ON THE SQUARE OF A HOMOLOGICAL MONOID

Rosemary Bonyun

(received August 15, 1965)

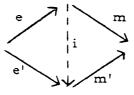
Homological monoids, as first defined by Hilton and Ledermann [1], are a generalization of abelian categories. It is known that if \mathcal{A} is an abelian category, so is \mathcal{Q}^2 ; here we prove the more general theorem that if \mathcal{A} is a homological monoid, so is \mathcal{Q}^2 . Our definition differs from that originally given by Hilton and Ledermann by the addition of a uniqueness condition in Axiom 1.

If Q is any category, a map m of Q is called mono if $m \circ x = m \circ y$ implies x = y; a map e is called epi if $x \circ e = y \circ e$ implies x = y. A map with an inverse is called an isomorphism.

A category Q is called a homological monoid if it satisfies the following axioms:

(A0) Q has a zero object; i.e., there exists an object 0 of Q such that for each object A of Q there exists a unique map $0 \rightarrow A$ and a unique map $A \rightarrow 0$.

(A1) Every map f of Q can be written $f = m \circ e$, where m is mono and e is epi, and such a representation is unique up to isomorphism; i.e., if $f = m \circ e$ and also $f = m' \circ e'$ then there exists an isomorphism i such that $e' = i \circ e$ and $m = m' \circ i$.

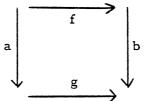


Canad. Math. Bull. vol. 9, no. 1, 1966

(A2) Every map f of \mathcal{Q} has a kernel and a cokernel; i.e., if f is any map of \mathcal{Q} , there exists a mono k, called a kernel of f, such that $f \circ k = 0$, and $f \circ x = 0$ implies $x = k \circ y$ for some y; dually we have a cokernel c of f for any f.

(A3) If e is a normal epi (i.e., $e = cok \ ker \ e$) and m is a normal mono (i.e., $m = ker \ cok \ m$) then $e \circ m$ is normal; i.e., $e \circ m = m' \circ e'$ where m' is a normal mono and e' is a normal epi.

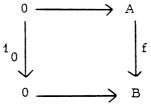
Given a category Q, we define a new category Q^2 whose objects are the maps of Q and whose maps are commutative squares; i.e., a map from an object a of Q^2 to an object b of Q^2 is a pair (f,g) of maps of Q such that the square commutes: b o f = g o a.



It can be seen that the composition of two commutative squares yields another commutative square, and in fact Q^2 is a category.

We now prove that if \mathcal{Q} is a homological monoid, so is \mathcal{Q}^2 .

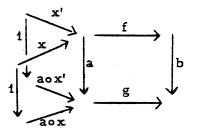
(A0) We claim that $1_0: 0 \to 0$ is a zero object of Q^2 . If $f: A \to B$ is any other object of Q^2 , we know that there are unique maps $0 \to A$ and $0 \to B$ and the following square commutes, by the uniqueness of the map $0 \to B$.



Thus we have a unique map from 1 to any object f of Q^2 and similarly a unique map from any f to 1. Hence 1. is a zero object of Q^2 . (A1) In order to prove that this axiom holds in Q^2 , we must first investigate which maps of Q^2 are mono and which are epi. We claim that $(f,g): a \rightarrow b$ in Q^2 is mono if and only if both f and g are mono in Q.

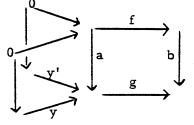
For, let f and g be mono in \mathcal{Q} , and let (f,g)o(x,y) = (f,g)o(x',y'). Then (fox, goy) = (fox', goy'); i.e., fox = fox' and goy = goy'. Therefore x = x' and y = y', hence (x,y) = (x',y'). Therefore (f,g) is mono in \mathcal{Q}^2 .

Conversely, suppose (f, g) is mono in Q^2 , and let fox = fox'. Then in Q^2 , (x, aox) is a map 1 + a and (x', aox') is a map 1 + a.



Here $(f, g) \circ (x, a \circ x) = (f \circ x, g \circ a \circ x) = (f \circ x, b \circ f \circ x) =$ $(f \circ x', b \circ f \circ x') = (f \circ x', g \circ a \circ x') = (f, g) \circ (x', a \circ x')$. Since (f, g) is mono, we conclude $(x, a \circ x) = (x', a \circ x')$; i.e., x = x'. Therefore f is mono.

