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Abstract. In this paper, we study the ergodicity of the geodesic flows on surfaces with
no focal points. Let M be a smooth connected and closed surface equipped with a C∞
Riemannian metric g, whose genus g ≥ 2. Suppose that (M , g) has no focal points. We
prove that the geodesic flow on the unit tangent bundle of M is ergodic with respect to
the Liouville measure, under the assumption that the set of points on M with negative
curvature has at most finitely many connected components.
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1. Introduction
Assume that (M , g) is a smooth, connected, and closed manifold equipped with a C∞
Riemannian metric g. The geodesic flow gt , generated by the Riemannian metric g, is
defined on the unit tangent bundle SM by the formula:

gt (v) = γ ′
v(t),

where γ ′
v(t) is the unit vector tangent to the geodesic γv(t) uniquely determined by the

initial vector v ∈ SM . In this paper, we study the ergodicity of the geodesic flow with
respect to the Liouville measure ν on SM , where (M , g) is assumed to be a surface of
genus g ≥ 2 having no focal points.

Our work was originally inspired by the classical results on the ergodicity of the
geodesic flows on Riemannian manifolds with non-positive curvature. The geodesic flows
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on Riemannian manifolds with negative or non-positive curvature have very rich dynamics
and broad applications. In the last century, this class of geodesic flows have always been
attracting the interest of mathematicians in dynamical systems and related areas. Many
beautiful results on the dynamics of the geodesic flows have been exhibited. Among which,
the ergodic properties, such as the ergodicity and the mixing properties, the measure of
maximal entropy, etc., have a special importance and receive extensive attention. The
statistical properties of geodesic flows on surfaces with negative curvature were first
studied by Hadamard and Morse in the beginning of the twentieth century. Hopf [16, 17]
proved the ergodicity of the geodesic flow with respect to the Liouville measure ν on SM
for compact surfaces of variable negative curvature and for compact manifolds of constant
negative sectional curvature in any dimension. The general case for compact manifolds
of variable negative curvature was established by Anosov and Sinai [1, 2]. The geodesic
flows on compact manifolds of negative curvature is a primary example of the uniformly
hyperbolic flows (or Anosov flows). Its ergodicity was established based on the classical
Hopf argument and results in hyperbolic geometry (see, for example, the appendix in [3]).

Geodesic flows on manifolds of non-positive curvature have also been intensively
studied since the 1970’s. However, even for surfaces of non-positive curvature, the geodesic
flows present certain non-uniformly hyperbolic behaviors. The ergodicity for the geodesic
flows faces a great challenge due to the existence of ‘flat’ geodesics. Consider a closed
surface M of genus g ≥ 2 and of non-positive curvature. Let

� := {v ∈ SM : K(γv(t)) ≡ 0 for all t ∈ R},
where K denotes the curvature of the point. We call γv a flat geodesic if v ∈ �, that is, γv
is a flat geodesic if the curvature along it is constantly 0. It is still not known if � is small
in measure (ν(�) = 0 or not), in general. However, from the dynamical point of view, �
should be a very small set. For example, in [20], Knieper showed the strict inequality for
geodesic flows on rank 1 manifolds of non-positive curvature:

h(g1|�) < h(g1),

where g1 is the time-one map of the geodesic flow gt , h denotes the topological entropy,
and � denotes the irregular set of the geodesic flow, which is a counterpart of the above
defined set in arbitrary dimensions. This means that the geodesic flow restricted on � has
less complexity than the whole geodesic flow. Knieper [20] (see also [7]) proved that on
rank-1 surfaces of non-positive curvature, the geodesic flow on � has zero topological
entropy. In higher dimensions, it is possible to have positive entropy on�; an example was
given by Gromov [15].

For geodesic flows on rank-1 surfaces of non-positive curvature, the orbits inside � are
also believed to have a simple behavior. In all the known examples, all the orbits in �
are closed. In a recent survey, Burns asks the question: Does there exist a non-closed flat
geodesic? [8, Question 6.2.1]. In this paper, we will show that all flat geodesics are closed
on surfaces without focal points, under our assumption. Nevertheless, the most important
topic on the set� is still its Liouville measure (that is, how small it is). One expects that on
surfaces with non-positive curvature, � should have 0 Liouville measure (this leads to the
ergodicity of the geodesic flows, see [5]). This is the following well-known conjecture on
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the ergodicity for geodesic flows on surfaces with non-positive curvature. (Some experts
in the area expect a negative answer to the conjecture. Our results in the paper support the
conjecture under an additional assumption.)

Conjecture 1.1. (Cf. [22]) Let (M , g) be a smooth, connected, and closed surface of genus
g ≥ 2, which has non-positive curvature. Then all flat geodesics are closed and there are
only finitely many homotopy classes of such geodesics. In particular, ν(�) = 0, and hence
the geodesic flow on SM is ergodic.

We declare that the terminology ‘ergodicity’ in this paper means the ergodicity with
respect to the Liouville measure ν on SM . The problem we are considering in this paper is
the ergodicity of the geodesic flows on surfaces without focal points. First of all, we give
the definition of the focal points.

Definition 1.2. Let (M , g) be a Riemannian manifold and γ a geodesic on M. Points
q = γ (t0) and p = γ (t1) are called focal if there exists a Jacobi field J along γ such
that J (t0) = 0, J ′(t0) �= 0, and d/dt‖J (t)‖2 |t=t1= 0. The Riemannian manifold (M , g)
is said to be without focal points if there are no focal points on any geodesic of M.

It is not hard to see that the manifolds with non-positive curvature have no focal points.
If M is a surface of genus 1 and has no focal points, then it must be a flat torus [6, 18].
Therefore, the geodesic flow on M is obviously not ergodic. However, if M has higher
genus, the curvature is allowed to vary. In this paper, we always assume that the surface M
we are considering has genus greater than 1.

In the 1970’s, by using his theory of non-uniform hyperbolicity, Pesin obtained a
celebrated result on the ergodicity of the geodesic flows on manifolds without focal points,
which satisfy the uniform visibility axiom [5, Theorem 12.2.12]. We are not going to give
the explicit definition of the uniform visibility axiom here, but remark that it is satisfied
by every closed surface of genus g ≥ 1. To state Pesin’s result for surfaces without focal
points, we define the sets:

�+ := {v ∈ SM : χ(v, ξ) < 0 for any ξ ∈ E+(v)},
�− := {v ∈ SM : χ(v, ξ) > 0 for any ξ ∈ E−(v)},
� := �+ ∩�−,

where χ denotes the Lyapunov exponents and E± denotes the stable and unstable
distributions on SM with respect to the geodesic flow, respectively. Here, � is called the
regular set with respect to the geodesic flow. For details, see §2. Pesin proved the following
theorem.

THEOREM 1.3. (Cf. [5]) For the geodesic flow on a surface without focal points, we have
that ν(�) > 0, and gt |� is ergodic.

Our first result in this paper is the following relation between the regular set � and
the set � of unit vectors tangent to flat geodesics. We remark that all our results are
established under the assumption of no focal points so, sometimes, we omit the statement
of this assumption in the following theorems.
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THEOREM 1.4. ν(�c \�) = 0.

By Theorems 1.3 and 1.4, if ν(�) = 0, the regular set � ⊂ SM is a full measure set
and then the geodesic flow is ergodic on SM . The condition ν(�) = 0 holds in all the
known examples so far. However, it is still not proved, even for the surfaces of non-positive
curvature. Recent progress on this problem was made by the first author in [25]. We
conclude the main result of [25] in the following theorem.

