate the attractive features of our tests for small and
moderate samples.

1. INTRODUCTION

The encompassing principle was introduced in econometrics by Hendry and
Richard (1982), Gourieroux, Monfort, and Trognon (1983), and Mizon and
Richard (1986), and further developed in Gourieroux and Monfort (1995), Florens,
Hendry, and Richard (1996), and Dhaene, Gourieroux, and Scaillet (1998) among
others. It provides a natural principle for choosing between two competing
theories: a new theory must be able to accommodate the results obtained by a con-
current older one. An extensive survey is provided in Bontemps and Mizon (2008).

Our goal is to propose encompassing tests for nonparametric models. Our main
steps are (i) to formally define encompassing for nonparametric models, (ii) to
develop fully nonparametric encompassing tests, and (iii) to show asymptotic
validity of a wild bootstrap method for asymptotic inference. Our first contribution
is thus to formally set up a framework to precisely define encompassing for
nonparametric regression models. We discuss nonparametric encompassing with
respect to previous literature on the comparison of such models, whether nested or
non-nested (see below for references). We show that encompassing reduces neither
to significance of some variables nor to the comparison of the models’ theoretical
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fit. Hence, the null hypothesis of encompassing cannot generally be tested with
existing procedures. Our second contribution is to propose fully nonparametric
encompassing tests for regression models. Existing encompassing tests rely on
parametric functional forms, except for Bontemps, Florens, and Richard (2008)
who propose a test aimed at assessing a consequence of encompassing. The new
tests we develop directly test the encompassing hypothesis. They are based on an
empirical process estimating a continuum of unconditional moments following the
integrated conditional moment (ICM) principle introduced by Bierens (1982). Our
third contribution is to develop a wild bootstrap method and to show that it provides
asymptotically correct inference.

Our fourth contribution is to propose and investigate two approaches to obtain a
“small bias property.” Our test statistic depends on an empirical process involving
a first-step nonparametric estimator. The small bias property of a semiparametric
estimator is that its bias converges to zero faster than the pointwise and integrated
bias of the nonparametric estimator on which it is based. A distinguishing fea-
ture is that the resulting statistic is

√
n-consistent even when the nonparametric

estimator on which it is based converges at the optimal nonparametric rate.
Without this property, using a first-step nonparametric estimator necessitates some
undersmoothing, and this complicates practical implementation. Newey, Hsieh,
and Robins (2004) have developed a generic technique based on twicing kernels to
obtain semiparametric estimators with small bias. We develop here two alternative
methods that yield a small bias property. The first one uses a bias-corrected kernel
estimator based on the boosting principle (Di Marzio and Taylor, 2008; Park, Lee,
and Ha, 2009). The second approach is to make the empirical process of interest
locally robust with respect to the nonparametric regression. This has previously
been used successfully in semiparametric estimation (see Newey, 1990 for an early
example, and Chernozhukov et al., 2022 for a general approach). We here adapt
the two approaches to our empirical process of interest, and we show that these
yield a small bias property in the asymptotic expansion of our test statistic. This
allows for a larger set of smoothing parameters, so the test is expected to be less
sensitive to the bandwidth choice.

Our work is related to the extensive literature on consistent specification testing
based on empirical processes (see Bierens and Ploberger, 1997; Stinchcombe
and White, 1998; Xia et al., 2004; Escanciano, 2006; Delgado and Stute, 2008;
Lavergne and Patilea, 2008 to mention just a few). The main features of our
tests compared to previous work are that (i) our empirical process contains a
nonparametric kernel estimator, and (ii) due to the form of the null hypothesis we
cannot use a density-weighted process, and we thus need to control for a random
denominator. Our nonparametric encompassing tests are also connected to the
comparison of nonparametric regressions in nested and non-nested cases (e.g., Fan
and Li, 1996; Lavergne and Vuong, 1996; Delgado and Manteiga, 2001; Lavergne,
Maistre, and Patilea, 2015). We show, however, that the encompassing hypothesis
cannot be tested through existing procedures. Our work is also related to the
literature on estimation and testing with nonparametric nuisance components,
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e.g., Escanciano, Jacho-Chávez, and Lewbel (2014), Mammen, Rothe, and
Schienle (2016). The former authors obtain uniform-in-bandwidth expansions for
an empirical process similar to the one we consider. We focus here on obtaining a
small bias property, but we do not formally establish uniformity in bandwidth.

Our paper is organized as follows. Section 2 formalizes the encompassing
notion for nonparametric models and compares our framework to the literature on
comparison of nonparametric regressions. Section 3 details the construction of the
test statistics and the two approaches used to obtain a small bias property. Section
4 is devoted to the analysis of the asymptotic behavior of our statistics. Since the
asymptotic distribution under the null depends on unknown features of the data-
generating process (DGP), we establish in Section 5 the validity of a wild bootstrap
procedure. Section 6 provides evidence about the small sample performances of
our procedures. We check that bootstrapping allows to correctly control size and
that our tests have good power. We evaluate the benefits of our bias-reducing
approaches, and we investigate thoroughly the influence of the bandwidth as well
as of the trimming parameter, which is theoretically necessary. We also provide
an empirical illustration. Section 8 contains the proofs of our main results. A
Supplementary Material contains the proof of a technical lemma.

2. ENCOMPASSING FOR NONPARAMETRIC REGRESSIONS

The definition of encompassing starts with the definition of the binding function
(see Gourieroux and Monfort, 1995). In a parametric context, we typically start
with two competing parameterized families of densities for Y, M1 = {g1(·,α1) :
α1 ∈ A1} and M2 := {g2(·,α2) : α2 ∈ A2}. The pseudo-true value of αi, i = 1 or 2,
is defined as

α∗
i = arg min

αi∈Ai
d(f (·),gi(·,αi)),

where f (·) is the true density of Y and d is some divergence between the two
distributions, for instance, the Kullback–Leibler divergence Ef

[
log(f (·)/g(·,α))

]
,

with expectation taken with respect to f (·). The binding function b(α1) is a
correspondence between an element of model M1 and the element of model M2

that is closest to it. Specifically,

b(α1) = arg min
α2∈A2

d(g1(·,α1),g2(·,α2)) .

We then say that M1 encompasses model M2 if α∗
2 = b(α∗

1). That is, M1

encompasses M2 if the pseudo-true value of the latter can be obtained from the
pseudo-true value of the former.

Here, we focus on two nonparametric competing models to explain Y, where
ModelMW uses covariates W and ModelMX uses X. A nonparametric model with
a specific set of covariates is a function of these variables. To define the pseudo-true
value that corresponds to the best explanation of Y, we consider the L2 distance.
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That is, MW and MX are, respectively, defined as L2(W), the space of the square
integrable functions of W, and L2(X). The “pseudo-true functions” are then the
regression functions

m(W) = arg min
g∈L2(W)

E(Y −g(W))2 = E(Y|W),

and mX(X) = arg min
h∈L2(X)

E(Y −h(X))2 = E(Y|X) . (1)

The binding function is similarly defined as

b(g(W)) = arg min
h∈L2(X)

E(g(W)−h(X))2 = E(g(W)|X) .

We thus say that MW encompasses model MX if

b(m(W)) = mX(X) a.s. ⇔ E(E(Y|W)|X) = E(Y|X) a.s. (2)

That is, the regression function of Y on X can be obtained from the regression
function of Y on W. Similarly, MX encompasses model MW if E(E(Y|X)|W) =
E(Y|W) almost surely.

In what follows, we explore the implications of the definition of nonparametric
encompassing and relate it to previous work on the comparison of regression
models. In particular, we show that encompassing reduces neither to significance of
some variables nor to the comparison of the models’ theoretical fit. Hence, the null
hypothesis of encompassing cannot generally be tested with existing procedures.

2.1. Encompassing and Model Fit

Lavergne and Vuong (1996) proposed comparing nonparametric regression models
on the basis of their theoretical fit and considered the hypotheses

H0 : E[Y −m(W)]2 −E[Y −mX(X)]2 = 0,

HW : E[Y −m(W)]2 −E[Y −mX(X)]2 < 0,

HX : E[Y −m(W)]2 −E[Y −mX(X)]2 > 0.

Non-rejection of the null hypothesis H0 means that both models have the same
theoretical fit. Rejection of H0 in favor of either HW or HX indicates which model
dominates the other. This framework is quite general since it does not make a
distinction between nested and non-nested situations and treats the two competing
models symmetrically. Lavergne and Vuong (1996) built a test of H0 against HW

and HX based on the comparison of the empirical analogs of the models’ fit.
Comparing nonparametric regressions through their fit seems natural. Does

encompassing imply a better fit for the encompassing model? As we detail below,
the answer is yes: if MW encompasses MX , the theoretical fit of E(Y|W) is at
least as good as the one of E(Y|X), and is strictly better except when E(Y|W) =
E(Y|X) a.s.

https://doi.org/10.1017/S0266466624000100 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000100


ENCOMPASSING TESTS FOR NONPARAMETRIC REGRESSIONS 5

Proposition 2.1. If MW encompasses MX,

(a) HX cannot hold,
(b) H0 holds iff E(Y|W) = E(Y|X) a.s. iff MX encompasses MW.