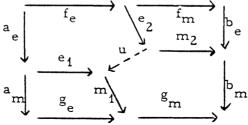
To see that g is mono, suppose $g \circ y = g \circ y'$. Then (0,y): $0 \rightarrow a$ and (0, y'): $0 \rightarrow a$, with $(f,g) \circ (0,y) = (f \circ 0, g \circ y) =$ (f \cdot 0, g \cdot y') = (f, g) \cdot (0, y').



Hence (0, y) = (0, y') and y = y'. Therefore g is mono.

Dually, (f,g) is epi in Q^2 if and only if both f and g are epi in Q. It is easily seen that (f,g) is an isomorphism of Q^2 if and only if both f and g are isomorphisms of Q.

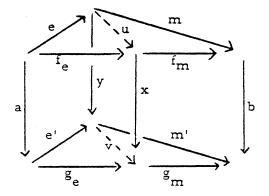
Returning now to the proof of (A1), let $(f,g) : a \rightarrow b$ be any map of \mathcal{Q}^2 . We can write $f = f \circ f$, $g = g \circ g$, $m \circ e$, $b = b \circ b$ in \mathcal{Q} . Moreover we can write $g \circ a = m \circ e$, $and b \circ f = m \circ e_2$, say. Then $b \circ f = g \circ a$



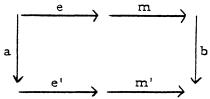
can be factored in two ways as $(g_m \circ m_1) \circ (e_1 \circ a_e)$ and $(b_m \circ m_2) \circ (e_2 \circ f_e)$. By uniqueness of such factorization, there exists an isomorphism u such that $g_m \circ m_1 \circ u = b_m \circ m_2$ and $u \circ e_2 \circ f_e = e_1 \circ a_e$. Now $g_m \circ m_1 \circ u \circ e_2 = b_m \circ m_2 \circ e_2 =$ $b_m \circ b_e \circ f_m = b \circ f_m$ and $m_1 \circ u \circ e_2 \circ f_e = m_1 \circ e_1 \circ a_e = g_e \circ a_m \circ a_e =$ $g_e \circ a$, so $(f_m, g_m) : m_1 \circ u \circ e_2 \rightarrow b$ and $(f_e, g_e) : a \rightarrow m_1 \circ u \circ e_2$ in Q^2 . Moreover, (f_m, g_m) is mono and (f_e, g_e) is epi, according to what was proved before. Thus we have factored (f, g) as $(f_m, g_m) \circ (f_e, g_e)$ in Q^2 .

To show that such factorization in Q^2 is unique, suppose that we have also $(f,g) = (m,m') \circ (e,e')$, where $(m,m'): y \rightarrow b$ is mono and $(e,e'): a \rightarrow y$ is epi. Let $m_1 \circ u \circ e_2 = x$, so $(f_e, g_e): a \rightarrow x$ and $(f_m, g_m): x \rightarrow b$. Then $(f,g) = (m,m') \circ (e,e') =$ $(m \circ e, m' \circ e')$ implies $f = m \circ e$ and $g = m' \circ e'$; hence there exist isomorphisms u and v such that $f_e = u \circ e$, $g_e = v \circ e'$, $f_m \circ u = m$, $g_m \circ v = m'$. Now $x \circ u \circ e = x \circ f_e = g_e \circ a = v \circ e' \circ a =$ $v \circ y \circ e$, hence $x \circ u = v \circ y$ since e is epi. Moreover u and v are isomorphisms in Q, hence $(u, v): y \rightarrow x$ is an isomorphism in Q^2 , such that $(f_m, g_m) \circ (u, v) = (m, m')$ and $(f_e, g_e) =$ $(u, v) \circ (e, e')$.

