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ABSTRACT

We define a natural topology on the collection of (equivalence classes up to scaling
of) locally finite measures on a homogeneous space and prove that in this topology,
pushforwards of certain infinite-volume orbits equidistribute in the ambient space. As
an application of our results we prove an asymptotic formula for the number of integral

points in a ball on some varieties as the radius goes to infinity.
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1. Introduction

This paper deals with the study of the possible limits of periodic orbits in homogeneous spaces.
Before explaining what we mean by this, we start by motivating this study. In many instances
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arithmetic properties of an object are captured by periodicity of a corresponding orbit in some
dynamical system. A simple instance of this phenomenon is that o € R is rational if and only if
its decimal expansion is eventually periodic. In dynamical terms this is expressed by the fact that
the orbit of @ modulo 1 on the torus R/Z under multiplication by 10 (modulo 1) is eventually
periodic. Furthermore, from knowing distributional information regarding the periodic orbit one
can draw meaningful arithmetical conclusions. In the above example this means that if the orbit
is very close to being evenly distributed on the circle then the frequency of appearance of, say, the
digit 3 in the period of the decimal expansion is roughly %. This naive scheme has far-reaching
analogous manifestations capturing deep arithmetic concepts in dynamical terms. More elaborate
instances are, for example, the following.

— Similarly to the above example regarding decimal expansion, periodic geodesics on the
modular surface correspond to continued fraction expansions of quadratic numbers, and
distributional properties of the former imply statistical information regarding the latter
(see [AS18] where this was used).

— Representing an integral quadratic form by another is related to periodic orbits of orthogonal
groups (see [EV08]).
— Class groups of number fields correspond to adelic torus orbits (see [ELMV11]).

— Values of rational quadratic forms are governed by the volume of periodic orbits of
orthogonal groups (see [EMV09, Theorem 1.1])

— Asymptotic formulas for counting integer and rational points on varieties are encoded
by distributional properties of periodic orbits (see [DRS93, EM93, EMS96, GMOO0S], for
example).

In all the above examples the orbits that are considered are of finite volume. Recently
in [KK18, OS14] this barrier was crossed and particular instances of the above principle were used
for infinite-volume orbits in order to obtain asymptotic estimates for counting integral points on
some varieties and weighted second moments of GL(2) automorphic L-functions.

At this point let us make our terminology more precise. Let X be a locally compact second
countable Hausdorff space and let H be a unimodular topological group acting continuously
on X. We say that an orbit Hx is periodic if it supports an H-invariant locally finite Borel
measure. In such a case the orbit is necessarily closed and this measure is unique up to scaling
and is obtained by restricting the Haar measure of H to a fundamental domain of Staby(z) in
H which is identified with the orbit via h — hx. We say that such an orbit is of finite volume
if the total mass of the orbit is finite. It is then customary to normalize the total mass of the
orbit to 1. We remark that in some texts the term ‘periodic orbit’ is reserved for finite-volume
ones, but we wish to extend the terminology as above. If Hz is a periodic orbit we denote by
Wiz a choice of such a measure, which in the finite-volume case is assumed to be normalized to
a probability measure.

Given a sequence of periodic orbits Hwx;, it makes sense to ask if they converge in some
sense to a limiting object. When the orbits are of finite volume the common definition is that
of weak™® convergence; each orbit is represented by the probability measure pp,, and one equips
the space of probability measures P(X) with the weak* topology coming from identifying P(X)
as a subset of the unit sphere in the dual of the Banach space of continuous functions on X
vanishing at infinity Cy(X). The starting point of this paper is to challenge this and propose a
slight modification which will allow us to bring into the picture periodic orbits of infinite volume.

1748

https://doi.org/10.1112/50010437X19007450 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007450

TRANSLATES OF DIVERGENT DIAGONAL ORBITS

For that we will shortly concern ourselves with topologizing the space of equivalence classes [u]
of locally finite measures p on X.

This approach has several advantages over the classical weak™ convergence approach. As
said above, it allows us to discuss limiting distributions of infinite-volume orbits, but also it
allows us to detect in some cases information which is invisible for the weak* topology. In the
classical discussion, it is common that a sequence of periodic probability measures jf,,, converges
to the zero measure (a phenomenon known as full escape of mass). Nevertheless it sometimes
happens that the orbits themselves do converge to a limiting object but this information was lost
because the measures along the sequence were not scaled properly. This phenomenon happens,
for example, in [Shal7], which inspired us to define the notion of convergence to be defined below.

Although the results we will prove are rather specialized, we wish to present the framework
in which our discussion takes place in some generality. Let G' be a Lie group' and let I' < G be
a lattice.

Question 1.1. Let X = G/T" and let H;z; be a sequence of periodic orbits. Under what conditions
do the following statements hold?

(i) The sequence [pp,5,;] has a converging subsequence.
(ii) The accumulation points of [ p,4,] are themselves (homothety classes of ) periodic measures.

2. Basic definitions and results

2.1 Topologies
We now make our discussion above more rigorous. Let X be a locally compact second countable
Hausdorff space and M(X) the space of locally finite measures on X. We say that two locally
finite measures p and v in M(X) are equivalent if there exists a constant A > 0 such that u = Av.
This forms an equivalence relation and we denote the equivalence class of u by [u]. We denote
by PM(X) the set of all equivalence classes of nonzero locally finite measures on X.

We topologize M (X) and PM (X)) as follows. Let C.(X) be the space of compactly supported
continuous functions on X. For any p € C.(X), define

iy M(X) = Co(X)*

by sending du € M(X) to pdu € Cy(X)*. Here Cy(X) is the space of continuous functions on
X vanishing at infinity equipped with the supremum norm, and Cy(X)* denotes its dual space.
The weak™ topology on Cp(X)* then induces a topology 7, on M(X) via the map i,. We will
denote by 7x the topology on M(X) generated by (M(X),7,) (p € Co(X)). Equivalently, 7x is
the smallest topology on M(X) such that for any f € C.(X) the map

uﬁ/fdu

DEFINITION 2.1. Let mp be the natural projection map from M(X)\ {0} to PM(X). We define
Tp to be the quotient topology on PM(X) induced by 7x via mp. In other words, U is an open
subset in PM(X) if and only if 7' (U) is open in M(X )\ {0}. In this way, we obtain a topological
space (PM(X), p).

is a continuous map from M(X) to R.

! One could (and should) develop this discussion in the S-arithmetic and adelic settings as well.
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2.2 Main results
Let G =SL(n,R), I' = SL(n,Z) and X = G/T". Denote by mx the unique G-invariant probability
measure on X and by Ad the adjoint representation of G. We write

A = {diag(e™, e, ... "t eln) ity + g+ -+ 1, = 0}
for the connected component of the full diagonal group in G, and
N = {(uij)lgi’jgn Tuy =1 (1 <1< n),uij =0 (’L > ])}

for the upper triangular unipotent group. Let K = SO(n,R). In this paper, we address
Question 1.1 in the space X = SL(n,R)/SL(n,Z) with certain periodic orbits H;z;, and prove
the convergence of [ f,,,] with respect to the topology (7p,PM(X)). As a simple exercise, and
to motivate such a statement, the reader can show that if [up,,,] — [mx], for example, then the
orbits H;x; become dense in X. In many cases our results imply that indeed the limit homothety
class is the class of the uniform measure my.

Before stating our theorems, we need some notation. For a Lie subgroup H < G, let H°
denote the connected component of identity of H, and Lie(H) its Lie algebra. Denote by
Ca(H) (respectively, C(Lie(H))) the centralizer of H (respectively, Lie(H)) in G. We write
g = Lie(G) = sl(n,R), and

exp : sl(n,R) — SL(n,R)
for the exponential map from g to G. We also write || - || for the norm on g induced by the

Fuclidean norm on the space of n X n matrices. For any g € G and any measure p on X, define
the measure g,u by

g«it(E) = u(g~'E) for any Borel subset E C X.

An A-orbit Az in X is called divergent if the map a — azx from A to X is proper.

DEFINITION 2.2. Let {g}ren be a sequence in G. For any subgroup S C A, we define
A(S, {gr}ren) = {Y € Lie(S) : {Ad(gx)Y }ren is bounded in g}.

This is a subalgebra in Lie(S).

Remark 2.3. By Definition 2.2, {Ad(gx)Y }xen is unbounded for any Y € Lie(S) \ .A(S, {9k } en)-
Then one can find a subsequence {g;, }ren such that for any Y € Lie(S) \ A(S, {gi, }xen), the
sequence {Ad(g;,)Y }ren diverges to infinity.

Indeed, suppose that, for an element Y € Lie(S) \ A(S, {9k }ren), {Ad(gr)Y }ren does not
diverge. Then there is a subsequence {g; }, . such that {Ad(g;,)Y }ren is bounded. This implies
that A(S, {g},}cy) contains the linear span of Y and A(S, {gx }ren). Because of this, one can
keep on enlarging the set A(S, {gx }ren) by passing to subsequences of {gi}ren. But due to the
finite dimension of Lie(.S), this process would stop at some point. Then one can get a subsequence
{9i, }en such that, for any vector Y € Lie(S) \ \A(S, {gi, }ren), the sequence Ad(g;, )Y — oo.

The following theorem answers Question 1.1 for translates of a divergent diagonal orbit in
G/T'. Moreover, it gives a description of all accumulation points.
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THEOREM 2.4. Let Ax be a divergent orbit in X. Then, for any {gi}ren in G, the sequence
[(gr)«1Az] has a subsequence converging to an equivalence class of a periodic measure on X.

Furthermore, by passing to a subsequence, we assume that, for any Y € Lie(A) \ A(A4,
{9k }ren), the sequence {Ad(gr)Y }ren diverges (see Remark 2.3). Then we have the following
description of the limit points of the sequence [(gx)«ttaz]. The subgroup exp(A(A, {gx}ren)) Is
the connected component of the center of the reductive group Cq(A(A, {gk}ren)), and any limit
point of the sequence [(gr)«piaz] is a translate of the equivalence class ({1 (A(A,{gx}ren))0z)- 1D
particular, if A(A, {gr}ren) = {0}, then [(gx)«ftaz] converges to the equivalence class of the Haar
measure myx on X.

In fact, we deduce Theorem 2.4 as a corollary of the following theorem.

THEOREM 2.5. Let Ax be a divergent orbit in X. Suppose that {gx}ren Is a sequence in N with
9k = (uij(k))1<ij<n € SL(n, R)
such that for each pair (i,7) (1 <i<j<n),
either u;j(k) =0 for any k, oru;j(k) - oo ask — oo.
Then the sequence [(gk)«Az| converges to the equivalence class [1icq,(A(A{gy}ren))z)-

We will also deduce the following theorem from Theorems 2.4 and 2.5, which answers
Question 1.1 for translates of an orbit of a connected reductive group H containing A. We
will see by Lemma 10.2 that for such a reductive group H, and for x € X with Az divergent,
Hz is a closed orbit.

THEOREM 2.6. Let Ax be a divergent orbit in X and let H be a connected reductive group
containing A. Then, for any {gx }ren in G, the sequence [(gy )« 2] has a subsequence converging
to an equivalence class of a periodic measure on X.

