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Abstract

We define a natural topology on the collection of (equivalence classes up to scaling
of) locally finite measures on a homogeneous space and prove that in this topology,
pushforwards of certain infinite-volume orbits equidistribute in the ambient space. As
an application of our results we prove an asymptotic formula for the number of integral
points in a ball on some varieties as the radius goes to infinity.
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1. Introduction

This paper deals with the study of the possible limits of periodic orbits in homogeneous spaces.
Before explaining what we mean by this, we start by motivating this study. In many instances
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arithmetic properties of an object are captured by periodicity of a corresponding orbit in some

dynamical system. A simple instance of this phenomenon is that α ∈ R is rational if and only if

its decimal expansion is eventually periodic. In dynamical terms this is expressed by the fact that

the orbit of α modulo 1 on the torus R/Z under multiplication by 10 (modulo 1) is eventually

periodic. Furthermore, from knowing distributional information regarding the periodic orbit one

can draw meaningful arithmetical conclusions. In the above example this means that if the orbit

is very close to being evenly distributed on the circle then the frequency of appearance of, say, the

digit 3 in the period of the decimal expansion is roughly 1
10 . This naive scheme has far-reaching

analogous manifestations capturing deep arithmetic concepts in dynamical terms. More elaborate

instances are, for example, the following.

– Similarly to the above example regarding decimal expansion, periodic geodesics on the

modular surface correspond to continued fraction expansions of quadratic numbers, and

distributional properties of the former imply statistical information regarding the latter

(see [AS18] where this was used).

– Representing an integral quadratic form by another is related to periodic orbits of orthogonal

groups (see [EV08]).

– Class groups of number fields correspond to adelic torus orbits (see [ELMV11]).

– Values of rational quadratic forms are governed by the volume of periodic orbits of

orthogonal groups (see [EMV09, Theorem 1.1])

– Asymptotic formulas for counting integer and rational points on varieties are encoded

by distributional properties of periodic orbits (see [DRS93, EM93, EMS96, GMO08], for

example).

In all the above examples the orbits that are considered are of finite volume. Recently

in [KK18, OS14] this barrier was crossed and particular instances of the above principle were used

for infinite-volume orbits in order to obtain asymptotic estimates for counting integral points on

some varieties and weighted second moments of GL(2) automorphic L-functions.

At this point let us make our terminology more precise. Let X be a locally compact second

countable Hausdorff space and let H be a unimodular topological group acting continuously

on X. We say that an orbit Hx is periodic if it supports an H-invariant locally finite Borel

measure. In such a case the orbit is necessarily closed and this measure is unique up to scaling

and is obtained by restricting the Haar measure of H to a fundamental domain of StabH(x) in

H which is identified with the orbit via h 7→ hx. We say that such an orbit is of finite volume

if the total mass of the orbit is finite. It is then customary to normalize the total mass of the

orbit to 1. We remark that in some texts the term ‘periodic orbit’ is reserved for finite-volume

ones, but we wish to extend the terminology as above. If Hx is a periodic orbit we denote by

µHx a choice of such a measure, which in the finite-volume case is assumed to be normalized to

a probability measure.

Given a sequence of periodic orbits Hxi, it makes sense to ask if they converge in some

sense to a limiting object. When the orbits are of finite volume the common definition is that

of weak* convergence; each orbit is represented by the probability measure µHxi and one equips

the space of probability measures P(X) with the weak* topology coming from identifying P(X)

as a subset of the unit sphere in the dual of the Banach space of continuous functions on X

vanishing at infinity C0(X). The starting point of this paper is to challenge this and propose a

slight modification which will allow us to bring into the picture periodic orbits of infinite volume.
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For that we will shortly concern ourselves with topologizing the space of equivalence classes [µ]
of locally finite measures µ on X.

This approach has several advantages over the classical weak* convergence approach. As
said above, it allows us to discuss limiting distributions of infinite-volume orbits, but also it
allows us to detect in some cases information which is invisible for the weak* topology. In the
classical discussion, it is common that a sequence of periodic probability measures µHxi converges
to the zero measure (a phenomenon known as full escape of mass). Nevertheless it sometimes
happens that the orbits themselves do converge to a limiting object but this information was lost
because the measures along the sequence were not scaled properly. This phenomenon happens,
for example, in [Sha17], which inspired us to define the notion of convergence to be defined below.

Although the results we will prove are rather specialized, we wish to present the framework
in which our discussion takes place in some generality. Let G be a Lie group1 and let Γ < G be
a lattice.

Question 1.1. Let X = G/Γ and let Hixi be a sequence of periodic orbits. Under what conditions
do the following statements hold?

(i) The sequence [µHixi ] has a converging subsequence.

(ii) The accumulation points of [µHixi ] are themselves (homothety classes of) periodic measures.

2. Basic definitions and results

2.1 Topologies
We now make our discussion above more rigorous. Let X be a locally compact second countable
Hausdorff space and M(X) the space of locally finite measures on X. We say that two locally
finite measures µ and ν inM(X) are equivalent if there exists a constant λ > 0 such that µ = λν.
This forms an equivalence relation and we denote the equivalence class of µ by [µ]. We denote
by PM(X) the set of all equivalence classes of nonzero locally finite measures on X.

We topologizeM(X) and PM(X) as follows. Let Cc(X) be the space of compactly supported
continuous functions on X. For any ρ ∈ Cc(X), define

iρ :M(X) → C0(X)∗

by sending dµ ∈ M(X) to ρdµ ∈ C0(X)∗. Here C0(X) is the space of continuous functions on
X vanishing at infinity equipped with the supremum norm, and C0(X)∗ denotes its dual space.
The weak* topology on C0(X)∗ then induces a topology τρ on M(X) via the map iρ. We will
denote by τX the topology on M(X) generated by (M(X), τρ) (ρ ∈ Cc(X)). Equivalently, τX is
the smallest topology on M(X) such that for any f ∈ Cc(X) the map

µ 7→
∫
f dµ

is a continuous map from M(X) to R.

Definition 2.1. Let πP be the natural projection map fromM(X) \ {0} to PM(X). We define
τP to be the quotient topology on PM(X) induced by τX via πP . In other words, U is an open
subset in PM(X) if and only if π−1

P (U) is open inM(X)\{0}. In this way, we obtain a topological
space (PM(X), τP ).

1 One could (and should) develop this discussion in the S-arithmetic and adelic settings as well.

1749

https://doi.org/10.1112/S0010437X19007450 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007450


U. Shapira and C. Zheng

2.2 Main results

Let G = SL(n,R), Γ = SL(n,Z) and X = G/Γ. Denote by mX the unique G-invariant probability

measure on X and by Ad the adjoint representation of G. We write

A = {diag(et1 , et2 , . . . , etn−1 , etn) : t1 + t2 + · · ·+ tn = 0}

for the connected component of the full diagonal group in G, and

N = {(uij)16i,j6n : uii = 1 (1 6 i 6 n), uij = 0 (i > j)}

for the upper triangular unipotent group. Let K = SO(n,R). In this paper, we address

Question 1.1 in the space X = SL(n,R)/ SL(n,Z) with certain periodic orbits Hixi, and prove

the convergence of [µHixi ] with respect to the topology (τP ,PM(X)). As a simple exercise, and

to motivate such a statement, the reader can show that if [µHixi ] → [mX ], for example, then the

orbits Hixi become dense in X. In many cases our results imply that indeed the limit homothety

class is the class of the uniform measure mX .

Before stating our theorems, we need some notation. For a Lie subgroup H < G, let H0

denote the connected component of identity of H, and Lie(H) its Lie algebra. Denote by

CG(H) (respectively, CG(Lie(H))) the centralizer of H (respectively, Lie(H)) in G. We write

g = Lie(G) = sl(n,R), and

exp : sl(n,R) → SL(n,R)

for the exponential map from g to G. We also write ‖ · ‖g for the norm on g induced by the

Euclidean norm on the space of n×n matrices. For any g ∈ G and any measure µ on X, define

the measure g∗µ by

g∗µ(E) = µ(g−1E) for any Borel subset E ⊂ X.

An A-orbit Ax in X is called divergent if the map a 7→ ax from A to X is proper.

Definition 2.2. Let {gk}k∈N be a sequence in G. For any subgroup S ⊂ A, we define

A(S, {gk}k∈N) = {Y ∈ Lie(S) : {Ad(gk)Y }k∈N is bounded in g}.

This is a subalgebra in Lie(S).

Remark 2.3. By Definition 2.2, {Ad(gk)Y }k∈N is unbounded for any Y ∈ Lie(S)\A(S, {gk}k∈N).

Then one can find a subsequence {gik}k∈N such that for any Y ∈ Lie(S) \ A(S, {gik}k∈N), the

sequence {Ad(gik)Y }k∈N diverges to infinity.

Indeed, suppose that, for an element Y ∈ Lie(S) \ A(S, {gk}k∈N), {Ad(gk)Y }k∈N does not

diverge. Then there is a subsequence {g′k}k∈N such that {Ad(g′k)Y }k∈N is bounded. This implies

that A(S, {g′k}k∈N) contains the linear span of Y and A(S, {gk}k∈N). Because of this, one can

keep on enlarging the set A(S, {gk}k∈N) by passing to subsequences of {gk}k∈N. But due to the

finite dimension of Lie(S), this process would stop at some point. Then one can get a subsequence

{gik}k∈N such that, for any vector Y ∈ Lie(S) \ A(S, {gik}k∈N), the sequence Ad(gik)Y →∞.

The following theorem answers Question 1.1 for translates of a divergent diagonal orbit in

G/Γ. Moreover, it gives a description of all accumulation points.
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Theorem 2.4. Let Ax be a divergent orbit in X. Then, for any {gk}k∈N in G, the sequence
[(gk)∗µAx] has a subsequence converging to an equivalence class of a periodic measure on X.

Furthermore, by passing to a subsequence, we assume that, for any Y ∈ Lie(A) \ A(A,
{gk}k∈N), the sequence {Ad(gk)Y }k∈N diverges (see Remark 2.3). Then we have the following
description of the limit points of the sequence [(gk)∗µAx]. The subgroup exp(A(A, {gk}k∈N)) is
the connected component of the center of the reductive group CG(A(A, {gk}k∈N)), and any limit
point of the sequence [(gk)∗µAx] is a translate of the equivalence class [µCG(A(A,{gk}k∈N))0x]. In
particular, if A(A, {gk}k∈N) = {0}, then [(gk)∗µAx] converges to the equivalence class of the Haar
measure mX on X.

In fact, we deduce Theorem 2.4 as a corollary of the following theorem.

Theorem 2.5. Let Ax be a divergent orbit in X. Suppose that {gk}k∈N is a sequence in N with

gk = (uij(k))16i,j6n ∈ SL(n,R)

such that for each pair (i, j) (1 6 i < j 6 n),

either uij(k) = 0 for any k, or uij(k) →∞ as k →∞.

Then the sequence [(gk)∗µAx] converges to the equivalence class [µCG(A(A,{gk}k∈N))0x].

We will also deduce the following theorem from Theorems 2.4 and 2.5, which answers
Question 1.1 for translates of an orbit of a connected reductive group H containing A. We
will see by Lemma 10.2 that for such a reductive group H, and for x ∈ X with Ax divergent,
Hx is a closed orbit.

Theorem 2.6. Let Ax be a divergent orbit in X and let H be a connected reductive group
containing A. Then, for any {gk}k∈N in G, the sequence [(gk)∗µHx] has a subsequence converging
to an equivalence class of a periodic measure on X.

Furthermore, let S be the connected component of the center of H, and assume that, for any
Y ∈ Lie(S) \ A(S, {gk}k∈N), the sequence {Ad(gk)Y }k∈N diverges. Then we have the following
description of the limit points of [(gk)∗µHx]. The subgroup exp(A(S, {gk}k∈N)) is the connected
component of the center of the reductive group CG(A(S, {gk}k∈N)), and any limit point of the
sequence [(gk)∗µHx] is a translate of the equivalence class [µCG(A(S,{gk}k∈N))0x]. In particular, if
A(S, {gk}k∈N) = {0}, then [(gk)∗µHx] converges to the equivalence class of the Haar measure
mX on X.

Remark 2.7. The proof of Theorem 2.4 also gives a criterion on the convergence of [(gk)∗µAx].
A similar criterion on the convergence of [(gk)∗µHx] for a connected reductive group H containing
A could be obtained from the proof of Theorem 2.6.

We give several examples to illustrate Theorems 2.4–2.6.

(1) Let G = SL(3,R) and Γ = SL(3,Z). Pick the initial point x = Zn ∈ X and the sequence

gk =

(
1 k k2/2
0 1 k
0 0 1

)
. In this case one can show that the subalgebra A(A, {gk}k∈N) = {0}, and

Ad(gk)Y diverges for any nonzero Y ∈ Lie(A). We also have CG(A(A, {gk}k∈N)) = SL(3,R).
Theorem 2.4 then says that [(gk)∗µAx] converges to [µSL(3,R)x] = [mX ].
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(2) Fix G,Γ, x and gk as in example (1). Let H be the connected component of the reductive
subgroup ∗ ∗ 0

∗ ∗ 0

0 0 ∗

 ∩ SL(3,R).

Then the center S of H is equal to {diag(a, a, a−2) : a 6= 0}, and one could check that the
subalgebra A(S, {gk}k∈N) = {0}, and Ad(gk)Y diverges for any nonzero Y ∈ Lie(S). Also
CG(A(S, {gk}k∈N)) = SL(3,R). Then Theorem 2.6 implies that the sequence [(gk)∗µHx]
converges to [µSL(3,R)x] = [mX ].

(3) Let G = SL(4,R) and Γ = SL(4,Z). Pick the initial point x = Zn ∈ X and the sequence

gk =

(
1 k 0 0
0 1 0 0
0 0 1 k
0 0 0 1

)
. In this case one can show that A(A, {gk}k∈N) = {diag(t, t,−t,−t) : t ∈ R}

and

CG(A(A, {gk}k∈N)) =


∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ ∗
0 0 ∗ ∗

 ∩ SL(4,R).

Theorem 2.5 then says that the sequence [(gk)∗µAx] converges to [µCG(A(A,{gk}k∈N))0x].

(4) Fix G,Γ and x as in example (3), and pick the sequence gk =

(
1 k k2/2 0
0 1 k 0
0 0 1 0
0 0 0 1

)
. Let H be the

connected component of the reductive subgroup
∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ 0

0 0 0 ∗

 ∩ SL(4,R).

Then the center S of H is equal to {diag(a, a, b, c) : a2bc = 1}, and one could check that
A(S, {gk}k∈N) = {diag(s, s, s,−3s) : s ∈ R} and

CG(A(S, {gk}k∈N)) =


∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

 ∩ SL(4,R).

In this case, Theorem 2.6 says that any limit point of the sequence [(gk)∗µHx] is a translate
[µCG(A(S,{gk}k∈N))0x], and the proof of Theorem 2.6 would imply that [(gk)∗µHx] actually
converges to [µCG(A(S,{gk}k∈N))0x].