THEOREM 1.5. (Cf. [25]) Let (M , g) be a smooth, connected, and closed surface of genus
g ≥ 2, which has non-positive curvature. Suppose that the set {p ∈ M : K(p) < 0} has
finitely many connected components, then ν(�) = 0. In particular, the geodesic flow is
ergodic.

In this paper, we generalize Theorem 1.5 from the setting of surfaces with non-positive
curvature to surfaces without focal points. This means that we are going to prove the
ergodicity of the geodesic flows on surfaces which can have positive curvature in a
subset. To achieve this goal, we explore the properties of flat geodesics, which are also
of independent interest. Among them is the following result. Here, we let Per(gt ) denote
the set of periodic points of the geodesic flow and O(z) denote the orbit of z under the
geodesic flow. The following theorem says that non-closed flat orbits can accumulate only
on non-closed flat orbits.

THEOREM 1.6. � ∩ (Per (gt ))c is a closed subset of SM .

According to the dichotomy: (1) � ⊂ Per(gt ); (2)� ∩ (Per (gt ))c �= ∅, and we prove
the following two results.

THEOREM 1.7. If � ⊂ Per(gt ), then there is a finite decomposition of �:

� = O1 ∪ O2 ∪ · · · Ok ∪ F1 ∪ F2 ∪ · · · ∪ Fl ,
where each Oi , 1 ≤ i ≤ k, is an isolated periodic orbit and each Fj , 1 ≤ j ≤ l, consists
of vectors tangent to a flat strip. Here, k or l is allowed to be 0 if there is no isolated closed
flat geodesic or no flat strip.

We remark that if � ⊂ Per(gt ), then Theorem 1.7 immediately implies ν(�) = 0, and
therefore the geodesic flow is ergodic.

THEOREM 1.8. If � ∩ (Per(gt ))c �= ∅, then there exist y, z ∈ �, y /∈ O(z), such that

d(gt (y), gt (z)) → 0 as t → +∞.

Our main result is the following theorem, which means that under certain conditions,
the scenario in Theorem 1.8 cannot happen.

THEOREM 1.9. If the set {p ∈ M : K(p) < 0} has at most finitely many connected
components, then � ⊂ Per(gt ). In particular, the geodesic flow is ergodic.

Theorem 1.9 gives a negative answer to Question 6.2.1 asked by Burns in [8] for surfaces
without focal points when {p ∈ M : K(p) < 0} has at most finitely many connected
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components. Furthermore, Theorem 1.7 exhibits that in fact there are at most finitely many
flat strips and isolated closed flat geodesics in this case.

So far, it is still unknown whether Conjecture 1.1 is true or not in general. In §4, we
discover several properties of the flat geodesics on surfaces without focal points, which
include:
• all flat strips are closed;
• a unit vector not tangent to a flat strip has the expansivity property;
• an ideal triangle with a flat geodesic which is asymptotic to a closed geodesic as an

edge has infinite area.
All these results together with our Theorem 1.6 are believed to be important toward
Conjecture 1.1 in future research.

The paper is organized as follows. In §2, we will present some preliminaries on the
geodesic flows on surfaces without focal points. The proof of Theorem 1.4 is shown in
§3. In §4, we prove Theorem 1.6 and the above properties of the flat geodesics. Our main
Theorems 1.7, 1.8, and 1.9 are proved in the last section. Throughout the remainder of the
paper, we always let M be a smooth, connected, and closed surface with genus g ≥ 2, and
equipped with a C∞ Riemannian metric g without focal points.

2. Preliminaries on surfaces without focal points
2.1. Jacobi fields, and stable and unstable distributions. To study the dynamics of
geodesic flows, we should investigate the geometry of the second tangent bundle T TM .
Let π : TM → M be the natural projection, that is, π(v) = p, where v ∈ TpM . The
connection mapKv : TvTM → Tπ(v)M is defined as follows. For any ξ ∈ TvTM ,Kvξ :=
(∇X)(t)|t=0, where X : (−ε, ε) → TM is a smooth curve satisfying X(0) = v and
X′(0) = ξ , and ∇ is the covariant derivative along the curve π(X(t)) ⊂ M . Then the
standard Sasaki metric on T TM is given by

〈ξ , η〉v = 〈dπvξ , dπvη〉 + 〈Kvξ , Kvη〉, ξ , η ∈ TvTM .

Recall that the Jacobi equation along a geodesic γv(t) is

J ′′(t)+ R(γ ′
v(t), J (t))γ

′
v(t) = 0, (1)

where R is the curvature tensor, and J (t) is a Jacobi field along γv(t) and perpendicular to
γ ′
v(t). Suppose Jξ (t) is the solution of equation (1) which satisfies the initial conditions

Jξ (0) = dπvξ ,
d

dt

∣∣∣∣
t=0
Jξ (t) = Kvξ .

Then, it follows that (cf. [5, p. 386])

Jξ (t) = dπgtvdg
t
vξ ,

d

dt
Jξ (t) = Kgtvdg

t
vξ .

On the surface M, we have the Fermi coordinates {e1(t), e2(t)} along the geodesic
γv(t), obtained by the time t-parallel translations along γv(t) of an orthonormal basis
{e1(0), e2(0)} where e1(0) = γ ′

v(0). Thus, e1(t) = γ ′
v(t) and e2(t) ⊥ γ ′

v(t). Suppose that
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J (t) = j (t)e2(t). Then the Jacobi equation (1) becomes

j ′′(t)+K(t)j (t) = 0, (2)

where K(t) = K(γv(t)) is the curvature at point γv(t). Let u(t) = j ′(t)/j (t). Then the
Jacobi equation (2) can be written in an equivalent form

u′(t)+ u2(t)+K(t) = 0, (3)

which is called the Riccati equation.
Using the Fermi coordinates, we can write equation (1) in the matrix form

d2

dt2
A(t)+K(t)A(t) = 0. (4)

The following result is a standard fact.

PROPOSITION 2.1. (Cf. [12]) Given s ∈ R, letAs(t) be the unique solution of equation (4)
satisfying As(0) = Id and As(s) = 0, then there exists a limit

A+ = lim
s→+∞

d

dt

∣∣∣∣
t=0
As(t).

Now we can define the positive limit solution A+(t) as the solution of equation (4)
satisfying the initial conditions

A+(0) = Id,
d

dt

∣∣∣∣
t=0
A+(t) = A+.

It is easy to see that A+(t) is non-degenerate for all t ∈ R. Similarly, letting s → −∞, one
can define the negative limit solution A−(t) of equation (4).

For each v ∈ SM , define

E+(v) := {ξ ∈ TvSM : 〈ξ , V (v)〉 = 0 and Jξ (t) = A+(t) dπvξ},
E−(v) := {ξ ∈ TvSM : 〈ξ , V (v)〉 = 0 and Jξ (t) = A−(t) dπvξ},

where V is the vector field generated by the geodesic flow and Jξ is the solution of equation
(1) satisfying

Jξ (0) = dπvξ ,
d

dt

∣∣∣∣
t=0
Jξ (t) = Kvξ .

One can check the following properties of E+(v) and E−(v) (see [5] for more details).