Furthermore, let S be the connected component of the center of H, and assume that, for any
Y € Lie(S) \ A(S, {9k }ken), the sequence {Ad(gx)Y }ren diverges. Then we have the following
description of the limit points of [(gx)«tmz]. The subgroup exp(A(S, {gk tren)) is the connected
component of the center of the reductive group Cq(A(S,{gk}ren)), and any limit point of the
sequence [(gk)«fiHz] Is a translate of the equivalence class ey (A(S{gy}ren))0z)- I Particular, if
A(S, {91 }ren) = {0}, then [(gr)«pmz] converges to the equivalence class of the Haar measure
myx on X.

Remark 2.7. The proof of Theorem 2.4 also gives a criterion on the convergence of [(gx)«ftAz]-
A similar criterion on the convergence of [(gx )« 2] for a connected reductive group H containing
A could be obtained from the proof of Theorem 2.6.

We give several examples to illustrate Theorems 2.4-2.6.
(1) Let G = SL(3,R) and I' = SL(3,Z). Pick the initial point z = Z" € X and the sequence
2
gk = (é ’f kk/2>. In this case one can show that the subalgebra A(A, {gx}ren) = {0}, and
00

1
Ad(gr)Y diverges for any nonzero Y € Lie(A). We also have C(A(A, {gk }ren)) = SL(3,R).

Theorem 2.4 then says that [(gk)«f14az] converges to [usy 3 r)z] = [mx].
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(2) Fix G,T",x and g as in example (1). Let H be the connected component of the reductive

subgroup
* x 0
x x 0] NSL(3,R).
0 0 =

Then the center S of H is equal to {diag(a,a,a=2) : a # 0}, and one could check that the
subalgebra A(S, {gk}ren) = {0}, and Ad(gx)Y diverges for any nonzero Y € Lie(S). Also
Ca(A(S, {9k }tren)) = SL(3,R). Then Theorem 2.6 implies that the sequence [(gx)«/trrz]
converges to [usy,3r)x] = [mx].

(3) Let G = SL(4,R) and I' = SL(4,Z). Pick the initial point z = Z"™ € X and the sequence

1500
gk = <§ é g %) In this case one can show that A(A, {gx}ren) = {diag(t,t,—t, —t) : t € R}

and
* % 0 0
* % 0 0
ColAAAgen) = [ ) o 4 «| NSLAR)
0 0 * =

Theorem 2.5 then says that the sequence [(gx).paz] converges to [tey, (A4, {gxeen))0z )

[
1

(4) Fix G,I' and = as in example (3), and pick the sequence gp = | 9 . Let H be the
0

connected component of the reductive subgroup
0 0
NSL(4,R).

[anig
S ¥ %
* O O

0
*
0 0 0

Then the center S of H is equal to {diag(a,a,b,c) : a®bc = 1}, and one could check that
A(S, {gn}ren) = {diag(s, 5,5, ~35) : s € R} and

* % % 0

* % % 0
Ca(ASAgedken) = [, L , o[ "SL4R).

0 0 0 =x

In this case, Theorem 2.6 says that any limit point of the sequence [(gx)s«ptm2] is a translate
(106 (A(S {gitren))0x)> and the proof of Theorem 2.6 would imply that [(gk)«pme]| actually

converges t0 (Ko (A(S,{gi}rew))0x)-

By comparing examples (1) and (3) (respectively, (2) and (4)), one can see that the subalgebra
A(A, {9k }ren) (respectively, A(S, {gr}ren)) plays an important role in indicating what kinds of
limit points the sequence [(gx)«ftaz] (respectively, [(gx)«itmz]) could converge to. In example (1),
we have A(A, {gx}ren) = {0}. By pushing Az with gi, the orbit gy Az starts snaking in the space
SL(3,R)/SL(3,Z), and eventually fills up the entire space. In example (3), A(A, {gr}ren) is a
one-dimensional subalgebra in Lie(A) which commutes with g, and it corresponds to the part of
the orbit Az which stays still and is not affected when we push g, by gr. This would result in
the limit orbit having this part as the ‘central direction’, and the ‘orthogonal’ part in Az would

be pushed by g¢; and fill up the sub-homogeneous space (SL(S’R) SL((;,R)) x in SL(4,R)/SL(4,Z).
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By the characterization of convergence given in Proposition 3.3, Theorems 2.4 and 2.6 can
be restated in the following form.

THEOREM 2.8. Let Ax be a divergent orbit and {gx }ken be a sequence in G such that [(gg)«ftAz]
converges to an equivalence class of a locally finite periodic measure [v] as in Theorem 2.4. Then
there exists a sequence A\ > 0 such that

)\k(gk)*,U/Ax —> VvV

with respect to the topology Tx. In particular, for any Fy, Fy € C.(X), we have

J Fod(gk)«taz N [ Frdv
J F1d(gk)«paz [ Fidv

whenever [ Fydv # 0. The same results hold if A is replaced by any connected reductive group
H containing A.

Remark 2.9. From the proofs of Theorems 2.4 and 2.5, we will see that in the case A(A,
{gx}ken) = {0}, the numbers Ay in Theorem 2.8 are related to the volumes of convex polytopes
of a special type in Lie(A) (see Definition 4.1 and Corollary 10.1). We remark here that in view
of Theorem 2.8, the \; in this case can also be calculated by a function F; € C.(X) with its
support being a large compact subset. This makes Theorem 2.8 practical in other problems.

2.3 Applications
As an application of our results, we give one example of a counting problem. More details about
this counting problem can be found in [DRS93, EM93, EMS96, Sha00].

Let M(n,R) be the space of n X n matrices with the norm

1M = Te(M'M) = ) o

1<i,5<n

for M = (245)1<i,j<n € M(n,R). Denote by Br the ball of radius T centered at 0 in M (n,R).
Fix a monic polynomial po(A) in Z[A] which splits completely over Q. By Gauss’s lemma, the
roots «; of p(\) are integers. We assume that the «; are distinct and nonzero. Let

M, = diag(ay, ag,...,an) € M(n,Z).
For M € M(n,R), denote by pps(\) the characteristic polynomial of M. We define by
V(R) :={M € M(n,R) : p;r(A) = po(A)}
the variety of matrices M with characteristic polynomial py;(\) equal to po()A), and by
V(Z) :={M € M(n,Z) : p;r(A) = po(A)}

the integer points in the variety V(R).

The metric || - || on g = sl,(R) induces Haar measures on A and N. The K-invariant
probability measure on K and the Haar measures on A, N then give a Haar measure on G via
the Iwasawa decomposition G = KNA. We will denote by cx the volume of X = G/I" with
respect to the Haar measure on G.
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There is a natural volume form on the variety V' (R) inherited from G = SL(n, R). Specifically,
the orbit map
G — V(R)

defined by g — Ad(g)M, gives an isomorphism between the quotient space G/Cg(A) and the
variety V(R), and the Volume form is defined to be the G-invariant measure on G/Cg(A). The
existence of such a measure is well known, and the proof of it can be found, for example, in
[Rag72]. With this volume form, one can compute (see Proposition 11.7) that for any 7', the
volume of V(R) N By equals ¢I™"~1)/2 for some constant ¢ > 0. The following theorem concerns
the asymptotic formula for the number of integer points in V(Z) N By. We will see that the set
V(Z) N By behaves differently from V(R) N By, with an extra log term.

By a well-known theorem of Borel and Harish-Chandra [BHCG62], the subset V(Z) is a finite
disjoint union of Ad(T")-orbits. One can write this disjoint union as

ho
= [ JAd(D)M;
=1

for some hg € N and M; € V(Z) (1 < i < hg). Note that for each M;, the stabilizer 'y, of M; is
finite. Also the number of the orbits hg is equal to the number of equivalence classes of nonsingular
ideals in the subring in M (n, R) generated by M, for which readers may refer to [BHC62, LM33].
In the following theorem, for ease of notation, we write t for a vector (¢,to,...,t,) € R™.

THEOREM 2.10. We have

co Vol(B1) (n—1)/2 1
B " InT)"?
’V( m T| (Z |FM|>CXHj>i‘aj_Oéi| (n )

where Vol(By) is the volume of the unit ball in R™"~1)/2 and ¢ is the volume of the (n—1)-convex
polytope
l

n l
{teRn:Zti—O,Zt” >y lgn,V1<i1<-~-<il<n}
i=1 j=1

with respect to the natural measure induced by the Lebesgue measure on R™.

In the sequel, we will mainly focus on Theorem 2.5 as all the other theorems will be corollaries
of it. In the course of the proof of Theorem 2.5, the case A(A, { gk }ren) = {0} plays an important
role, and other cases can be proved by induction. Therefore, most of our arguments in this paper
would work for the case A(A, {gx}ren) = {0}. We remark that our proof is inspired by [OS14],
where Oh and Shah deal with the case G = SL(2,R) by applying exponential mixing and obtain
an error estimate. This effective result was recently improved by Kelmer and Kontorovich [KK18].

When we showed an earlier draft of this paper to Shah, he pointed out to us that similar
results to those appearing in this paper were established by him at the beginning of this century,
but were never published.

The paper is organized as follows.

— We start our work in § 3 by studying the topology 7p on PM (X)) for a locally compact second
countable Hausdorff space X. In particular, a characterization of convergence in PM(X)
is given, and Theorem 2.8 is obtained as a natural corollary, if Theorems 2.4 and 2.6 are
presumed.
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— In §4, a special type of convex polytope in Lie(A) is introduced. Such convex polytopes are
related to nondivergence of the orbits gip Az. In order to analyze these convex polytopes in
the setting of Theorem 2.5, we define graphs associated to them and prove some auxiliary
results concerning the graphs in §5. With the assumption A(A, {gk}ren) = {0}, these
auxiliary results imply some properties of the convex polytopes, which are proved in §6.

— Keeping the assumption A(A,{gr}ren) = {0} in §7, we prove a statement on the
nondivergence of the sequence of [(gx)«ptaz] and show that [(gr)«itaz] converges to [v]
for some probability measure v invariant under a unipotent subgroup. Then we translate
§7 in terms of adjoint representation in §8. The linearization technique and the measure
classification theorem for unipotent actions on homogeneous spaces are discussed in §9,
enabling us to study the measure rigidity in our setting.

— We complete the proof of Theorem 2.5 in §10. Then we prove Theorems 2.4 and 2.6. We
give the proof of Theorem 2.10 in §11.

3. Topology on PM(X)

In this section, we study the topology 7p on PM(X) for any locally compact second countable
Hausdorff space X. We will give a description of the convergence of a sequence [ug] in PM(X)
(Proposition 3.3). This will help us study the convergence of the sequence [(g)«ptaz] in
Theorems 2.4 and 2.5 (respectively, [(gx)«ftrz] in Theorem 2.6).

Before proving Proposition 3.3, we need some preparatory work.

PROPOSITION 3.1. The topology (7p,PM(X)) is Hausdorff. In particular, any convergent
sequence in PM(X) has a unique limit.

Proof. Let [u] and [v] be two distinct elements in PM(X). We choose f € C.(X) and

representatives p and v such that
/fdu:/fduzl.

Since [u] # [v], there exists a nonnegative function g € C.(X) such that

/gdu;ﬁl, /gdl/:1.

We define neighborhoods of p and v in M(X
/ fdx— / f d,u‘ < e}

Vi fr9,€) { ‘/gdA /gd,u’<e
V(v f,g.€) { ’/gd)\ /gdu /fd)\ /fdz/<e}.