Proof. Consider Statement (a). Since E(E(Y|W)|X) = E(Y|X) a.s.,

E[Y −E(Y|X)]2 = E[Y −E(Y|W)]2 +E[E(Y|W)−E(Y|X)]2 ,

as the cross-term cancels, and E[Y −E(Y|X)]2 ≥ E[Y −E(Y|W)]2.
Consider Statement (b). It is obvious that if E(Y|W) = E(Y|X) a.s., then H0

holds and both models encompass each other. By Lavergne and Vuong (1996,
Lem. 1), if one model encompasses the other and H0 holds, it should be that
E(Y|W) = E(Y|X). Finally, if both models encompass each other, then H0 holds
by Statement (a). �

Therefore, except in the case where the two regressions are equal, encompassing
implies a strictly better fit for the encompassing model. Conversely, one model can
have a better fit than another without encompassing it (see Lavergne and Vuong,
1996 for some examples where this happens). Hence, the encompassing concept
is not tailored for model selection.

The test statistic proposed by Lavergne and Vuong (1996) to compare models’
fit is asymptotically degenerate under H0 when the two models are “generalized
nested regressions,” that is, when either E(E(Y|W)|X) = E(Y|X) a.s. or
E(E(Y|X)|W) = E(Y|W) a.s. Hence, their test cannot be used when there is
encompassing, and the tests we develop below are complementary to theirs. The
latter might also be used as preliminary tests to check whether their test can be
entertained. This would imply (i) testing whether Model MX encompasses Model
MW , and (ii) testing whether Model MW encompasses Model MX . One rejection
among two would imply (we cannot reject) that the encompassing model has a
strictly better fit than the encompassed one; no rejection would mean (we cannot
reject) that E(Y|W) = E(Y|X) a.s. Only if we rejected twice would we need to
entertain the test of Lavergne and Vuong (1996) to determine whether one model
has a better fit. A more direct alternative to this involved procedure is to apply
the test proposed by Liao and Shi (2020), which is universally valid. We leave the
study of the respective merits of these competing procedures for future work.

2.2. Encompassing and Significance

When the two sets of regressors are nested, specifically when W = (X,Z), then it
is clear that (2) holds. A more interesting question is whether MX encompasses
MW , that is, whether

E(E(Y|X)|X,Z) = E(Y|X) = E(Y|X,Z) a.s.

In this setup, encompassing is equivalent to whether Z is significant in the
regression function of Y on X and Z. Significance testing in nonparametric
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regressions has been a focus of extensive work (see Fan and Li, 1996; Lavergne
and Vuong, 2000; Ait-Sahalia, Bickel, and Stoker, 2001; Delgado and Manteiga,
2001; Lavergne, 2001).

Consider now two non-nested sets of regressors, and assume the regressors X
are not significant once we control for W, that is,

E(Y|W,X) = E(Y|W) a.s. (3)

By conditioning again with respect to X, one obtains that

E(Y|X) = E[E(Y|W)|X] a.s.,

so that MW encompasses MX . Bontemps et al. (2008) consider (3) as their
hypothesis of interest, since it implies encompassing. The other direction of the
implication, however, does not hold: if MW encompasses MX , then it is not
necessarily true that the covariates X are not significant in the nonparametric
regression of Y onto (W,X), as shown below.

Proposition 2.2. MW encompasses MX if and only if

E(Y|W,X) = E(Y|W)+g(W,X) with E[g(W,X)|W] = E[g(W,X)|X] = 0 a.s.

Proof. By definition, Y = E(Y|W)+ ε with E(ε|W) = 0. Hence,

E(Y|W,X) = E(Y|W)+E(ε|W,X) = E(Y|W)+g(W,X) .

Conditioning on W yields E[g(W,X)|W] = 0. Conditioning on X and using the
fact that MW encompasses MX yields E[g(W,X)|X] = 0. This shows necessity.
Sufficiency similarly follows by conditioning E (Y|W,X) = E(Y|W)+g(W,X) on
X and using E[g(W,X)|X] = 0. �

The previous result highlights that for non-nested sets of regressors, the encom-
passing property does not reduce to the significance of some regressors in the
complete regression. As long as g(W,X) is not almost surely equal to zero, MW

encompasses MX , but X is a significant covariate in E(Y|W,X). The following
provides a concrete example.

Example. Let W be continuous univariate, symmetrically distributed around
0, with density fW(·). Consider p(·) ∈ (0,1), ϕ(·) and ψ(·) two univariate densities
with mean 0. Define

fX|W(x|w) = p(w)ϕ(x)+ (1−p(w))ψ(x),

so that X has a mixture distribution conditionally on W. Then

fX(x) =
[∫

p(w)fW(w)dw

]
ϕ(x)+

[∫
(1−p(w))fW(w)dw

]
ψ(x),

fW|X(w|x) = fW(w)

fX(x)
(p(w)ϕ(x)+ (1−p(w))ψ(x)) .
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Let

Y = m(W)+h(W)X +η, E(η|W,X) = 0.

Then

E(X|W) = p(W)

∫
xϕ(x)dx+ (1−p(W))

∫
xψ(x)dx = 0.

One can select h(·) and p(·) so that E[h(W)|X] = 0. Consider first a case where h(·)
is an odd function with mean 0 and p(·) is even. Then by the symmetry of fW(·),
E[h(W)|X] = 0. Another setup used in our simulations below is for h(·) even with
mean 0 and p(−w) = 1−p(w). Again, it is easy to show that E[h(W)|X] = 0.

Whenever E[h(W)|X] = 0, then E[h(W)X|W] = E[h(W)X|X] = 0, and MW

encompasses MX , but X is significant in E(Y|W,X). Furthermore, MX does
not encompass MW in general. If this holds, then m(W) = E(Y|X) a.s. from
Proposition 2.1. Integrating both sides with respect to the marginal density fX(·)
implies that m(W) and thus E(Y|X) are both constant almost surely.

3. TESTS STATISTICS

3.1. ICM Statistic

We want to test

H0 : E(E(Y|W)|X) = E(Y|X) a.s. ⇔ E(Y −E(Y|W)|X) = 0 a.s.

against its logical complement H1 = Hc
0. While H0 is a conditional moment

restriction, we can consider instead an equivalent continuum of unconditional
moments. Assume X ∈R

d has bounded support, which is without loss of generality,
as we can always transform X by a one-to-one function that maps it to a compact
set. Then the null hypothesis is equivalent to

H0 : E
[
(Y −E(Y|W))ϕ(s′X)

] = 0 a.s. ∀s ∈ S , (4)

where S is a (arbitrary) neighborhood of the origin in R
d and ϕ(·) is a well-chosen

function (see Assumption A for precise conditions). Some convenient choices for
ϕ(·) are as follows. Bierens (1982) shows the previous equivalence for the complex
exponential ϕ(u) = exp(iu), Bierens (1990) considers the exponential ϕ(u) =
exp(u), Bierens and Ploberger (1997) the logistic c.d.f. ϕ(u) = 1/(1+exp(c−u))

(see also Stinchcombe and White, 1998). Other types of functions could be used,
such as indicator functions (Delgado and Manteiga, 2001; Escanciano, 2006).

If we observe a random sample (Yi,Wi,Xi), i = 1, . . . n, from (Y,W,X), and if we
know the precise form of E(Y|W), then Bierens’ ICM statistic for testing H0 is

∫
Rd

∣∣∣∣∣∣n−1/2
n∑

j=1

(
Yj −E(Yj|Wj)

)
ϕ(s′Xj)

∣∣∣∣∣∣
2

dμ(s), (5)
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where μ is some probability measure on S , such as the uniform distribution on S .
Alternatively, a Kolmogorov–Smirnov type statistic could be considered, but the
Cramér–von Mises form appears to be easier to deal with in practice, see below.

In practice, we use a kernel nonparametric estimator of the conditional expec-
tation E(Y|W). Let p be the dimension of W, K(·) be a kernel on R

p, h(= hn) a
bandwidth, and Kh(u) = K

(
u1/h, . . . up/h

)
.1 Define

Y(w) = (nhp)
−1

n∑
i=1

YiKh (Wi −w) .

With e = (1, . . . ,1)′, let f̂ (w) = e(w), and m̂(w) = Y(w)/̂f (w).
To control for the random denominator in the kernel estimator, we introduce

a trimming factor t̂(w) = 1
(̂
f (w) ≥ τn

)
, where τn converges to zero. Let

ε̂i = Yi − m̂(Wi), φs(·) = ϕ(s′·), and Pn(g) = n−1 ∑n
i=1 g(Zi) denote the empirical

mean process based on g(·). An ICM test statistic can be built upon the process
Pn

(̂
εφŝt

)
as

Sn = n
∫
S

|Pn
(̂
εφŝt

) |2 dμ(s) .