By comparing examples (1) and (3) (respectively, (2) and (4)), one can see that the subalgebra
A(A, {gk}k∈N) (respectively, A(S, {gk}k∈N)) plays an important role in indicating what kinds of
limit points the sequence [(gk)∗µAx] (respectively, [(gk)∗µHx]) could converge to. In example (1),
we have A(A, {gk}k∈N) = {0}. By pushing Ax with gk, the orbit gkAx starts snaking in the space
SL(3,R)/SL(3,Z), and eventually fills up the entire space. In example (3), A(A, {gk}k∈N) is a
one-dimensional subalgebra in Lie(A) which commutes with gk, and it corresponds to the part of
the orbit Ax which stays still and is not affected when we push µAx by gk. This would result in
the limit orbit having this part as the ‘central direction’, and the ‘orthogonal’ part in Ax would

be pushed by gk and fill up the sub-homogeneous space
(

SL(2,R) 0
0 SL(2,R)

)
x in SL(4,R)/ SL(4,Z).
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By the characterization of convergence given in Proposition 3.3, Theorems 2.4 and 2.6 can
be restated in the following form.

Theorem 2.8. Let Ax be a divergent orbit and {gk}k∈N be a sequence in G such that [(gk)∗µAx]
converges to an equivalence class of a locally finite periodic measure [ν] as in Theorem 2.4. Then
there exists a sequence λk > 0 such that

λk(gk)∗µAx → ν

with respect to the topology τX . In particular, for any F1, F2 ∈ Cc(X), we have∫
F2 d(gk)∗µAx∫
F1 d(gk)∗µAx

→

∫
F2 dν∫
F1 dν

whenever
∫
F1 dν 6= 0. The same results hold if A is replaced by any connected reductive group

H containing A.

Remark 2.9. From the proofs of Theorems 2.4 and 2.5, we will see that in the case A(A,
{gk}k∈N) = {0}, the numbers λk in Theorem 2.8 are related to the volumes of convex polytopes
of a special type in Lie(A) (see Definition 4.1 and Corollary 10.1). We remark here that in view
of Theorem 2.8, the λk in this case can also be calculated by a function F1 ∈ Cc(X) with its
support being a large compact subset. This makes Theorem 2.8 practical in other problems.

2.3 Applications
As an application of our results, we give one example of a counting problem. More details about
this counting problem can be found in [DRS93, EM93, EMS96, Sha00].

Let M(n,R) be the space of n×n matrices with the norm

‖M‖2 = Tr(M tM) =
∑

16i,j6n

x2
ij

for M = (xij)16i,j6n ∈ M(n,R). Denote by BT the ball of radius T centered at 0 in M(n,R).
Fix a monic polynomial p0(λ) in Z[λ] which splits completely over Q. By Gauss’s lemma, the
roots αi of p(λ) are integers. We assume that the αi are distinct and nonzero. Let

Mα = diag(α1, α2, . . . , αn) ∈M(n,Z).

For M ∈M(n,R), denote by pM (λ) the characteristic polynomial of M . We define by

V (R) := {M ∈M(n,R) : pM (λ) = p0(λ)}

the variety of matrices M with characteristic polynomial pM (λ) equal to p0(λ), and by

V (Z) := {M ∈M(n,Z) : pM (λ) = p0(λ)}

the integer points in the variety V (R).
The metric ‖ · ‖g on g = sln(R) induces Haar measures on A and N . The K-invariant

probability measure on K and the Haar measures on A, N then give a Haar measure on G via
the Iwasawa decomposition G = KNA. We will denote by cX the volume of X = G/Γ with
respect to the Haar measure on G.
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There is a natural volume form on the variety V (R) inherited from G = SL(n,R). Specifically,
the orbit map

G → V (R)

defined by g 7→ Ad(g)Mα gives an isomorphism between the quotient space G/CG(A) and the
variety V (R), and the volume form is defined to be the G-invariant measure on G/CG(A). The
existence of such a measure is well known, and the proof of it can be found, for example, in
[Rag72]. With this volume form, one can compute (see Proposition 11.7) that for any T , the
volume of V (R)∩BT equals cTn(n−1)/2 for some constant c > 0. The following theorem concerns
the asymptotic formula for the number of integer points in V (Z) ∩BT . We will see that the set
V (Z) ∩BT behaves differently from V (R) ∩BT , with an extra log term.

By a well-known theorem of Borel and Harish-Chandra [BHC62], the subset V (Z) is a finite
disjoint union of Ad(Γ)-orbits. One can write this disjoint union as

V (Z) =

h0⋃
i=1

Ad(Γ)Mi

for some h0 ∈ N and Mi ∈ V (Z) (1 6 i 6 h0). Note that for each Mi, the stabilizer ΓMi of Mi is
finite. Also the number of the orbits h0 is equal to the number of equivalence classes of nonsingular
ideals in the subring in M(n,R) generated by Mα, for which readers may refer to [BHC62, LM33].
In the following theorem, for ease of notation, we write t for a vector (t1, t2, . . . , tn) ∈ Rn.

Theorem 2.10. We have

|V (Z) ∩BT | ∼
( h0∑
i=1

1

|ΓMi |

)
c0 Vol(B1)

cX
∏
j>i |αj − αi|

Tn(n−1)/2(lnT )n−1

where Vol(B1) is the volume of the unit ball in Rn(n−1)/2 and c0 is the volume of the (n−1)-convex
polytope {

t ∈ Rn :
n∑
i=1

ti = 0,
l∑

j=1

tij >
l∑

j=1

(j − ij),∀1 6 l 6 n, ∀1 6 i1 < · · · < il 6 n

}
with respect to the natural measure induced by the Lebesgue measure on Rn.

In the sequel, we will mainly focus on Theorem 2.5 as all the other theorems will be corollaries
of it. In the course of the proof of Theorem 2.5, the case A(A, {gk}k∈N) = {0} plays an important
role, and other cases can be proved by induction. Therefore, most of our arguments in this paper
would work for the case A(A, {gk}k∈N) = {0}. We remark that our proof is inspired by [OS14],
where Oh and Shah deal with the case G = SL(2,R) by applying exponential mixing and obtain
an error estimate. This effective result was recently improved by Kelmer and Kontorovich [KK18].

When we showed an earlier draft of this paper to Shah, he pointed out to us that similar
results to those appearing in this paper were established by him at the beginning of this century,
but were never published.

The paper is organized as follows.

– We start our work in § 3 by studying the topology τP on PM(X) for a locally compact second
countable Hausdorff space X. In particular, a characterization of convergence in PM(X)
is given, and Theorem 2.8 is obtained as a natural corollary, if Theorems 2.4 and 2.6 are
presumed.
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– In § 4, a special type of convex polytope in Lie(A) is introduced. Such convex polytopes are

related to nondivergence of the orbits gkAx. In order to analyze these convex polytopes in

the setting of Theorem 2.5, we define graphs associated to them and prove some auxiliary

results concerning the graphs in § 5. With the assumption A(A, {gk}k∈N) = {0}, these

auxiliary results imply some properties of the convex polytopes, which are proved in § 6.

– Keeping the assumption A(A, {gk}k∈N) = {0} in § 7, we prove a statement on the

nondivergence of the sequence of [(gk)∗µAx] and show that [(gk)∗µAx] converges to [ν]

for some probability measure ν invariant under a unipotent subgroup. Then we translate

§ 7 in terms of adjoint representation in § 8. The linearization technique and the measure

classification theorem for unipotent actions on homogeneous spaces are discussed in § 9,

enabling us to study the measure rigidity in our setting.

– We complete the proof of Theorem 2.5 in § 10. Then we prove Theorems 2.4 and 2.6. We

give the proof of Theorem 2.10 in § 11.

3. Topology on PM(X)

In this section, we study the topology τP on PM(X) for any locally compact second countable

Hausdorff space X. We will give a description of the convergence of a sequence [µk] in PM(X)

(Proposition 3.3). This will help us study the convergence of the sequence [(gk)∗µAx] in

Theorems 2.4 and 2.5 (respectively, [(gk)∗µHx] in Theorem 2.6).

Before proving Proposition 3.3, we need some preparatory work.

Proposition 3.1. The topology (τP ,PM(X)) is Hausdorff. In particular, any convergent

sequence in PM(X) has a unique limit.

Proof. Let [µ] and [ν] be two distinct elements in PM(X). We choose f ∈ Cc(X) and

representatives µ and ν such that ∫
f dµ =

∫
f dν = 1.

Since [µ] 6= [ν], there exists a nonnegative function g ∈ Cc(X) such that∫
g dµ 6= 1,

∫
g dν = 1.

We define neighborhoods of µ and ν in M(X) by

V (µ; f, g, ε) =

{
λ :

∣∣∣∣∫ g dλ−
∫
g dµ

∣∣∣∣ < ε,

∣∣∣∣∫ f dλ−
∫
f dµ

∣∣∣∣ < ε

}
,

V (ν; f, g, ε) =

{
λ :

∣∣∣∣∫ g dλ−
∫
g dν

∣∣∣∣ < ε,

∣∣∣∣∫ f dλ−
∫
f dν

∣∣∣∣ < ε

}
.

Since πP : M(X) \ {0} → PM(X) is an open map, πP (V (µ; f, g, ε)) and πP (V (ν; f, g, ε)) are

open neighborhoods of [µ] and [ν] in PM(X) for any ε > 0. Let κ =
∫
g dµ. We prove that, for

any ε < min{0.1, |κ− 1|/5},

πP (V (µ; f, g, ε)) ∩ πP (V (ν; f, g, ε)) = ∅.
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Suppose, to the contrary, that [λ] ∈ πP (V (µ; f, g, ε))∩πP (V (ν; f, g, ε)). Then there exist constants
α, β > 0 such that ∣∣∣∣α ∫ g dλ−

∫
g dµ

∣∣∣∣ < ε,

∣∣∣∣α ∫ f dλ−
∫
f dµ

∣∣∣∣ < ε,∣∣∣∣β ∫ g dλ−
∫
g dν

∣∣∣∣ < ε,

∣∣∣∣β ∫ f dλ−
∫
f dν

∣∣∣∣ < ε.

This implies that ∫
g dµ− ε∫
g dν + ε

<
α

β
<

∫
g dµ+ ε∫
g dν − ε

,

∫
f dµ− ε∫
f dν + ε

<
α

β
<

∫
f dµ+ ε∫
f dν − ε

and
κ− ε
1 + ε

<
α

β
<
κ+ ε

1− ε
,

1− ε
1 + ε

<
α

β
<

1 + ε

1− ε
.

This is a contradiction, for ε < min{0.1, |κ− 1|/5}. 2

Proposition 3.2. A sequence [µk] in PM(X) converges to [ν] if and only if, for each k ∈ N,
there exists a representative µ′k in [µk] and for [ν] a representative ν ′ ∈ [ν] such that µ′k converges
to ν ′ in M(X).

Proof. Let [µk] be a sequence in PM(X) converging to [ν]. We choose f ∈ Cc(X) and
representatives µ′k and ν ′ of [µk] and [ν] such that∫

f dµ′k =

∫
f dν ′ = 1.

Suppose that µ′k 6→ ν ′ inM(X). Then there exists a nonnegative function g ∈ Cc(X) such that,
after passing to a subsequence, ∫

g dν ′ = 1,

∣∣∣∣∫ g dµ′k − 1

∣∣∣∣ > δ,

for some δ > 0. Then by the same argument as in Proposition 3.1, we can find a neighborhood
πP (V (ν; f, g, ε)) of [ν] in PM(X) for some ε < min{0.1, δ/5} such that

[µk] /∈ πP (V (ν; f, g, ε)),

which contradicts the condition [µk] → [ν]. The other direction follows from Definition 2.1. 2

We now prove the following important proposition, which provides a characterization of the
convergence of a sequence [µk] in PM(X). This will help us study the convergence of equivalence
classes of locally finite measures on SL(n,R)/ SL(n,Z) in the rest of the paper.

Proposition 3.3.

(i) Let {µk}k∈N be a sequence in M(X). Then [µk] converges to [ν] in PM(X) if and only
if there exists a sequence {λk} of positive numbers such that λkµk converges to ν in M(X). If
there exists another sequence {λ′k} with λ′kµk → ν ′ 6= 0 in M(X), then

[ν ′] = [ν]

and limk λ
′
k/λk exists.
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(ii) The sequence [µk] converges to [ν] if and only if, for any f, g ∈ Cc(X) with
∫
g dν 6= 0,

we have
∫
g dµk 6= 0 for sufficiently large k and∫

f dµk∫
g dµk

→

∫
f dν∫
g dν

.

Proof. The first statement follows from Propositions 3.1 and 3.2. For limk λ
′
k/λk, we choose

f ∈ Cc(X) with
∫
f dν 6= 0, and we have

λ′k
λk

=
λ′k
∫
f dµk

λk
∫
f dµk

→

∫
f dν ′∫
f dν

.

For the second statement, if [µk] → [ν], then there exists a sequence λk > 0 such that
λkµk → ν 6= 0. For any f, g ∈ Cc(X) with

∫
g dν 6= 0, we have

λk

∫
g dµk 6= 0

for sufficiently large k and ∫
f dµk∫
g dµk

=

∫
f d(λkµk)∫
g d(λkµk)

→

∫
f dν∫
g dν

.

Conversely, let g ∈ Cc(X) with
∫
g dν 6= 0 and

λk =

∫
g dν∫
g dµk

.

Then we have λkµk → ν and [µk] → [ν]. 2

Remark 3.4. This proves that Theorem 2.8 is equivalent to Theorems 2.4 and 2.6.

From the discussions in this section, we know that to prove Theorem 2.5 one needs to find a
sequence of λk > 0 such that λk(gk)∗µAx converges to a locally finite measure ν, and then prove
that ν is a periodic measure. From §§ 4 to 6, we will construct the sequence λk in an explicit
way. In the rest of the paper, X will denote the homogeneous space G/Γ.

4. Convex polytopes

In this section we will construct a special type of convex polytope in Lie(A). These convex
polytopes will play an important role in the rest of the paper.

By [TW03, Theorem 1.4], Ax is divergent in X = G/Γ if and only if x ∈ A · SL(n,Q)Γ. Note
that, for any q ∈ SL(n,Q), the lattice qΓq−1 is commensurable with Γ, and all results in this
paper will hold if Γ is replaced by qΓq−1. Therefore, without loss of generality, we may assume
that the initial point x = xe = e SL(n,Z), where e is the identity matrix in G. We will denote
by mLie(A) the natural measure on Lie(A) ⊂ sl(n,R) induced by the Lebesgue measure on the
space of n×n matrices.

For ease of notation, we will write t for a vector (t1, t2, . . . , tn) in an n-dimensional space, and
denote by [n] the index set {1, 2, . . . , n}. We write In for the collection of all multi-index subsets
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of [n], and I ln for the collection of the index subsets of cardinality l in In. Let {e1, e2, . . . , en} be
the standard basis of Rn. For any index subset I = {i1 < i2 · · · < il} ∈ In, we denote by

eI := ei1 ∧ · · · ∧ eil

the wedge product of the vectors ei1 , . . . , eil . We write ωI(t) (t = (t1, t2, . . . , tn) ∈ Rn) for the
linear functional

∑
i∈I ti on Rn.

Let g ∈ SL(n,R) and δ > 0. We define a region Ωg,δ in Lie(A) as follows. Let t =
(t1, t2, . . . , tn) ∈ Lie(A). For each ei ∈ Rn, the vector

g exp(t)ei = etigei /∈ Bδ

if and only if

ti > ln δ − ln ‖gei‖.

Here Bδ denotes the ball of radius δ > 0 around 0 in Rn with the standard Euclidean norm ‖ · ‖.
We also consider the wedge product eI for any nonempty subset I ∈ I ln (1 6 l 6 n), and

g exp(t)eI = eωI(t)geI /∈ Bδ

if and only if

ωI(t) > ln δ − ln ‖geI‖.