Since mp : M(X) \ {0} - PM(X) is an open map, mp(V(u; f,9,€)) and wp(V(v; f,g,€)) are
open neighborhoods of [p] and [v] in PM(X) for any € > 0. Let x = [ gdu. We prove that, for
any € < min{0.1, |k — 1|/5},

< €,

mp(V(ps; frg,€)) Nwp(V(v; f,g,€) = 0.
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Suppose, to the contrary, that [A\] € mp(V (1; f, g,€))Nmp(V(v; £, g, €)). Then there exist constants

a, 8 > 0 such that
a/gd)\—/gd,u’<e, oz/fd)\—/fdu‘<e,

‘B/gd)\—/gdu <e, ’ﬁ/fd/\—/fdu

Jgdu—c _a _[Jgdute [fdu—e o [fdute
[gdv+e B [gdv—€ [fdv+e B  [fdv—e

< €.

This implies that

and
K,—€<Oé<l-€+6 1—6 a 1+e
l+e B 1—€ 1+ce¢ ﬁ
This is a contradiction, for e < min{0.1, |x — 1|/5}. O

PROPOSITION 3.2. A sequence [uy] in PM(X) converges to [v] if and only if, for each k € N,
there exists a representative i, in [uy| and for [v] a representative v’ € [v] such that ), converges

to v in M(X).

Proof. Let [ux] be a sequence in PM(X) converging to [v]. We choose f € C.(X) and
representatives . and v/ of [y and [v] such that

[ = [sar =1

Suppose that pj /A v/ in M(X). Then there exists a nonnegative function g € C.(X) such that,
after passing to a subsequence,

/gdu’zl, ‘/gdu2—1‘>5,

for some 6 > 0. Then by the same argument as in Proposition 3.1, we can find a neighborhood
wp(V(v; f,g,¢€)) of [v] in PM(X) for some € < min{0.1,6/5} such that

(k] & mp(V(v; £, 9,€)),

which contradicts the condition [u;] — [v]. The other direction follows from Definition 2.1. O

We now prove the following important proposition, which provides a characterization of the
convergence of a sequence [ug] in PM(X). This will help us study the convergence of equivalence
classes of locally finite measures on SL(n,R)/SL(n,Z) in the rest of the paper.

PRrRoPOSITION 3.3.

(i) Let {ux}ren be a sequence in M(X). Then [uy] converges to [v] in PM(X) if and only
if there exists a sequence {\,} of positive numbers such that A\puy converges to v in M(X). If
there exists another sequence {\.} with X iy — v/ # 0 in M(X), then

and limy X} /A exists.
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(ii) The sequence [py] converges to [v] if and only if, for any f,g € C.(X) with [gdv # 0,
we have [ gduy # 0 for sufficiently large k and

ffdll«k_) J fdv
Jgduw, — [gdv’

Proof. The first statement follows from Propositions 3.1 and 3.2. For limy A} /A;, we choose
[ € Ce(X) with [ fdv # 0, and we have

Ne NS Sdwe [ fdv
Me A fdupg [ fdv’

For the second statement, if [ui] — [v], then there exists a sequence A; > 0 such that
Moty = v # 0. For any f,g € Co(X) with [ gdv # 0, we have

/\k/gduk#ﬂ

for sufficiently large k and

ffd,uk:ffd()\k,u«k)_)ffd’/
Joduwe — [gdwpw) — [gdv’

Conversely, let g € C(X) with [ gdv # 0 and

Then we have \gur — v and [ug] — [V]. O
Remark 3.4. This proves that Theorem 2.8 is equivalent to Theorems 2.4 and 2.6.

From the discussions in this section, we know that to prove Theorem 2.5 one needs to find a
sequence of Ay > 0 such that A\;(gx)«pa, converges to a locally finite measure v, and then prove
that v is a periodic measure. From §§4 to 6, we will construct the sequence A\; in an explicit
way. In the rest of the paper, X will denote the homogeneous space G/T.

4. Convex polytopes

In this section we will construct a special type of convex polytope in Lie(A). These convex
polytopes will play an important role in the rest of the paper.

By [TWO03, Theorem 1.4], Az is divergent in X = G/I" if and only if z € A-SL(n,Q)I". Note
that, for any ¢ € SL(n,Q), the lattice gI'q~! is commensurable with I', and all results in this
paper will hold if T is replaced by qI'¢~!. Therefore, without loss of generality, we may assume
that the initial point © = z. = e SL(n,Z), where e is the identity matrix in G. We will denote
by mye(a) the natural measure on Lie(A) C sl(n,R) induced by the Lebesgue measure on the
space of n X n matrices.

For ease of notation, we will write t for a vector (¢1,to,...,t,) in an n-dimensional space, and
denote by [n] the index set {1,2,...,n}. We write Z, for the collection of all multi-index subsets
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of [n], and Z for the collection of the index subsets of cardinality [ in Z,,. Let {e,ea,...,e,} be
the standard basis of R™. For any index subset I = {i; <ig--- < i;} € Z,, we denote by

er:=ey N Ney

the wedge product of the vectors e;,,...,e;. We write wr(t) (t = (¢1,t2,...,t,) € R™) for the
linear functional ), ;t; on R™.
Let g € SL(n,R) and § > 0. We define a region Qg5 in Lie(A) as follows. Let t =

(t1,t2,...,t,) € Lie(A). For each e; € R™, the vector

gexp(t)e; = e'ige; ¢ Bs
if and only if

t; > Ind —1In||ge;.
Here Bs denotes the ball of radius § > 0 around 0 in R™ with the standard Euclidean norm || - ||.
We also consider the wedge product ey for any nonempty subset I € Z! (1 <1< n), and
gexp(t)e; = ¢! Vge; ¢ B;

if and only if

wr(t) = 1Ind — In||ger||-
Here, in an abuse of notation, || - || is the norm on A'R" induced by the Euclidean norm on R”,

and Bjs is the ball of radius § > 0 around 0 in A'R™. This leads to the following definition.

DEFINITION 4.1. For any g € G and § > 0, we define
Qg5 = {t € Lie(A) : wr(t) > Ind — In||ge;| for any nonempty I € 7, }.

Remark 4.2. By the construction above, for any t € Lie(A) \ 5, the lattice gexp(t)Z" has a
short nonzero vector with length depending on § > 0. Hence, by Mahler’s compactness criterion,
the point gexp(t)[’ € gAT is close to infinity. Due to this reason, we will mainly study the part
{gexp(t)I' : t € Qg 5} of the orbit gAT.

LEMMA 4.3. The region Qg s is a bounded convex polytope in Lie(A) for any g € G and ¢ > 0.

Proof. Since the region g5 is defined by various linear functionals on Lie(A), Qs is a convex
polytope. Now by definition, €}, 5 is contained in the region

n
{t e R"™: Zti =0,t; > Ind — In||ge;||,Vi € [n]},

i=1
which is bounded. The boundedness of €2, 5 then follows. O
In §6 we will closely study the convex polytope €2, 5. We list here some properties of convex
polytopes which will be used later. For a bounded convex subset {2 in a Euclidean space F, we
denote by Vol(€2) the volume of 2 with respect to the Lebesgue measure on E, and by Area(9f)

the surface area of the boundary 92 of € induced by the Lebesgue measure.
The following lemma is well known. We learnt it from Roy Meshulam.
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LEMMA 4.4. Let  be a bounded convex subset in R%. Suppose that @ contains a ball of radius

r > 0. Then we have
Area(0f)) d
b S
r

Vol(Q)

Proof. Let B,(0) denote the ball of radius 7 centered at 0 in R? and we may assume, without
loss of generality, that B, (0) C Q. We have

Vol(2 + €B1(0)) — Vol(Q2)

Area(092) = lim

e—0 €
i Vol(2 + (¢/r)B,(0)) — Vol(£2)
e—0 €
< lim Vol(2 + (¢/7)Q2) — Vol(Q2)
e—0 €
1 d_1 d
i ST L) = Dy,
e—~0 € r
This completes the proof of the lemma. a

LEMMA 4.5. Let R C Q be two bounded d-dimensional convex polytopes in R%. Suppose that
contains a ball of radius r > 0 and
Vol(R)
=c
Vol(Q)

for some constant ¢ > 0. Then R contains a ball of radius rc/d.

Proof. Let p be the largest number such that R contains a ball of radius p. It suffices to show
that p > rc/d. Let {f;} be the collection of the facets of R, and denote by P; the hyperplane
determined by f;. First, we prove two claims.

CrLAIM 1. Let p be a point in R, and let f;, be a facet of R such that the hyperplane P;, is
closest to p among all the hyperplanes P;. Then the orthogonal projection of p in P;, is in the
facet f;,.

Proof of Claim 1. Let p;, be the orthogonal projection of p in P;,, and denote by p;,p the line
segment connecting p and p;,. Suppose that p;, is outside the facet f;,. Then p;,p intersects
another facet of R, say, fj,. This implies that the distance between p and the hyperplane P;, is
smaller than the length of p;;p, which contradicts the choice of F;,. O

CrLAM 2. Vol(R) < pArea(0R).

Proof of Claim 2. For each facet f; of R, let B; be the unique cylinder with the following
properties.

(i) The base of B; is f;, and the height of B; is equal to p.
(ii) B; and R lie in the same half-space determined by P;.

The maximality of p then implies

R C UBZ';
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otherwise, by Claim 1, one would find a point € R\ |J; B; such that, for each f;, the distance
between x and f; is strictly larger than p. Now we have

Vol(R) < > Vol(B;) = p Area(dR)

and Claim 2 follows. O

Now we can finish the proof of the lemma. By Claim 2 and Lemma 4.4, we have

Vol(R) c¢Vol(Q2) cr
p = Z Z —.
Area(OR) = Area(0Q?) ~ d

Here we use the fact that Area(0R) < Area(0f?) for any two convex polytopes R C (. O
For a bounded convex polytope € in R? and € > 0, its e-neighborhood is defined by

{t e Re: inf ||t —s|| < e}.
seQ}
Here || - || is the Euclidean norm on R

LEMMA 4.6. Let Q be a bounded convex subset in R% which contains a ball of radius r > 0. Let
Q. be the e-neighborhood of 2 for € > 0. Then we have

%é <1+6>d.

Proof. The proof is similar to Lemma 4.4. Assume that Q contains the ball B,(0) of radius r
around 0. We have

Vol(€2) _ Vol(Q +(¢/r)Bx(0) _ Vol +(¢/r)) _ [}, €\"

Vol(Q) Vol(Q) = Vol(£2) B r)

This completes the proof of the lemma. O

5. Auxiliary results in graph theory

In this section we will study a special class of graphs and prove some properties of these graphs
(Proposition 5.5 and Lemma 5.8), which will be crucial in our study of convex polytopes in § 6.
From now until §10, we assume that {gi}ren satisfies the condition in Theorem 2.5; that is,
{9k }ren is a sequence in N with

9k = (uij (k))1<ij<n
such that, for each (7,7) (1 < i < j < n), either u;;(k) = 0 for any k, or u;;(k) # 0 and diverges
to infinity as k — oo.

In order to prove Proposition 5.5, we will need some lemmas involving complex calculations
which will guarantee the validity of the proof of Proposition 5.5. Here we introduce the following
notation. For any g € SL(n,R) and any 1 < [ < n, denote by (g);x; the [ x [ submatrix in
the upper left corner of g. Note that if g,h € SL(n,R) are upper triangular, then (gh);x; =

(@)ix1(h); 1.