In our practical implementation, we chose ϕ(·) as the complex exponential and μ

to be symmetric around the origin. Define

a(z) =
∫
S

exp(is′z)dμ(s) =
∫
S

cos(s′z)dμ(s),

due to the symmetry of μ, and let ε̂ = (̂
εj,j = 1, . . . n

)′
and t̂i = t̂(Wi). Then the

statistic becomes∫
S

n−1
n∑

j=1

n∑
m=1

ε̂ĵεm̂tj t̂m exp(is′(Xj −Xm))dμ(s)

= n−1
n∑

j=1

n∑
m=1

ε̂ĵεm̂tj t̂m

∫
S

cos(s′(Xj −Xm))dμ(s) = ε̂′Âε,

where A is a matrix with generic element n−1a
(
Xj −Xm

)̂
tĵtm. In practice, the

function a(·) is (up to a constant) the Fourier transform of μ, so we can choose
the latter so that the former has an analytic expression, and computation of the
matrix A is fast. To achieve scale invariance, we recommend, as in Bierens (1982),
to scale each component of X by a measure of dispersion, such as the empirical
standard deviation.

The behavior of
√

nPn
(̂
εφŝt

)
is studied in detail by Escanciano et al. (2014),

who derived a uniform expansion. Hence, the properties of the ICM test based on
Sn can be derived from their results. However, these impose undersmoothing in

1For notational simplicity, we are assuming the same bandwidth across regressors, but our proofs would carry over
when each regressor has a specific bandwidth.
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kernel estimation, which ensures that the bias disappears fast enough, but makes
the practical bandwidth choice tricky. In what follows, we develop two approaches
to avoid undersmoothing, and in particular to allow for an optimal nonparametric
bandwidth. This is convenient because there are well-known methods for approx-
imating such bandwidths.

3.2. Bias Corrected Estimation

Newey et al. (2004) obtained a small bias property for density-weighted average
semiparametric estimators. Here, we instead rely on an idea developed in the
boosting literature for kernel regressions (Di Marzio and Taylor, 2008; Park et al.,
2009). Xia et al. (2004) used a similar bias correction in a specification test for a
single-index model.

L2 boosting starts with an initial nonparametric estimator and builds a bias-
corrected updated estimator. The bias correction is roughly based on nonparamet-
ric residuals. The method can be iterated, but we will restrict to a single boosting
step, which is sufficient for our purpose. In our context, the bias correction to be
applied to m̂(w) is

B̂(w) = m̂(w)

f̂ (w)
− m̂(w),

where

m̂(w) = (nhp)−1
n∑

i=1

m̂(Wi)̂tiKh(Wi −w), (6)

and the trimming controls for the random denominator of m̂. The bias-corrected
estimator thus is

m̃(w) = m̂(w)− B̂(w) = 2m̂(w)− m̂(w)

f̂ (w)
. (7)

We then consider ε̃i = Yi − m̃(Wi) and the bias-corrected ICM statistic

SBC
n = n

∫
S

|Pn
(̃
εφŝt

) |2 dμ(s) .

The form (7) of our bias corrected estimator is similar to the one discussed in
Newey et al. (2004, Sect. 3) who considered density-weighted nonparametric
estimators. To use their technique in our setup would necessitate applying their
correction to both the numerator and the denominator of the regression estimator.
We feel more natural and practically more convenient to correct for the bias of the
regression estimator as described above.

3.3. Locally Robust Process

Locally robust semiparametric estimation has been considered by several authors
(see Newey, 1990 for an early example). Chernozhukov et al. (2022) consider
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a general Generalized Method of Moments (GMM) estimation problem, where
the moments depend on a first-step nonparametric estimator. Locally robust
semiparametric GMM estimators are built from moment conditions that have zero
derivatives with respect to the first-step estimator so that the latter does not affect
the asymptotic variance of the parameters of interest. They have smaller bias and
better small sample properties than standard GMM estimators.

In our case, we have a continuum of moment conditions. Our goal is to modify
these moment conditions so that (i) we can still test for our null hypothesis of
interest using these modified moments, and (ii) estimation becomes “adaptive”
with respect to the nonparametric regression. Hence, we consider the moments

E
[
(Y −E(Y|W))

(
ϕ(s′X)−E(ϕ(s′X)|W)

)] = 0 ∀s ∈ S .

Because for any s, E
[
(Y −E(Y|W))E(ϕ(s′X)|W)

] = 0, the above moment con-
ditions are equivalent to (4). We show below that for the empirical equivalent of
these moments, estimation of nonparametric components has no first-order effect.

Let ιs(W) = E(φs(X)|W) and its estimator

ι̂s(w) = φs(w)/̂f (w), φs(w) = (nhp)
−1

n∑
i=1

φs(Xi)Kh (Wi −w) .

Our locally robust approach thus delivers the statistic

SLR
n = n

∫
S

|Pn
(̂
ε(φs − ι̂s)̂t

) |2 dμ(s) .

Newey et al. (2004) note that their bias correction based on twicing kernels is
equivalent to a locally robust density weighted average. By contrast, our bias
correction detailed in the previous section does not yield the same statistic as the
one based on the locally robust process. In practice, there is no need to compute
ι̂s(W) for each s ∈ S and to integrate. Simple algebra reveals that, if K denotes
the n×n matrix of generic element Kh(Wi −Wj)/[nhp̂f (Wj)], then

SLR
n = ε̂′Âε − 2̂ε′AKε̂ + ε̂′K′AKε̂,

so the locally robust version of the statistic is practically straightforward to
compute.

4. ASYMPTOTIC ANALYSIS

We here focus on the asymptotic expansion of the empirical processes on which
our test statistics SBC

n and SLR
n are based. We do not formally consider the empirical

process entering Sn: its properties would be similar but would necessitate assuming
some undersmoothing.
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We first introduce some definitions. Define the differential operator

∂ lg(w) = ∂ |l|

∂ l1 w1 . . . ∂
lpwp

g(w) l = (l1, . . . ,lp)
′, |l| = l1 +·· ·+ lp .

Definition 4.1. (a)Gλ(A)= {
g : A 	→ R : supa∈A |∂ lg(a)| < M for all |l|≤λ

}
.

(b) Kr
λ is the class of product univariate kernels k(·) such that k(·) is of order r, λ

times continuously differentiable with uniformly bounded derivatives, symmetric
about zero, and with bounded support.

Assumption A. (i) (Yi,Wi,Xi),i = 1, . . . ,n, is a random sample from (Y,W,X).
Y ⊂R, W ⊂R

p, and X ⊂R
d, the supports of Y, W, and X, are bounded. (ii) S is a

bounded compact subset of Rd containing a neighborhood of the origin. (iii) ϕ(·)
is an analytic non-polynomial function with ∂ lϕ(0) = 0 for all l ∈ N.

Assumption B. (i) The density of W f (·) ∈ Gr(R
p) and m(·) ∈ Gr(W), with

r ≥ �(p+1)/2�.2 (ii) ιs(·) ∈ Gr(W) uniformly in s ∈ S , with r ≥ �(p + 1)/2�.
(iii) K(·) ∈ Kr

λ with λ ≥ �(p+1)/2�+1.

Define the uniform convergence rate of the kernel density estimator as

dn =
√

logn

nhp
n

+hr
n .

Assumption C. (i) hnτ
−1
n = o(1). (ii) dnτ

−3
n = o(n−1/4). (iii) dnh−|l|

n τ−(2+|l|)
n =

o(1) for |l| = �(p+1)/2�.

Assumption D. (i) pn = Pr (f (W) ≤ 3τn/2) is such that pn = o(n−1/2),
pnh−p

n τ−2
n = o(n−1/4), and pnh−(p+|l|)

n τ−(1+|l|)
n = o(1) for |l| = �(p+1)/2�.

(ii) There exists N such that for all n ≥ N, Wn = {w : f (w) ≥ τn/2} is convex.

Assumption A ensures that the encompassing hypothesis can be written as
the continuum of moment conditions (4). In particular, Bierens (2017, Thm. 2.2)
builds on previous results by Bierens (1982) and Stinchcombe and White (1998),
and shows that Assumption A(iii) is sufficient. Intuitively, if ϕ(·) is analytic
non-polynomial, Equation (4) implies that Y − E(Y|W) is uncorrelated with any
polynomial in s′X, and thus yields the required equivalence. This allows for
different functions ϕ(·) as previously detailed.

Assumption B imposes conditions that are commonly found in the literature
on nonparametric estimation. In particular, they impose that the density of W is
differentiable over W and its derivatives go smoothly to zero as we approach to
the boundaries of the support.