Here, in an abuse of notation, ‖ · ‖ is the norm on ∧lRn induced by the Euclidean norm on Rn,
and Bδ is the ball of radius δ > 0 around 0 in ∧lRn. This leads to the following definition.

Definition 4.1. For any g ∈ G and δ > 0, we define

Ωg,δ = {t ∈ Lie(A) : ωI(t) > ln δ − ln ‖geI‖ for any nonempty I ∈ In}.

Remark 4.2. By the construction above, for any t ∈ Lie(A) \ Ωg,δ, the lattice g exp(t)Zn has a
short nonzero vector with length depending on δ > 0. Hence, by Mahler’s compactness criterion,
the point g exp(t)Γ ∈ gAΓ is close to infinity. Due to this reason, we will mainly study the part
{g exp(t)Γ : t ∈ Ωg,δ} of the orbit gAΓ.

Lemma 4.3. The region Ωg,δ is a bounded convex polytope in Lie(A) for any g ∈ G and δ > 0.

Proof. Since the region Ωg,δ is defined by various linear functionals on Lie(A), Ωg,δ is a convex
polytope. Now by definition, Ωg,δ is contained in the region{

t ∈ Rn :

n∑
i=1

ti = 0, ti > ln δ − ln ‖gei‖,∀i ∈ [n]

}
,

which is bounded. The boundedness of Ωg,δ then follows. 2

In § 6 we will closely study the convex polytope Ωg,δ. We list here some properties of convex
polytopes which will be used later. For a bounded convex subset Ω in a Euclidean space E, we
denote by Vol(Ω) the volume of Ω with respect to the Lebesgue measure on E, and by Area(∂Ω)
the surface area of the boundary ∂Ω of Ω induced by the Lebesgue measure.

The following lemma is well known. We learnt it from Roy Meshulam.
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Lemma 4.4. Let Ω be a bounded convex subset in Rd. Suppose that Ω contains a ball of radius
r > 0. Then we have

Area(∂Ω)

Vol(Ω)
6
d

r
.

Proof. Let Br(0) denote the ball of radius r centered at 0 in Rd and we may assume, without
loss of generality, that Br(0) ⊂ Ω. We have

Area(∂Ω) = lim
ε→0

Vol(Ω + εB1(0))−Vol(Ω)

ε

= lim
ε→0

Vol(Ω + (ε/r)Br(0))−Vol(Ω)

ε

6 lim
ε→0

Vol(Ω + (ε/r)Ω)−Vol(Ω)

ε

= lim
ε→0

(1 + (ε/r))d − 1

ε
Vol(Ω) =

d

r
Vol(Ω).

This completes the proof of the lemma. 2

Lemma 4.5. Let R ⊂ Ω be two bounded d-dimensional convex polytopes in Rd. Suppose that Ω
contains a ball of radius r > 0 and

Vol(R)

Vol(Ω)
> c

for some constant c > 0. Then R contains a ball of radius rc/d.

Proof. Let ρ be the largest number such that R contains a ball of radius ρ. It suffices to show
that ρ > rc/d. Let {fi} be the collection of the facets of R, and denote by Pi the hyperplane
determined by fi. First, we prove two claims.

Claim 1. Let p be a point in R, and let fi0 be a facet of R such that the hyperplane Pi0 is
closest to p among all the hyperplanes Pi. Then the orthogonal projection of p in Pi0 is in the
facet fi0 .

Proof of Claim 1. Let pi0 be the orthogonal projection of p in Pi0 , and denote by pi0p the line
segment connecting p and pi0 . Suppose that pi0 is outside the facet fi0 . Then pi0p intersects
another facet of R, say, fj0 . This implies that the distance between p and the hyperplane Pj0 is
smaller than the length of pi0p, which contradicts the choice of Pi0 . 2

Claim 2. Vol(R) 6 ρArea(∂R).

Proof of Claim 2. For each facet fi of R, let Bi be the unique cylinder with the following
properties.

(i) The base of Bi is fi, and the height of Bi is equal to ρ.

(ii) Bi and R lie in the same half-space determined by Pi.

The maximality of ρ then implies

R ⊂
⋃
i

Bi;
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otherwise, by Claim 1, one would find a point x ∈ R \
⋃
iBi such that, for each fi, the distance

between x and fi is strictly larger than ρ. Now we have

Vol(R) 6
∑
i

Vol(Bi) = ρArea(∂R)

and Claim 2 follows. 2

Now we can finish the proof of the lemma. By Claim 2 and Lemma 4.4, we have

ρ >
Vol(R)

Area(∂R)
>

cVol(Ω)

Area(∂Ω)
>
cr

d
.

Here we use the fact that Area(∂R) 6 Area(∂Ω) for any two convex polytopes R ⊂ Ω. 2

For a bounded convex polytope Ω in Rd and ε > 0, its ε-neighborhood is defined by{
t ∈ Rd : inf

s∈Ω
‖t− s‖ 6 ε

}
.

Here ‖ · ‖ is the Euclidean norm on Rd.

Lemma 4.6. Let Ω be a bounded convex subset in Rd which contains a ball of radius r > 0. Let
Ωε be the ε-neighborhood of Ω for ε > 0. Then we have

Vol(Ωε)

Vol(Ω)
6

(
1 +

ε

r

)d
.

Proof. The proof is similar to Lemma 4.4. Assume that Ω contains the ball Br(0) of radius r
around 0. We have

Vol(Ωε)

Vol(Ω)
=

Vol(Ω + (ε/r)Br(0))

Vol(Ω)
6

Vol(Ω + (ε/r)Ω)

Vol(Ω)
=

(
1 +

ε

r

)d
.

This completes the proof of the lemma. 2

5. Auxiliary results in graph theory

In this section we will study a special class of graphs and prove some properties of these graphs
(Proposition 5.5 and Lemma 5.8), which will be crucial in our study of convex polytopes in § 6.
From now until § 10, we assume that {gk}k∈N satisfies the condition in Theorem 2.5; that is,
{gk}k∈N is a sequence in N with

gk = (uij(k))16i,j6n

such that, for each (i, j) (1 6 i < j 6 n), either uij(k) = 0 for any k, or uij(k) 6= 0 and diverges
to infinity as k →∞.

In order to prove Proposition 5.5, we will need some lemmas involving complex calculations
which will guarantee the validity of the proof of Proposition 5.5. Here we introduce the following
notation. For any g ∈ SL(n,R) and any 1 6 l 6 n, denote by (g)l× l the l× l submatrix in
the upper left corner of g. Note that if g, h ∈ SL(n,R) are upper triangular, then (gh)l× l =
(g)l× l(h)l× l.

Lemma 5.1. For any a ∈ A and any 1 6 l 6 n, we have either (gk)l× l = (a−1gka)l× l for all k or
(gk)l× l 6= (a−1gka)l× l for all k.
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Proof. Write a = (a1, a2, . . . , an) ∈ A. By definition, we have

(gk)l× l = (uij(k))16i,j6l

and
(a−1gka)l× l = (a−1

i ajuij(k))16i,j6l.

The equation (gk)l× l = (a−1gka)l× l then yields

either uij(k) = 0 or ai = aj , ∀1 6 i, j 6 l.

Now the lemma follows from the dichotomy assumption on the entries of gk (k ∈ N). 2

Lemma 5.2. Let a ∈ A. Suppose that the sequence {gkag−1
k }k∈N is bounded in SL(n,R). Then

gk commutes with a for any k.

Proof. Suppose not. Then by Lemma 5.1 with l = n we have

gk 6= a−1gka, ∀k ∈ N.

In this case, we would like to find a contradiction.
Let l0 be the minimum of the integers 0 6 l 6 n− 1 with the property

(gk)(l+1)× (l+1) 6= (a−1gka)(l+1)× (l+1)

for any k. By Lemma 5.1, l0 is also the maximum of 0 6 l 6 n− 1 such that (gk)l× l commutes
with (a)l× l for all k.

We write a = diag(a1, a2, . . . , an) ∈ A. Then, for any 1 6 l 6 n,

(a)l× l = diag(a1, a2, . . . , al).

We also write

(gk)(l0+1)× (l0+1) =

(
(gk)l0× l0 vk

0 1

)
∈ SL(l0 + 1,R)

where vk is the l0-dimensional column vector next to (gk)l0× l0 in gk. Since (gk)l0× l0 commutes
with (a)l0× l0 , one can compute

(a−1gka)(l0+1)× (l0+1) = (a−1)(l0+1)× (l0+1)(gk)(l0+1)× (l0+1)(a)(l0+1)× (l0+1)

=

(
(gk)l0× l0 al0+1(a−1)l0× l0vk

0 1

)
=

(
(gk)l0× l0 wk

0 1

)
where

wk := al0+1(a−1)l0× l0vk.

As (gk)(l0+1)× (l0+1) does not commute with (a)(l0+1)× (l0+1), we have

vk 6= wk.

From this and the dichotomy assumption on the entries of gk (k ∈ N), one can then deduce that
vk 6= 0, vk →∞ and

wk − vk = (al0+1(a−1)l0× l0 − Il0)vk →∞

as k →∞. Here Il0 is the l0× l0 identity matrix.
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Now we can compute

(a−1gkag
−1
k )(l0+1)× (l0+1) = (a−1gka)(l0+1)× (l0+1)(g

−1
k )(l0+1)× (l0+1)

=

(
(gk)l0× l0 wk

0 1

)(
(gk)l0× l0 vk

0 1

)−1

=

(
Il0 wk − vk
0 1

)
.

Since wk−vk →∞ as k →∞, the equation above implies that {a−1gkag
−1
k }k∈N diverges, which

contradicts the boundedness of {gkag−1
k }k∈N. This completes the proof of the lemma. 2

Corollary 5.3. Let S ⊂ A be a subgroup in A. Then, for any t ∈ Lie(S), either Ad(gk)t →∞
as k →∞ or Ad(gk)t = t for all k.

Proof. Apply Lemmas 5.1 and 5.2 with a = exp(t). 2

Definition 5.4. We define a graph G({gk}k∈N) = (V,E) associated to {gk}k∈N as follows. The
set of vertices V is the index set [n] = {1, 2, . . . , n}. Two vertices i < j are connected by an edge
in the edge set E, which we denote by i ∼ j, if uij(k) →∞ as k →∞.

We can now prove our first result in this section.

Proposition 5.5. The subalgebra A(A, {gk}k∈N) of Lie(A) (as defined in Definition 2.2) is
trivial if and only if the graph G({gk}k∈N) associated to {gk}k∈N is connected.

Proof. Suppose that the graph G({gk}k∈N) associated to {gk}k∈N is not connected. Let Gl =
(Vl, El) (1 6 l 6m) be the connected components of G({gk}k∈N). We pick xl ∈ R\{0} such that∑m

l=1 |Vl|xl = 0. Now if a vertex i ∈ Vl ⊂ [n], we set ti = xl. In this way we obtain an element
t = (ti)16i6n ∈ Lie(A) \ {0}. Note that t is invertible. We show that

gkt = tgk.

Indeed, since t is invertible, we compute

tgkt
−1 = (tit

−1
j uij(k))16i,j6n.

For uij(k) 6= 0, by the definition of the graph G({gk}k∈N), the vertices i and j are in the same
connected component. Hence we have ti = tj and

tgkt
−1 = (tit

−1
j uij(k))16i,j6n = (uij(k))16i,j6n = gk

as desired. This implies that Ad(gk) fixes t, and by definition t ∈ A(A, {gk}k∈N) 6= {0}.
Now assume that the graph G({gk}k∈N) is connected. Suppose that A(A, {gk}k∈N) is not

zero. Then there exists an element t ∈ LieA \ {0} such that Ad(gk)t is bounded as k →∞. Let
a = exp t ∈ A \ {e}. Then {gkag−1

k } is bounded in SL(n,R). By Lemma 5.2, gk commutes with
a. If we write a = diag(a1, a2, . . . , an), then the equation gk = agka

−1 yields

(uij(k))16i,j6n = (aia
−1
j uij(k))16i,j6n

and hence ai = aj whenever uij(k) 6= 0. The connectedness of the graph G({gk}k∈N) then implies
that all the ai are equal and a = e, which contradicts a ∈ A \ {e}. This completes the proof of
the proposition. 2
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Definition 5.6. Let G(V,E) be a graph consisting of the set of vertices V and the set of edges
E. Here we assume V = {v1, v2, . . . , vn} is an ordered set with the ordering ≺, and we write
vi ∼ vj if vi and vj are connected by an edge in E. A subset S ⊂ V is called UDS (uniquely
determined by successors) if it satisfies the following property: for any vi ∈ V ,

vi ∈ S =⇒ vj ∈ S for all j ≺ i with vj ∼ vi. (1)

For our purpose, we will consider UDS subsets of [n] in the graph G({gk}k∈N) associated to
{gk}k∈N. The ordering of [n] inherits the natural ordering on N. The following proposition will
be needed in our computations later.

Proposition 5.7. For any 1 6 l 6 n and any nonempty I ∈ I ln, the sequence {gkeI}k∈N ⊂ ∧lRn
is bounded if and only if I is UDS in the vertex set [n] of G({gk}k∈N). If this case happens, then
we have gkeI = eI for any k ∈ N.

Proof. Let I = {i1 < i2 < · · · < il}. Suppose that {gkeI}k∈N is bounded. We show that I is UDS
in [n]. If not, let i0 be the minimum in I = {i1, . . . , il} such that property (1) in Definition 5.6
does not hold for i0. Then there is j0 < i0 with j0 ∼ i0 but j0 /∈ I. By the minimality of i0, for
any i ∈ I = {i1, i2, . . . , il} with j0 < i < i0, we have j0 6∼ i; otherwise j0 ∈ I. This implies that
uj0,i(k) = 0 for all i ∈ {i1, i2, . . . , il} with i < i0. Note that uj0,i0(k) → ∞ as k → ∞ by our
assumption on the entries of gk (k ∈ N).

Now we compute gkeI . In particular, by expanding gkeI in terms of the standard basis
{eJ : J ∈ I ln} in ∧lRn, we are interested in the coefficient in the eJ0-coordinate, where J0 = {i ∈
I : i 6= i0} ∪ {j0}. As uj0,i(k) = 0 for all i ∈ {i1, i2, . . . , il} with i < i0, one can compute

gkeI = uj0,i0(k)(∧i∈I,i<i0ei) ∧ ej0 ∧ (∧i∈I,i>i0ei) +
∑
J 6=J0

cJeJ

for some cJ ∈ R (J 6= J0). The divergence of uj0,i0(k) then contradicts the boundedness of gkeI .
This proves that I is UDS.

Conversely, suppose that I is a UDS subset in [n]. In this case, we will show inductively that,
for any 1 6 j 6 l,

gk(ei1 ∧ ei2 ∧ · · · ∧ eij ) = ei1 ∧ ei2 ∧ · · · ∧ eij
and hence obtain that gkeI = gk(ei1 ∧ ei2 ∧ · · · ∧ eil) remains fixed. For j = 1, since {i1, . . . , il}
is UDS, this implies that ui,i1 = 0 for all i < i1 and gkei1 = ei1 . Now assume that the formula
holds for j. For j + 1, we know that

gkeij+1 = eij+1 +
∑

i∈{i1,...,ij}

ui,ij+1(k)ei

and hence

gk(ei1 ∧ ei2 ∧ · · · ∧ eij ∧ eij+1) = ei1 ∧ ei2 ∧ · · · ∧ eij ∧ (gkeij+1)

= ei1 ∧ ei2 ∧ · · · ∧ eij ∧ eij+1 .