LEMMA 5.1. For any a € A and any 1 <1 < n, we have either (gx); x| = (a_lgka)l 1 for all k or
(r)ix1 # (a_lgka)lxl for all k.
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Proof. Write a = (a1,aq,...,a,) € A. By definition, we have

()i x 1 = (uij(k)1<ij<
and
(e gra)ixi = (a; 'ajuij(k)i<ij<i-
The equation (g );x; = (a"'gra); x; then yields
either u;;(k) =0 ora; =aj, V1 <1i,j <l.

Now the lemma follows from the dichotomy assumption on the entries of g (k € N). O

LEMMA 5.2. Let a € A. Suppose that the sequence {grag, is bounded in SL(n,R). Then

gr commutes with a for any k.

1
}kGN

Proof. Suppose not. Then by Lemma 5.1 with [ = n we have
gr # a ‘gra, Yk eN.

In this case, we would like to find a contradiction.
Let [y be the minimum of the integers 0 < ! < n — 1 with the property

(98) (1) x @41) 7 (@7 gr@) 151y x 141

for any k. By Lemma 5.1, [y is also the maximum of 0 <! < n — 1 such that (gi); x; commutes
with (a); «; for all k.
We write a = diag(ay,as,...,a,) € A. Then, for any 1 <1 < n,

(a)l N diag(al, as, ... 7al).

We also write
v
(9k) (to+1) x (To+1) = <(gk)g] x o lk) e SL(lp + 1,R)

where vy, is the lp-dimensional column vector next to (gx)i, x 1, i gi- Since (g )i, x 1, commutes
with (a)i, x 1,, One can compute

(@' 1) (1o+1) x (lo+1) = (@ Dto1) x (o-+1) (98) (to+1) x (10+1) (@) (19+1) x (1o+1)

(9k)to x 1y @o+1(a™ g x10Ve _ ((9k)igx 1y Wi
0 1 0 1

where
o ~1
Wi = a1, 11(a” " )ig x 1o Vi
As (g1)(19+1) x (lo+1) does not commute with (a)(o41) x (19+1), We have
Vi # Wi

From this and the dichotomy assumption on the entries of g (k € N), one can then deduce that
vy # 0, vi — oo and
Wi — Vie = (a1 (0 ig x 1o — Lip ) vie = 00

as k — oo. Here I, is the [y x lp identity matrix.
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Now we can compute

(a_lgkaglzl)(lo-&-l) x (lo+1) = (G_lgka)(zo+1) X (10+1)(9;;1)(10+1) x (lo+1)

_ ((gk)g)xlo V‘ik) <(gl~c)6o><l0 Vll~c>_1

_ (T Wk —Vi
0 1 '

Since wi — v — 00 as k — 00, the equation above implies that {a_lgkag,; diverges, which

g
keN
contradicts the boundedness of {gkagk_l} wen- Lhis completes the proof of the lemma. O

COROLLARY 5.3. Let S C A be a subgroup in A. Then, for any t € Lie(S), either Ad(gx)t — oo
as k — oo or Ad(gx)t =t for all k.

Proof. Apply Lemmas 5.1 and 5.2 with a = exp(t). O

DEFINITION 5.4. We define a graph G({gx}ren) = (V, E) associated to {gx}ren as follows. The
set of vertices V is the index set [n] = {1,2,...,n}. Two vertices i < j are connected by an edge
in the edge set E, which we denote by ¢ ~ j, if u;;(k) — oo as k — oo.

We can now prove our first result in this section.

PROPOSITION 5.5. The subalgebra A(A,{gr}ren) of Lie(A) (as defined in Definition 2.2) is
trivial if and only if the graph G({gx}ren) associated to {gi}ren is connected.

Proof. Suppose that the graph G({gx}ren) associated to {gx}ren is not connected. Let G; =
(Vi, Ey) (1 <1< m) be the connected components of G({gx }ren). We pick z; € R\ {0} such that
Yoy IVilep = 0. Now if a vertex i € V; C [n], we set t; = x;. In this way we obtain an element
t = (ti)1<i<n € Lie(A) \ {0}. Note that t is invertible. We show that

grt = tgg.
Indeed, since t is invertible, we compute
tgrt ™" = (tit; "uij (k) 1<ijsn-
For u;;(k) # 0, by the definition of the graph G({gx}ren), the vertices i and j are in the same
connected component. Hence we have ¢; = t; and
tort ™! = (tit; i (k)1<ijon = (uij(k))1<ij<n = 0k

as desired. This implies that Ad(gx) fixes t, and by definition t € A(A, {gx }ren) # {0}.

Now assume that the graph G({gx}ren) is connected. Suppose that A(A, {gr}ren) is not
zero. Then there exists an element t € Lie A \ {0} such that Ad(gx)t is bounded as k — oo. Let
a=expt € A\ {e}. Then {grag, '} is bounded in SL(n,R). By Lemma 5.2, g commutes with
a. If we write a = diag(ay, as, - . ., ay), then the equation g, = agra™" yields

(i (k))1<ijen = (aia; "uii(k))i<ij<n

and hence a; = a; whenever u;j(k) # 0. The connectedness of the graph G({gi }ren) then implies
that all the a; are equal and a = e, which contradicts a € A\ {e}. This completes the proof of
the proposition. ]
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DEFINITION 5.6. Let G(V, E) be a graph consisting of the set of vertices V' and the set of edges
E. Here we assume V = {vy,va,...,v,} is an ordered set with the ordering <, and we write
v; ~ v; if v; and v; are connected by an edge in E. A subset S C V is called UDS (uniquely
determined by successors) if it satisfies the following property: for any v; € V,

v, €S = v; €8 forall j <iwith v; ~ v;. (1)

For our purpose, we will consider UDS subsets of [n] in the graph G({gx }ren) associated to
{9k }ken. The ordering of [n] inherits the natural ordering on N. The following proposition will
be needed in our computations later.

PROPOSITION 5.7. For any 1 <1 < n and any nonempty I € T, the sequence {grer tren C A'R™
is bounded if and only if I is UDS in the vertex set [n] of G({gk}ken). If this case happens, then
we have gper = ey for any k € N,

Proof. Let I = {i; < iy < ---<1;}. Suppose that {gres}ren is bounded. We show that I is UDS
in [n]. If not, let iy be the minimum in I = {i1,...,4;} such that property (1) in Definition 5.6
does not hold for ig. Then there is jy < ip with jo ~ o but jo ¢ I. By the minimality of i, for
any ¢ € I = {i1,19,...,4} with jo < i < ig, we have jy # i; otherwise jy € I. This implies that
wj,i(k) = 0 for all i € {iy,2,...,4;} with i < ip. Note that wj, ;,(k) — oo as k — oo by our
assumption on the entries of g (k € N).

Now we compute grper. In particular, by expanding grer in terms of the standard basis
{ej:J €TIL} in A'R", we are interested in the coefficient in the e j,-coordinate, where Jo = {i €
I:i#i0}U{jo}. As uj, (k) =0 for all i € {i1,49,...,4;} with i < iy, one can compute

grer = oo (K) (Niericin€i) A€o A (Nierisioei) + Y cjey
J#Jo

for some ¢; € R (J # Jy). The divergence of uj, ;,(k) then contradicts the boundedness of gier.
This proves that I is UDS.
Conversely, suppose that I is a UDS subset in [n]. In this case, we will show inductively that,
for any 1 < j </,
gk (eiy A ey /\---/\eij) =ej Negp N Nej;

and hence obtain that gyer = gr(ei, Aei, A--- Ae;,) remains fixed. For j = 1, since {i1,...,%}
is UDS, this implies that u;;, = 0 for all ¢ < 41 and gre;;, = e;,. Now assume that the formula
holds for j. For j + 1, we know that

GkCijq = €ijyq T E Wii;, . (K)ei

i€{it,enrij}
and hence
gr(€iy Neiy A-v-Neig Nejj ) = ey Neiy A+ ANeig A (greis,,)
=€ /\61'2/\"'/\62'j /\ein.
This completes the proof of the proposition. O

Finally, we will show the following lemma, which will be crucial in our study of convex
polytopes in §6.
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LEMMA 5.8. Let G(V, E) be a connected graph, where V. = {v1,ve,...,v,} is an ordered set
with the ordering <. Then we can assign values x1,Ts,...,T, to the vertices vi,vs,...,v, such
that:

(i) 2pev @i =0;
(ii) for any proper UDS subset S C V, >, g x; > 0.

Proof. We use induction on the number of vertices in G(V, E). There is nothing to prove for
n = 1. Now suppose that we have n + 1 vertices. Assume without loss of generality that v;
is the smallest according to the ordering < on V. We remove the vertex v; and all the edges
adjacent to vy from the graph G. This yields a new graph G’ with m connected components
Gy =, BY), ..., Gy = (Vi,, Ey,) for some m € N. Since [V/| <n (1 <j<m)and V] inherits
the ordering from V', we can apply the induction hypothesis on each G; = (V/, E}). In particular,
we obtain a vector (5,...,2,, ;) € R" such that the value assignment
v oy, 2<i<n+1

satisfies conditions (1) and (2) for each of the graphs G’ (1 < j < m).
Now we pick a sufficiently small positive number ¢ > 0 such that the new value assignment
z; = x; — € (2 <i < n+ 1) still satisfies condition (2) for each G = (V}, EY), and let x1 = ne.
We show that this value assignment
v x;, 1<i<n+1

meets our requirements for G(V, E). The sum of z; is zero by induction hypothesis. For a proper
UDS subset S C V, if v; ¢ S, then
m
S=Js;

j=1
where 57 is a subset in G = (V/, E}) (1 < j < m), and either S} is a proper UDS subset in
G = (V],E}) or S; = V]. Since v1 ¢ S, by the connectedness of G(V, E) and the UDS property
of S, there is some j with S} # V] and hence, by taking e sufficiently small,

S e=3" Ym0

v, €S 7=1 ’UiES;-

If S = {v1}, then condition (2) holds automatically. If v; € S and S # {v1}, then
S\{u} =9
j=1

where S} is a subset in G = (V/, E}) (1 < j < m), and either S} is a proper UDS subset in
G = (V/,E}) or S7 = V. Since S is proper in V, there is some j with S} # V/, and hence we

have
m
in :Z Z x; +x1 > (—ne) +ne = 0.
v;€S Jj=1 'UiES;-
This completes the proof of the lemma. O

6. Convex polytopes revisited

In this section we will study the convex polytopes €, 5, where {gi}ren is a sequence in G
satisfying the condition in Theorem 2.5. Our aim in this section is Proposition 6.3, which shows
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a crucial property of €, 5 concerning its surface area and volume. This property will play an
important role at various points in the paper.

In the proof of Theorem 2.5, the case of A(A,{gx}ren) = {0} plays a central role, and
other cases can be deduced from this case. We remark here that in view of Corollary 5.3, A(A,
{9k }ren) = {0} if and only if the limit points of {Ad(gy) Lie(A) }ken in the Grassmanian manifold
of g are subalgebras consisting of nilpotent matrices. So from this section to §9, we will make
additional assumptions on {gx }ren that A(A, {gr}ren) = {0}, and by passing to a subsequence,
Ad(gy) Lie(A) converges to a subalgebra consisting of nilpotent matrices in the Grassmanian
manifold of g. We write limy_, oo Ad(gy) Lie(A) for the limiting subalgebra and limy_, o, Ad(gx)A
for the corresponding limiting unipotent subgroup.