PROPOSITION 2.2. (Cf. [5, Proposition 12.1.1]) E+(v) and E−(v) have the following
properties.
(1) E+(v) and E−(v) are one-dimensional subspaces of TvSM .
(2) dπvE

+(v) = dπvE
−(v) = {w ∈ Tπ(v)M : w is orthogonal to v}.
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(3) The subspaces E+(v) and E−(v) are continuous and invariant under the geodesic
flow.

(4) Let τ : SM → SM be the involution defined by τv = −v, then

E+(−v) = dτE−(v) and E−(−v) = dτE+(v).

(5) If the curvature satisfies K(p) ≥ −a2 for some a > 0, then ‖Kvξ‖ ≤ a‖dπvξ‖ for
any ξ ∈ E+(v) or ξ ∈ E−(v).

(6) If ξ ∈ E+(v) or ξ ∈ E−(v), then Jξ (t) �= 0 for each t ∈ R.
(7) ξ ∈ E+(v) (respectively, ξ ∈ E−(v)) if and only if

〈ξ , V (v)〉 = 0 and ‖dπgtvdgtvξ‖ ≤ c

for each t > 0 (respectively, t < 0) and some c > 0.
(8) For ξ ∈ E+(v) (respectively, ξ ∈ E−(v)), the function t �→ ‖Jξ (t)‖ is non-increasing

(respectively, non-decreasing).

When γv(t) is a flat geodesic, there exists a non-trivial element ξ ∈ E+(v) ∩ E−(v),
and Jξ is a parallel Jacobi field along γv(t), that is, J ′

ξ (t) = 0 for all t ∈ R. In this case,
E+(v) and E−(v) do not span the whole second tangent space TvSM . The distributions
Es and Eu on SM are integrable and their integral manifolds form foliations Ws and Wu

of SM , respectively. These two foliations are both invariant under gt , known as the stable
and unstable horocycle foliations.

2.2. Universal cover. Let M̃ be the universal Riemannian cover of M, that is, a simply
connected complete Riemannian manifold for which M = M̃/�, where � is a discrete
subgroup of the group of isometries of M̃ , isomorphic to π1(M). Recall that we assume M
has no focal points. According to the Hadmard–Cartan theorem, for each two points on M̃ ,
there is a unique geodesic segment joining them. Therefore, M̃ can be identified with the
open unit disk in the plane. The lifting of a geodesic γ from M to M̃ is denoted by γ̃ . Two
geodesics γ̃1 and γ̃2 are said to be asymptotes if d(γ̃1(t), γ̃2(t)) ≤ C for some C > 0 and
for all t > 0. It is easy to check that the asymptotes relation is an equivalence relation. Let
M̃(∞) be the set of all the equivalence classes, which can be identified with the boundary
of the unit disk. Then the set

M := M̃ ∪ M̃(∞)

can be identified with the closed unit disk in the plane. Denote by γ̃ (+∞) the asymptote
class of the geodesic γ̃ , and by γ̃ (−∞) the one of the reversed geodesic of γ̃ . We use
W̃ s and W̃u to denote the lifting of Ws and Wu to SM̃ , respectively. It is obvious that if
w ∈ W̃ s(v), then geodesics γ̃v(t) and γ̃w(t) are asymptotic.

An isometry α of M̃ is called axial if there exist a geodesic γ̃ on M̃ and a t1 > 0 such
that for all t ∈ R, α(γ̃ (t)) = γ̃ (t + t1). The corresponding geodesic γ̃ is called an axis
of α. The following result is due to Watkins [24], which is proved for rank-1 manifolds
without focal points. Here we only need it for surfaces without focal points.

LEMMA 2.3. (Cf. [24, Theorem 6.11]) Let γ̃ be an axis of an isometry α of M̃ . Suppose
that γ̃ is not the boundary of a flat half-plane. Then for all neighborhoods U ⊆ M of
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γ̃ (−∞) and V ⊆ M of γ̃ (+∞), there is an integer N ∈ N such that

αn(M − U) ⊆ V , α−n(M − V ) ⊆ U ,

for all n ≥ N .

Obviously, every closed geodesic γ in M can be lifted to a geodesic γ̃ on M̃ , such that

γ̃ (t + t0) = φ(γ̃ (t)) for all t ∈ R,

for some t0 > 0 and φ ∈ π1(M). Therefore, γ̃ is an axis of φ. In this case, we also say that
φ fixes γ̃ , written as φ(γ̃ ) = γ̃ . Here, φ acts on M̃(∞) in a natural way and fixes exactly
the two points γ̃ (±∞). Moreover, by Lemma 2.3, for any x ∈ M̃(∞), x �= γ̃ (±∞), we
have

lim
n→+∞ φn(x) = γ̃ (+∞) and lim

n→−∞ φn(x) = γ̃ (−∞).

3. The regular set
This section is devoted to proving Theorem 1.4. The proof of Theorem 1.4 in the
non-positive curvature case is given in [25, Lemma 1.1]. In fact, it is already well known
in folklore that, after Pesin’s Theorem 1.3, all that remains for ergodicity of the geodesic
flow is to show that � has zero Liouville measure. Nevertheless, to prove Theorem 1.4 in
the no focal points case, we need to use some geometric properties of the geodesic flow
which we will present below.

For a given ξ ∈ TvSM , we always let Jξ (t) be the unique Jacobi field satisfying the
Jacobi equation (1) under initial conditions

Jξ (0) = dπvξ ,
d

dt

∣∣∣∣
t=0
Jξ (t) = Kvξ .

Suppose that Jξ (t) is perpendicular to γ ′
v(t), then Jξ (t) = jξ (t)e2(t) and jξ (t) = ‖Jξ (t)‖.

Denote uξ (t) = j ′
ξ (t)/jξ (t). Recall that uξ is a solution of the Riccati equation (3).

Given ξ ∈ TvSM , the Lyapunov exponent χ(v, ξ) is defined as

χ(v, ξ) := lim sup
T→∞

1
T

log ‖dgT ξ‖.

The following proposition shows the connection between the Lyapunov exponent χ(v, ξ)
and the function uξ .

PROPOSITION 3.1. For any v ∈ SM and ξ ∈ E+(v), one has

χ(v, ξ) = lim sup
T→∞

1
T

∫ T

0
uξ (t) dt .

Proof. By the definition of Lyapunov exponents and Proposition 2.2(5), we have

χ(v, ξ) = lim sup
T→∞

1
T

log ‖dgT ξ‖ = lim sup
T→∞

1
T

log
√

‖Jξ (T )‖2 + ‖J ′
ξ (T )‖2
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= lim sup
T→∞

1
T

log ‖Jξ (T )‖ = lim sup
T→∞

1
T

∫ T

0
(log jξ (t))′ dt

= lim sup
T→∞

1
T

∫ T

0

j ′
ξ (t)

jξ (t)
dt = lim sup

T→∞
1
T

∫ T

0
uξ (t) dt .

Throughout this section, if ξ ∈ E+(v), we write j (t) := jξ (t) and u(t) := uξ (t) for
simplicity. By Proposition 2.2(8) and the definition of u(t), we know that u(t) ≤ 0
for all t ∈ R.

The following notion of uniformly recurrent vectors appeared in [4].

Definition 3.2. (Cf. [4]) A vector x ∈ SM is said to be uniformly recurrent if for any
neighborhood U of x in SM ,

lim inf
t→∞

1
T

∫ T

0
IU(gt (x)) dt > 0,

where IU is the characteristic function of U.