This completes the proof of the proposition. 2

Finally, we will show the following lemma, which will be crucial in our study of convex
polytopes in § 6.
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Lemma 5.8. Let G(V,E) be a connected graph, where V = {v1, v2, . . . , vn} is an ordered set
with the ordering ≺. Then we can assign values x1, x2, . . . , xn to the vertices v1, v2, . . . , vn such
that:

(i)
∑

vi∈V xi = 0;

(ii) for any proper UDS subset S ⊂ V ,
∑

vi∈S xi > 0.

Proof. We use induction on the number of vertices in G(V,E). There is nothing to prove for
n = 1. Now suppose that we have n + 1 vertices. Assume without loss of generality that v1

is the smallest according to the ordering ≺ on V . We remove the vertex v1 and all the edges
adjacent to v1 from the graph G. This yields a new graph G′ with m connected components
G′1 = (V ′1 , E

′
1), . . . , G′m = (V ′m, E

′
m) for some m ∈ N. Since |V ′j | 6 n (1 6 j 6 m) and V ′j inherits

the ordering from V , we can apply the induction hypothesis on each G′j = (V ′j , E
′
j). In particular,

we obtain a vector (x′2, . . . , x
′
n+1) ∈ Rn such that the value assignment

vi 7→ x′i, 2 6 i 6 n+ 1

satisfies conditions (1) and (2) for each of the graphs G′j (1 6 j 6 m).
Now we pick a sufficiently small positive number ε > 0 such that the new value assignment

xi = x′i − ε (2 6 i 6 n + 1) still satisfies condition (2) for each G′j = (V ′j , E
′
j), and let x1 = nε.

We show that this value assignment

vi 7→ xi, 1 6 i 6 n+ 1

meets our requirements for G(V,E). The sum of xi is zero by induction hypothesis. For a proper
UDS subset S ⊂ V , if v1 /∈ S, then

S =

m⋃
j=1

S′j

where S′j is a subset in G′j = (V ′j , E
′
j) (1 6 j 6 m), and either S′j is a proper UDS subset in

G′j = (V ′j , E
′
j) or S′j = V ′j . Since v1 /∈ S, by the connectedness of G(V,E) and the UDS property

of S, there is some j with S′j 6= V ′j and hence, by taking ε sufficiently small,∑
vi∈S

xi =
m∑
j=1

∑
vi∈S′j

xi > 0.

If S = {v1}, then condition (2) holds automatically. If v1 ∈ S and S 6= {v1}, then

S \ {v1} =
m⋃
j=1

S′j

where S′j is a subset in G′j = (V ′j , E
′
j) (1 6 j 6 m), and either S′j is a proper UDS subset in

G′j = (V ′j , E
′
j) or S′j = V ′j . Since S is proper in V , there is some j with S′j 6= V ′j , and hence we

have ∑
vi∈S

xi =
m∑
j=1

∑
vi∈S′j

xi + x1 > (−nε) + nε = 0.

This completes the proof of the lemma. 2

6. Convex polytopes revisited

In this section we will study the convex polytopes Ωgk,δ, where {gk}k∈N is a sequence in G
satisfying the condition in Theorem 2.5. Our aim in this section is Proposition 6.3, which shows
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a crucial property of Ωgk,δ concerning its surface area and volume. This property will play an
important role at various points in the paper.

In the proof of Theorem 2.5, the case of A(A, {gk}k∈N) = {0} plays a central role, and
other cases can be deduced from this case. We remark here that in view of Corollary 5.3, A(A,
{gk}k∈N) = {0} if and only if the limit points of {Ad(gk) Lie(A)}k∈N in the Grassmanian manifold
of g are subalgebras consisting of nilpotent matrices. So from this section to § 9, we will make
additional assumptions on {gk}k∈N that A(A, {gk}k∈N) = {0}, and by passing to a subsequence,
Ad(gk) Lie(A) converges to a subalgebra consisting of nilpotent matrices in the Grassmanian
manifold of g. We write limk→∞Ad(gk) Lie(A) for the limiting subalgebra and limk→∞Ad(gk)A
for the corresponding limiting unipotent subgroup.

Lemma 6.1. For any 0 < δ < 1, the region

{t ∈ Lie(A) : ωI(t) > ln δ, ∀ nonempty proper UDS I ∈ In}

is a convex subset in Lie(A) which contains an unbound open cone.

Proof. It suffices to prove the lemma for the region

{t ∈ Lie(A) : ωI(t) > 0, ∀ nonempty proper UDS I ∈ In}.

By our assumptions on {gk}k∈N and Proposition 5.5, the graph G({gk}k∈N) associated to {gk}k∈N
is connected. Now by applying Lemma 5.8 with the graph G({gk}k∈N), one can find x = (x1, x2,
. . . , xn) ∈ Lie(A) such that

x ∈ {t ∈ Lie(A) : ωI(t) > 0, ∀ nonempty proper UDS I ∈ In}.

Then by linearity, for any λ > 0,

λx ∈ {t ∈ Lie(A) : ωI(t) > 0, ∀ nonempty proper UDS I ∈ In}.

This implies that there exists an unbounded open cone around the axis {λx, λ > 0}, which is
contained in

{t ∈ Lie(A) : ωI(t) > 0, ∀ nonempty proper UDS I ∈ In}.

This completes the proof of the lemma. 2

Lemma 6.2. Let 0 < δ < 1. For every k ∈ N, the region Ωgk,δ contains a ball Bk of radius rk,
and rk →∞ as k →∞.

Proof. By definition, we know that

Ωgk,δ =
⋂
I∈In

{t ∈ Lie(A) : ωI(t) > ln δ − ln ‖gkeI‖}.

Note that the origin belongs to Ωgk,δ, because each gk is in the upper triangular unipotent
subgroup and ‖gkeI‖ > 1 for nonempty I ∈ In. Now we can write

Ωgk,δ =
⋂

I UDS

{ωI(t) > ln(δ/‖gkeI‖)} ∩
⋂

I non-UDS

{ωI(t) > ln(δ/‖gkeI‖)}

=
⋂

I UDS

{ωI(t) > ln δ} ∩
⋂

I non-UDS

{ωI(t) > ln(δ/‖gkeI‖)}

1765

https://doi.org/10.1112/S0010437X19007450 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007450


U. Shapira and C. Zheng

where we use gkeI = eI for any UDS set I by Proposition 5.7. For a non-UDS set I, we have
gkeI →∞ as k →∞.

Since gkeI →∞ for any non-UDS set I, the region⋂
I non-UDS

{ωI(t) > ln(δ/‖gkeI‖)}

contains a large ball Sk around the origin for sufficiently large k. By Lemma 6.1, the region⋂
I UDS

{ωI(t) > ln δ}

contains an unbounded cone C (which does not depend on k) with cusp at the origin. This
implies that

Ωgk,δ ⊃ Sk ∩ C
and Ωgk,δ contains a large ball Bk of radius rk with rk →∞ as k →∞. 2

Proposition 6.3. For any 0 < δ < 1, we have

lim
k→∞

Area(∂Ωgk,δ)

Vol(Ωgk,δ)
= 0.

Proof. The proposition follows from Lemmas 4.4 and 6.2. 2

Actually, we will apply the following variant of Proposition 6.3 later.

Corollary 6.4. Let 0 < δ1 < δ2 < 1. Then

lim
k→∞

Vol(Ωgk,δ2)

Vol(Ωgk,δ1)
= 1.

Proof. By definition, we know that Ωgk,δ2 ⊂ Ωgk,δ1 . Let {fi} be the collection of the facets of
Ωgk,δ1 , and denote by Pi the hyperplane determined by fi. For each fi, let Bi be the unique
cylinder with the following properties.

(i) The base of Bi is fi, and the height of Bi is equal to ln δ2 − ln δ1.

(ii) Bi and Ωgk,δ1 lie in the same half-space determined by Pi.

Then we have
Ωgk,δ1 ⊂

⋃
i

Bi ∪ Ωgk,δ2

and

Vol(Ωgk,δ1) 6
∑
i

Vol(Bi) + Vol(Ωgk,δ2) = (ln δ2 − ln δ1) Area(∂Ωgk,δ1) + Vol(Ωgk,δ2).

Now the corollary follows from Proposition 6.3. 2

From now on, we will fix a δ > 0 for any g ∈ G in the notation Ωg,δ unless otherwise specified.
For each k ∈ N, we choose the representative

1

Vol(Ωgk,δ)
(gk)∗µAxe

in [(gk)∗µAxe ]. We will show in the following section that these representatives converge to a
locally finite measure ν. We will denote by

µAxe |Ωgk,δ
the restriction of µAxe on exp(Ωgk,δ)xe.
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7. Nondivergence

In this section we will study the nondivergence of the sequence

1

Vol(Ωgk,δ)
(gk)∗µAxe .

The study relies on a growth property of a special class of functions studied by Eskin, Mozes
and Shah [EMS97], and a nondivergence theorem proved by Kleinbock and Margulis [KM98,
Kle10]. As a corollary we will deduce that these measures actually converge to a probability
measure, which is invariant under a unipotent subgroup. This is where Ratner’s theorem will
come into play in § 9 and help us prove the measure rigidity. The goal in this section is to prove
Proposition 7.7.

First, we need the following definition of a class of functions, which is introduced in [EMS97].

Definition 7.1 [EMS97, Definition 2.1]. Let d ∈ N and λ > 0 be given. Define by E(d, λ) the
set of functions f : R → C of the form

f(t) =
d∑
i=1

aie
λit (∀t ∈ R)

where ai ∈ C and λi ∈ C with |λi| 6 λ.

The following proposition describes the growth property of functions in E(d, λ). We denote
by mR the Lebesgue measure on R.

Proposition 7.2 [EMS97, Corollary 2.10]. For any d ∈ N and λ > 0, there exists a constant
δ0 = δ0(d, λ) satisfying the following condition: for any ε > 0, there exists M > 0 such that, for
any f ∈ E(d, λ) and any interval Ξ of length at most δ0,

mR

({
t ∈ Ξ : |f(t)| < (1/M) sup

t∈Ξ
|f(t)|

})
6 εmR(Ξ). (2)

For any nonzero discrete subgroup Λ in Rn, one could define its covolume as follows. Let
{v1, v2, . . . , vl} be a Z-basis of Λ, where l is the rank of Λ. Then the covolume of Λ is defined
to be the length of the wedge product v1 ∧ · · · ∧ vl in ∧lRn, where the norm in ∧lRn is induced
by the Euclidean norm on Rn. In an abuse of notation, we will write ‖Λ‖ for the covolume of Λ.
One can check that this notion of covolume is well defined.

The following theorem is essentially proved in [Kle10, KM98].

Theorem 7.3 (Cf. [Kle10, Theorem 3.4], [KM98, Theorem 5.2]). Let d ∈ N and λ > 0. Let
δ0 = δ0(d, λ) be as in Proposition 7.2. Suppose that an interval Ξ ⊂ R of length at most δ0,
0 < ρ < 1 and a continuous map h : Ξ → SL(n,R) are given. Assume that for any nonzero
discrete subgroup ∆ in Zn we have that

(i) the function x → ‖h(x)∆‖2 on Ξ belongs to E(d, λ); and

(ii) supx∈Ξ ‖h(x)∆‖ > ρ.

Then, for any ε < ρ, there exists a constant δ(ε) > 0 depending only on d and λ such that

mR({x ∈ Ξ : h(x)Zn ∩Bδ(ε) 6= {0}}) 6 εmR(Ξ).
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Proof. The proof is the same as in [KM98, Theorem 5.2], but inequality (2) is used instead of
the (C,α)-good property. 2

Lemma 7.4. Let E be a normed vector space, and let αi (1 6 i6m) be different linear functionals
on E. Then, for any r > 0, we can find m vectors x1, x2, . . . , xm ∈ Br(0) such that

det((eαi(xj))16i,j6m) 6= 0.

Here Br(0) is the ball of radius r around 0 in E.

Proof. We can find a line L through the origin such that αi|L are different functionals defined
on L. This could be achieved by picking a line which avoids all the kernels of αi − αj . Hence, it
suffices to prove the lemma for dimE = 1.

Let E = R and αi(x) = λix for different λi. We will show inductively that for any r > 0 there
exist x1, x2, . . . , xm ∈ (−r, r) such that

det((eλixj )16i,j6m) 6= 0.

It is easy to verify for m = 1. Now, for m+ 1 different λi, we compute

det((eλixj )16i,j6m+1) = eλ1xm+1A1 + eλ2xm+1A2 + · · ·+ eλm+1xm+1Am+1

where Am+1 = det((eλixj )16i,j6m). By the induction hypothesis, we can find x1, x2, . . . , xm ∈
(−r, r) such that Am+1 6= 0. By the fact that eλix (1 6 i 6m) are linearly independent functions,
and by the choice of x1, x2, . . . , xm, the function det((eλixj )16i,j6m+1) is a nonzero analytic
function in xm+1. Since zeros of any analytic function are isolated, this implies that there exists
xm+1 ∈ (−r, r) such that det((eλixj )16i,j6m+1) 6= 0. 2

The following proposition describes the supremum of a special function. We will need this
proposition to verify assumption (ii) in Theorem 7.3.

Proposition 7.5. Let E and V be normed vector spaces, and vi ∈ V (1 6 i 6 m). Let f be a
map from E to V defined by

f(x) =
m∑
i=1

eαi(x)vi

where the αi (1 6 i 6 m) are different linear functionals on E. Suppose that on an open ball
R ⊂ E of radius r > 0 we have

eαi(x)‖vi‖ >M, ∀x ∈ R, 1 6 i 6 m

for some M > 0. Then there exists a constant c > 0 which only depends on the αi and r such
that

sup
x∈R
‖f(x)‖ > cM.

Proof. Let x0 be the center ofR andBr(0) the ball of radius r around 0 in E. ThenR= x0+Br(0).
By Lemma 7.4, we can find yj ∈ Br(0) (1 6 j 6 m) such that

det((eαi(yj))16j,i6m) 6= 0.
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We fix this choice of yj which only depends on the αi and r. Let xj = x0 + yj ∈ R (1 6 j 6 m).
We have

(eαi(yj))16j,i6m(eαi(x0)vi)16i6m = (f(xj))16j6m,

(eαi(x0)vi)16i6m = (eαi(yj))−1
16j,i6m(f(xj))16j6m.

Let C be the matrix norm of (eαi(yj))−1
16j,i6m. Since

eαi(x0)‖vi‖ >M (1 6 i 6 m),

this implies that one of ‖f(xj)‖ (1 6 j 6m) is at least M/mC. Hence supx∈R ‖f(x)‖ > cM with
c = 1/mC. 2

For any g ∈ G, x0 ∈ Lie(A), a unit vector ~v ∈ Lie(A) and w =
∑

I∈Iln wIeI ∈ ∧
lRn (wI ∈ R),

the function
t 7→ ‖g exp(x0 + t~v) · w‖2

belongs to E(d, λ), where d = n2l, λ = 2l and ‖ · ‖ is the norm on ∧lRn induced by the Euclidean
norm on Rn. Indeed,

exp(x0 + t~v) · w =
∑
I∈Iln

wI exp(x0 + t~v) · eI

is a vector in ∧lRn with coordinates being exponential functions of t. Hence, g exp(x0 + t~v) ·w is
a vector whose coordinates are sums of exponential functions of t. By a simple calculation, one
could get that the function ‖g exp(x0 + t~v) · w‖2 belongs to E(d, λ) with d = n2l and λ = 2l. In
what follows, we will study functions of this kind.