LEMMA 6.1. For any 0 < § < 1, the region
{t € Lie(A) : wr(t) > Iné,V nonempty proper UDS I € I,,}
is a convex subset in Lie(A) which contains an unbound open cone.

Proof. 1t suffices to prove the lemma for the region
{t € Lie(A) : wy(t) > 0,V nonempty proper UDS I € 7,}.

By our assumptions on {gi }ren and Proposition 5.5, the graph G ({gx }ren) associated to {gx }ken
is connected. Now by applying Lemma 5.8 with the graph G({gx}ren), one can find x = (21, 22,
., Tp) € Lie(A) such that

x € {t € Lie(A) : wy(t) > 0,V nonempty proper UDS [ € Z,,}.
Then by linearity, for any A > 0,
Ax € {t € Lie(A4) : wy(t) > 0,V nonempty proper UDS I € Z,,}.

This implies that there exists an unbounded open cone around the axis {Ax, A\ > 0}, which is
contained in
{t € Lie(A) : wy(t) > 0,V nonempty proper UDS I € 7,}.

This completes the proof of the lemma. O

LEMMA 6.2. Let 0 < ¢ < 1. For every k € N, the region €, 5 contains a ball By, of radius 7y,
and rp, — 00 as k — oo.

Proof. By definition, we know that

Qs = ﬂ {t € Lie(A) : w(t) > Ind — In||gres||}-
1€,

Note that the origin belongs to €1, 5, because each g is in the upper triangular unipotent
subgroup and ||gier|| = 1 for nonempty I € Z,,. Now we can write

Q5= (] {wr(t) >W(8/lgrerDIn () {wr(t) > 8/ llgresll)}

1UDS I non-UDS
= (N {wr®)=mayn () {wr(t) = In(6/grer]))}
1UDS I non-UDS
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where we use grer = ey for any UDS set I by Proposition 5.7. For a non-UDS set I, we have
grer — oo as k — oo.
Since gre;r — oo for any non-UDS set I, the region

() A{wr(t) > In(8/llgrerl)}
I non-UDS
contains a large ball S around the origin for sufficiently large k. By Lemma 6.1, the region
() {wi(t) >1nd}
I1UDS

contains an unbounded cone C' (which does not depend on k) with cusp at the origin. This
implies that
Qg6 D5:,NC

and €2y, s contains a large ball By, of radius 7 with 7, — oo as k — oo. O
PROPOSITION 6.3. For any 0 < § < 1, we have

Area (08, 5)

= 0.
Fobe Vol(Q, )

Proof. The proposition follows from Lemmas 4.4 and 6.2. a
Actually, we will apply the following variant of Proposition 6.3 later.

COROLLARY 6.4. Let 0 < d1 < §o < 1. Then

lim V01(99k752)
k— o0 VOI(ng’gl )

Proof. By definition, we know that Qg, 5, C Qg, 5,. Let {f;} be the collection of the facets of
Qg, 5., and denote by P; the hyperplane determined by f;. For each f;, let B; be the unique
cylinder with the following properties.

(i) The base of B; is f;, and the height of B; is equal to Inds — In d;.

(ii) B; and Qg, 5, lie in the same half-space determined by P;.

=1.

Then we have
Qg6 C U Bi UQy, s,
i

and
Vol(Qg, 5,) < Y Vol(B;) + Vol(Q, 5,) = (Indy — Indy) Area(9€y, 5,) + Vol(Qy, 5,)-

Now the corollary follows from Proposition 6.3. |

From now on, we will fix a § > 0 for any g € G in the notation {1, s unless otherwise specified.
For each k£ € N, we choose the representative

_ L
Vol(Q, ) k) rHAwe

in [(gk)«ttaz,.]- We will show in the following section that these representatives converge to a
locally finite measure v. We will denote by

Az |0y, 5

the restriction of 14, on exp(£y, 5)Te.
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7. Nondivergence
In this section we will study the nondivergence of the sequence

Vol(ng’(S) gk} *,qume'

The study relies on a growth property of a special class of functions studied by Eskin, Mozes
and Shah [EMS97], and a nondivergence theorem proved by Kleinbock and Margulis [KM98,
Klel0]. As a corollary we will deduce that these measures actually converge to a probability
measure, which is invariant under a unipotent subgroup. This is where Ratner’s theorem will
come into play in §9 and help us prove the measure rigidity. The goal in this section is to prove
Proposition 7.7.

First, we need the following definition of a class of functions, which is introduced in [EMS97].

DEFINITION 7.1 [EMS97, Definition 2.1]. Let d € N and A > 0 be given. Define by E(d, \) the
set of functions f : R — C of the form

d
F) = aeM (deR)
=1

where a; € C and \; € C with |N\;] < A,

The following proposition describes the growth property of functions in E(d, \). We denote
by mg the Lebesgue measure on R.

PropOSITION 7.2 [EMS97, Corollary 2.10]. For any d € N and \ > 0, there exists a constant
0o = do(d, \) satisfying the following condition: for any € > 0, there exists M > 0 such that, for
any f € E(d,\) and any interval = of length at most dy,

m({t €2+ S0 < (/M) sup (1) }) < ems (). 2

For any nonzero discrete subgroup A in R", one could define its covolume as follows. Let
{v1,v2,...,u} be a Z-basis of A, where [ is the rank of A. Then the covolume of A is defined
to be the length of the wedge product v A --- A vy in A'R™, where the norm in A'R” is induced
by the Euclidean norm on R™. In an abuse of notation, we will write ||A|| for the covolume of A.
One can check that this notion of covolume is well defined.

The following theorem is essentially proved in [Kle10, KM98].

THEOREM 7.3 (Cf. [Klel0, Theorem 3.4], [KM98, Theorem 5.2]). Let d € N and A > 0. Let
0o = do(d, \) be as in Proposition 7.2. Suppose that an interval = C R of length at most dy,
0 < p <1 and a continuous map h : = — SL(n,R) are given. Assume that for any nonzero
discrete subgroup A in Z™ we have that

(i) the function x — ||h(x)A|?> on E belongs to E(d, )\); and
(i) supgez [h(2)A[l = p.
Then, for any € < p, there exists a constant 6(e) > 0 depending only on d and \ such that

mr({x € Z: h(z)Z" N Bse) # {0}}) < emg(Z).
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Proof. The proof is the same as in [KM98, Theorem 5.2], but inequality (2) is used instead of
the (C, a)-good property. O

LEMMA 7.4. Let E be a normed vector space, and let o; (1 < i < m) be different linear functionals
on E. Then, for any r > 0, we can find m vectors x1,xa, ..., Ty € B,(0) such that

det((e* @)1 em) # 0.

Here B,.(0) is the ball of radius r around 0 in E.

Proof. We can find a line L through the origin such that «;|L are different functionals defined
on L. This could be achieved by picking a line which avoids all the kernels of o; — ;. Hence, it
suffices to prove the lemma for dim £ = 1.

Let £ =R and «;(x) = Az for different \;. We will show inductively that for any r > 0 there
exist x1,x2,...,Tm € (—r,r) such that

det((€Y"9) 1< j<m) # 0.
It is easy to verify for m = 1. Now, for m + 1 different \;, we compute
det (M) 1<ijamy1) = eMTmHLAL 4 2Tm Ay o Am1Tmil 4

where Ay, 11 = det((e)‘ixj)lgi,jgm). By the induction hypothesis, we can find z1,x9,...,Tm €
(—r,7) such that A, 41 # 0. By the fact that e*® (1 <i < m) are linearly independent functions,
and by the choice of z1,xs,...,Ty, the function det((eAixj)1<i7j<m+1) is a nonzero analytic
function in x,,41. Since zeros of any analytic function are isolated, this implies that there exists
Tmt1 € (=7, 1) such that det((€%)1<; j<mi1) # 0. O

The following proposition describes the supremum of a special function. We will need this
proposition to verify assumption (ii) in Theorem 7.3.

PROPOSITION 7.5. Let E and V' be normed vector spaces, and v; € V (1 < i < m). Let f be a
map from E to V defined by

flz)= Z i@y,
i—1

where the «; (1 < i < m) are different linear functionals on E. Suppose that on an open ball
R C F of radius r > 0 we have

i@l > M, VeeR1<i<m

for some M > 0. Then there exists a constant ¢ > 0 which only depends on the «; and r such
that

sup || f(z)]| = M.

TER

Proof. Let xg be the center of R and B, (0) the ball of radius 7 around 0 in E. Then R = zo+B5;(0).
By Lemma 7.4, we can find y; € B, (0) (1 < j < m) such that

det (€)1 < i<m) # 0.
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We fix this choice of y; which only depends on the o; and r. Let z; =29+ y; € R (1 < j < m).
We have

(€)1 < icm (e v) 1cicm = (f(25))1<j<ms

(eai(zo)vi)lggm - (6ai(yj));glj,igm(f(xj))lgjgm‘

Let C be the matrix norm of (eo‘i(yf))lglj i<m- Oince

this implies that one of || f(z;)|| (1 < j < m) is at least M /mC. Hence sup,cp || f(x)| > ¢M with
c=1/mC. O

For any g € G, xo € Lie(A), a unit vector v € Lie(A) and w = ;.1 wres € AR™ (w; € R),
the function
t = |lgexp(zo + t7) - wl|?
belongs to F(d, \), where d = n?!, A = 2] and || -|| is the norm on A'R" induced by the Euclidean
norm on R™. Indeed,
exp(xo + t0) - w = Z wrexp(zo + t0) - er
IeT},

is a vector in A/R™ with coordinates being exponential functions of t. Hence, g exp(xq + t7) - w is
a vector whose coordinates are sums of exponential functions of . By a simple calculation, one
could get that the function ||gexp(zo + t7) - w||? belongs to F(d, \) with d = n?' and A = 2I. In
what follows, we will study functions of this kind.

With the help of Theorem 7.3 and Proposition 7.5, we can now study the nondivergence of
the sequence (1/Vol(Qq, 5))(9k)+ttAz. We write

K, :={gT € G/T : every nonzero vector in gZ" has norm > r}.

By Mahler’s compactness criterion, this is a compact subset in G/T". The following proposition
is crucial in the proof of Proposition 7.7.

PROPOSITION 7.6. For any € > 0, there exists a constant d(e) > 0 such that. for sufficiently large
k e N.

Myic(a)({t € Qg6 0 g exp(t)Z" ¢ Kse)}) < empic(a)(Qgy.0)-
Proof. Fix a unit vector ¥ € Lie(A) such that the values in
{wr(¥): I € L,}

are all different. Let d = n®® and A = 2n such that for any zq € Lie(A4), I € N, w € A'R™ and
k € N, the function
g exp(ao + 17) - wl?, ¢ € R,
belongs to E(d, A) as defined in Definition 7.1. We will write &y for the constant do(d, A) defined
in Proposition 7.2.
We can find a cover of g, 5 by countably many disjoint small boxes of diameter at most dg
such that each box is of the form

B={xg+1t0:29€S,t €=}
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where S is the base of B perpendicular to ¥ and Z = [0, dp]. We denote by F the collection of
these boxes. Let F = F1 U F2 where F7 is the collection of the boxes in F which intersect 0}, s
and Fp = F \ Fi. Then for any box B € F», B is contained in g, 5.