The next lemma about the set of uniformly recurrent vectors was stated in [4] without a
proof, so we provide a proof here. It will be used later in our proof of Theorem 1.4.

LEMMA 3.3. Let � be the set of all the uniformly recurrent vectors. Then � has full
Liouville measure.

Proof. Let {Un}n∈N be a countable base consisting of open sets on SM . By the Birkhoff
ergodic theorem, there exists a set X ⊂ SM of full measure such that for all x ∈ X and all
n ∈ N, the limit

fn(x) := lim
T→∞

1
T

∫ T

0
IUn(g

t (x)) dt

exists and ∫
SM

fn(x)dν(x) = ν(Un).

Assume the contrary that ν(�c) > 0. Then, �c ∩X is non-empty. For each y ∈ �c ∩X,
which is not uniformly recurrent, there exists a neighborhood U of y in SM such that

lim inf
T→∞

1
T

∫ T

0
IU(gt (y)) dt = 0.

Then there exists an n(y) such that Un(y) ⊂ U and

fn(y)(y) = lim
T→∞

1
T

∫ T

0
IUn(g

t (y)) dt ≤ lim inf
T→∞

1
T

∫ T

0
IU(gt (y)) dt = 0. (5)

Since there are only countably manyUn, we can find some N such that ν(UN ∩ �c∩X)>0.
By equation (5), fN(y) = 0 for any y ∈ UN ∩ �c ∩X.
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However, the Birkhoff ergodic theorem implies that for almost every y ∈ UN ∩ �c ∩X,
one has

g(y) := lim
T→∞

1
T

∫ T

0
I(UN∩�c∩X)(gt (y)) dt

exists with ∫
SM

g(y) dν(y) = ν(UN ∩ �c ∩X) > 0. (6)

However, by equation (5), we have g(y) ≤ fN(y) = 0 for all y ∈ UN ∩ �c ∩X, which
contradicts equation (6). This proves the lemma.

Given an open set U ⊂ SM and a unit vector w ∈ SM , we say that the orbit gtw has
positive frequency of return to U if lim inft→∞(TU (t)/t) > 0, where TU(t) denotes the
total length of the set

TU(t) := {τ : 0 ≤ τ ≤ t and gτw ∈ U}.
Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Choose an arbitrary v ∈ �c ∩�c ∩ �, where � denotes the set
of uniformly recurrent vectors. Recall that ν(�) = 1 by Lemma 3.3. Without loss of
generality, we assume v ∈ (�+)c. We claim that K(γv(t)) ≥ 0 for all t ∈ R.

Assume the contrary that K(γv(t0)) < 0 for some t0 > 0. Since K(γv(t0)) < 0, we can
choose two open neighborhoods W1 ⊃ W2 of gt0v, such that −δ2 < K|π(W1) < −δ1 < 0
and dist(∂W1, ∂W2) > σ for some δ2 > δ1 > 0 and σ > 0.

Choose an open neighborhood U of v which is small enough, such that for any w ∈ U ,
one has gt0(w) ∈ W2. Since lim infT→∞(1/T )

∫ T
0 IU(gtv) dt > 0, we have

lim inf
T→∞

1
T

∫ T+t0

t0

IW2(g
tv) dt > 0.

Then the orbit of v has positive frequency of return to W2, that is,

lim inf
T→∞

TW2(T )

T
= lim inf

T→∞
1

T + t0

∫ T+t0

0
IW2(g

tv) dt

= lim inf
T→∞

T

T + t0
· 1
T

∫ T+t0

t0

IW2(g
tv) dt > 0. (7)

LEMMA 3.4. There exists a constant c > 0 such that if gtv ∈ W2, then u(t) ≤ −c for all
t ≥ 0.

Proof of Lemma 3.4. We prove the lemma by contradiction. Assume this is not true. Then
there exists a sequence of ti ≥ 0 with gti v ∈ W2, but u(ti) → 0 as i → ∞. There exist
si,1 < ti < si,2 such that gsi,1v, gsi,2v ∈ ∂W1 and gtv ∈ W1 for any si,1 < t < si,2. In fact,
si,1 + σ < ti < si,2 − σ .

Recall the Riccati equation u′(t)+ u2(t)+K(t) = 0. If i is large enough, then u′(ti) =
−u2(ti)−K(ti) > δ1 > 0. We claim that u(t) is strictly increasing in the interval (ti , si,2).
Indeed, if not, there is a smallest number si ∈ (ti , si,2) such that u′(si) = 0. Then
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u(si) > u(ti), since u′(t) > 0 for all t ∈ (ti , si). Therefore, u′(si) = −u2(si)−K(si) >

δ1 > 0, which is a contradiction.
It follows that u′(t) = −u2(t)−K(t) > δ1 > 0 for all t ∈ (ti , si,2). Thus,

u(si,2) = u(ti)+
∫ si,2

ti

u′(t) dt

> u(ti)+ δ1(si,2 − ti ) > u(ti)+ δ1σ .

If i is large enough, then u(ti) is close enough to 0, and hence u(si,2) > 0. This contradicts
the fact that u(t) ≤ 0 for all t ∈ R.

Let us go on with the proof of Theorem 1.4. By Proposition 3.1, Lemma 3.4, and
equation (7), one has

χ(v, ξ) = lim sup
T→∞

1
T

∫ T

0
u(t) dt ≤ lim sup

T→∞
1
T

· TW2(v) · (−c) < 0,

where ξ ∈ E+(v). This contradicts v ∈ (�+)c. Thus, K(γv(t)) ≥ 0 for all t ≥ 0. Analo-
gously, we can prove that K(γv(t)) ≥ 0 for all t ≤ 0. Thus,

K(γv(t)) ≥ 0 for all t ∈ R.

Now recall the Riccati equation u′(t)+ u2(t)+K(t) = 0 again. Since K(t) ≥ 0 along
γv(t), we have u′(t) ≤ 0 for all t ∈ R. We have the following three possibilities.
(1) limt→∞ u(t) = 0. Since u(t) ≤ 0 and u′(t) ≤ 0 for all t ∈ R, we must have

u(t) ≡ 0 for all t ∈ R. Then u′(t) ≡ 0 for all t ∈ R. It follows from the Riccati
equation that K(t) ≡ 0 for all t ∈ R.

(2) limt→∞ u(t) = −d < 0 for some d > 0. Then,

u′(t) = −u2(t)−K(t) ≤ −u2(t) < 0 for all t ∈ R.

This contradicts the fact that limt→∞ u′(t) = 0.
(3) limt→∞ u(t) = −∞. Since J (t) is a stable Jacobi field along γv(t), we have |u(t)| =

|j ′(t)/j (t)| ≤ a. We also arrive at a contradiction.
In summary, we must have K(γv(t)) ≡ 0 for all t ∈ R. This contradicts our assumption
v ∈ �c. Therefore, �c ∩ (�+)c ∩ � = ∅. The case v ∈ (�−)c can be dealt with similarly
and leads to the same result. Based on the discussion above, we can conclude that
�c ∩�c ∩ � = ∅. Since � is a full measure set, we immediately know that

ν(�c ∩�c) = 0.

We are done with the proof of Theorem 1.4.