With the help of Theorem 7.3 and Proposition 7.5, we can now study the nondivergence of
the sequence (1/Vol(Ωgk,δ))(gk)∗µAx. We write

Kr := {gΓ ∈ G/Γ : every nonzero vector in gZn has norm > r}.

By Mahler’s compactness criterion, this is a compact subset in G/Γ. The following proposition
is crucial in the proof of Proposition 7.7.

Proposition 7.6. For any ε > 0, there exists a constant δ(ε) > 0 such that. for sufficiently large
k ∈ N.

mLie(A)({t ∈ Ωgk,δ : gk exp(t)Zn /∈ Kδ(ε)}) 6 εmLie(A)(Ωgk,δ).

Proof. Fix a unit vector ~v ∈ Lie(A) such that the values in

{ωI(~v) : I ∈ In}

are all different. Let d = n2n and λ = 2n such that for any x0 ∈ Lie(A), l ∈ N, w ∈ ∧lRn and
k ∈ N, the function

‖gk exp(x0 + t~v) · w‖2, t ∈ R,

belongs to E(d, λ) as defined in Definition 7.1. We will write δ0 for the constant δ0(d, λ) defined
in Proposition 7.2.

We can find a cover of Ωgk,δ by countably many disjoint small boxes of diameter at most δ0

such that each box is of the form

B = {x0 + t~v : x0 ∈ S, t ∈ Ξ}

1769

https://doi.org/10.1112/S0010437X19007450 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007450


U. Shapira and C. Zheng

where S is the base of B perpendicular to ~v and Ξ = [0, δ0]. We denote by F the collection of
these boxes. Let F = F1 ∪F2 where F1 is the collection of the boxes in F which intersect ∂Ωgk,δ

and F2 = F \ F1. Then for any box B ∈ F2, B is contained in Ωgk,δ.
Since the diameter of each box in F is at most δ0, in view of Lemmas 4.6 and 6.2 and

Proposition 6.3, for any ε > 0, we have

mLie(A)

( ⋃
B∈F1

B

)
6
ε

2
mLie(A)(Ωgk,δ)

for sufficiently large k. In order to prove the proposition, it suffices to show that for any ε > 0,
there exists δ(ε) > 0 such that for each box B ∈ F2, we have

mLie(A)({t ∈ B : gk exp(t)Zn /∈ Kδ(ε)}) 6
ε

2
mLie(A)(B).

Now fix a box B ∈ F2 with
B = {x0 + t~v : x0 ∈ S, t ∈ Ξ}

where S is the base of B and Ξ = [0, δ0]. We will apply Theorem 7.3. Let ∆ be a nonzero discrete
subgroup of rank l in Zn with a Z-basis {v1, v2, . . . , vl} ⊂ Zn. The wedge product v1 ∧ · · · ∧ vl ∈
∧lRn can be written as

v1 ∧ · · · ∧ vl =
∑
I∈Iln

aIeI

where aI ∈ Z. We define a map from B to ∧lRn by

f∆(t) = (gk exp t)(v1 ∧ · · · ∧ vl) =
∑
I∈Iln

aIe
ωI(t)gkeI , t ∈ B.

For each x0 ∈ S, we consider the map

t 7→ f∆(x0 + t~v)

from Ξ = [0, δ0] to ∧lRn. Since B ⊂ Ωgk,δ, by our construction of Ωgk,δ, we have

‖eωI(x0+t~v)gkeI‖ > δ, ∀t ∈ Ξ,∀I ∈ I ln.

By Proposition 7.5, we have
sup
t∈Ξ
‖f∆(x0 + t~v)‖ > cδ.

Note that by Proposition 7.5, this inequality holds with a uniform constant c > 0 depending
only on ωI(t) (I ∈ In) and δ0 for any nonzero ∆ ⊂ Zn. Since ‖f∆(x0 + t~v)‖ is the covolume of
gk(exp(x0 + t~v))∆ and ‖f∆(x0 + t~v)‖2 is a function in E(d, λ), we can apply Theorem 7.3 and
obtain that

mR({t ∈ Ξ : gk exp(x0 + t~v)Zn /∈ Kδ(ε)}) 6
ε

2
mR(Ξ)

for some constant δ(ε) > 0 and for any x0 ∈ S. Now by integrating the inequality above over the
region x0 ∈ S, we have

mLie(A)({t ∈ B : gk exp(t)Zn /∈ Kδ(ε)}) 6
ε

2
mLie(A)(B).

The proposition now follows. 2
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We can now prove the main result in this section.

Proposition 7.7. By passing to a subsequence, the sequence (1/Vol(Ωgk,δ))(gk)∗(µAxe |Ωgk,δ)
converges to a probability measure ν. Furthermore, we have

1

Vol(Ωgk,δ)
(gk)∗µAxe → ν

and hence the sequence [(gk)∗µAxe ] converges to [ν]. Here the probability measure ν is invariant
under the action of the unipotent subgroup limn→∞Ad(gk)A.

Proof. Suppose that the sequence of probability measures

µk :=
1

Vol(Ωgk,δ)
(gk)∗(µAxe |Ωgk,δ)

weakly converges to a measure ν after passing to a subsequence. We show that ν is a probability
measure. It is obvious that ν(X) 6 1.

Now, for any ε > 0, let Kδ(ε) be the compact subset in G/Γ as in Proposition 7.6. Let fε be a
nonnegative continuous function with compact support on G/Γ such that 0 6 fε 6 1 and fε = 1
on Kδ(ε). Then we have

ν(X) >
∫
X
fε dν = lim

k→∞

∫
X
fε dµk > lim sup

k→∞
µk(Kδ(ε)) > 1− ε

where the last inequality follows from Proposition 7.6. By taking ε → 0, we conclude that ν is a
probability measure.

For the second claim, we will show that

1

Vol(Ωgk,δ)
(gk)∗µAxe −

1

Vol(Ωgk,δ)
(gk)∗(µAxe |Ωgk,δ) → 0.

Let f ∈ Cc(X). Since f has compact support, there exists a small number δ′ < δ such that∫
X
f(gkx) dµAxe(x) =

∫
Lie(A)

f(gk exp(t)xe) dt =

∫
Ωgk,δ′

f(gk exp(t)xe) dt.

Here dt = dmLie(A)(t) is the natural measure on Lie(A). By Corollary 6.4, we have∣∣∣∣ 1

Vol(Ωgk,δ)

∫
X
f(gkx) dµAxe(x)− 1

Vol(Ωgk,δ)

∫
X
f(gkx) dµAxe |Ωgk,δ(x)

∣∣∣∣
=

∣∣∣∣ 1

Vol(Ωgk,δ)

∫
Ωgk,δ′

f(gk exp(t)xe) dt−
1

Vol(Ωgk,δ)

∫
Ωgk,δ

f(gk exp(t)xe) dt

∣∣∣∣
=

∣∣∣∣ 1

Vol(Ωgk,δ)

∫
Ωgk,δ′

\Ωgk,δ
f(gk exp(t)xe) dt

∣∣∣∣
6 ‖f‖∞

Vol(Ωgk,δ′)−Vol(Ωgk,δ)

Vol(Ωgk,δ)
→ 0.

Here ‖f‖∞ is the supremum of f . Since (gk)∗µAx is invariant under the action of Ad(gk)A, the
probability measure ν is invariant under the action of limk→∞Ad(gk)A, which is a unipotent
subgroup by our assumption on {gk}k∈N. 2

1771

https://doi.org/10.1112/S0010437X19007450 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007450


U. Shapira and C. Zheng

8. Nondivergence in terms of adjoint representations

In this section we rewrite § 7 in terms of adjoint representations. The reason of doing this is that
we can then apply Ratner’s theorem for unipotent actions on homogeneous spaces.

Let Ad : G → SL(g) be the adjoint representation of G = SL(n,R). The Lie algebra
g = sl(n,R) has a Q-basis

B = {Eij : 1 6 i 6= j 6 n} ∪ {Eii : 1 6 i 6 n− 1}

where Eij (i 6= j) is the matrix with only nonzero entry 1 in the ith row and the jth column,
and Eii (1 6 i 6 n− 1) is the diagonal matrix with 1 as (i, i)th entry and −1 as (i+ 1, i+ 1)th
entry. We will also consider the representations ∧l Ad : G → SL(∧lg) for 1 6 l 6 dim g− 1. The
set of all lth wedge products of vectors in B is then a Q-basis of ∧lg, which we denote by Bl.

Let 1 6 l 6 dim g − 1. For ∧lg, its decomposition with respect to the action of ∧l AdA is
given by

∧lg =
∑
χ

gχ

where each χ is a linear functional on Lie(A) such that, for any t ∈ Lie(A) and v ∈ gχ,

∧l Ad(exp(t))v = exp(χ(t))v.

We denote by Wl(g) the collection of all such linear functionals χ, and let

W(g) =

dim g−1⋃
l=1

Wl(g).

We know that each gχ (χ ∈ Wl(g)) has a Q-basis from Bl, and we denote by gχ(Z) the subset of
integer vectors with respect to this basis.

Now let g ∈ G. We define for gAΓ another convex polytope in Lie(A) in terms of adjoint
representations, which is similar to the convex polytope Ωg,δ in § 4. Let 1 6 l 6 dim g − 1 and
χ ∈ Wl(g). Let v ∈ gχ(Z) \ {0}. Then for t ∈ Lie(A), the vector

∧l Ad(g exp(t))v = eχ(t) ∧l Ad(g)v /∈ Bδ

if and only if
χ(t) > ln δ − ln ‖ ∧l Ad(g)v‖.

Here Bδ denotes the ball of radius δ > 0 around 0 with the norm ‖ · ‖ on ∧lg induced by the
norm ‖ · ‖g on g. We now give the following definition.

Definition 8.1. For any g ∈ G and δ > 0, we denote by Rg,δ the subset of points t ∈ Lie(A)
satisfying

χ(t) > ln δ − ln ‖ ∧l Ad(g)v‖

for any v ∈ gχ(Z) \ {0}, χ ∈ Wl(g) and 1 6 l 6 dim g− 1.

The proof of the following proposition is similar to that of Lemma 4.3.

Proposition 8.2. The subset Rg,δ is a bounded convex polytope in Lie(A) for any g ∈ G and
δ > 0.
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Here we list some properties about the convex polytopes Rgk,δ (k ∈ N), which are parallel to
those in §§ 6 and 7.

Proposition 8.3. Let δ > 0. We have the following statements.

(i) For any ε > 0 there exists δ(ε) > 0 such that, for sufficiently large k > 0,

mLie(A)(Rgk,δ(ε) ∩ Ωgk,δ) > (1− ε)mLie(A)(Ωgk,δ).

(ii) For sufficiently large k, Rgk,δ contains a ball of radius rk > 0, and rk →∞ as k →∞.

Proof. For any ε > 0, let δ(ε) be as in Proposition 7.6. By applying Mahler’s compactness
criterion on the space of unimodular lattices in ∧lg (1 6 l 6 dim g− 1), we can find a δ′(ε) > 0
such that

{t ∈ Ωgk,δ : gk exp(t)Zn ∈ Kδ(ε)} ⊂ Rgk,δ′(ε) ∩ Ωgk,δ.

Now the first part of the proposition follows from Proposition 7.6.
For the second part, we fix ε > 0. By Lemmas 4.5 and 6.2 and the first claim of the proposition,

for sufficiently large k ∈ N, the convex polytope Rgk,δ(ε) ⊃ Rgk,δ(ε)∩Ωgk,δ contains a ball of radius
rk, and rk →∞ as k →∞. By definition, the same holds for Rgk,δ for any δ > 0. 2

Proposition 8.4. For any δ > 0, we have

lim
k→∞

Area(∂Rgk,δ)

Vol(Rgk,δ)
= 0.

Proof. The proof is identical to that of Proposition 6.3. 2

Proposition 8.5. Let δ > 0. For any ε > 0, there exists a constant δ(ε) > 0 such that, for
sufficiently large k,

mLie(A)({t ∈ Rgk,δ : gk exp(t)Zn /∈ Kδ(ε)}) 6 εmLie(A)(Rgk,δ).

Proof. The proof is similar to that of Proposition 7.6, except that we replace the linear functionals
ωI(t) by χ in Wl(g) (1 6 l 6 dim g− 1). 2

Proposition 8.6. Let δ > 0. By passing to a subsequence, the sequence (1/Vol(Rgk,δ))
(gk)∗(µAx|Rgk,δ) converges to a probability measure ν. We also have

1

Vol(Rgk,δ)
(gk)∗µAx → ν

and hence the sequence [gkµAx] converges to [ν]. Furthermore, the probability measure ν is
invariant under the action of the unipotent subgroup limn→∞Ad(gk)A.

Proof. The proof is identical to Proposition 7.7 with Ωgk,δ replaced by Rgk,δ. 2

The following is an immediate corollary of Propositions 3.3, 7.7 and 8.6.

Corollary 8.7. For any δ > 0, we have

lim
k→∞

Vol(Ωgk,δ)

Vol(Rgk,δ)
= 1.

In the rest of the paper we will fix a δ > 0 for Rgk,δ (k ∈ N) unless otherwise specified.
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9. Ratner’s theorem and linearization

Because of Proposition 8.6, we can apply the measure classification theorem for unipotent actions
on homogeneous spaces. This theorem was first conjectured by Raghunathan and Dani [Dan81],
and later a breakthrough was made by Margulis in his celebrated proof of the Oppenheim
conjecture [Mar89]. Afterwards, the measure classification theorem was proved by Ratner in
her seminal work [Rat90a, Rat90b, Rat91]. One could also consult the paper by Margulis and
Tomanov [MT94] for a different proof. In this section, for convenience, we borrow the framework
and presentation of [MS95]. Readers may refer to [DM93] and [Sha91] for related discussions.
This section is the final step of preparation for the proof of Theorem 2.5, and is devoted to
proving Proposition 9.6.

9.1 Prerequisites
We start by recalling some well-known results (see [MS95] for more details). Let H be the
countable collection of all closed connected subgroups H of G such that H ∩ Γ is a lattice in H
and the group generated by one-parameter unipotent subgroups in H acts ergodically on HΓ/Γ
with respect to the H-invariant probability measure.

Let W = limk→∞Ad(gk)A. By our assumptions on {gk}k∈N, W is a connected unipotent
subgroup of G. Let π : G → G/Γ be the natural projection map. For H ∈ H, define

N(H,W ) = {g ∈ G : W ⊂ gHg−1}, S(H,W ) =
⋃

H′∈H,H′(H
N(H ′,W ),

TH(W ) = π(N(H,W ))\π(S(H,W )).

For any H1, H2 ∈ H, TH1(W ) and TH2(W ) intersect if and only if TH1(W ) = TH2(W ).

Theorem 9.1 [Rat91], [MS95, Theorem 2.2]. Let µ be a W -invariant probability measure on X.
For any H ∈ H, let µH,W be the restriction of µ on TH(W ).

(i) We have µ =
∑

H∈H∗ µH,W . Here H∗ is a set of representatives of Γ-conjugacy classes in H.