Assumption C sets the main conditions on the bandwidths. Together with
Assumption B, it implies that the kernel estimators asymptotically belong to a

2�x� denotes the smallest integer above x.
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class of sufficiently smooth functions with limited entropy/complexity. This is
needed for the asymptotic stochastic equicontinuity of the empirical processes at
the basis of our test statistics. Assumptions C and D impose conditions on the
bandwidths in connection with the trimming parameter. We need the effect of
trimming to vanish quickly enough to avoid large biases. Abstracting from the
appearance of the trimming, Condition (ii) in Assumption C ensures that the kernel
estimators are n−1/4-consistent. It requires, in particular, that nh4r

n = o(1). Without
the bias correction or locally robust approach employed in the construction of
our statistics, this condition would become nh2r

n = o(1) to ensure that the bias
of the nonparametric estimator is negligible compared to the variability of the
empirical process (see Delgado and Manteiga, 2001; Escanciano et al., 2014). This
means that our empirical processes have a small bias property (in their stochastic
expansion). Our conditions allow the bandwidth to be optimal for nonparametric
estimation purposes and avoid the need for undersmoothing. The main practical
advantage is that one can use, for instance, a simple rule-of-thumb.3 We could
extend our theoretical results to stochastic bandwidths to allow for the use of
data-driven methods, as was done in other contexts (Mammen, 1992; Andrews,
1995; Lavergne, 2001). The details would be more involved here because of the
stochastic trimming, so we do not pursue this issue further.

Assumption D as a whole is used to ensure that trimming has a negligible effect
overall, see e.g. Lavergne and Vuong (1996) or Escanciano et al. (2014) for similar
assumptions. It may be difficult to check, but our simulations seem to indicate that
trimming is actually not crucial: when a data-driven bandwidth is used, results with
no trimming are comparable, and mostly better, than results with trimming.

The following proposition establishes the influence function representations of
the empirical processes used in our statistics SBC

n and SLR
n .

Proposition 4.1. Under Assumptions A–D,
√

nPn(̃εφŝt) = √
nPn(ε(φs − ιs))+

oP(1) and
√

nPn(̂ε(φs − ι̂s)̂t) = √
nPn(ε(φs − ιs))+oP(1) uniformly in s ∈ S .

From the above result, under H0 the limiting distribution, say Gs, of both
empirical processes is the limiting one of

√
nPn(ε(φs − ιs)). This Gs is a zero-

mean tight Gaussian process valued in L∞(S), the space of uniformly bounded
functionals over S , and characterized by the collection of covariances {E(Y −
m(W))2(φs(X) − ιs(X))(φt(X) − ιt(W)) : s,t ∈ S}. Our asymptotic expansions
directly yield

SBC
n or SLR

n
d−→

∫
|Gs| 2 dμ(s) .

However, the result is not useful in practice since the covariance function of Gs

depends on the unknown data generating process. In what follows, we develop a
bootstrap procedure for obtaining critical and p-values.

3We note however that the optimal nonparametric bandwidth is likely not optimal for estimation of
E

[
(Y −E(Y|W))ϕ(s′X)

]
.
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5. BOOTSTRAP TESTS

We use a wild bootstrap procedure that imposes the null hypothesis H0 when
resampling the observations. The bootstrap DGP writes as

Y∗
i = m̂(Wi)+ ξîεi ε̂i = Yi − m̂(Wi),

where {ξi,i = 1, . . . n} is a sequence of independent bootstrap weights with Eξ = 0
and Eξ 2 = 1. From each bootstrap sample {(Y∗

i ,Wi,Xi
)

: i = 1, . . . ,n}, we proceed
as above to obtain ε̂∗

i = Y∗
i − m̂∗(Wi) and ε̃∗

i = Y∗
i − m̃∗(Wi), where

m̃∗(w) = m̂∗(w)− B̂∗(w) = m̂∗(w)−
(

m̂∗(w)

f̂ (w)
− m̂∗(w)

)
, m̂∗ = Y∗/̂f .

The kernel smoothers Y∗ and m̂∗ are constructed in the same way as in Equation (6)
to control for the random denominators in Y∗ and m̂∗. The bias correction could
be the one used in the original statistic, as done by Xia et al. (2004), however,
we noted in simulations that recomputing the bias correction with bootstrap data
yields a better behavior. We thus consider the bootstrap statistics

n
∫
S

|Pn
(̃
ε∗φŝt

) |2 dμ(s) and n
∫
S

|Pn
(̂
ε∗(φs − ι̂s)̂t

) |2 dμ(s) . (8)

In practice, one can compute many bootstrap statistics and obtain their 1 − α

quantiles, denoted as qBC
1−α and qLR

1−α . The bootstrap test rejects H0 at asymptotic

level α whenever Sj
n > qj

1−α , for j = BC or LR.

Proposition 5.1. Let {ξi,i = 1, . . . n} be a bounded i.i.d. sequence with Eξ = 0,
Eξ 2 = 1 independent of the sample. Under Assumptions A–D,

(a)
√

nPn(̃ε
∗φŝt) = √

nPn(ξε(φs − ιs)) + op(1) and
√

nPn(̂ε
∗(φs − ι̂s)̂t) =√

nPn(ξε(φs − ιs))+op(1) uniformly in s ∈ S .4

(b) Under H0, Pr[Sj
n > qj

1−α] → α, j = BC or LR.

(c) Under H1, Pr[Sj
n > qj

1−α] → 1, j = BC or LR.

6. NUMERICAL RESULTS

6.1. Small Sample Behavior

We used a DGP in line with our example in Section 2.2. Specifically,

Y = m(W)+h(W)X +γ δ(X)+η, E(η|W,X) = 0,

where η ∼ N(0,1) is independent of (W,X), W ∼ N(0,σ 2 = (1/2)2),

fX|W(x|w) = p(w)ϕ(x;1/4)+ (1−p(w))ϕ(x;3/4),

4Here, the probability space is the joint probability on random bootstrap weights and sample data.
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with ϕ(·;s) the density of a N(0,σ 2 = s2) and p(·) the cumulative distribution
function of W. We set m(w) = w3 − 2w, h(w) = w2 − (1/2)2, δ(x) = x4 − 3x2.
When γ = 0, MW encompasses MX , while it does not when γ = 0.

To study the behavior of our tests based on SBC
n and SLR

n and compare them to
the test based on the uncorrected ICM statistic Sn, we ran 10,000 simulations for
different values of γ and for sample sizes n =200 and 400. For our implementation,
the weighting function was a(x) = sinc(πx), which corresponds to a uniform μ

with complex exponential function ϕ(·). The observations on X were transformed
by the logistic c.d.f. then standardized before being passed as arguments to a(·). As
there is no clear way to choose the amount of trimming, we trimmed the 2% more
extreme observations in a first step, and we subsequently investigated the influence
of trimming. For bootstrapping, we used the two-point distribution defined through
Pr(ξ = 3−√

5
2 ) = 5+√

5
10 and Pr(ξ = 3+√

5
2 ) = 5−√

5
10 . We chose this simple distribution

with third central moment equal to one in the hope to better approximate the
distribution of the statistic, as is the case in simpler setups (Mammen, 1992). To
speed up computations, we used the warp-speed method proposed by Davidson
and MacKinnon (2007) and studied by Giacomini, Politis, and White (2013).
Specifically, we drew one bootstrap sample for each simulated data, and we used
the whole set of bootstrap statistics to compute the bootstrap p-values associated
with each original statistic.

We employed Gaussian kernels of order 2 for nonparametric estimation. In a
first step, we used the bandwidth rule h = Cσ̂Wn−1/5, where σ̂W is the estimated
standard deviation of W. To check the performance of our tests under different
bandwidth choices, we let the constant C vary. We report actual rejection prob-
abilities for 5% and 10% nominal sizes in Table 1. For C = 0.5 or C = 1, the
three tests have equal size control and the empirical size becomes closer to the
nominal level when increasing the sample size. When C increases to 1.5 then 2,
size control deteriorates for the uncorrected ICM test, while it improves for our
two tests. We also report in Figure 1 errors in rejection probability (ERP), that
is, the difference between the empirical rejection proportion and the nominal size
under the null hypothesis H0. A perfect test would exhibit an ERP of zero for any
nominal size. This gives us a visual way to evaluate whether the null distribution of
the test statistic is well approximated by its bootstrap approximation. These graphs
clearly show the high sensitivity of the ICM test to the bandwidth choice, and the
relative robustness of our two procedures. We complemented our study with an
investigation of the trimming influence. While we do not report details, the most
striking result we obtained was that the absence of trimming adversely affected the
behavior of the locally robust test for large bandwidths.