4. Flat geodesics
4.1. Flat strips are closed. A flat strip means a totally geodesic isometric imbedding
r : R × [0, c] → M̃ , where R × [0, c] is a strip in a Euclidean plane. The projection of a
flat strip from M̃ to M is also called a flat strip. We have the following flat strip lemma.
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LEMMA 4.1. (Cf. [21]) If two distinct geodesics α̃ and β̃ satisfy d(̃α(t), β̃(t)) ≤ C for
some C > 0 and for all t ∈ R, then they are the boundary curves of a flat strip in M̃ .

The flat strip lemma for non-positively curved manifolds was established by Eberlein
and O’Neill in [13]. The above flat strip lemma for manifolds without focal points is due to
Green in dimension two [14], and O’Sullivan in arbitrary dimensions [21]. The following
lemma is also useful in our work.

LEMMA 4.2. (Cf. [25, Lemma 3.6]) If w′ ∈ Ws(w) ⊂ SM and

lim
t→+∞ d(γw(t), γw′(t)) = δ > 0,

then γw(t) and γw′(t) converge to the boundaries of a flat strip of width δ.

In view of Conjecture 1.1, our aim is to show that all flat geodesics are closed. An
important progress was made by Cao and Xavier on the flat geodesics inside flat strips
on manifolds of non-positive curvature, in an unpublished preprint [9] (see also [11]). We
state it in the following theorem.

THEOREM 4.3. (Cf. [9]) Let M be a smooth, connected, and closed surface with genus
g ≥ 2. Suppose that M has non-positive curvature. Then any flat strip on M consists of
closed geodesics in the same homotopy type.

Based on the flat strip Lemma 4.1, we generalize the above result to the manifolds
without focal points. We adapt the argument of Cao and Xavier to surfaces without focal
points.

THEOREM 4.4. Let M be a smooth, connected, and closed surface with genus g ≥ 2.
Suppose that M has no focal points. Then any flat strip on M consists of closed geodesics
in the same homotopy type.

Proof. Observe that in the universal cover M̃ , there exists an upper bound for the width
of all the flat strips. Indeed, let D > diam(M). Then a flat strip of width greater than 2D
contains a fundamental domain in M̃ . Hence, M must be a flat torus. This contradicts the
fact that M has genus g ≥ 2.

Let G̃ : (−∞, ∞)× [0, ε0] → M̃ be a flat strip in M̃ and G = p(G̃), where
p : M̃ → M is the universal covering map. Consider a sequence of unit vectors vi ∈ SM
where vi = ∂G/∂t(i, ε0), i = 1, 2, . . . . Since SM is compact, there exists a subsequence
of {vi}∞i=1 which converges to a unit vector v0 ∈ SM . For simplicity of notation, we still
let {vi}∞i=1 denote the subsequence. Recall that π : SM → M is the canonical projection.
Let xi denote the foot point of vi , that is, xi = π(vi), i = 0, 1, 2, . . . .

Let δ be the injectivity radius of M. For sufficiently large j, we may assume d(vj , v0) <

δ/2. We choose a preimage x̃0 ∈ p−1(x0) such that x̃0 is the nearest point to the flat strip
G̃ in p−1(x0). Then p|B(̃x0,δ) : B(̃x0, δ) → B(x0, δ) and � := dp|SB(̃x0,δ) : SB(̃x0, δ) →
SB(x0, δ) are both isometries.
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Denote wi = �−1(vi) ∈ SB(̃x0, δ), i = 0, 1, 2, . . . . Let Fj : (−∞, ∞)× [0, ε0] →
M̃ denote the lifted flat strip tangent to wj , j = 1, 2, . . . . Then the limit of Fj is a flat
strip G̃0 : (−∞, ∞)× [0, ε0] → M̃ tangent to w0. There are two distinct cases.
(1) p ◦ Fj0 is periodic for some j0 ∈ N. As p ◦ Fj0 is the flat strip tangent to vj0 , it

coincides with G. Hence, G is periodic.
(2) p ◦ Fj is not periodic for any j ∈ N. Then Fj and G̃0 are a pair of transversal flat

strips of the same width ε0. Suppose that they intersect at qj with angle αj , where
qj ∈ ∂Fj ∩ G̃0((−∞, ∞)× {ε0}), j = 1, 2, . . . . Because Fj ∪ G̃0 has curvature 0
everywhere, we can construct a rectangle Rj = [0, Lj ] × (0, ε0/8] contained in the
closure of Fj − G̃0 such that:
• one side of Rj , [0, Lj ] × {0} is contained in the line G̃0((−∞, ∞)× {ε0});
• Lj ≥ ε0/16 sin αj .

Attaching Rj to G̃0, we obtain an isometric embedding G̃0 : [cj , cj + Lj ] ×
[0, 9ε0/8] for some cj ∈ R. Let ũj be the unit vector tangent to G̃0([cj , cj +
Lj ] × {0}) at the point G̃0(cj + Lj/2, 0). Write uj = dp(̃uj ) and suppose that a
subsequence of {uj } converges to u0. As Lj → ∞ as j → ∞, we know that there
exists a flat strip tangent to u0 of width 9ε0/8. Hence, there exits a flat strip G̃1 of
width 9ε0/8 in M̃ .

We are done if we arrive at the first case above. If we have the second case, we then
repeat the argument for the new flat strip G̃1. However, we cannot enlarge our flat strips by
a factor 9/8 again and again, as the width of the flat strips in M̃ have an upper bound 2D.
Thus, we must arrive at the first case at some step. It follows that G is periodic.

4.2. Expansivity. The proof of Theorems 1.7 and 1.8 uses an argument based on the
following expansivity property of a vector x ∈ SM not tangent to a flat strip. This argument
will be used later several times, in the proof of Theorems 1.7, 1.8, and Lemma 4.11.

Definition 4.5. (Cf. [19, Definition 3.2.11]) We say x ∈ SM has the expansivity property
if there exists a small δ0 > 0, such that whenever d(gt (x), gt (y)) < δ0 for all t ∈ R, then
y = gt0(x) for some t0 with |t0| < δ0.

The flat strip lemma (Lemma 4.1) for surfaces without focal points guarantees the
expansivity property for a unit vector which is not tangent to a flat strip.

LEMMA 4.6. If x ∈ SM is not tangent to a flat strip, then it has the expansivity property.

Proof. We prove this lemma by contradiction. Assume the lemma does not hold. Then for
an arbitrarily small ε > 0 less than the injectivity radius of M, there exists a point y ∈ SM
such that y /∈ O(x) and d(γx(t), γy(t)) < ε for all t ∈ R. By the choice of ε, we can lift
γx(t) and γy(t) to the universal cover M̃ such that

d(γ̃x(t), γ̃y(t)) < ε for all t ∈ R.

Thus, by the flat strip Lemma 4.1, γ̃x(t) and γ̃y(t) bound a flat strip. Hence, x is tangent to
a flat strip, which is a contradiction.
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4.3. Area of ideal triangles. Given x, y, z ∈ M̃(∞), an ideal triangle with vertices
x, y, z means the region in M̃ bounded by the three geodesics joining the vertices. In the
case when at least one of x, y, z is on M̃(∞) (the other points can be inside M̃), we also
call the region bounded by the three geodesics an ideal triangle. The following theorem
about the ideal triangle is proved in [23].

The following theorem is a version of [23, Theorem 1] for surfaces without focal points.