Since the diameter of each box in F is at most §p, in view of Lemmas 4.6 and 6.2 and
Proposition 6.3, for any € > 0, we have

Mie(A < U B> lee( )(ng,6)

BeFi

for sufficiently large k. In order to prove the proposition, it suffices to show that for any € > 0,
there exists d(e) > 0 such that for each box B € F», we have

€

SMiie(a)(B)-

Miiea)({t € B : grexp(t)Z" ¢ K5 }) < 5

Now fix a box B € Fy with
B={xg+tv:29€ S,t €E}

where S is the base of B and = = [0, dp]. We will apply Theorem 7.3. Let A be a nonzero discrete
subgroup of rank [ in Z™ with a Z-basis {v1,va,...,v;} C Z". The wedge product v1 A--- A v €
A'R™ can be written as

U1 AN = Z arer

IeT},

where a; € Z. We define a map from B to A'R" by

fa(t) = (grexpt)(vi A+ Ayp) = Z are'Ogrer, teB.
IeT}

For each z¢ € S, we consider the map
t— fa(xg + t0)
from = = [0, do] to A'R™. Since B C g, 5, by our construction of €1, 5, we have
|er @t ger|| > 6, Vte B VeIl

By Proposition 7.5, we have

sup || fa(zo + t0)[| = co.
te=

Note that by Proposition 7.5, this inequality holds with a uniform constant ¢ > 0 depending
only on wy(t) (I € Z,) and d¢ for any nonzero A C Z". Since || fa(zo + t¥)| is the covolume of
gr(exp(zo + t9))A and || fa(xo + t¥)||? is a function in E(d, \), we can apply Theorem 7.3 and
obtain that .

r({t € Z: grexp(wo + tV)Z" ¢ Ks(e}) < §mR(E)

for some constant d(e) > 0 and for any xo € S. Now by integrating the inequality above over the
region xg € S, we have

€

=Mje(a)(B).

miie(4)({t € Bz grexp(t)Z" ¢ Kso}) < 5

The proposition now follows. o
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We can now prove the main result in this section.

PROPOSITION 7.7. By passing to a subsequence, the sequence (1/Vol(Sg, 5))(gr)+(1taz. |0y, 5)
converges to a probability measure v. Furthermore, we have

1
m(gk)*ﬂAme -V

and hence the sequence [(gx)«ftAz,| converges to [v]. Here the probability measure v is invariant
under the action of the unipotent subgroup lim,,_, ~, Ad(gx)A.

Proof. Suppose that the sequence of probability measures

1
Ui W‘%)(gk)*(MACEE‘ng,é)

weakly converges to a measure v after passing to a subsequence. We show that v is a probability
measure. It is obvious that v(X) < 1.

Now, for any € > 0, let Ks() be the compact subset in G/T" as in Proposition 7.6. Let f be a
nonnegative continuous function with compact support on G/I" such that 0 < fe <1 and f. =1
on Ks). Then we have

/ fedv = Jim / fodyn, > Timsup s (Ky0) > 1=

where the last inequality follows from Proposition 7.6. By taking ¢ — 0, we conclude that v is a
probability measure.
For the second claim, we will show that
(o) () (an ) = O
Vol(Q, g) A T Vo(@, ) A T

Let f € C.(X). Since f has compact support, there exists a small number ¢’ < ¢ such that

/X F(90) dpias, () = /L Ly ooz dt = /Q f(gr exp(t)zc) dt.

918"

Here dt = dmye() (t) is the natural measure on Lie(A). By Corollary 6.4, we have

) dp Ay — ) ditax

’VOI 0y a) /fgkw faz, () — Vol ) /fgkw paz.|ay, s (%)
1 / 1

o f(gr exp(t)z.) dt — / f(gr exp(t)z.) dt’

‘ VOI(ng,(S) ng,é/ VOl(ng,(S) ngﬂg

ol
—_ f(gr exp(t)xe dt’
‘VOI(QQIW ) Qg 5/\ng 5 ( ( ) )
Vol(€2g, 5) — Vol(£2g, 5)
Vol(£2g, 5)

< [ flloo
Here || f|loo is the supremum of f. Since (gx)«/ta, is invariant under the action of Ad(g)A, the

probability measure v is invariant under the action of limy_, o, Ad(gx)A, which is a unipotent
subgroup by our assumption on {g}xen- O
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8. Nondivergence in terms of adjoint representations

In this section we rewrite § 7 in terms of adjoint representations. The reason of doing this is that
we can then apply Ratner’s theorem for unipotent actions on homogeneous spaces.

Let Ad : G — SL(g) be the adjoint representation of G = SL(n,R). The Lie algebra
g = sl(n,R) has a Q-basis
where E;; (i # j) is the matrix with only nonzero entry 1 in the ith row and the jth column,
and E;; (1 <i<n—1)is the diagonal matrix with 1 as (¢,4)th entry and —1 as (i + 1,7 + 1)th
entry. We will also consider the representations A Ad : G — SL(Alg) for 1 <1 < dimg — 1. The

set of all Ith wedge products of vectors in B is then a Q-basis of Alg, which we denote by B;.
Let 1 <1 < dimg — 1. For Alg, its decomposition with respect to the action of A’ Ad A is

given by
Ng=> gy
X
where each x is a linear functional on Lie(A) such that, for any t € Lie(A) and v € gy,
AL Ad(exp(t))v = exp(x(t))v.

We denote by Wj(g) the collection of all such linear functionals x, and let

dimg—1

W)= |J Wile).
=1

We know that each g, (x € Wi(g)) has a Q-basis from Bj, and we denote by g, (Z) the subset of
integer vectors with respect to this basis.

Now let g € G. We define for gAT" another convex polytope in Lie(A4) in terms of adjoint
representations, which is similar to the convex polytope 2,5 in §4. Let 1 <! < dimg — 1 and

X € Wi(g). Let v € g, (Z) \ {0}. Then for t € Lie(A), the vector
A Ad(gexp(t))v = eX®) AL Ad(g)v ¢ Bj

if and only if
x(t) > 1Iné —In| AL Ad(g)v||.

Here Bs denotes the ball of radius § > 0 around 0 with the norm || - || on Alg induced by the
norm || - ||; on g. We now give the following definition.

DEFINITION 8.1. For any g € G and 6 > 0, we denote by R, s the subset of points t € Lie(A)

satisfying
x(£) > né —In || Al Ad(g)o]

for any v € g,(Z) \ {0}, x € Wi(g) and 1 <! < dimg— 1.
The proof of the following proposition is similar to that of Lemma 4.3.
PROPOSITION 8.2. The subset Ry s is a bounded convex polytope in Lie(A) for any g € G and
6 > 0.
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Here we list some properties about the convex polytopes Ry, s (k € N), which are parallel to
those in §§6 and 7.

PROPOSITION 8.3. Let § > 0. We have the following statements.

(i) For any € > 0 there exists 0(¢) > 0 such that, for sufficiently large k > 0,

MLie(4) (Rgy.60e) N Qgi) = (1 — €)mie(a)(Qgy.6)-
(ii) For sufficiently large k, Ry, s contains a ball of radius r > 0, and 1, — 00 as k — o0.
Proof. For any € > 0, let d(¢) be as in Proposition 7.6. By applying Mahler’s compactness
criterion on the space of unimodular lattices in Alg (1 <1 < dimg — 1), we can find a §(¢) > 0

such that
{t S ngﬁ L Ok exp(t)Z" S IC(S(E)} - ng,é’(e) N ng,é-

Now the first part of the proposition follows from Proposition 7.6.

For the second part, we fix € > 0. By Lemmas 4.5 and 6.2 and the first claim of the proposition,
for sufficiently large k£ € N, the convex polytope Ry, s5.) D Ry, s5(c) {2, s contains a ball of radius
T, and 1 — 00 as k — 00. By definition, the same holds for R, s for any ¢ > 0. O

PRrROPOSITION 8.4. For any § > 0, we have

Area(ORg, 5)

=0.
Koo Vol(Ry,s)
Proof. The proof is identical to that of Proposition 6.3. O

PROPOSITION 8.5. Let § > 0. For any € > 0, there exists a constant 6(e) > 0 such that, for
sufficiently large k,

Miie(a)({t € Ry,5 1 grexp(t)Z" & Ks)}) < empiea) (R, s)-

Proof. The proof is similar to that of Proposition 7.6, except that we replace the linear functionals
wr(t) by x in Wi(g) (1 <! <dimg—1). O

PROPOSITION 8.6. Let § > 0. By passing to a subsequence, the sequence (1/Vol(Ry, ;))
(9k)« (1 Az Ry, ;) converges to a probability measure v. We also have

1

Vol(Ry, 5) (91)eptae = v

and hence the sequence [gxiia;| converges to [v]. Furthermore, the probability measure v is
invariant under the action of the unipotent subgroup lim,,_,~, Ad(gx)A.

Proof. The proof is identical to Proposition 7.7 with g, s replaced by Ry, s. O
The following is an immediate corollary of Propositions 3.3, 7.7 and 8.6.

COROLLARY 8.7. For any 6 > 0, we have

lim Vol(€yg, 5)

=1
k— o0 VOI(ng,zS)

In the rest of the paper we will fix a § > 0 for Ry, 5 (k € N) unless otherwise specified.
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9. Ratner’s theorem and linearization

Because of Proposition 8.6, we can apply the measure classification theorem for unipotent actions
on homogeneous spaces. This theorem was first conjectured by Raghunathan and Dani [Dan81],
and later a breakthrough was made by Margulis in his celebrated proof of the Oppenheim
conjecture [Mar89]. Afterwards, the measure classification theorem was proved by Ratner in
her seminal work [Rat90a, Rat90b, Rat91]. One could also consult the paper by Margulis and
Tomanov [MT94] for a different proof. In this section, for convenience, we borrow the framework
and presentation of [MS95]. Readers may refer to [DM93] and [Sha91] for related discussions.
This section is the final step of preparation for the proof of Theorem 2.5, and is devoted to
proving Proposition 9.6.

9.1 Prerequisites
We start by recalling some well-known results (see [MS95] for more details). Let H be the
countable collection of all closed connected subgroups H of G such that H N T is a lattice in H
and the group generated by one-parameter unipotent subgroups in H acts ergodically on HT'/T’
with respect to the H-invariant probability measure.

Let W = limy o Ad(gr)A. By our assumptions on {gx}ren, W is a connected unipotent
subgroup of G. Let 7w : G — G/T" be the natural projection map. For H € H, define

NHW)={geG:W CgHg '}, SHW)= |J NH W),
H'eM,H'CH
Ty(W) = m(N(H, W)\r(S(H,W)).
For any Hyi,Hy € H, Ty, (W) and Tg, (W) intersect if and only if T, (W) = Tx, (W).

THEOREM 9.1 [Rat91], [MS95, Theorem 2.2]. Let p be a W-invariant probability measure on X.
For any H € H, let puw be the restriction of pn on T (W).

(i) We have =3 ycq, pa,w- Here H* is a set of representatives of I'-conjugacy classes in H.

(ii) For each H € H*, pp,w is W-invariant. Any W -invariant ergodic component of jup w is the
invariant probability measure on gHT'/T" for some g € N(H,W).