Following the suggestion of a referee, we investigated the issue of bandwidth
selection. Since there is no role for the bandwidth in the first-order expansion
of our test statistics, we decided to implement a data-driven bandwidth that
should be asymptotically optimal for nonparametric estimation. We used an
improved version of the Akaike information criterion (AIC) proposed by Hurvich,
Simonoff, and Tsai (1998), which has been found to have excellent small sample
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Table 1. Empirical rejection percentages under H0 at 10% and 5% nominal
levels.

h = Cσ̂W n−1/5 Data-driven h

C = 0.5 C = 1 C = 1.5 C = 2 Trimming No trimming

n = 200

Bias corrected 12.15 11.13 10.35 9.83 11.34 11.43

6.86 5.64 5.56 5.08 5.74 5.79

Locally robust 12.08 11.05 10.39 9.71 11.48 11.27

6.77 5.67 5.38 5.36 5.77 5.67

ICM 12.27 11.09 11.51 13.51 11.49 11.31

6.65 5.93 6.02 7.18 6.05 6.13

n = 400

Bias corrected 11.41 10.74 10.31 9.43 10.70 10.64

5.90 5.60 5.33 4.99 5.73 5.79

Locally robust 11.32 10.73 10.17 9.70 10.81 10.24

5.91 5.64 5.21 4.91 5.58 5.75

ICM 11.13 10.19 10.93 13.24 10.46 10.42

6.03 5.69 5.71 6.69 5.85 5.80

performances by Li and Racine (2004). The criterion is

AICc = log

(
1

n

n∑
i=1

[Yi − m̂(Wi)]
2

)
+ 1+ tr(H)/n

1− [tr(H)+2]/n
,

where H is the “hat matrix” such that (m̂(W1), . . . ,m̂(Wn))
′ = H (Y1, . . . ,Yn)

′. As
seen from Table 1, with this data-driven bandwidth, the three tests have good
size control. We also report errors in rejection probability in Figure 2, which
shows the excellent adequacy of the bootstrap approximation. We then repeated
our experiment without any trimming and observed that ERP was closer to zero
for our tests compared to the case where trimming is implemented.

Finally, for a data-driven bandwidth and no trimming, we report in Figure 3
the power of the three tests when γ varies. Our two tests basically have the same
power, and power increases with sample size, while the uncorrected ICM test is
significantly less powerful.

6.2. Empirical Illustration

We apply our encompassing tests to competing models of consumption behavior, in
the spirit of Gaver and Geisel (1974) and Greene (2003, Chap. 8). The first model
assumes that consumption only depends on income, and relates consumption to
current and past income. Formally, it writes

Ci = g1(Ii,PIi)+ εi E[εi|Ii,PIi] = 0, (9)
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Figure 1. Errors in rejection probabilities for n = 400 using a rule-of-thumb bandwidth h =
Cσ̂W n−1/5.

where Ci denotes (log of) consumption of household i, Ii denotes (log of) income of
household i, and PIi denotes (log of) past income of household i. The second model
assumes the presence of habits in consumption behavior, and relates consumption
to current income and past consumption. It writes

Ci = g2(Ii,PCi)+ηi E[ηi|Ii,PCi] = 0, (10)

where PCi denotes (log of) past consumption of household i.
We used data compiled by Arellano, Blundell, and Bonhomme (2017) from the

Panel Study of Income Dynamics, which concerns n = 792 households. We focus
on the first two time periods, namely the years 1999 and 2001, so that Ci and Ii

correspond to variables in 2001, while PCi and PIi correspond to 1999. We first
tested if Model (9) encompasses Model (10), that is,

H0 : E[g1(Ii,PIi) | Ii,PCi] = g2(Ii,PCi) . (11)
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Figure 2. Errors in rejection probabilities using a data-driven bandwidth: results with trimming on
first row, results with no trimming on second row.

We then tested the reversed hypothesis that Model (10) encompasses Model (9),
that is,

H′
0 : E[g2(Ii,PCi)|Ii,PIi] = g1(Ii,PIi) . (12)

We applied our encompassing tests with the bandwidth selected by the AICc

criterion and 999 bootstrap samples drawn to obtain critical values. Table 2 reports
the values of our test statistics, together with their 95% bootstrap quantiles and
bootstrap p-values. The first encompassing hypothesis H0 is clearly rejected, hence
Model (9) does not encompass Model (10). The encompassing hypothesis H′

0,
however, cannot be rejected by any of our tests, even at a 10% nominal level. This
suggests that consumption may be adequately modeled as a function of income
and past consumption, in a way coherent with the consumption habit formation
theory.
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Figure 3. Power curves for tests at 10% level using a data-driven bandwidth and no trimming.

Table 2. Test of the encompassing hypotheses H0
in (11) and H′

0 in (12).

Statistics 5% critical value P-value

Test of H0

Bias corrected 3.0848 0.1820 0.0000

Locally robust 3.1125 0.1968 0.0000

ICM 3.3948 0.2499 0.0000

Test of H′
0

Bias corrected 0.0069 0.0294 0.8799

Locally robust 0.0355 0.0447 0.1912

ICM 0.0249 0.0539 0.5485

7. CONCLUDING REMARKS

We have studied two general approaches to obtain a small bias property for our
encompassing test statistic. These approaches could potentially be used in other
estimation and testing problems involving a first-step nonparametric estimation.
Our simulation experiment seems to indicate that when coupled with a data-driven
bandwidth, these two approaches are robust to trimming choices and deliver good
performances.

8. PROOFS

For any real or complex valued function g(·), we denote with ||g||∞ the supremum
norm taken over the support of its argument and Pg = ∫

g(z)dP(z). We define the
population counterpart of t̂ as t(w) = 1(f (w) ≥ τn). By convention, (Y /̂f )(w) will
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be set to 0 whenever f̂ (w) = 0. The same notation will hold for m̂/̂f , φs/̂f , Y∗/̂f ,
and m̂∗/̂f . C denotes a generic constant that may vary from line to line.

Our main proofs rely on auxiliary lemmas stated in Section 8.3.

8.1. Proof of Proposition 4.1

(a) We study the bias corrected empirical process

√
nPn(̃εφŝt) = √

nPn
((

Y − m̂+ B̂
)
φŝt

)
= √

nPn(εφŝt)+√
nPn

(
(m− m̂)φŝt

)+√
nPn(̂Bφŝt) . (13)

Since |ε| is bounded and |φs(·)| is uniformly bounded,

sup
s

∣∣√nPn(εφs(̂t −1))
∣∣ ≤ C

√
nPn |̂t −1| = op(1)

by Lemma 8.2(i). Hence,
√

nPn(εφŝt) = √
nPn(εφs)+oSp (1), where oSp (1) denotes

a uniform in s ∈ S op(1). For the second term, as (̂t − t) = t̂2 − t2 = (̂t + t)(̂t − t),
and ‖(m− m̂)(̂t + t)‖∞ = op(n−1/4) by Lemma 8.2(ii),

sup
s

∣∣∣√nPn(m− m̂)φs(̂t − t)
∣∣∣ ≤ C‖(m− m̂)(̂t + t)‖∞

√
nPn |̂t − t| = op(1) .

We now show that the third term is such that

√
nPn(̂Bφŝt) = −√

nPn(ειs)−√
nPn ((m− m̂)ιst)+oSp (1) .

First, use ‖B̂(̂t + t)‖∞ = op(n−1/4), see Lemma 8.2(iii), and similar arguments as
above to show that

√
nPn(̂Bφŝt) = √

nPn(̂Bφst) + oSp (1). Lemma 8.3(i) and (ii)
ensures, in addition, that B̂ ∈ Gl(Wn) with probability approaching one, where
l = �(p+1)/2� and Wn := {w : f (w) ≥ τn/2}. Lemma 8.4(i) yields

√
nPn(̂Btφs) = √

nP(̂Btφs)+oSp (1), (14)

P(̂Btφs) =
∫

B̂(w)t(w)ιs(w)f (w)dw = P(̂Btιs) . (15)

Since ‖[̂B − (m̂ − Y)/f ]t‖∞ = op(n−1/2) from Lemma 8.2(iv) and ιs is uniformly
bounded,

√
nP(̂Btιs) = √

n
∫

(m̂(w)−Y(w))t(w)ιs(w)dw+oSp (1)

= −√
nPn

[
(Y − t̂m̂)

∫
K(u)(tιs)(W +uh)du

]
+oSp (1)

= −√
nPn

[(
ε − (m̂−m)̂t −m(̂t −1)

)∫
K(u)(tιs)(W +uh)du

]
+oSp (1),
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where the second equality follows from a change of variable. Let us deal with each
term separately. Since ε is bounded and |t(w+uh)−1| = 1{f (w+uh) < τn},∣∣∣√nPnε

∫
K(u)ιs(W +uh)[t(W +uh)−1]du

∣∣∣ ≤ C
∫

|K(u)|√nPn1 {f (W +uh) < τn} du .