THEOREM 4.7. Let M be a smooth, connected, and closed surface with genus g ≥ 2 with
no focal points. Suppose that γ is a flat geodesic which is asymptotic to a closed geodesic β.
Then every ideal triangle having γ̃ (t) as an edge has infinite area.

Proof. Suppose that v = γ̃ ′(0), and c(s) ∈ SM̃ , s ∈ [0, a] is the curve in the stable
horosphere Hs(v) with c(0) = v. We want to show that the area of πg[0,∞]c[0, a] is
infinite. Assume the contrary. Then obviously,

lim
t→∞ l(πgtc[0, a]) = 0, (8)

where l denotes the length of the curve.
As in the remark after the proof of Proposition 3.1, we denote by u(w), w ∈ SM̃ the

function satisfying Riccati equation (3) with respect to stable Jacobi field J s(w). Then,
u(w) = ‖J sw‖′/‖J sw‖ and u(w) ≤ 0. Given T > 0, define

uT (w) :=
∫ T

0
u(gtw) dt .

Note that u and hence uT are continuous functions. Since γ̃ is flat, u(gtv) = 0 for all
t ∈ R. By continuity of u, for any s ∈ [0, a],

lim
T→∞

1
T
uT (c(s)) = 0.

Then there exists large enough T > 0 which depends on the unit vector c(s) such that

− 1
T
uT (c(s)) ≤ l(πc[0, s]).

By assumption, γ is asymptotic to a closed geodesic β. Without loss of generality,
assume that γ̃ (0) and β̃(0) are close enough and v = γ̃ ′(0) is in the stable manifold
of β̃ ′(0). On compact manifold M, πg[0,∞](c[0, a]) is contained in a small compact
neighborhood of the closed geodesic β. By the compactness and continuity, we can find a
uniform constant T > 0 independent of t ≥ 0 and s ∈ [0, a] such that

− 1
T
uT (g

t c(s)) ≤ l(πgtc[0, s]) for all t ≥ 0, for all s ∈ [0, a]. (9)

We introduce the following useful lemma. The proof is similar to that of [10, Lemma
3.13].
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LEMMA 4.8. Let ψ be a non-negative function and ψT (t) := ∫ T
0 ψ(t + τ) dτ . For

a, b ∈ R with b − a ≥ T , we have

1
T

∫ b

a

ψT (t) dt ≥
∫ b

a+T
ψ(t) dt .

Note that u ≤ 0 in our case. Choose L ≥ T . Then by the above lemma, we have

1
T

∫ L

−T
−uT (gtw) dt ≥

∫ L

0
−u(gtw) dt (10)

for any w ∈ SM̃ . We have

l(πgL+T (c[a, b])) =
∫ a

0
‖dgL+T c(s)‖ ds

=
∫ a

0
‖J sc(s)(L+ T )‖ ds

=
∫ a

0
(πgT c(s))′e

∫ L+T
T u(gt c(s)) dt ds.

Given s < t , denote by As,t the area of the region bounded by πgs(c[0, a]), πgt (c[0, a]),
γ and the geodesic tangent to c(a). Then by (10) and (9), we have

l(πgL+T (c[a, b])) ≥
∫ a

0
(πgT c(s))′e1/T

∫ L+T
0 uT (g

t c(s)) dt ds

≥
∫ a

0
(πgT c(s))′e−

∫ L+T
0 l(gt c(s)) dt ds

= l(πgT (c[a, b]))e−A0,L+T .

Similarly, we can prove

l(πg2L+T (c[a, b])) ≥ l(πgL+T (c[a, b]))e−AL,2L+T ≥ l(πgT (c[a, b]))e−2A0,2L+T .

By induction, we have

l(πgnL+T (c[a, b])) ≥ l(πgT (c[a, b]))e−2A0,nL+T.

Taking limit, since we are assuming limn→∞ A0,nL+T < ∞, we get

lim
n→∞ l(πgnL+T (c[a, b])) ≥ l(πgT (c[a, b]))e−2 limn→∞ A0,nL+T > 0.

This contradicts equation (8) and the theorem follows.

Remark 4.9. There is significant difference between the above proof and the proof in the
non-positive curvature case by Ruggiero [23]. In non-positive curvature, in the proof of
Lemma 4.1 in [23], we can have by Taylor’s formula

Kg(p) = −y(p)2fs(y(p)),
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FIGURE 1. Proof of Lemma 4.10.

since the first derivative of the curvature function is zero at p. In the no focal points case,
there could be positive curvature, and thus we may not have this formula. So the method
using comparison theorem in [23] breaks down here.

The idea using (1/T )uT instead of u in our method has appeared in [10]. The
assumption that the flat geodesic is asymptotic to a closed geodesic is used to get the
uniform T in equation (9). However, we do not know a proof without this assumption.

4.4. Non-closed flat geodesics. In this subsection, we discuss some important properties
of the flat geodesics. Our Theorem 1.6 is a straightforward corollary of these properties.
In fact, it is closely related to the following two lemmas (Lemmas 4.10 and 4.11). The first
lemma shows that if a flat geodesic converges to a closed one (no matter flat or not), then
the former geodesic must also be closed and coincide with the latter.

LEMMA 4.10. Suppose that y ∈ � and the ω-limit set ω(y) = O(z), where O(z) is
periodic. Then O(y) = O(z). In particular, O(y) is periodic.

Proof. Since ω(y) = O(z), we can lift geodesics γz(t), γy(t) to the universal cover
M̃ , denoted by γ̃0(t) and γ̃ (t), respectively, such that limt→+∞ d(γ̃0(t), γ̃ (t)) = 0. In
particular, γ̃0(+∞) = γ̃ (+∞).

Since γz(t) is a closed geodesic, there exists an isometry φ of M̃ such that φ(γ̃0(t)) =
γ̃0(t + t0). Moreover, on the boundary of the disk M̃(∞), φ fixes exactly two points
γ̃0(±∞), and for any other point a ∈ M̃(∞), limn→+∞ φn(a) = γ̃0(+∞).

Assume γ̃ is not fixed by φ. Then γ̃ and φ(γ̃ ) do not intersect, since φ(γ̃ )(+∞) =
γ̃ (+∞). By Lemma 2.3, replacing φ by φN for a large enough N ∈ N if necessary, we
know that the position of φ(γ̃ ) must be as shown in Figure 1. We then pick another two
geodesics α̃ and β̃ as in Figure 1. The image of ABB ′A′ under φ is CEE′C′. Since φ is
an isometry, it preserves area. So the area of ABCD is equal to the region A′B ′DEE′C′,
and thus greater than the area of the region DEE′D′. We can let A′ and B ′ approach F.
In this process, the area of the region DEE′D′ approaches the area of the ideal triangle
DEF . However, since γy is a flat geodesic asymptotic to a closed geodesic γz, the area of

https://doi.org/10.1017/etds.2022.114 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.114


4242 W. Wu et al

DEF is infinite by Theorem 4.7. Then ABCD has infinite area which is absurd. So φ(γ̃ )
and γ̃ must coincide.

Therefore, γ̃ (±∞) = γ̃0(±∞). Then either γ̃ (t) and γ̃0(t) bound a flat strip by the flat
strip Lemma 4.1 or γ̃ (t) = γ̃0(t). Recall that limt→+∞ d(γ̃ (t), γ̃0(t)) = 0, we must have
γ̃ (t) = γ̃0(t). Hence, O(y) = O(z).

Lemma 4.10 can be strengthened to the following.