In the following, we will fix a subgroup H € H (H # G). Let dyy = dim Lie(H) and Vi = A% g.
Then G acts on Vi via the wedge product representation A% Ad. Since H is a Q-group, we can
find an integral point py € A% Lie(H) \ {0}. We will fix this py. Let N(H) be the normalizer
of H in G, and Ty = N(H)NT. Then 'y - py C {pu,—pu}. Define Vg = Vg /{1,-1} if
Ty -py = {pu,—pu}, and Vg = Vg if Uy - pg = py. The action of G on V induces an action
on Vi, and we define by

Tu(9) =9 Py
the orbit map 7y : G — Vg, where Py is the image of py in V. Since py is an integral point,
the orbit T - Dy is discrete in V. Let Ly be the Zariski closure of 5 (N(H,W)) in V. By
[DM93, Proposition 3.2], we have 7' (L) = N(H,W).

PROPOSITION 9.2 [MS95, Proposition 3.2]. Let D be a compact subset of L. Let
S(D) ={g € 717 (D) : gy € 77 (D) for some v € T\ Ty }.

Then S(D) C S(H,W) and w(S(D)) is closed in X. Moreover, for any compact subset K C
X \ 7(S(D)), there exists a neighborhood ® of D in V' such that, for any y € 7(75 (®)) N K,
the set (71 (y)) N @ is a singleton.

1774

https://doi.org/10.1112/50010437X19007450 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007450

TRANSLATES OF DIVERGENT DIAGONAL ORBITS

9.2 Proof of Proposition 9.6

Now we begin to prove Proposition 9.6. Let {fi, fa,..., fm} be a set of polynomials defining
Ly in V. In the rest of the section we will fix a unit vector & € Lie(A) such that all the
linear functionals x € W(g) are different on . One can find d € N and A > 0 such that for any
zo € Lie(A), the functions of ¢ € R,

lgr exp(zo + t7) -wH2, filgrexp(zo +t0) -w), 1< j<m,

belong to E(d, \) as defined in Definition 7.1. Here the norm || - || on Vg is induced by the norm
|- |lg on g. We write o for the constant do(d, A) defined in Proposition 7.2.

ProprosITION 9.3 (Cf. [DM93, Proposition 4.2]). Let C' be a compact subset in Ly and € > 0.
Then there exists a compact subset D in Ly with C' C D such, that for any neighborhood ® of D
in Vg, there exists a neighborhood ¥ of C in V i with the following property. For xq € Lie(A),
we Vg, 2C[0,8] and k € N, if {g exp(xo + t¥) -w : t € Z} ¢ ®, then we have

mg({t € E: grexp(zo + t7) - w € ¥}) < emp({t € E: gi exp(zg + V) - w € P}).

Proof. Let d and A be defined as above. We choose a ball By(r) of radius r > 0 centered at
0 in Vg such that the closure C' C By(r). Now for € > 0, let M > 0 be the constant as in
Proposition 7.2. Denote by Bo(M'/?r) the ball of radius M'/?r > 0 centered at 0. Then we take

D := Bo(MY?r) N Ly,

and we will prove the proposition for this D.
Indeed, for any neighborhood ® of D in Vg7, one can find o > 0 such that

{ueVy:|lull < MY2r|fj(u)] <a(l<j<m)}cCd.
Define
Ui={ueVg:|ul|<r|fju)|<a/M}

which is a neighborhood of C' in V, and contained in ®. We show that ® and W satisfy the
desired property.
Suppose
{grexp(zog+tV) - w:t€E} ¢ O

for x¢ € Lie(A), w € Vg and = C [0, §]. Denote by J the closed subset
{t € 2 ||gr exp(axo + t7) - w|| < MY 2r, | f;(gr exp(xo + t7) - w)| < a (1 < j<m)},

One can write J as a disjoint union of the connected components I; of J,

3:Uh

On each I;, we have either

sup ||gr exp(zo + t0) - wH2 = Mr?

tel;

or
Sup | fi(gr exp(zo + t0) - w)| = a,
tel;
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for some 1 < j < m. Since ||gx, exp(zo + t7) - w||* and f;(gx exp(zo + t¥) - w) (1 < j < m) belong
to E(d, \), by Proposition 7.2 and the definition of ¥, we obtain
mr({t € I; : gr exp(zo + t¥) - w € ¥}) < emp(I;).
Now we compute
mr({t € E: grexp(xo +tV) - w € V}) = mp({t € T : gpexp(xo + V) - w € ¥})
= mg({t € I : gr exp(xq + t7) - w € T})

)

< ZGmR(Ii) = emR(’J)

< emp({t € E: gpexp(zo + t7) - w € D}).
This completes the proof of the proposition. |

For our purpose, we define a convex polytope in Ry, s as follows. By Proposition 8.4, we

know that
. Area(ORy, 5)
lim ——2%~

k—o0 VO](ngﬁ)
Therefore, for each k € N, we can find a constant d; > 0 such that

dy Area(OR
lim dy = oo and lim — rea(0Ry, )
k— o0 k— o0 VOI(ng75)

=0.

=0.

Then we denote by R;}w s the subset of points t € Lie(A) satisfying
X(t) > Ind + di — In || A" Ad(ge)o||

for any v € g, (Z) \ {0}, x € Wi(g),1 <1 < dimg — 1. This is a convex polytope inside Ry, ;.
In the following lemma we list some properties concerning R;k s (keN).

LEMMA 9.4. Let dj and ngkd be as defined above.

(i) We have
/
lim Vol(Ry, 5) =

k— o0 VOI(RQM(;) N
(ii) For1 <l < dimg— 1, a functional x € Wj(g), a nonzero v € g,(Z) and k € N, we have

X (AL Ad(g)v)| = det (Vi € R, 5).

(iii) For any xg in the dyg-neighborhood R’gk s and for the interval = = [0,dg], there exists a
constant ¢ > 0 which depends only on the linear functionals in W(g) and ¢y, such that for
any nonzero integer vector w € Alg (1 <1< dimg — 1), we have

sup || AL (Ad(gg exp(xo + t7))) - wl| > cde.
te=

Proof. The proof of the first claim is similar to that of Corollary 6.4. Indeed, let {f;} be the
collection of the facets of Ry, s, and denote by P; the hyperplane determined by f;. For each f;,
let B; be the unique cylinder with the following properties.

(a) The base of B; is f;, and the height of B; is equal to dy.
(b) B; and Ry, s lie in the same half-space determined by P;.
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Then we have

Vol(Ry, 5) = U B; UVOl(R], 5)

and

Vol(Ry, 5) < ZVOI(Bi) + Vol(R;k’(;) = dj, Area(0Ry, 5) + Vol( /%5).

Now the first claim follows from our choice of d..
The second claim follows from the definition of R;k, s- To prove the last statement, we write,

for any nonzero integer vector w € Al g,
=Y w,
XEWi(g)
where w, € gy(Z). One can compute

(N Ad(grexp(t))) - w = 3~ X A Ad(gi)uwy.
X

Now the last claim follows from the second claim of the lemma and Proposition 7.5. O
The following proposition is an important step toward Proposition 9.6.

ProprosITION 9.5 (Cf. [MS95, Proposition 3.4]). Let C be a compact subset in Ly and
0 < € < 1. Then there exists a closed subset S in w(S(H,W)) with the following property.
For any compact set K C X \ S, there exists a neighborhood ¥ of C in Vg such that, for
sufficiently large k, for any xq in the dp-neighborhood of ngk,é and E = [0, dp], we have

mr({t € Z: gy exp(zg + t7)Z" € KN w75 (¥))}) < emg(E).

Proof. Let D C Lg be a compact set as in Proposition 9.3 for C and e. Then we get a closed
subset § = 7(S(D)) as in Proposition 9.2. Now for a compact subset  in X \ S, let ® be an
open neighborhood of D in V as in Proposition 9.2. Then we have a neighborhood ¥ of C in
V i as in Proposition 9.3.

By the choice of zg and Lemma 9.4, for any nonzero integer vector w € A% g, we have

sup || g exp(zo + t7) - w|| = cder
te=

for some ¢ > 0 depending only on W(g) and dy. Hence,
{grexp(zo +10) - w:t€E} ¢ @

for sufficiently large k.
Now, for any s € Z with

gk exp(zo + sU)Z" € K Nw(75 (P)),
by Proposition 9.2, there is a unique element wy in 775 (") such that
gk exp(zo + sU) - ws € V.
Let Is = [as, bs] be the largest closed interval in = containing s such that:

(i) for any t € I, we have gy exp(xg + t¥) - ws € ®;
(ii) either gy exp(zo + as¥) - ws or g exp(wg + bs¥) - ws € @\ D.
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We denote by F the collection of all these intervals I as s runs over = with
grexp(zo + sU)Z" € K N7 (V).

By Proposition 9.2, we know that the intervals in F cover = at most twice. By Proposition 9.3,

we have
mg(t € Z : gy exp(zo + t0)Z" € KN 775 (V)
< Z mg(t € Is : g exp(zo + tV) - ws € V)
I,eF
< Z emr(t € Is : gr exp(xo + tU) - ws € P)
IseF
<e¢ Z mg(ls) < 2emp(2).
IseF
This completes the proof of the proposition. O

PROPOSITION 9.6. Let C be a compact set in Ly and 0 < € < 1. Then there exists a closed
subset S in w(S(H,W)) with the following property. For any compact set K C X \'S, there exists
a neighborhood V¥ of C' in V i such that, for sufficiently large k > 0, we have

Miie(a)({t € Ry, 5 grexp(t)Z" € KN 15 (9))}) < empie(a) (Ryes).
Proof. By Lemma 9.4, let k be sufficiently large such that

MLie(A) (ng,é \ R;k,(s) <€

Miiea)(Rgs) 2

We can find a cover of the region ngk 5 by countably many disjoint small boxes of diameter at
most dg such that each box is of the form

B={zg+t0:zp€ SandtecE}

where S is the base of B perpendicular to ¥, and = = [0, dg]. Denote by F the collection of these
boxes.

For any B € F, and for any z( in the base S of B, z¢ is in the dp-neighborhood of R;kﬁ' By
Proposition 9.5 we obtain that

mr({t € Z : gy exp(zg + t9)Z" € KN w(f; (¥)}) < %mR(E)

for sufficiently large k. By integrating the inequality above over the base S, we have

€

Mye(a)({t € B : grexp(t)Z" € KN 7 (75, (¥))}) < §’mLie(A)(B)~

By the choice of di and F, for sufficiently large &k, we have

U B C ng»fs‘
BeF
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Now we compute
Mise(a)({t € Ry, 5 : grexp(t)Z" € KN (7 ())})
< Mpie(a)({t € Ry 5\ Ry, 5 g exp(t)Z" € KN (7' (¥))3)
+ Z miie(a)({t € B : grexp(t)Z" € KN 77 (¥))})

BeF
€ €
< imLie(A)(ng,é) + Z §mLie(A)(B) < empie(a)(Rgy.5)-
BeF
The proposition now follows. O

10. Proofs of Theorems 2.4, 2.5 and 2.6

Proof of Theorem 2.5. We will prove the theorem by induction. Let g = (u;(k))1<i j<n (kK € N)
be a sequence in the upper triangular unipotent subgroup N of SL(n,R), and for each pair i < j,
either u;;(k) is zero for all k or u;;(k) # 0 and diverges to infinity.