By a mean-value expansion, for all (u,w) ∈ Supp(K)×R
p, we have f (w + hu)−

f (w) = ∂T f (w̃)uh, for some w̃. By Assumptions A and B,
∣∣∂T f (w)uh

∣∣ ≤ Ch
for all (u,w) ∈ Supp(K)×R

p. Since hτ−1
n = o(1), for n large enough 1{f (w+uh) <

τn} ≤ 1{f (w) ≤ 3τn/2}. Now use Pn1
{

f (W) ≤ 3τn/2
}

= OP(pn) = oP(n−1/2), from

Assumption D(i), to obtain

√
nPn

[
ε

∫
K(u)(tιs)(W +uh)du

]
= √

nPn

[
ε

∫
K(u)ιs(W +uh)du

]
+oSp (1) .

The same reasoning allows the same replacement in the second and third term of
the decomposition, using that ‖(m̂ − m)̂t‖∞ is op(1) by Lemma 8.2(ii) and that
m(̂t −1) is bounded. Then

√
nP(̂Btιs) = −√

nPn

[
ε

∫
K(u)ιs(W +uh)du

]
+√

nPn

[
(m̂−m)̂t

∫
K(u)ιs(W +uh)du

]
+√

nPn

[
m(̂t −1)

∫
K(u)ιs(W +uh)du

]
+oSp (1) . (16)

Lemma 8.4(ii) yields

√
nPn

(
ε

∫
K(u)ιs(W +uh)du

)
= √

nPn(ειs)+oSp (1),

as P
(
ε
∫

K(u)ιs(W +uh)du
) = P(ειs) = 0. A Taylor expansion of order r guaran-

tees that
∫

K(u)ιs(w+uh)du = ιs(w)+O(hr) uniformly in (s,w) ∈ S ×W as ιs(·)
has uniformly bounded derivatives of order r. Since ‖(m̂−m)̂t‖∞ = op(n−1/4) and
nh4r = o(1),

√
nPn

(
(m̂−m)̂t

∫
K(u)ιs(W +uh)du

)
= √

nPn((m̂−m)̂tιs)+oSp (1) .

Now use similar arguments as before to replace t̂ by t. The last term in (16) is
negligible. Indeed, the argument of Pn is uniformly bounded, and

√
nPn|t − 1| =

oP(1) from Lemma 8.2(i). Hence,
√

nP(̂Btιs) = −√
nPn(ειs)+√

nPn((m̂−m)tιs)+oSp (1) .

Gathering results,
√

nPn(̃εφŝt) = √
nPn(ε(φs − ιs))+√

nPn ((m− m̂)(φs − ιs)t)+oSp (1) .
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From arguments similar to those used for (14), since ‖(m−m̂)t‖∞ = op(n−1/4) and
m̂ ∈ Gl(Wn) with probability approaching one,
√

nPn ((m− m̂)(φs − ιs)t) = √
nP((m− m̂)(φs − ιs)t)+oSp (1) .

But
√

nP((m− m̂)(φs − ιs)t) = 0 as E(φs(X)|W) = ιs(W). Finally, we obtain√
nPn(̃εφŝt) = √

nPn(ε(φs − ιs))+oSp (1) as expected.
(b) We now study the locally robust empirical process

√
nPn(̂ε(φs − ι̂s)̂t) = √

nPn
(
(Y − m̂)(φs − ι̂s)̂t

)
= √

nPn(ε(φs − ι̂s)̂t)+√
nPn

(
(m− m̂)(φs − ι̂s)̂t

)
. (17)

A similar reasoning as in Part (a) allows replacing t̂ by t and yields
√

nPn(̂ε(φs − ι̂s)̂t) = √
nPn(ε(φs − ι̂s)t)+√

nPn ((m− m̂)(φs − ι̂s)t)+oSp (1),

based on the boundedness of ε,
√

nPn |̂t − t| = op(1), and the boundedness
in probability of sups ‖(φs − ι̂s)t‖∞, sups ‖(φs − ι̂s)̂t‖∞, ‖(m̂ − m)t‖∞, and
‖(m̂ − m)̂t‖∞, see Lemma 8.2. From Lemma 8.2, sups ‖(̂ιs − ιs)t‖∞ = op(n−1/4)

and ‖(m− m̂)t‖∞ = oP(n−1/4), hence
√

nPn ((m− m̂)(φs − ι̂s)t) = √
nPn ((m− m̂)(φs − ιs)t)+oSp (1) = oSp (1),

where the last equality is established in Part (a). Now,

Pnε(φs − ι̂s)t = Pnε(φs − ιs)t −Pnε(̂ιs − ιs)t,

and sups

∣∣√nPn(ε(φs − ιs)(t −1))
∣∣ ≤ C

√
nPn|t−1| = oP(1) by Lemma 8.2(i). Last,√

nPnε(̂ιs − ιs)t = oSp (1) by Lemma 8.4(i). Gathering results,
√

nPn(̂ε(φs − ι̂s)̂t) =√
nPn(ε(φs − ιs))+oSp (1).

8.2. Proof of Proposition 5.1

We here consider statements relative to Pξ ⊗ P, the joint probability measure of
both the bootstrap weights and the sample data.

(a) We study the bootstrap version of the bias corrected empirical process
√

nPn(̃ε
∗φŝt) = √

nPn
((

Y∗ − m̂∗ + B̂∗)φŝt
)

= √
nPn(ξεφŝt)+√

nPn
(
ξ(m− m̂)φŝt

)+√
nPn

(
(m̂− m̂∗)φŝt

)
+√

nPn(̂B
∗φŝt) .

From here, we only stress the differences with the proof of Proposition 4.1.
Proceeding as in the latter proof and using results in Lemma 8.2,

√
nPn(ξεφŝt) = √

nPn(ξεφst)+oSP (1),√
nPn

(
ξ(m− m̂)φŝt

) = √
nPn (ξ(m− m̂)φst)+oSP (1),√

nPn
(
(m̂− m̂∗)φŝt

) = √
nPn

(
(m̂− m̂∗)φst

)+oSP (1),√
nPn(̂B

∗φŝt) = √
nPn(̂B

∗φst)+oSP (1) .
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For the last term, use ‖B̂∗t‖∞ = oP(n−1/4), Lemma 8.3(ii), (iv), (v), and
Lemma 8.4(i) to show that
√

nPn(̂B
∗tφs) = √

nP(̂B∗tφs)+oSP (1) . (18)

From the law of iterated expectations, P(̂B∗tφs) = P(̂B∗tιs). Since ‖[̂B∗ − (m̂∗ −
Y∗)/f ]t‖∞ = oP(n−1/2) from Lemma 8.2(viii),

√
nP(̂B∗tιs) = √

n
∫

(m̂∗(w)−Y∗(w))t(w)ιs(w)dw+oSP (1)

= −√
nPn

[
(Y∗ − m̂∗)̂t

∫
K(u)(tιs)(W +uh)du

]
+oSP (1),

where the second equality follows from a change of variable. Replace (Y∗ − m̂∗)̂t
by ξεt + ξε(̂t − t)+ ξ(m − m̂)̂t + (m̂ − m̂∗)̂t and proceed as in Proposition 4.1 to
obtain
√

nP(̂B∗tφs) = −√
nPn(ξειst)−√

nPn((m̂− m̂∗)tιs)−√
nPnξ(m− m̂)tιs +oSP (1) .

Gathering results,
√

nPn(̃ε
∗φŝt) =√

nPn(ξε(φs − ιs)t)+√
nPn (ξ(m− m̂)(φs − ιs)t)

+√
nPn((m̂− m̂∗)t(φs − ιs))+oSP (1) .

A reasoning similar to Proposition 4.1 then yields
√

nPn(ξε(φs − ιs))t =√
nPn(ξε(φs − ιs))+oSP (1),

√
nPn (ξ(m− m̂)(φs − ιs)t) = oSP (1), and

√
nPn((m̂−

m̂∗)t(φs − ιs)) = oSP (1). Hence
√

nPñε
∗̂tφs = √

nPnξε(φs − ιs)+oSP (1).

For the locally robust empirical process,
√

nPn(̂ε
∗(φs − ι̂s)̂t) = √

nPn(ξε(φs − ι̂s)̂t)

+√
nPn

(
ξ(m− m̂)(φs − ι̂s)̂t

)+√
nPn

(
(m̂− m̂∗)(φs − ι̂s)̂t

)
.

The proof proceeds along similar lines to show that the first term equals√
nPn(ξε(φs − ιs))+oSP (1) and the other terms are both oSP (1).
(b) Since the class {(y,w,x) 	→ (y − m(w))(φs(x)− ιs(w)) : s ∈ S} is Donsker,√
nPnε(φs − ιs) converges weakly to a tight zero-mean Gaussian process Gs under

H0, see the main text. By the continuity of the Cramér–von Mises functional and
Proposition 4.1, SBC

n and SLR
n weakly converge to

∫ |Gs|2μ(ds). From Bentkus,
Götze, and Zitikis (1993), this distribution is continuous, so pointwise convergence
implies uniform convergence.