(ii) For each H ∈ H∗, µH,W is W -invariant. Any W -invariant ergodic component of µH,W is the
invariant probability measure on gHΓ/Γ for some g ∈ N(H,W ).

In the following, we will fix a subgroupH ∈H (H 6=G). Let dH = dim Lie(H) and VH = ∧dHg.
Then G acts on VH via the wedge product representation ∧dH Ad. Since H is a Q-group, we can
find an integral point pH ∈ ∧dH Lie(H) \ {0}. We will fix this pH . Let N(H) be the normalizer
of H in G, and ΓH = N(H) ∩ Γ. Then ΓH · pH ⊂ {pH ,−pH}. Define V H = VH/{1,−1} if
ΓH · pH = {pH ,−pH}, and V H = VH if ΓH · pH = pH . The action of G on VH induces an action
on V H , and we define by

ηH(g) = g · pH
the orbit map ηH : G → V H , where pH is the image of pH in V H . Since p̄H is an integral point,
the orbit Γ · pH is discrete in V H . Let LH be the Zariski closure of ηH(N(H,W )) in V H . By
[DM93, Proposition 3.2], we have η−1

H (LH) = N(H,W ).

Proposition 9.2 [MS95, Proposition 3.2]. Let D be a compact subset of LH . Let

S(D) = {g ∈ η−1
H (D) : gγ ∈ η−1

H (D) for some γ ∈ Γ \ ΓH}.

Then S(D) ⊂ S(H,W ) and π(S(D)) is closed in X. Moreover, for any compact subset K ⊂
X \ π(S(D)), there exists a neighborhood Φ of D in V H such that, for any y ∈ π(η−1

H (Φ)) ∩ K,
the set ηH(π−1(y)) ∩ Φ is a singleton.
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9.2 Proof of Proposition 9.6
Now we begin to prove Proposition 9.6. Let {f1, f2, . . . , fm} be a set of polynomials defining
LH in V H . In the rest of the section we will fix a unit vector ~v ∈ Lie(A) such that all the
linear functionals χ ∈ W(g) are different on ~v. One can find d ∈ N and λ > 0 such that for any
x0 ∈ Lie(A), the functions of t ∈ R,

‖gk exp(x0 + t~v) · w‖2, fj(gk exp(x0 + t~v) · w), 1 6 j 6 m,

belong to E(d, λ) as defined in Definition 7.1. Here the norm ‖ · ‖ on V H is induced by the norm
‖ · ‖g on g. We write δ0 for the constant δ0(d, λ) defined in Proposition 7.2.

Proposition 9.3 (Cf. [DM93, Proposition 4.2]). Let C be a compact subset in LH and ε > 0.
Then there exists a compact subset D in LH with C ⊂D such, that for any neighborhood Φ of D
in V H , there exists a neighborhood Ψ of C in V H with the following property. For x0 ∈ Lie(A),
w ∈ V H , Ξ ⊂ [0, δ0] and k ∈ N, if {gk exp(x0 + t~v) · w : t ∈ Ξ} 6⊂ Φ, then we have

mR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Ψ}) 6 εmR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Φ}).

Proof. Let d and λ be defined as above. We choose a ball B0(r) of radius r > 0 centered at
0 in V H such that the closure C ⊂ B0(r). Now for ε > 0, let M > 0 be the constant as in
Proposition 7.2. Denote by B0(M1/2r) the ball of radius M1/2r > 0 centered at 0. Then we take

D := B0(M1/2r) ∩ LH ,

and we will prove the proposition for this D.
Indeed, for any neighborhood Φ of D in V H , one can find α > 0 such that

{u ∈ V H : ‖u‖ 6M1/2r, |fj(u)| 6 α (1 6 j 6 m)} ⊂ Φ.

Define

Ψ := {u ∈ V H : ‖u‖ < r, |fj(u)| < α/M}

which is a neighborhood of C in V H , and contained in Φ. We show that Φ and Ψ satisfy the
desired property.

Suppose

{gk exp(x0 + t~v) · w : t ∈ Ξ} 6⊂ Φ

for x0 ∈ Lie(A), w ∈ V H and Ξ ⊂ [0, δ0]. Denote by I the closed subset

{t ∈ Ξ : ‖gk exp(x0 + t~v) · w‖ 6M1/2r, |fj(gk exp(x0 + t~v) · w)| 6 α (1 6 j 6 m)}.

One can write I as a disjoint union of the connected components Ii of I,

I =
⋃
Ii.

On each Ii, we have either

sup
t∈Ii
‖gk exp(x0 + t~v) · w‖2 = Mr2

or

sup
t∈Ii
|fj(gk exp(x0 + t~v) · w)| = α,
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for some 1 6 j 6 m. Since ‖gk exp(x0 + t~v) ·w‖2 and fj(gk exp(x0 + t~v) ·w) (1 6 j 6 m) belong
to E(d, λ), by Proposition 7.2 and the definition of Ψ, we obtain

mR({t ∈ Ii : gk exp(x0 + t~v) · w ∈ Ψ}) 6 εmR(Ii).

Now we compute

mR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Ψ}) = mR({t ∈ I : gk exp(x0 + t~v) · w ∈ Ψ})
=
∑
i

mR({t ∈ Ii : gk exp(x0 + t~v) · w ∈ Ψ})

6
∑
i

εmR(Ii) = εmR(I)

6 εmR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Φ}).

This completes the proof of the proposition. 2

For our purpose, we define a convex polytope in Rgk,δ as follows. By Proposition 8.4, we
know that

lim
k→∞

Area(∂Rgk,δ)

Vol(Rgk,δ)
= 0.

Therefore, for each k ∈ N, we can find a constant dk > 0 such that

lim
k→∞

dk =∞ and lim
k→∞

dk Area(∂Rgk,δ)

Vol(Rgk,δ)
= 0.

Then we denote by R′gk,δ the subset of points t ∈ Lie(A) satisfying

χ(t) > ln δ + dk − ln ‖ ∧l Ad(gk)v‖

for any v ∈ gχ(Z) \ {0}, χ ∈ Wl(g), 1 6 l 6 dim g− 1. This is a convex polytope inside Rgk,δ.
In the following lemma we list some properties concerning R′gk,δ (k ∈ N).

Lemma 9.4. Let dk and R′gkδ be as defined above.

(i) We have

lim
k→∞

Vol(R′gk,δ)

Vol(Rgk,δ)
= 1.

(ii) For 1 6 l 6 dim g− 1, a functional χ ∈ Wl(g), a nonzero v ∈ gχ(Z) and k ∈ N, we have

‖eχ(t)(∧l Ad(gk)v)‖ > δedk (∀t ∈ R′gk,δ).

(iii) For any x0 in the δ0-neighborhood R′gk,δ and for the interval Ξ = [0, δ0], there exists a
constant c > 0 which depends only on the linear functionals in W(g) and δ0, such that for
any nonzero integer vector w ∈ ∧lg (1 6 l 6 dim g− 1), we have

sup
t∈Ξ
‖ ∧l (Ad(gk exp(x0 + t~v))) · w‖ > cδedk .

Proof. The proof of the first claim is similar to that of Corollary 6.4. Indeed, let {fi} be the
collection of the facets of Rgk,δ, and denote by Pi the hyperplane determined by fi. For each fi,
let Bi be the unique cylinder with the following properties.

(a) The base of Bi is fi, and the height of Bi is equal to dk.

(b) Bi and Rgk,δ lie in the same half-space determined by Pi.
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Then we have
Vol(Rgk,δ) =

⋃
i

Bi ∪Vol(R′gk,δ)

and
Vol(Rgk,δ) 6

∑
i

Vol(Bi) + Vol(R′gk,δ) = dk Area(∂Rgk,δ) + Vol(R′gk,δ).

Now the first claim follows from our choice of dk.
The second claim follows from the definition of R′gk,δ. To prove the last statement, we write,

for any nonzero integer vector w ∈ ∧lg,

w =
∑

χ∈Wl(g)

wχ

where wχ ∈ gχ(Z). One can compute

(∧l Ad(gk exp(t))) · w =
∑
χ

eχ(t) ∧l Ad(gk)wχ.

Now the last claim follows from the second claim of the lemma and Proposition 7.5. 2

The following proposition is an important step toward Proposition 9.6.

Proposition 9.5 (Cf. [MS95, Proposition 3.4]). Let C be a compact subset in LH and
0 < ε < 1. Then there exists a closed subset S in π(S(H,W )) with the following property.
For any compact set K ⊂ X \ S, there exists a neighborhood Ψ of C in V H such that, for
sufficiently large k, for any x0 in the δ0-neighborhood of R′gk,δ and Ξ = [0, δ0], we have

mR({t ∈ Ξ : gk exp(x0 + t~v)Zn ∈ K ∩ π(η−1
H (Ψ))}) 6 εmR(Ξ).

Proof. Let D ⊂ LH be a compact set as in Proposition 9.3 for C and ε. Then we get a closed
subset S = π(S(D)) as in Proposition 9.2. Now for a compact subset K in X \ S, let Φ be an
open neighborhood of D in V H as in Proposition 9.2. Then we have a neighborhood Ψ of C in
V H as in Proposition 9.3.

By the choice of x0 and Lemma 9.4, for any nonzero integer vector w ∈ ∧dHg, we have

sup
t∈Ξ
‖gk exp(x0 + t~v) · w‖ > cδedk

for some c > 0 depending only on W(g) and δ0. Hence,

{gk exp(x0 + t~v) · w : t ∈ Ξ} 6⊂ Φ

for sufficiently large k.
Now, for any s ∈ Ξ with

gk exp(x0 + s~v)Zn ∈ K ∩ π(η−1
H (Ψ)),

by Proposition 9.2, there is a unique element ws in ηH(Γ) such that

gk exp(x0 + s~v) · ws ∈ Ψ.

Let Is = [as, bs] be the largest closed interval in Ξ containing s such that:

(i) for any t ∈ Is, we have gk exp(x0 + t~v) · ws ∈ Φ;

(ii) either gk exp(x0 + as~v) · ws or gk exp(x0 + bs~v) · ws ∈ Φ \ Φ.
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We denote by F the collection of all these intervals Is as s runs over Ξ with

gk exp(x0 + s~v)Zn ∈ K ∩ π(η−1
H (Ψ)).

By Proposition 9.2, we know that the intervals in F cover Ξ at most twice. By Proposition 9.3,
we have

mR(t ∈ Ξ : gk exp(x0 + t~v)Zn ∈ K ∩ π(η−1
H (Ψ)))

6
∑
Is∈F

mR(t ∈ Is : gk exp(x0 + t~v) · ws ∈ Ψ)

6
∑
Is∈F

εmR(t ∈ Is : gk exp(x0 + t~v) · ws ∈ Φ)

6 ε
∑
Is∈F

mR(Is) 6 2εmR(Ξ).

This completes the proof of the proposition. 2

Proposition 9.6. Let C be a compact set in LH and 0 < ε < 1. Then there exists a closed
subset S in π(S(H,W )) with the following property. For any compact set K ⊂ X \S, there exists
a neighborhood Ψ of C in V H such that, for sufficiently large k > 0, we have

mLie(A)({t ∈ Rgk,δ : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))}) 6 εmLie(A)(Rgk,δ).

Proof. By Lemma 9.4, let k be sufficiently large such that

mLie(A)(Rgk,δ \R′gk,δ)
mLie(A)(Rgk,δ)

6
ε

2
.

We can find a cover of the region R′gk,δ by countably many disjoint small boxes of diameter at
most δ0 such that each box is of the form

B = {x0 + t~v : x0 ∈ S and t ∈ Ξ}

where S is the base of B perpendicular to ~v, and Ξ = [0, δ0]. Denote by F the collection of these
boxes.

For any B ∈ F , and for any x0 in the base S of B, x0 is in the δ0-neighborhood of R′gk,δ. By
Proposition 9.5 we obtain that

mR({t ∈ Ξ : gk exp(x0 + t~v)Zn ∈ K ∩ π(η−1
H (Ψ))}) 6 ε

2
mR(Ξ)

for sufficiently large k. By integrating the inequality above over the base S, we have

mLie(A)({t ∈ B : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))}) 6 ε

2
mLie(A)(B).

By the choice of dk and F , for sufficiently large k, we have⋃
B∈F

B ⊂ Rgk,δ.
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Now we compute

mLie(A)({t ∈ Rgk,δ : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))})

6 mLie(A)({t ∈ Rgk,δ \R
′
gk,δ

: gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))})

+
∑
B∈F

mLie(A)({t ∈ B : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))})

6
ε

2
mLie(A)(Rgk,δ) +

∑
B∈F

ε

2
mLie(A)(B) 6 εmLie(A)(Rgk,δ).

The proposition now follows. 2

10. Proofs of Theorems 2.4, 2.5 and 2.6

Proof of Theorem 2.5. We will prove the theorem by induction. Let gk = (uij(k))16i,j6n (k ∈ N)
be a sequence in the upper triangular unipotent subgroup N of SL(n,R), and for each pair i < j,
either uij(k) is zero for all k or uij(k) 6= 0 and diverges to infinity.

Suppose for a start that A(A, {gk}k∈N) = {0}. By passing to a subsequence, we may further
assume that Ad gk(LieA) converges to a subalgebra consisting of nilpotent elements in g, in
the space of the Grassmanian of g. Then, by Proposition 8.6, after passing to a subsequence,
[(gk)∗µAxe ] converges to [ν] for a probability measure ν. Furthermore, we have

1

Vol(Rgk,δ)
(gk)∗(µAxe |Rgk,δ) → v

and ν is invariant under the unipotent subgroup W = limk→∞Ad(gk)A.
We will apply Ratner’s theorem and the technique of linearization to prove that ν is the

Haar measure on SL(n,R)/SL(n,Z). According to Theorem 9.1, suppose by way of contradiction
that for some H ∈ H∗ (H 6= G) we have ν(TH(W )) > 0. Then we can find a compact subset
C ⊂ TH(W ) such that

ν(C) = α > 0.

Now let 0 < ε < α, C1 = ηH(C) and S the closed subset of X as in Proposition 9.6. Since
C ∩S = ∅, we can pick a compact neighborhood K ⊂ X \S of C. Then by Proposition 9.6, there
exists a neighborhood Ψ of C1 in V H such that, for sufficiently large k > 0,

mLie(A)({t ∈ Rgk,δ : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))}) 6 εmLie(A)(Rgk,δ)

and
C ⊂ K ∩ π(η−1

H (Ψ)).

This implies that
ν(C) 6 ε < α

which contradicts the equation ν(C) = α. Hence ν is the Haar measure on SL(n,R)/ SL(n,Z).
Now suppose that A(A, {gk}k∈N) 6= {0}. Then, by Corollary 5.3, the subgroup

S = {a ∈ A : agk = gka for all k}

is connected and nontrivial, and Lie(S) = A(A, {gk}k∈N). This implies that all elements in A
and {gk}k∈N belong to the reductive group CG(S)0. Moreover, by the definition of S, S is also
the connected component of the center of CG(S)0. So we have

CG(S)0 ∼= S×H
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where H is the semisimple component of CG(S)0 and H is isomorphic to the product of various
SL(ni,R) with ni < n, that is,

H ∼=
∏

SL(ni,R).

Let Ai = A ∩ SL(ni,R) be the connected component of the full diagonal subgroup in SL(ni,R),
and we have

A = S×
∏

Ai.