52

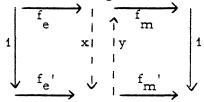


Remark. The following observation is due to Professor P. Hilton. We have seen that the uniqueness of factoring $f = m \circ e$ in \mathcal{Q} was necessary to obtain the isomorphism u and hence the map $x = m_1 \circ u \circ e_2$ of \mathcal{Q} required for Axiom 1. In fact, we have seen that if we have the following situation



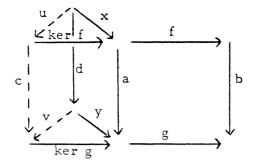
with m, m' mono and e, e' epi, then there exists a map x with $b \circ m = m' \circ x$ and $x \circ e = e' \circ a$. Conversely, if such a map x always exists in such a situation, then factoring $f = f \circ f$ in \mathcal{Q} is unique; for if also $f = f' \circ f'$, taking a = 1m e

and b = 1, we have the following:



Hence by assumption there exist maps x and y such that $x \circ f = f', f' \circ x = f, y \circ f' = f, f \circ y = f'.$ Thus $y \circ x \circ f = y \circ f' = f, and y \circ x = 1; also f' \circ x \circ y = f \circ y \circ f', m' m' m' m'$ and $x \circ y = 1$. Therefore x is an isomorphism.

Returning to the proof that Q^2 is a homological monoid, to prove (A2), we want to show that (ker f, ker g) is a kernel of (f,g) in Q^2 , where (f,g): a - b say.



Now $goac(\ker f) = bofc(\ker f) = 0$, hence there exists a map c such that $ao(\ker f) = (\ker g)oc$. Thus $(\ker f, \ker g)$ is a map from c to a in Q^2 . It is mono, since ker f and ker g are mono, and $(f, g)o(\ker f, \ker g) = (fo\ker f, go\ker g) = (0, 0)$. Suppose now that (f, g)o(x, y) = 0 where $(x, y) : d \rightarrow a$; i.e. fox = 0 and goy = 0. Then there exist maps u and v such that $x = (\ker f)ou$ and $y = (\ker g)ov$. Now $(\ker g)ocou =$ $ao(\ker f)ou = aox = yod = (\ker g)ovod$, hence cou = vod since ker g is mono. Thus (u, v) is a map $d \rightarrow c$ in Q^2 such that $(x, y) = (\ker f, \ker g)o(u, v)$. Therefore $(\ker f, \ker g)$ is a kernel of (f, g) in Q^2 .

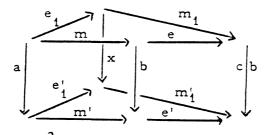
Dually, (cok f, cok g) is a cokernel of (f, g) in q^2 , and hence every map (f, g) of Q^2 has a kernel and a cokernel.

(A3) First we claim that (m, m') is a normal mono in Q^2 if and only if m and m' are normal monos in Q. For, (m, m') is normal in $Q^2 \iff (m, m') = \ker \operatorname{cok} (m, m') \iff$ $(m, m') = (\ker \operatorname{cok} m, \ker \operatorname{cok} m') \iff m = \ker \operatorname{cok} m$ and $m' = \ker \operatorname{cok} m' \iff m$ and m' are normal in Q. Similarly, (e, e') is a normal epi in Q^2 if and only if e and e' are normal epis in Q, and in general (f,g) is normal in Q^2 if and only if f and g are normal in Q.

Now suppose (e, e^{\perp}) is a normal epi b \rightarrow c and (m, m') is a normal mono $a \rightarrow b$ in Q^2 . Then eom and e'om' are normal in Q, so we can write $e \circ m = m_1 \circ e_1$ and $e' \circ m' = m'_1 \circ e'_1$ where m_1 and m'_1 are normal monos and e_1 and e'_1 are normal epis. From (A1) we know there exists a map x of Q such that $(e_1, e'_1) : a \rightarrow x$ and $(m_1, m'_1) : x \rightarrow b$. Thus $(e, e') \circ (m, m') = (e \circ m, e' \circ m') =$

54

= $(m_1 \circ e_1, m'_1 \circ e'_1) = (m_1, m'_1) \circ (e_1, e'_1)$ where (m_1, m'_1) is a normal mono and (e_1, e'_1) is a normal epi, so $(e, e') \circ (m, m')$ is normal in Q^2 .



Therefore q^2 is also a homological monoid.

Remark. By very similar methods one may show that if \mathcal{Q} is a homological monoid and \mathcal{B} is a partially ordered set, then $\mathcal{Q}^{\mathcal{B}}$ is a homological monoid, a partially ordered set being regarded as a small category whose objects are the elements of the set and whose maps are pairs (i, j) where i < j.

REFERENCE

 P. J. Hilton and W. Ledermann, On the Jordan-Hölder Theorem in Homological Monoids, Proc. London Math. Soc., 10 (1960), pp. 321-334.

McGill University