Using van der Vaart and Wellner (2000, Thm. 2.9.6), we get weak convergence
of

√
nPnξε(φs − ιs) in probability conditionally upon the initial sample to a tight

zero-mean Gaussian process G
′
s with the same covariance function as Gs. From

(a), the bootstrap statistics (8) weakly converge to
∫ |G′

s|2μ(ds) in probability
conditionally upon the initial sample. The desired result then follows.
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(c) From Proposition 4.1 and a Glivenko–Cantelli property of the class
{(y,w,x) 	→ (y−m(w))(φs(x)− ιs(w)) : s ∈ S}, Pñε̂tφs = Pε(φs − ιs)+oSP (1) and

similarly for Pn̂ε(φs − ι̂)̂t. Hence, SLR
n /n and SBC

n /n
p−→ ∫ |Eε(φs − ιs)|2dμ(s).

From Bierens (2017, Thm. 2.2), under H1, Eε(φs − ιs) = 0 for almost all s and∫ |Eε(φs − ιs)| 2 dμ(s) > 0. From (b), it holds that the bootstrap statistics are
bounded in probability, and the result follows.

8.3. Auxiliary Lemmas

Lemma 8.1. Let K be as in Assumption B(iii). Let {Ui}n
i=1 be a sequence of i.i.d.

random variables taking values in R
q. Assume that {ϕn,s : s ∈ S} is a sequence

of classes of real-valued functions defined on the support of U1 such that for any
n ∈ N: sups∈S ‖ϕn,s‖∞ < Lϕ and ‖ϕn,s1 −ϕn,s2‖∞ ≤ Lϕ‖s1 − s2‖ for all s1,s2 ∈ S .
Then, for any compact set A ⊂ R

p

sup
(w,s)∈A×S

∣∣∣h−p(Pn −P)ϕn,s(U)K
(W −w

h

)∣∣∣ = OP

(√
logn

nhp

)
.

The same result holds when K(·) is replaced by |K(·)|, ∂ lK(·), or |∂ lK(·)| with
|l| ≤ �(p+1)/2�.

Proof. Follows from minor changes in the proof of Li and Racine (2006,
Thm. 1.4). �

Lemma 8.2. Under Assumptions A–D,

(i) Pn|t −1| = op(n−1/2) and Pn |̂t − t| = op(n−1/2),

(ii) ‖(m̂−m)t‖∞ = op(n−1/4) and ‖(m̂−m)̂t‖∞ = op(n−1/4),

(iii) ‖B̂t‖∞ = op(n−1/4) and ‖B̂̂t‖∞ = op(n−1/4),

(iv) ‖[̂B− (m̂−Y)/f ]t‖∞ = op(n−1/2),

(v) sups ‖(̂ιs − ιs)t‖∞ = op(n−1/4) and sups ‖(̂ιs − ιs)̂t‖∞ = op(n−1/4),

(vi) ‖(m̂∗ −m)t‖∞ = oP(n−1/4) and ‖(m̂∗ −m)̂t‖∞ = oP(n−1/4),

(vii) ‖B̂∗t‖∞ = oP(n−1/4) and ‖B̂∗̂t‖∞ = oP(n−1/4),

(viii) ‖[̂B∗ − (m̂∗ −Y∗)/f ]t‖∞ = oP(n−1/2).

Proof. (i) Notice first that |t −1| = 1(f (·) < τn) and

EPn1(f (W) < τn) ≤ Pr(f (W) ≤ 3τn/2) = pn = o(n−1/2),

where the last equality follows from Assumption D(i). So, by Markov’s inequality,
Pn|t −1| = oP(n−1/2).

To prove the second part of (i), define the event AC := {‖̂f − f ‖∞ ≤ Cdn}.
From Lemma 8.1, ‖̂f −E f̂ ‖∞ = OP(

√
(logn)/(nhp)). Standard bias manipulations

ensure that ‖E f̂ − f ‖∞ = O(hr). So, ‖̂f − f ‖∞ = O(dn) and by choosing C
large enough Pr(AC) can be made arbitrarily close to 1 for each large n. Over
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such event, since dnτ
−1
n = o(1) (see Assumption C), for each n large enough

1− τ−1
n (̂f (w)− f (w)) ≤ 3/2 for all w ∈ W . Thus,

1
(̂

f (w) ≥ τn

)
= 1

(
f (w) ≥ τn

[
1− f̂ (w)− f (w)

τn

])
≥ 1

(
f (w) ≥ 3τn/2

)
so that f (w) ≥ (3/2)τn implies t(w) = t̂(w) = 1. Accordingly, over AC for large
enough n

|̂t(w)− t(w)| ≤ 1
(

f (w) < 3τn/2
)

for all w ∈ W

and

Pn |̂t − t| ≤ Pn1
(

f (W) < 3τn/2
)

= OP(pn) = oP(n−1/2),

where the last two equalities follow from Markov’s inequality and Assump-
tion D(i). Conclude by recalling that for C large enough Pr(AC) can be made
arbitrarily close to 1 for each large n.

(ii) Consider the event AC previously defined and fix δ ∈ (0,1]. Since dnτ
−1
n =

o(1), over such event for each large n, we have 1 + 2[f (w)− f̂ (w)]/(δτn) ≤ 2 for
all w ∈ W . So,

1
(̂

f (w) ≥ δτn/2
)

= 1
(

f (w) ≥ δτn

2

[
1+2

f (w)− f̂ (w)

δτn

])
≥ 1

(
f (w) ≥ δτn

)
.

As already seen, by choosing C large enough Pr(AC) can be made arbitrarily
close to 1 for each large n. So, we obtain that

for each δ ∈ (0,1] wpa1 : 1
(

f (w) ≥ δτn

)
≤ 1

(̂
f (w) ≥ δτn/2

)
for all w ∈ W,

(19)

where wpa1 stands for “with probability approaching one.” Switching the roles of
f̂ and f, by a similar argument, we obtain that

for each δ ∈ (0,1] wpa1 : 1
(̂

f (w) ≥ δτn

)
≤ 1

(
f (w) ≥ δτn/2

)
for all w ∈ W .

(20)

Now, for any fixed δ ∈ (0,1] (19) implies that with probability approaching one

(m̂−m) 1(f (·) ≥ δτn) = Y − m̂f

f
1(f (·) ≥ δτn)

+ Y − m̂f

f

f − f̂

f̂
1(f (·) ≥ δτn) 1(̂f (·) ≥ δτn/2) .

To bound the RHS, from Lemma 8.1, ‖Y − EY‖∞ = OP(
√

(logn)/(nhp)),
while standard bias computations yield ‖EY − mf ‖∞ = O(hr). Hence,
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‖Y − mf ‖∞ = OP(dn). Similarly, ‖̂f − f ‖∞ = OP(dn). Using these rates and the
above display gives

‖(m̂−m) 1(f (·) ≥ δτn)‖∞ = OP

(
dn

τn
+ d2

n

τ 2
n

)
= oP(n−1/4), (21)

where the last equality follows from Assumption C. Since δ ∈ (0,1], the LHS of the
above display is an upper bound for ‖(m̂−m)t‖∞. So ‖(m̂−m)t‖∞ = oP(n−1/4). To
obtain the rate with t̂, an application of (20) with δ = 1 gives that with probability
approaching one ‖(m̂−m)̂t‖∞ ≤ ‖(m̂−m) 1(f (·) ≥ τn/2)‖∞. Applying (21) with
δ = 1/2 gives the n−1/4 rate for the RHS of the latter inequality.

(iii) Since B̂ = m̂/̂f − m̂, in view of (ii), it suffices to obtain a rate for m̂/̂f . To
this end, notice that

m̂(w) = m(w)+m(̂t −1)(w)+ (m̂−m)̂t(w) . (22)

Combining Lemma 8.1 with standard bias computations gives ‖m − mf ‖∞ =
OP(dn). For the second term, the boundedness of K and m implies |m(̂t −1)(w)| ≤
Ch−p

Pn |̂t − 1|. Using the same arguments as in the proof of (i), Pn |̂t − 1| ≤
Pn |̂t − t|+Pn|t − 1| = OP(pn). So, ‖m(̂t −1)‖∞ = OP(pnh−p). For the third term
on the right-hand side of (22)

(m̂−m)̂t(w) ≤ ‖(m̂−m)̂t‖∞h−p
Pn

∣∣∣K(W −w

h

)∣∣∣ = OP

(dn

τn

)
·h−p

Pn

∣∣∣K(W −w

h

)∣∣∣,
where in the last equality, we have used

∥∥(m̂−m)̂t
∥∥∞ = OP(dn/τn) from the proof

of (ii). An application of Lemma 8.1 and standard bias computations yield that the
last term on the right-hand side is OP(1) uniformly in w ∈ W . Gathering results,

‖m̂−mf ‖∞ = OP

(
dn +pnh−p + dn

τn

)
. (23)

Combining the above display with arguments similar to the proof of (ii) gives∥∥∥∥∥
(

m̂

f̂
−m

)̂
t

∥∥∥∥∥∞
= OP

(
dn

τ 2
n

+ pn

hpτn

)
and

∥∥∥∥∥
(

m̂

f̂
−m

)
t

∥∥∥∥∥∞
= OP

(
dn

τ 2
n

+ pn

hpτn

)
.