LEMMA 4.11. Suppose that y ∈ � and z ∈ ω(y), where z is periodic. Then O(y) = O(z).
In particular, y is periodic.

The proof of Lemma 4.11 follows from an argument similar to the one in the proof of
[25, Lemma 3.8]. The argument relies on the expansivity property of a unit vector not
tangent to a flat strip, as stated in Lemma 4.6. Then Theorem 1.6 follows from an almost
identical argument. For this reason, we omit the proof here. Readers can check the proof
of [25, Lemma 3.8, Theorem 1.5] for details of the argument.

5. Proof of main theorems
5.1. Proof of Theorem 1.8. Now we assume that � ∩ (Per (gt ))c �= ∅, in other words,
there exists an aperiodic orbit O(x) in�. We will construct the points y, z ∈ � as stated in
Theorem 1.8 starting from O(x) based on the expansivity property of x. A first observation
is that we can always find two arbitrarily nearby points on the orbit O(x). We state this
result in the following lemma (see [25, Lemma 3.3] for the proof).

LEMMA 5.1. For any k ∈ N, there exist two sequences tk → +∞ and t ′k → +∞, such
that t ′k − tk → +∞ and

d(xk , x′
k) <

1
k

where xk = gtk (x), x′
k = gt

′
k (x).

For each pair xk , x′
k with large enough k, we can check the expansivity in the positive

direction of the flow by using the idea in the proof of [25, Proposition 3.4]. In fact, the
expansivity in one direction (either positive or negative) of the flow is sufficient for our
purpose.

PROPOSITION 5.2. Fix an arbitrarily small ε0 > 0. Then there exists sk → +∞ or
sk → −∞, such that

d(gsk (xk), gsk (x′
k)) = ε0,

and d(gs(xk), gs(x′
k)) < ε0 for all 0 ≤ s < sk or for all sk < s ≤ 0, respectively.

Proof. Assume the contrary. Then x does not have expansivity property. By Lemma 4.6,
x is tangent to a flat strip. Then by Lemma 4.4, x must be periodic. This contradicts the
assumption x ∈ (Per (gt ))c.

Without loss of generality, we suppose that sk → +∞ in the remainder of the paper.
For the case sk → −∞, everything remains true by a slight modification.
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PROPOSITION 5.3. There exist ε0 > 0, a, b ∈ � ∩ (Per (gt ))c such that

d(a, b) = ε0, (11)

d(gt (a), gt (b)) ≤ ε0 for all t < 0, (12)

a /∈ O(b), (13)

a ∈ Wu(b). (14)

Proof. We apply Proposition 5.2. Pick a subsequence ki → +∞ such that both of the
sequences {gski (xki )} and {gski (x′

ki
)} converge. Let

a := lim
ki→+∞ gski (xki ) and b := lim

ki→+∞ gski (x′
ki
).

Then d(a, b) = limki→+∞ d(gski (xki ), g
ski (x′

ki
)) = ε0. We get equation (11).

For any t < 0, since 0 < ski + t < ski for some large ki , one has

d(gt (a), gt (b)) = lim
ki→+∞(d(g

ski+t (xki ), gski+t (x′
ki
))) ≤ ε0.

Hence, we get equation (12).
Next assume that a is periodic. Since

lim
ki→+∞ gtki+ski (x) = lim

ki→+∞ gski (xki ) = a,

then x is periodic by Lemma 4.11. This is a contradiction. So a ∈ (Per (gt ))c. Similarly,
b ∈ (Per (gt ))c. Thus, a, b ∈ � ∩ (Per (gt ))c.

Now we prove equation (13), that is, a /∈ O(b). For a simpler notation, we write

lim
k→+∞ gsk (xk) = a and lim

k→+∞ gsk (x′
k) = b.

The geodesics γxk (t), γx′
k
(t) on M can be lifted to γ̃k , γ̃ ′

k on M̃ in the way such
that d(xk , x′

k) < 1/k, d(yk , y′
k) = ε0, where yk = gsk (xk), y′

k = gsk (x′
k), and moreover

yk → a, y′
k → b. Here we use a same notation for the lift of a point since no confusion

is caused. Then γ̃k converges to γ̃ = γ̃a , γ̃ ′
k converges to γ̃ ′ = γ̃b, and d(a, b) = ε0. See

Figure 2 (we use the same notation for a vector and its footpoint).
First we show that d(yk , γ̃ ′

k) is bounded away from 0. Write dk := d(yk , γ̃ ′
k) =

d(yk , zk), lk := d(yk , x′
k), bk := d(x′

k , zk), and b′
k := d(zk , y′

k). And we already know
that d(x′

k , y
′
k) = sk . Suppose that dk → 0 as k → +∞. By the triangle inequality,

limk→+∞(lk − bk) = 0. Since limk→+∞(lk − sk) ≤ limk→+∞ d(xk , x′
k) = 0, we have

that limk→+∞ b′
k = limk→+∞ |(lk − bk)− (lk − sk)| = 0. However, the triangle inequal-

ity implies ε0 ≤ dk + b′
k → 0, which is a contradiction. Now γ̃ �= γ̃ ′ follows from

d(a, γ̃ ′) = limk→+∞ d(yk , γ̃ ′
k) ≥ d0 for some d0 > 0.

Next we suppose there exists a deck transformation φ such that φ(γ̃ ) = γ̃ ′. See
Figure 3. Observe that γ̃ (−∞) = γ̃ ′(−∞) since d(gt (a), gt (b)) ≤ ε0 for all t < 0. Let γ̃0

be the closed geodesic such that φ(γ̃0) = γ̃0. Then γ̃ (−∞) = γ̃0(−∞). By Lemma 4.11,
γ̃ is a closed geodesic, that is, a is a periodic point. We arrive at a contradiction. Hence,
for any deck transformation φ, φ(γ̃ ) �= γ̃ ′. So a /∈ O(b) and we get equation (13).
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γ̃k γ̃ ′
k

xk x′
k

yk
y′
k
zk

ε0

FIGURE 2. Proof of γ̃ �= γ̃ ′.

γ̃ γ̃ ′ = φ(γ̃ )

γ̃0

a b

FIGURE 3. Proof of φ(γ̃ ) �= γ̃ ′.

At last, if a /∈ Wu(b), we can replace a by some a′ ∈ O(a), b by some b′ ∈ O(b)
such that a′ ∈ Wu(b′), and the above three properties still hold for a different ε0. We get
equation (14).

Proof of Theorem 1.8. We apply Proposition 5.3. Let y = −a, z = −b. Then y, z ∈ � ∩
(Per (gt ))c, d(gt (y), gt (z)) ≤ ε0 for all t > 0, z /∈ O(y) and y ∈ Ws(z).

If ε0 is small enough, we can lift geodesics γy(t) and γz(t) to γ̃y(t) and γ̃z(t),
respectively, on M̃ , such that d(γ̃y(t), γ̃z(t)) ≤ ε0 for any t > 0 and y ∈ W̃ s(z). Suppose
limt→+∞ d(γ̃y(t), γ̃z(t)) = δ > 0. Then by Lemma 4.2, γ̃y(t) and γ̃z(t) converge to
the boundary of a flat strip. Hence, y and z are periodic by Lemma 4.11, which is a
contradiction. So we have limt→+∞ d(γ̃y(t), γ̃z(t)) = 0. Hence,

d(gt (y), gt (z)) → 0 as t → +∞.