Since gk ∈N is unipotent (∀k ∈ N), one has gk ∈H. Then we can write gk =
∏
gi,k ∈

∏
SL(ni,R).

Note that by the definition of S and Corollary 5.3, A(Ai, {gi,k}k∈N) = {0} for all i.
The above discussions tell us that our problem can now be reduced to the following setting

(recall that xe = e SL(n,Z)).

(i) The measure µAxe is supported in the homogeneous space CG(S)0/(Γ∩CG(S)0), where one
has

CG(S)0/(Γ ∩ CG(S)0) = S/(Γ ∩ S)×H/(Γ ∩H)

= S×
∏

(SL(ni,R)/ SL(ni,Z)).

(ii) The measure µAxe can be decomposed, according to the decomposition of CG(S)0/(Γ ∩
CG(S)0), as

µAxe = µS ×
∏

µAixi .

Here µS denotes the S-invariant measure on S. For each i, xi = e SL(ni,Z) is the identity
coset in SL(ni,R)/ SL(ni,Z), and µAixi denotes the Ai-invariant measure on Aixi in
SL(ni,R)/ SL(ni,Z).

(iii) The measure µAxe is pushed by the sequence {gk}k∈N in the space CG(S)0/(Γ∩CG(S)0) in
the following manner:

(gk)∗µAxe = µS ×
∏

(gi,k)∗µAixi .

(iv) For each Aixi in SL(ni,R)/ SL(ni,Z), we have A(Ai, {gi,k}k∈N) = {0}.

Since ni < n, we can now apply the induction hypothesis to the sequence (gi,k)∗µAixi , and
obtain that [gi,kµAixi ] converges to the equivalence class of the Haar measure mSL(ni,R)/SL(ni,Z) on
SL(ni,R)/SL(ni,Z). Now, by putting all the measures mSL(ni,R)/SL(ni,Z) and µS back together
in the space SL(n,R)/SL(n,Z), we conclude that [(gk)∗µAxe ] converges to [µCG(S)0xe ]. This
completes the proof of Theorem 2.5. 2

Proof of Theorem 2.4. We first prove the following claim.

Claim. Let {uk}k∈N be a sequence in the upper triangular unipotent group N of G = SL(n,R).
Then there is a subsequence {uik}k∈N of {uk}k∈N such that

uik = bkvk

for a bounded sequence {bk}k∈N in N , and a sequence {vk}k∈N in N with vk = (vij(k))16i,j6n

satisfying the following condition: for each pair (i, j) (1 6 i < j 6 n),

either vij(k) = 0 for all k, or vij(k) →∞ as k →∞.
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Proof of the claim. We proceed by induction on n. For n = 2 and G = SL(2,R), {uk}k∈N is a
sequence in the 2× 2 upper triangular unipotent group. Write uk = (uij(k))16i,j62. By passing to
a subsequence, we may assume that {u12(k)}k∈N is bounded, or diverges to infinity. If {u12(k)}k∈N
is bounded, then set bk = uk, and vk = e the identity matrix. If {u12(k)}k∈N diverges to infinity,
then set bk = e and vk = uk. Either way we have uk = bkvk, and the claim holds in this case.

Suppose that the claim holds for SL(n − 1,R) (n > 3). Now let G = SL(n,R) and {uk}k∈N
a sequence in the n×n upper triangular unipotent group N . We will use the notation in § 5: for
any g ∈ G, we will denote by (g)l× l the l× l submatrix in the upper left corner of g.

Now write uk = (uij(k))16i,j6n. Then (uk)(n−1)× (n−1) = (uij(k))16i,j6n−1. By applying the
induction hypothesis on (uk)(n−1)× (n−1), after passing to a subsequence, one can find a bounded
sequence {wk}k∈N in N and a sequence {xk}k∈N in N with xk = (xij(k))16i,j6n such that

(uk)(n−1)× (n−1) = (wk)(n−1)× (n−1)(xk)(n−1)× (n−1), uk = wkxk,

and for each pair (i, j) (1 6 i < j 6 n− 1),

either xij(k) = 0 for all k, or xij(k) →∞ as k →∞.

Now, by passing to a subsequence, one can assume that for 1 6 i 6 n− 1,

either {xin(k)}k∈N is bounded, or xin(k) →∞ as k →∞.

By Gaussian elimination, there exist a bounded sequence yk ∈ N and a sequence vk ∈ N such
that

xk = ykvk,

and the following condition holds for vk = (vij(k))16i,j6n: for any 1 6 i < j 6 n,

either vij(k) = 0 for all k, or vij(k) →∞ as k →∞.

Now we complete the proof of the claim by setting vk as above and bk = wkyk. 2

We now prove Theorem 2.4. By the Iwasawa decomposition, for each element gk in the
sequence {gk}k∈N, we can write

gk = skukak

where sk ∈ K = SO(n,R), uk ∈ N and ak ∈ A. By the claim above, we can assume that, after
passing to a subsequence, we can write

uk = bkũk

for a bounded sequence bk ∈ N and a sequence ũk = (ũij(k))16i,j6n in N such that, for each pair
1 6 i < j 6 n,

either ũij(k) = 0 for all k, or ũij(k) →∞ as k →∞.

Since µAx is A-invariant, we have

(gk)∗µAx = (skbkũk)∗µAx.

Now the first paragraph of Theorem 2.4 follows by applying Theorem 2.5 to (ũk)∗µAx and the
boundedness of {bk}k∈N and {sk}k∈N.

We now prove the second paragraph of Theorem 2.4. Assume that, for any Y ∈ Lie(A)\A(A,
{gk}k∈N), {Ad(gk)Y }k∈N diverges. Let [ν] be a limit point of {[(gk)∗µAx]}k∈N. Then there is a
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subsequence {gik}k∈N such that [(gik)∗µAx] converges to [ν]. By the same argument as above,
after passing to a subsequence of {gik}, one can find sk ∈ K, ũk = (ũij(k))16i,j6n ∈ N , ak ∈ A,
and a bounded sequence bk ∈ N such that

gik = skbkũkak,

and, for any 1 6 i < j 6 n,

either ũij(k) = 0 for all k, or ũij(k) →∞ as k →∞.

Since µAx is A-invariant, we have

(gik)∗µAx = (skbkũk)∗µAx.

Note that, by the boundedness of {bk}k∈N and {sk}k∈N,

A(A, {gk}k∈N) = A(A, {gik}k∈N) = A(A, {ũk}k∈N).

Now the second paragraph of Theorem 2.4 follows from Theorem 2.5 and the boundedness of
{bk}k∈N and {sk}k∈N. 2

The following is an immediate corollary from the proof of Theorem 2.4, which gives an
example of λk in a special case of Theorem 2.8. This also generalizes the result in [OS14]. We
will apply this special case of Theorem 2.8 in the counting problem in § 11.

Corollary 10.1 (Cf. Theorem 2.8). Let {gk}k∈N be a sequence in KN such that, for any
nonzero Y ∈ Lie(A), the sequence {Ad(gk)Y }k∈N diverges to infinity. Then we have

1

Vol(Ωgk,δ)
(gk)∗µAx → mX

where mX is the G-invariant probability measure on X.

In the rest of this section we will prove Theorem 2.6. Let H be a connected reductive
group containing A. It is known that, up to conjugation by an element in the Weyl group of
G, H consists of diagonal blocks, with each block isomorphic to GL(m,R) with m < n. For
convenience, we will assume that H has the form of diagonal blocks, since conjugations by Weyl
elements do not affect the theorem.

The following lemma clarifies an assumption in Theorem 2.6.

Lemma 10.2. Let Ax be a divergent orbit in X and let H be a connected reductive group
containing A. Then Hx is closed in X.

Proof. By the classification of divergent A-orbits of Margulis which appears in the appendix of
[TW03], we may assume without loss of generality that x is commensurable to Zn. Thus, it is
enough to prove the lemma for x = Zn. Then the lemma follows easily for any reductive group
H under consideration. 2

By reasoning in the same way as at the beginning of § 4, there is no harm in assuming
x = xe = e SL(n,Z) in the proof of Theorem 2.6.

Let P be the standard Q-parabolic subgroup in G having H as (the connected component
of) a Levi component. Let U ⊂ N be the unipotent radical of P . We write

H = S×Hss
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where S is the connected component of the center of H, and Hss is the semisimple component
of H. We will denote by Ass the connected component of the full diagonal group in Hss. Note
that we have

A = S×Ass.

By Theorem 2.5, we can find a sequence of upper triangular unipotent matrices hk ∈H satisfying
the dichotomy condition in Theorem 2.5 such that

exp(A(A, {hk}k∈N)) = S, CG(A(A, {hk}k∈N))0 = H,

[(hk)∗µAxe ] → [µHxe ] as k →∞.

We will fix such a sequence {hk}k∈N.
As G = KUH where K = SO(n,R), for every gk in the sequence {gk}k∈N, we can write

gk = skuklk

where sk ∈ K, uk ∈ U and lk ∈ H. We have

(gk)∗µHxe = (skuk)∗µHxe .

Following the same strategy as in the proof of Theorem 2.4, to prove Theorem 2.6, we may
assume that gk ∈ U . Now let gk = (uij(k))16i,j6k ∈ U . By Gaussian elimination as explained in
the proof of Theorem 2.4, we may further assume that, for each pair i < j, either uij(k) equals
0 for all k or uij(k) 6= 0 diverges to infinity.

Proposition 10.3. If A(S, {gk}k∈N) = {0}, then, for any subsequence {gmk}k∈N of {gk}k∈N and
any subsequence {hnk}k∈N of {hk}k∈N, we have Ad(gmkhnk)Y →∞ as k →∞ for any nonzero
Y ∈ Lie(A).

Proof. Let Y = Y1 + Y2 6= 0, where Y1 ∈ Lie(S) and Y2 ∈ Lie(Ass). If Y2 = 0, then

Ad(gmkhnk)Y = Ad(gmk)Y1

diverges to ∞ by the condition A(S, {gk}k∈N) = {0} and Corollary 5.3. If Y2 6= 0, then we have

Ad(gmkhnk)Y = Ad(gmk)(Y1 + Ad(hnk)Y2)

= (Ad(gmk)(Y1 + Ad(hnk)Y2)− (Y1 + Ad(hnk)Y2))

+ (Y1 + Ad(hnk)Y2).

Since H normalizes U , we know that

Ad(gmk)(Y1 + Ad(hnk)Y2)− (Y1 + Ad(hnk)Y2) ∈ Lie(U).

Also Ad(hnk)Y2 ∈ Lie(H) and Ad(hnk)Y2 → ∞ by our choice of {hk}k∈N and Corollary 5.3.
Hence, Ad(gmkhnk)Y diverges to ∞. 2

We will fix a nonnegative function f0 ∈ Cc(X) such that supp(f0) contains the compact orbit
NZn in X. This implies that, for any g ∈ N , we have∫

f0 dg∗µAxe > 0.
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Proposition 10.4. Suppose that the subalgebra A(S, {gk}k∈N) = {0}. Let f ∈ Cc(X). Then,
for any ε > 0, there exists M > 0 such that, for any m,n > M ,∣∣∣∣ ∫ f d(gmhn)∗µAxe∫

f0 d(gmhn)∗µAxe
−
∫
f dmX∫
f0 dmX

∣∣∣∣ 6 ε.

Proof. Suppose that there exists ε > 0 such that, for any l > 0, there are ml, nl > l satisfying∣∣∣∣ ∫ f d(gmlhnl)∗µAxe∫
f0 d(gmlhnl)∗µAxe

−
∫
f dmX∫
f0 dmX

∣∣∣∣ > ε.

By Proposition 10.3, we know that Ad(gmlhnl)Y → ∞ as l → ∞ for any nonzero Y ∈ Lie(A).
Hence, by Theorem 2.4, we have

[(gmlhnl)∗µAxe ] → [mX ]

which contradicts the inequality above. This completes the proof of the proposition. 2

Proof of Theorem 2.6. We will prove the theorem by induction. Let {gk}k∈N be a sequence in G
and, by the discussions above, we may assume that every gk = (uij(k))16i,j6n is in U ⊂ N , and
for 1 6 i < j 6 n, uij(k) either equals 0 for all k or diverges to infinity as k →∞.

Suppose that A(S, {gk}k∈N) = {0}. Let f ∈ Cc(X). By Proposition 10.4, for any ε > 0, there
exists M > 0 such that, for any m,n > M ,∣∣∣∣ ∫ f d(gmhn)∗µAxe∫

f0 d(gmhn)∗µAxe
−
∫
f dmX∫
f0 dmX

∣∣∣∣ 6 ε.

We now fix m, let n →∞ and obtain∣∣∣∣ ∫ f d(gm)∗µHxe∫
f0 d(gm)∗µHxe

−
∫
f dmX∫
f0 dmX

∣∣∣∣ 6 ε.

This implies that [(gk)∗µHxe ] → [mX ].
Now suppose that A(S, {gk}k∈N) 6= {0}. The proof in this case would be similar to that of

Theorem 2.5. By Corollary 5.3, the subgroup

S′ = {a ∈ S : agk = gka}

is connected and nontrivial, and Lie(S′) = A(S, {gk}k∈N). This implies that all elements of H
and {gk} belong to CG(S′)0. Moreover, we have

CG(S′)0 ∼= S′×H ′

where H ′ is the semisimple component of CG(S′)0 and H ′ is isomorphic to the product of various
SL(ni,R) with ni < n,

H ′ ∼=
∏
i

SL(ni,R).

Let Hi be the reductive subgroup H ∩ SL(ni,R) in SL(ni,R), and we have

H = S′×
∏
i

Hi.

Since gk ∈ U is unipotent (∀k ∈ N), we have gk ∈ H ′. Then we can write gk =
∏
i gi,k (gi,k ∈

SL(ni,R)).
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Similarly to the proof of Theorem 2.5, the above discussions imply that the problem is
reduced to the following setting.

(i) The measure µHxe is supported in the homogeneous space CG(S′)0/(Γ ∩ CG(S′)0), where
we have

CG(S′)0/(Γ ∩ CG(S′)0) = S′/(Γ ∩ S′)×H ′/(Γ ∩H ′)
= S′×

∏
(SL(ni,R)/SL(ni,Z)).

(ii) The measure µHxe can be decomposed, according to the decomposition of CG(S′)0/(Γ ∩
CG(S′)0), as

µHxe = µS′ ×
∏

µHixi .

Here µS′ denotes the S′-invariant measure on S′. For each i, xi = e SL(ni,Z) is the
identity coset in SL(ni,R)/ SL(ni,Z), and µHixi denotes the Hi-invariant measure on Hixi in
SL(ni,R)/ SL(ni,Z).

(iii) The measure µHxe is pushed by the sequence {gk} in the space CG(S′)0/(Γ ∩ CG(S′)0) in
the following way:

(gk)∗µHxe = µS′ ×
∏

(gi,k)∗µHixi .

(iv) If Si is the connected component of the center of Hi, then we have A(Si, {gi,k}k∈N) = {0}.