(24)

Using Assumptions C(ii) and D(i) gives the desired result.
(iv) Since B̂ = m̂/̂f − Y /̂f , Equation (19) implies that with probability

approaching one

(
B̂− m̂−Y

f

)
t = (m̂−Y)

( f − f̂

f̂ f

)
t 1(̂f (·) ≥ τn/2) .
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Using (23), ‖Y −mf ‖∞ = OP(dn), and ‖̂f − f ‖∞ = OP(dn) (see the proof of (ii)),
the RHS of the above display is

OP

(( dn

τ 2
n

+ pn

hpτn

) dn

τn

)
= oP(n−1/2)

uniformly in w ∈ W , where the last equality follows from Assumptions C(ii) and
D(i).

(v) The proof follows from arguments similar to the proof of (ii), so it is omitted.
(vi) First, notice that

m̂∗ = Y∗

f̂
= m̂

f̂
+ ξ ε̂

f̂
. (25)

The uniform convergence rate of m̂/̂f has already been obtained in (24), so it
suffices to show that the second addendum is negligible with a suitable rate. Now,

ξ ε̂ = ξε + ξε(̂t −1)+ ξ(m− m̂)̂t. Using this decomposition and proceeding as in
the proof of (iii) gives∥∥∥∥∥ξ ε̂

f̂
t̂

∥∥∥∥∥∞
= OP

(
dn

τ 2
n

+ pn

hpτn

)
and

∥∥∥∥∥ξ ε̂

f̂
t

∥∥∥∥∥∞
= OP

(
dn

τ 2
n

+ pn

hpτn

)
(26)

with dnτ
−2
n +pnh−pτ−1

n = o(n−1/4).
(vii) Recall that

B̂∗ = m̂∗

f̂
− m̂∗ .

In view of (vi), it suffices to obtain a suitable convergence rate for the first
addendum. To this end, from (24) to (26), we have

‖(m̂∗ −m)̂t‖∞ = OP

(
dn

τ 2
n

+ pn

hpτn

)
. (27)

Also, m̂∗ = m + m(̂t −1) + (m̂∗ −m)̂t. Using this decomposition, (27), and
proceeding similarly as in the proof of (iii) gives∥∥∥∥∥
(

m̂∗

f̂
−m

)̂
t

∥∥∥∥∥∞
= OP

(
dn

τ 3
n

+ pn

hpτ 2
n

)
and

∥∥∥∥∥
(

m̂∗

f̂
−m

)
t

∥∥∥∥∥∞
= OP

(
dn

τ 3
n

+ pn

hpτ 2
n

)
.

By Assumptions C(ii) and D(i), we obtain the desired result.
(viii) The proof combines arguments already used previously. For completeness,

we also provide it here. Using the definition of B̂∗ and (19), with probability
approaching one(

B̂∗ − m̂∗ −Y∗

f

)
t = (m̂∗ −Y∗)

( f − f̂

f f̂

)
t 1(̂f (·) ≥ τn/2) . (28)
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As noticed in the proof of (vii), m̂∗ = m + m(̂t −1) + (m̂∗ −m)̂t. By this
decomposition, (27), and reasoning as in the proof of (iii), we get

‖m̂∗ −mf ‖∞ = OP

( dn

τ 2
n

+ pn

hpτn

)
. (29)

Combining ξ ε̂ = ξε + ξε(̂t −1)+ ξ(m− m̂)̂t with arguments used in the proof of
(iii) gives

‖ξ ε̂‖∞ = OP

(
dn

τn
+ pn

hp

)
.

By the previous display, Y∗ = m̂+ ξ ε̂, and (23), we get

‖Y∗ −mf ‖∞ = OP

(dn

τn
+ pn

hp

)
. (30)

Finally, plugging ‖̂f − f ‖∞ = OP(dn), (29), and (30) into (28) and then using
Assumptions C(ii) and D(i) gives the desired result. �

The next lemma provides the regularity features needed to apply stochastic
equicontinuity results. Similar results can be found in Andrews (1994, 1995).
The differences with respect to these works are the presence of the bias correc-
tion components and the different assumptions on the bandwidths. Recall that
Wn = {w : f (w) ≥ τn/2}.

Lemma 8.3. Under Assumptions B–D for l = �(p+1)/2�,

(i) Pr
(

m̂ ∈ Gl(Wn)
)

→ 1,

(ii) Pr
(

m̂/̂f ∈ Gl(Wn)
)

→ 1,

(iii)Pr
(̂
ιs ∈ Gl(Wn) for all s ∈ S

)
→ 1,

(iv) Pr
(
ξ ε̂/̂f ∈ Gl(Wn)

)
→ 1,

(v) Pr
(

m̂∗/̂f ∈ Gl(Wn)
)

→ 1.

Proof. The proof can be found in the Supplementary Material. �

The following lemma provides a stochastic equicontinuity result. Similar results
can be found in Andrews (1994, 1995). Let us introduce some notation that will be
used in the proof. For a generic space of functions F endowed with the L2(P)

metric || · ||2,P, we denote by N(ε,F,|| · ||2,P) the ε covering number and with
N[·](ε,F,|| · ||2,P) the ε bracketing number, see van der Vaart (1998) and van der
Vaart and Wellner (2000).

Lemma 8.4. Let Assumptions A–D hold and denote with Supp(ζ ) the support of
ζ := (ξ,Y,W,X).
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(i) If {̂fs : s ∈ S} is a collection of stochastic real-valued functions defined on W
such that sups∈S ‖̂fst‖∞ = oP(1) and Pr(̂fs ∈ Gl(Wn) for all s ∈ S) → 1 for
l = �(p+1)/2�, then, for Gn = √

n(Pn −P),

sup
s∈S

∣∣∣Gnt̂fsφs

∣∣∣ = oP(1) .

The same result also holds when φs is replaced by φs − ιs, ξ(φs − ιs), or a fixed
bounded function.

(ii) If gn : Supp(ζ ) 	→ R is a sequence of functions such that ‖gn‖∞ = O(1),

Gngn

∫
K(u)ιs(·+uh)du = Gngnιs +oSP (1) .

Proof. (i) Fix an arbitrary ε > 0. The assumptions on {̂fs : s ∈ S} ensure that
with probability approaching one

sup
s∈S

∣∣∣Gnt̂fsφs

∣∣∣ ≤ sup
g∈Gε

n

|Gng| (31)

with Gε
n := {g ∈ Gn : ‖g‖2,P < ε}, Gn = t ·Gl(Wn) ·�, and � := {φs : s ∈ S}. By van

der Vaart (1998, Lem. 19.34), if

logN[·](ε,Gn,|| · ||2,P) ≤ Cε−γ for all ε ∈ (0,1) and some fixed γ ∈ (0,2),

then the expectation of the right-hand side of (31) can be made arbitrarily small
asymptotically by choosing ε small enough. So, Markov’s inequality would deliver
the desired result.

Since N[·](2ε,Gn,|| · ||2,P) ≤ N(ε,Gn,|| · ||∞), we focus on the latter.
Assumption D(ii) and van der Vaart and Wellner (2000, Thm. 2.7.1) ensure that
for each n large enough

logN
(
ε ,Gl(Wn),‖ · ‖∞,Wn

)
≤ Cε−υ, υ ∈ (0,2),

where ||g||∞,Wn := supw∈Wn
|g(w)| for any g ∈ Gl(Wn). Since φs is Lipschitz on

the compact S , N(ε,�,‖ · ‖∞) ≤ Cε−q by Kosorok (2008, Thm. 9.15). So, using
the fact that t is bounded,

N(ε,Gn,‖ · ‖∞) ≤ Cε−qexp(ε−υ) with υ ∈ (0,2) .

The same reasoning applies if φs − ιs replaces φs, and if ξ(φs − ιs) replaces φs,
since N[·](ε||ξ ||2,ξ ·Gn,|| · ||2,P) ≤ N[·](ε,Gn,|| · ||2,P), where ||ξ ||22 = E |ξ |2.

(ii) By a rth order Taylor expansion,
∫

K(u)ιs(w + uh)du = ιs(w) + O(hr)

uniformly in w ∈ W and s ∈ S . Thus, the proof proceeds along similar lines as
the proof of (i). �
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SUPPLEMENTARY MATERIAL

Lapenta, E., and Lavergne, P. (2024): Supplement to “Encompassing Tests for
Nonparametric Regressions,” Econometric Theory Supplementary Material. To
view, please visit https://doi.org/10.1017/S0266466624000100.
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