5.2. Proof of Theorem 1.7. In the proof of Theorem 1.7, an argument similar to the one
in Proposition 5.3 will be used.

Proof of Theorem 1.7. Suppose that � ⊂ Per (gt ). We will prove that if x ∈ �, then x is
tangent to an isolated closed flat geodesic or to a flat strip.
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Assume the contrary to Theorem 1.7. Then there exists a sequence of different vectors
x′
k ∈ � such that limk→+∞ x′

k = x for some x ∈ �. Here, different x′
k are tangent to

different closed geodesics or to different flat strips, and x is tangent to a closed geodesic
or to a flat strip. For large enough k, we suppose that d(x ′

k , x) < 1/k. Fix a small number
ε0 > 0. It is impossible that d(gt (x′

k), g
t (x)) ≤ ε0 for all t > 0. For otherwise, γ̃x′

k
(t) and

γ̃x(t) are positively asymptotic closed geodesics. They must be tangent to a common flat
strip by Lemmas 4.2 and 4.10. This is impossible since different x′

k are tangent to different
closed geodesics or to different flat strips. Hence, there exists a sequence sk → +∞ such
that

d(gsk (x′
k), g

sk (x)) = ε0,

and

d(gs(x′
k), g

s(x)) ≤ ε0 for all 0 ≤ s < sk .

Let yk := gsk (x) and y′
k := gsk (x′

k). Without loss of generality, we suppose that
yk → a and y′

k → b. A similar proof as in Proposition 5.3 shows that d(a, b) = ε0 and
d(gt (a), gt (b)) ≤ ε0 for all t ≤ 0. Replacing x, x′

k by −x, −x′
k , respectively, and applying

the same argument, we can obtain two points a−, b− such that d(a−, b−) = ε0 and
d(gt (a−), gt (b−)) ≤ ε0 for all t ≤ 0. Then we have the following three cases.
(1) limt→∞ d(gt (−a), gt (−b)) = 0. By Lemma 4.10, −a = −b. This contradicts

d(a, b) = ε0.
(2) limt→∞ d(gt (−a−), gt (−b−)) = 0. Also by Lemma 4.10, −a− = −b−. This con-

tradicts d(a−, b−) = ε0.
(3) limt→∞ d(gt (−a), gt (−b)) > 0 and limt→∞ d(gt (−a−), gt (−b−)) > 0.

For case (3), by Lemmas 4.2 and 4.11, γa and γx coincide. And moreover, γx and γb are
boundaries of a flat strip of width δ1 > 0. Similarly, γx and γb− are boundaries of a flat
strip of width δ2 > 0. We claim that these two flat strips lie on different sides of γx . Indeed,
we choose ε0 small enough and consider the ε0-neighborhood of the closed geodesic γx
which contains two regions lying on different sides of γx . By the definition of b and b−,
they must lie in different regions as above. This implies the claim.

In this way, we get a flat strip of width δ1 + δ2 and x is tangent to the interior of this
flat strip. Since gsk (x′

k) → b, we can repeat all the arguments above to b, gsk (x′
k) instead

of x, x′
k . Then either we are arriving at a contradiction as in case (1) or case (2) and we are

done, or we get a flat strip of width greater than δ1 + δ2 and b is tangent to the interior of
the flat strip. However, we can not enlarge a flat strip repeatedly in this way on a compact
surface M. So we are done with the proof.

5.3. Proof of Theorem 1.9. We shall prove Theorem 1.9 by showing that the second
one of the dichotomy cannot happen if {p ∈ M : K(p) < 0} has at most finitely many
connected components. The proof is an adaption of the one of [25, Theorem 1.6] to surfaces
without focal points. Moreover, we fix a gap in that proof, which was pointed out by Keith
Burns.
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γ̃1(t0)
γ̃2(t0)

w

γ̃1

γ̃2

FIGURE 4. Proof of Theorem 1.9.

Proof of Theorem 1.9. Suppose � ∩ (Per (gt ))c �= ∅. Consider the two points y and z
given by Theorem 1.8. We lift the geodesics γy(t) and γz(t) to the geodesics in the
universal cover M̃ , which are denoted by γ̃1 and γ̃2, respectively. See Figure 4.

Consider the connected components of {p ∈ M̃ : K(p) < 0} on M̃ and we want to see
how they distribute inside the ideal triangle bounded by γ̃1 and γ̃2. Since γ̃1 and γ̃2 are
flat geodesics, no connected component intersects γ̃1 or γ̃2. Note that such connected
component may be not simply one lifting of (hence, not isometric to) one connected
component of {p ∈ M : K(p) < 0} on the base space M. However, each of them projects
onto a connected component on M.

We claim that the maximal radius of inscribed disks inside each connected component
is bounded away from 0. Indeed, if this is not true, then there exists an isometry between
the inscribed disk with very small radius inside a connected component and an inscribed
disk inside a connected component of {p ∈ M : K(p) < 0}. This is impossible because
the number of connected components of {p ∈ M : K(p) < 0} is finite, and therefore the
maximal radius of their inscribed disks is bounded away from 0. The claim follows.

Let T denote the ideal triangle γ̃1(0)γ̃2(0)w. We claim that a connected component
of {p ∈ M̃ : K(p) < 0} is bounded inside T, that is, it cannot approach w. Assume the
contrary. Let D be a fundamental domain inside the ideal triangle bounded by γ̃1 and γ̃2.
Then there exist xi in D and αi ∈ �, i = 1, 2, . . . , such that αixi are all in one connected
component of {p ∈ M̃ : K(p) < 0} and αixi → w in T as i → ∞. For i large enough,
consider αiγ̃1 and αiγ̃2, which are two asymptotic non-closed flat geodesics. If αiγ̃1 and
αiγ̃2 approach w, then w is a fixed point for αi ∈ �. Then γ̃1 is asymptotic to an axis of
αi , and hence itself is closed by Lemma 4.10. This contradicts the assumption. So αiγ̃1

and αiγ̃2 approach some wi �= w ∈ M̃(∞) and wi → w as i → ∞. Since αiT contains
αixi ∈ T , at least one of αiγ̃1 and αiγ̃2 must intersect T. Since the considered connected
component cannot intersect flat geodesics, it must be bounded. This proves the claim.

Since the radii of the inscribed disks are bounded away from zero, there exists a
t0 > 0 such that the infinite triangle γ̃1(t0)γ̃2(t0)w does not contain any such inscribed
disk, see Figure 4. Note that if two connected components project to the same connected
component on M, they must be isometric. Thus, by the second claim above, we can find
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t1 > t0 such that the infinite triangle γ̃1(t1)γ̃2(t1)w is a flat region. Then d(γ̃1(t), γ̃2(t)) ≡
d(γ̃1(t1), γ̃2(t1)) for all t ≥ t1. Indeed, if we construct a geodesic variation between γ̃1

and γ̃2, then the Jacobi fields are constant for t ≥ t1 since K ≡ 0. Thus, d(γ̃1(t), γ̃2(t))

is constant when t ≥ t1. We get a contradiction since d(γ̃1(t), γ̃2(t)) → 0 as t → +∞ by
Theorem 1.8.

Finally we can conclude that � ⊂ Per (gt ). In particular, the geodesic flow is ergodic
by Theorem 1.7 and Pesin’s theorem (Theorem 1.3).
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