Since ni < n, we can now apply the induction hypothesis to the sequence (gi,k)∗µHixi , and
obtain that [(gi,k)∗µHixi ] converges to the equivalence class of the Haar measure mSL(ni,R)/SL(ni,Z)

on SL(ni,R)/ SL(ni,Z). Now, by putting all the measures [mSL(ni,R)/ SL(ni,Z)] and µS′ back
together in the space SL(n,R)/SL(n,Z), we have [(gk)∗µHxe ] → [µCG(A(S,{gk}))0xe ]. 2

11. An application to a counting problem

In this section we will prove Theorem 2.10. Let p0(λ) be a monic polynomial in Z[x] such that
p0(λ) splits completely in Q. Then, by Gauss’s lemma, we have p0(λ) = (λ−α1)(λ−α2) · · · (λ−αn)
for αi ∈ Z. We assume that the αi are distinct and nonzero. Let M(n,R) be the space of n×n
matrices with the norm

‖M‖2 = Tr(M tM) =
∑

16i,j6n

x2
ij

for M = (xij)16i,j6n. Note that this norm is Ad(K)-invariant. We will denote by BT the ball of
radius T centered at 0 in M(n,R). We write

Mα = diag(α1, α2, . . . , αn) ∈M(n,Z).

For M ∈M(n,R), we denote by pM (λ) the characteristic polynomial of M . We consider

V (R) = {M ∈M(n,R) : pM (λ) = p0(λ)}

and its subset of integral points

V (Z) = {M ∈M(n,Z) : pM (λ) = p0(λ)}.

We would like to get an asymptotic formula for

#|V (Z) ∩BT | = #|{M ∈M(n,Z) : pM (λ) = p0(λ), ‖M‖ 6 T}|.

We begin with the following proposition which is a corollary of [BHC62, LM33].
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Proposition 11.1. We have
Ad(SL(n,R))Mα = V (R)

and there are finitely many SL(n,Z)-orbits in V (Z). The number of SL(n,Z)-orbits in V (Z) is
equal to the number of classes of nonsingular ideals in the ring Z[Mα].

By Proposition 11.1, it suffices to compute the integral points of an SL(n,Z)-orbit. In what
follows, we will consider the SL(n,Z)-orbit of Mα. We will apply Theorem 2.8 (more precisely,
Corollary 10.1) with initial point x = eΓ to compute

#|Ad(SL(n,Z))Mα ∩BT |.

For any other SL(n,Z)-orbit of M ′ ∈ V (Z), there exists Mq ∈ SL(n,Q) such that

Ad(Mq)M
′ = Mα

and the treatment for Ad(SL(n,Z))M ′ would be similar, just with a change of initial point from
eΓ to xq = MqΓ. See also the beginning of § 4.

As explained in § 2, the metric ‖·‖g on g defines a Haar measure µA on A and a Haar measure
µN on N . Let µK be the K-invariant probability measure on K. Then we define a Haar measure
µG on G by Iwasawa decomposition G = KNA. Let cX be the volume of X = G/Γ with respect
to µG.

Now let h = (uij)16i,j6n ∈ N and write

Ad(h)Mα = hMαh
−1 = (xij)16i,j6n

where xii = αi and uij = 0 (i > j). We have

hMα = (xij)16i,j6nh

and
αjuij =

∑
k

xikukj , (αj − αi)uij =
∑
k 6=i

xikukj .

Let qi(x) =
∏i
k=1(x− αk). The next two lemmas describe the relation between uij and xij .

Lemma 11.2. For j > i, we have

uij =
1

αj − αi
xij + fij(x)

where fij is a polynomial in variables xpq with 0 < q − p < j − i, and fij = 0 for j − i = 1. In
particular, we have the change of coordinates of the Haar measure µN on N ,∏

j>i

duij =
1∏

j>i |αj − αi|
∏
j>i

dxij .

Proof. It is easy to see that uij = xij = 0 (i > j) and uii = 1. We prove the lemma by induction
on j − i. For j − i = 1, we have

uij = uj−1,j =
1

αj − αj−1

∑
k 6=j−1

xj−1,kukj =
1

αj − αj−1
xj−1,j .

Now we have
(αj − αi)uij =

∑
k 6=i

xikukj =
∑
i<k<j

xikukj + xij

where j − k < j − i. We complete the proof by applying the induction hypothesis on ukj . 2
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Lemma 11.3. For j > i, we have

uij =

j−1∏
k=i

xk,k+1

αj − αk
+ fij(x) =

qi−1(αj)

qj−1(αj)

j−1∏
k=i

xk,k+1 + fij(x)

where fij(x) is a polynomial in variables xpq (p < q) of degree less than j − i.

Proof. We prove the lemma by induction on j − i. For j − i = 1, we have

(αj − αi)uij = (αj − αj−1)uj−1,j =
∑
k 6=j−1

xj−1,kukj = xj−1,j .

Now we have
(αj − αi)uij =

∑
k 6=i

xikukj =
∑
i<k6j

xikukj

where j − k < j − i. By applying the induction hypothesis on ukj we have

(αj − αi)uij =
∑
i<k6j

xik

j−1∏
p=k

xp,p+1

αj − αp
+ · · ·

= xi,i+1

j−1∏
p=i+1

xp,p+1

αj − αp
+ · · · .

Here we omit terms of degree less than j − i. This completes the proof of the lemma. 2

Lemma 11.4. For any 1 6 l 6 n and 1 6 i1 < i2 < · · · < il 6 n, we have

c(i1, i2, . . . , il) := det

(
qk−1(αij )

qij−1(αij )

)
16k6l,16j6l

6= 0.

Proof. By algebraic manipulations, we can rewrite the determinant above as

l∏
j=1

1

qij−1(αij )


1 1 · · · 1

q1(αi1) q1(αi2) · · · q1(αil)
...

... · · ·
...

ql−1(αi1) ql−1(αi2) · · · ql−1(αil)

 .

Since deg qi = i, row reductions yield

det


1 1 · · · 1

q1(αi1) q1(αi2) · · · q1(αil)
...

... · · ·
...

ql−1(αi1) ql−1(αi2) · · · ql−1(αil)

 = det


1 1 · · · 1

αi1 αi2 · · · αil
...

... · · ·
...

αl−1
i1

αl−1
i2

· · · αl−1
il

 6= 0.

2

Proposition 11.5. For any h ∈ N (recall Ad(h)Mα = (xij)16i,j6n), we have

h(ei1 ∧ ei2 ∧ · · · ∧ eil) = c(i1, i2, . . . , il)

l∏
j=1

ij−1∏
p=j

xp,p+1(e1 ∧ e2 ∧ · · · ∧ el) + · · · .
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Here c(i1, i2, . . . , il) is the number in Lemma 11.4 and we omit the terms of polynomials in
variables xpq (p < q) of degree smaller than

∑l
j=1(ij − j).

Proof. By Lemma 11.3, we know that uij is a polynomial of degree j − i. This implies that the
term in h(ei1 ∧ ei2 ∧ · · · ∧ eil) corresponding to the ej1 ∧ ej2 ∧ · · · ∧ ejl-coordinate has degree at
most i1 + i2 + · · ·+ il − j1 − j2 − · · · − jl. To prove the proposition, it suffices to prove that the
term corresponding to e1 ∧ e2 ∧ · · · ∧ el is a polynomial with its leading term

c(i1, i2, . . . , il)

l∏
j=1

ij−1∏
p=j

xp,p+1

of degree i1 + i2 + · · ·+ il − 1− 2− · · · − l.
We know that the coefficient of e1 ∧ e2 ∧ · · · ∧ el is equal to

det(uk,ij )16k6l,16j6l,

and by Lemma 11.3 we know that the leading term of this coefficient is equal to

det

(
qk−1(αij )

qij−1(αij )

ij−1∏
p=k

xp,p+1

)
16k6l,16j6l

.

The expansion formula of determinant then gives

∑
σ∈Sl

(−1)sign(σ)
l∏

j=1

qσ(j)−1(αij )

qij−1(αij )

ij−1∏
p=σ(j)

xp,p+1

where σ runs over all the permutations in the symmetric group Sl. Note that we have

l∏
j=1

ij−1∏
p=σ(j)

xp,p+1 =

l∏
j=1

∏ij−1
p=1 xp,p+1∏σ(j)−1
p=1 xp,p+1

=

∏l
j=1

∏ij−1
p=1 xp,p+1∏l

j=1

∏j−1
p=1 xp,p+1

=

l∏
j=1

ij−1∏
p=j

xp,p+1.

This implies that

det

(
qk−1(αij )

qij−1(αij )

ij−1∏
p=k

xp,p+1

)
16k6l,16j6l

=

(∑
σ∈Sl

(−1)sign(σ)
l∏

j=1

qσ(j)−1(αij )

qij−1(αij )

) l∏
j=1

ij−1∏
p=j

xp,p+1

= c(i1, i2, . . . , il)
l∏

j=1

ij−1∏
p=j

xp,p+1

where c(i1, i2, . . . , il) is the number as in Lemma 11.4. 2

Now we define

N(T ) = {h ∈ N : Ad(h)Mα = (xij)16i,j6n ∈ BT },
N(ε, T ) = {h ∈ N : Ad(h)Mα = (xij)16i,j6n ∈ BT , |xi,i+1| > εT for all i < n}.
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Lemma 11.6. We have

µN (N(T )) =
Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2,

µN (N(T ) \N(ε, T )) = O(εTn(n−1)/2).

Here Vol(B1) is the volume of the unit ball in Rn(n−1)/2.

Proof. This follows immediately from Lemma 11.2. 2

Let µG/A be the G-invariant measure on G/A. In the following, we compute the volume of
V (R) ∩ BT with respect to a volume form µV (R) on V (R) induced by a G-invariant measure
on G/CG(A). We may assume that the natural projection map G/A → G/CG(A) sends µG/A
to µV (R). By Iwasawa decomposition, we have G/A ∼= KN , and it is well known that, for any
f ∈ Cc(G/A), ∫

G/A
f dµG/A =

∫
K

∫
N
f(kh) dµK(k) dµN (h)

via this isomorphism.

Proposition 11.7. The volume of V (R) ∩BT with respect to the volume form µV (R) equals

Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2.

Here Vol(B1) is as in Lemma 11.6.

Proof. Note that by the discussion above, we have

µV (R)(V (R) ∩BT ) = µG/A({gA : Ad(g)Mα ∈ BT })
= µK ×µN ({kh : Ad(kh)Mα ∈ BT }).

By Lemma 11.6 and the Ad(K)-invariance of the norm on M(n,R), we compute

µK ×µN ({kh : Ad(kh)Mα ∈ BT })

= µN ({h : Ad(h)Mα ∈ BT }) =
Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2.

This completes the proof of the proposition. 2

Proposition 11.8. For any k ∈ K and h ∈ N(T ), we have

Vol(Ωkh,δ) = O((lnT )n−1)

where the implicit constant depends only on δ and Mα. Furthermore, for h ∈ N(ε, T ), we have

Vol(Ωkh,δ) = (c0 + o(1))(lnT )n−1

where the implicit constant depends on ε, δ,Mα, and c0 equals the volume of{
t ∈ Lie(A) :

l∑
j=1

tij >
l∑

j=1

(j − ij),∀1 6 l 6 n,∀1 6 i1 < · · · < il 6 n

}
.
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Proof. From the definition of Ωkh,δ, we know that

Ωkh,δ =

{
t ∈ Lie(A) :

l∑
j=1

tij > ln δ − ln ‖kheI‖ for any nonempty I ∈ In
}
.

Since k ∈ SO(n,R), by Proposition 11.5, for any i1 < i2 < · · · < il we have

ln δ − ln ‖kh(ei1 ∧ ei2 ∧ · · · ∧ eil)‖
> O(1)− (i1 + i2 + · · ·+ il − 1− 2− · · · − l)(lnT )

where the implicit constant depends only on δ and Mα. Moreover, if h ∈ N(ε, T ) then we have

ln δ − ln ‖kh(ei1 ∧ ei2 ∧ · · · ∧ eil)‖
= O(1)− (i1 + i2 + · · ·+ il − 1− 2− · · · − l)(lnT )

where the implicit constant depends only on ε, δ and Mα. The proposition now follows from
these equations. 2

Define
FT (g) =

∑
γ∈Γ/ΓMα

χT (Ad(gγ)Mα)

where χT is the characteristic function of BT in M(n,R) and ΓMα is the stabilizer of Mα in
Γ. This defines a function on G/Γ. Note that χT is Ad(K)-invariant and ΓMα is finite. In the
following proposition, we will write

(f, φ) :=

∫
G/Γ

f(g)φ(g) dmX(g)

for any two functions f, φ on G/Γ, whenever this integral is valid.

Proposition 11.9. For any ψ ∈ Cc(G/Γ), we have(
|ΓMα |cX

n0Tn(n−1)/2(lnT )n−1
FT , ψ

)
→ (1, ψ).

Here

n0 =
c0 Vol(B1)∏
j>i |αj − αi|

where c0 is the number as in Proposition 11.8 and Vol(B1) is as in Lemma 11.6.

Proof. We have

(FT , ψ) =
1

|ΓMα |

∫
G/Γ

∑
γ∈Γ

χT (Ad(gγ)Mα)ψ(g) dmX

=
1

|ΓMα |cX

∫
G
χT (Ad(g)Mα)ψ(g) dµG(g)

=
1

|ΓMα |cX

∫
KN

∫
A
χT (Ad(kha)Mα)ψ(kha) dµK dµN dµA

=
1

|ΓMα |cX

∫
K

∫
N
χT (Ad(h)Mα) dµN dµK

∫
A
ψ(kha) dµA.
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Now fix ε > 0. By Corollary 10.1, we can continue the calculation and we have

=
1

|ΓMα |cX

∫
K

∫
N(ε,T )

χT (Ad(h)Mα) Vol(Ωkh,δ) dµN dµK
1

Vol(Ωkh,δ)

∫
A
ψ(kha) dµA

+
1

|ΓMα |cX

∫
K

∫
N\N(ε,T )

χT (Ad(h)Mα) dµN dµK

∫
A
ψ(kha) dµA

=
1

|ΓMα |cX

∫
K

∫
N(ε,T )

χT (Ad(h)Mα) Vol(Ωkh,δ) dµN dµK

(∫
G/Γ

ψ dmX + oε(1)

)
+

1

|ΓMα |cX

∫
K

∫
N\N(ε,T )

χT (Ad(h)Mα) dµN dµK

∫
A
ψ(kha) dµA.

Note that, since ψ ∈ Cc(G/Γ), we can find δψ > 0 such that∫
A
ψ(kha) dµA =

∫
Ωkh,δψ

ψ(kha) dµA.

So by Lemma 11.6 and Proposition 11.8, we can continue the calculation and we have

=
1

|ΓMα |cX

∫
K

∫
N(ε,T )

χT (Ad(h)Mα) Vol(Ωkh,δ) dµN dµK

∫
G/Γ

ψ dmX

+ oε(T
n(n−1)/2(lnT )n−1) +Oψ(εTn(n−1)/2(lnT )n−1)

=
n0T

n(n−1)/2(lnT )n−1

|ΓMα |cX

∫
G/Γ

ψ dmX

+ oε,δ(T
n(n−1)/2(lnT )n−1) +Oψ(εTn(n−1)/2(lnT )n−1).

This implies that

lim sup
T→∞

∣∣∣∣( |ΓMα |cX
n0Tn(n−1)/2(lnT )n−1

FT , ψ

)
− (1, ψ)

∣∣∣∣ 6 Oψ(ε).

We complete the proof by letting ε → 0. 2

Proof of Theorem 2.10. Following the same proofs as in [DRS93, EMS96], and combining

Lemma 11.6 and Proposition 11.9, we conclude that

|ΓMα |cX
n0Tn(n−1)/2(lnT )n−1

FT → 1.

Now Theorem 2.10 follows from this equation and Proposition 11.1. 2
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