Suppose for a start that A(A, {gr}ren) = {0}. By passing to a subsequence, we may further
assume that Ad gx(Lie A) converges to a subalgebra consisting of nilpotent elements in g, in
the space of the Grassmanian of g. Then, by Proposition 8.6, after passing to a subsequence,
[(gr)«ttAz,| converges to [v] for a probability measure v. Furthermore, we have

(@ anlr, ) =
VOI(Rg]w(S) k)« LAz, ng’(g v

and v is invariant under the unipotent subgroup W = limy_, o, Ad(gx)A.

We will apply Ratner’s theorem and the technique of linearization to prove that v is the
Haar measure on SL(n,R)/ SL(n,Z). According to Theorem 9.1, suppose by way of contradiction
that for some H € H* (H # G) we have v(Ty(W)) > 0. Then we can find a compact subset
C C Ty (W) such that

v(C)=a>0.
Now let 0 < € < a, C7 = Ng(C) and S the closed subset of X as in Proposition 9.6. Since
CNS =@, we can pick a compact neighborhood K C X \ S of C. Then by Proposition 9.6, there
exists a neighborhood ¥ of C in V such that, for sufficiently large k& > 0,

Myse(a)({t € Ry, s : grexp(t)Z" € KN w0 (¥))}) < empie(ay(Rg,.5)

and
C C Knna@g(v)).

This implies that
v(C) <e<a

which contradicts the equation v(C) = a. Hence v is the Haar measure on SL(n,R)/SL(n,Z).
Now suppose that A(A, {gx}ren) # {0}. Then, by Corollary 5.3, the subgroup

S ={a€A:agy = gra for all k}

is connected and nontrivial, and Lie(S) = A(A, {gk}ren). This implies that all elements in A
and {gx}ren belong to the reductive group Cg(S)°. Moreover, by the definition of S, S is also
the connected component of the center of C(S)". So we have

Ca(S)=SxH
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where H is the semisimple component of Cg(S)? and H is isomorphic to the product of various
SL(n;, R) with n; < n, that is,

H = [[SL(n:,R).
Let A; = AN SL(n;,R) be the connected component of the full diagonal subgroup in SL(n;, R),

and we have

A=Sx HAZ-.

Since g, € N is unipotent (Vk € N), one has g;, € H. Then we can write g5 = [[ g;.x € [[ SL(ni, R).
Note that by the definition of S and Corollary 5.3, A(A;, {gik}ren) = {0} for all i.

The above discussions tell us that our problem can now be reduced to the following setting
(recall that x. = eSL(n,Z)).

(i) The measure 4., is supported in the homogeneous space C(S)°/(I'NCq(S)?), where one
has

Ca(8)’/(TNCa(8)°) = S/(T'NS) = H/(T'N H)
= 8% [[(SL(ns,R)/SL(n;, Z)).
(i) The measure p4,, can be decomposed, according to the decomposition of Cg(S)?/(I' N
CG(S)O)v as
HAz, = HS X H:UAMV
Here pg denotes the S-invariant measure on S. For each i, z; = e SL(n;, Z) is the identity
coset in SL(n;,R)/SL(n;,Z), and p4,,, denotes the A;-invariant measure on A;x; in
SL(n;,R)/SL(n;, Z).

(iii) The measure p4,, is pushed by the sequence {gi }ren in the space Cg(S)°/(I'NCg(S)?) in
the following manner:

(gk)*ﬂAxe = ps X H(gz,k)*,qulxl
(iV) For each Aixi in SL(TLi,R)/ SL(TLZ‘,Z), we have .A(Az, {gi7k}k€N> = {0}

Since n; < n, we can now apply the induction hypothesis to the sequence (g;x)«/tA,z,;, and
obtain that [g; kf14,x,] converges to the equivalence class of the Haar measure mgr,(, r)/SL(n,,z) 00
SL(n;, R)/ SL(n;, Z). Now, by putting all the measures msgr,(n, )/ SL(n;,z) and ps back together
in the space SL(n,R)/SL(n,Z), we conclude that [(gk).taz,] converges to [pcy(syoz.]- This
completes the proof of Theorem 2.5. a

Proof of Theorem 2.4. We first prove the following claim.

CLAIM. Let {uy}ren be a sequence in the upper triangular unipotent group N of G = SL(n,R).
Then there is a subsequence {u;, }ren of {uy }ren such that

u;,, = brvg

for a bounded sequence {by}ren in N, and a sequence {vi}ren in N with vy = (vij(k))1<ij<n
satisfying the following condition: for each pair (i,7) (1 <i < j < n),

either vij(k) = 0 for all k, or vij(k) — oo as k — oo.
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Proof of the claim. We proceed by induction on n. For n = 2 and G = SL(2,R), {uy}ren is a
sequence in the 2 x 2 upper triangular unipotent group. Write ux, = (u;j(k))1<i j<2. By passing to
a subsequence, we may assume that {u;2(k)}xen is bounded, or diverges to infinity. If {ui2(k) }xen
is bounded, then set by = uy, and v, = e the identity matrix. If {u12(k)}ren diverges to infinity,
then set by = e and vy = ui. Either way we have u, = bivg, and the claim holds in this case.

Suppose that the claim holds for SL(n — 1,R) (n > 3). Now let G = SL(n,R) and {ug }ren
a sequence in the n x n upper triangular unipotent group N. We will use the notation in § 5: for
any g € G, we will denote by (g);«x; the | x [ submatrix in the upper left corner of g.

Now write ug = (uij(k))1<ij<n. Then (ug)m-1)x (n-1) = (4ij(k))1<ij<n—1. By applying the
induction hypothesis on (Uk)(n—1) x (n—1), after passing to a subsequence, one can find a bounded
sequence {wy }ren in N and a sequence {xj }ren in N with x, = (245(k))1<s,j<n such that

(k) (n—1) x (n—1) = (Wk) (n—1) x (n=1) (Tk) (n—1) x (n—1), Uk = WkTk,
and for each pair (i,7) (1<i<j<n-—1),
either z;;(k) = 0 for all k, or z;;(k) — oo as k — oc.
Now, by passing to a subsequence, one can assume that for 1 <7< n—1,
either {z;,(k)}ren is bounded, or z;,(k) — oo as k — oo.

By Gaussian elimination, there exist a bounded sequence y; € N and a sequence vy € N such
that

Tk = YUk,

and the following condition holds for vy = (v;;(k))1<i j<n: for any 1 <i < j < n,
either v;;(k) = 0 for all k£, or v;;(k) = oo as k — oo.
Now we complete the proof of the claim by setting v; as above and by = wys. O

We now prove Theorem 2.4. By the Iwasawa decomposition, for each element g; in the
sequence {gx }ren, we can write

gk = SkULaf

where s € K = SO(n,R), ux € N and a; € A. By the claim above, we can assume that, after
passing to a subsequence, we can write

uy, = byt

for a bounded sequence b, € N and a sequence y, = (U;;(k))1<i j<n in N such that, for each pair
1< <)< n,
either (k) = 0 for all k, or u;;(k) — oo as k — oc.

Since pa, is A-invariant, we have
(9k) stz = (SkbrTn) iz

Now the first paragraph of Theorem 2.4 follows by applying Theorem 2.5 to (@ )«pa, and the
boundedness of {by }ren and {sg }ren-

We now prove the second paragraph of Theorem 2.4. Assume that, for any Y € Lie(A)\ A(A4,
{gk}ren), {Ad(gk)Y }ren diverges. Let [v] be a limit point of {[(gk)«itAz]}ken. Then there is a
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subsequence {g;, }ren such that [(g;,)«paz] converges to [v]. By the same argument as above,
after passing to a subsequence of {g;, }, one can find s, € K, 4, = (4;;(k))1<ij<n € N, ar € A,
and a bounded sequence by € N such that

iy, = SkbrUgag,
and, for any 1 < < j < n,
either %;;(k) = 0 for all k, or @;;(k) — oo as k — oc.
Since p 4, is A-invariant, we have

(gik )*NA:): = (Skbkak)*MAx

Note that, by the boundedness of {by }ren and {sg }ren,
A(A, {9k ken) = A(A, {93, ren) = A(A, {tg }ren)-

Now the second paragraph of Theorem 2.4 follows from Theorem 2.5 and the boundedness of
{br}ren and {s }ren- O

The following is an immediate corollary from the proof of Theorem 2.4, which gives an
example of A\; in a special case of Theorem 2.8. This also generalizes the result in [OS14]. We
will apply this special case of Theorem 2.8 in the counting problem in §11.

COROLLARY 10.1 (Cf. Theorem 2.8). Let {gi}tren be a sequence in KN such that, for any
nonzero Y € Lie(A), the sequence {Ad(gx)Y }ren diverges to infinity. Then we have

1
m(gk)*lmx — mx

where myx is the G-invariant probability measure on X.

In the rest of this section we will prove Theorem 2.6. Let H be a connected reductive
group containing A. It is known that, up to conjugation by an element in the Weyl group of
G, H consists of diagonal blocks, with each block isomorphic to GL(m,R) with m < n. For
convenience, we will assume that H has the form of diagonal blocks, since conjugations by Weyl
elements do not affect the theorem.

The following lemma clarifies an assumption in Theorem 2.6.

LEMMA 10.2. Let Ax be a divergent orbit in X and let H be a connected reductive group
containing A. Then Hx is closed in X.

Proof. By the classification of divergent A-orbits of Margulis which appears in the appendix of
[TWO03], we may assume without loss of generality that x is commensurable to Z". Thus, it is
enough to prove the lemma for x = Z". Then the lemma follows easily for any reductive group
H under consideration. O

By reasoning in the same way as at the beginning of §4, there is no harm in assuming
x = xe = eSL(n,Z) in the proof of Theorem 2.6.

Let P be the standard Q-parabolic subgroup in G having H as (the connected component
of) a Levi component. Let U C N be the unipotent radical of P. We write

H =5 x Hg
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where S is the connected component of the center of H, and H,;, is the semisimple component
of H. We will denote by Ags the connected component of the full diagonal group in Hy,. Note
that we have

A=8x A

By Theorem 2.5, we can find a sequence of upper triangular unipotent matrices hy € H satisfying
the dichotomy condition in Theorem 2.5 such that

exp(A(A, {hrtren)) = S, Ca(A(4, {hk}keN))O =H,
[(hi)sptAz,) = [Hz,] as k — oco.

We will fix such a sequence {hy}ren.
As G = KUH where K = SO(n,R), for every g; in the sequence {gx}ren, we can write

gk = skukly
where s € K, up, € U and [, € H. We have
(9r) s b bz, = (SKUEK) < LHz, -

Following the same strategy as in the proof of Theorem 2.4, to prove Theorem 2.6, we may
assume that g, € U. Now let g, = (uj(k))1<ij<r € U. By Gaussian elimination as explained in
the proof of Theorem 2.4, we may further assume that, for each pair i < j, either u;;(k) equals
0 for all k or w;;(k) # 0 diverges to infinity.

PRrOPOSITION 10.3. If A(S, {gk}ren) = {0}, then, for any subsequence {gm, tren of {9k }ren and

any subsequence {hp, }ren of {hi}tren, we have Ad(gm, hn, )Y — oo as k — oo for any nonzero
Y € Lie(A).

Proof. Let Y =Y 4+ Yy # 0, where Y] € Lie(S) and Y5 € Lie(Ass). If Yo = 0, then
Ad(gmk hnk)y = Ad(gmk)yl
diverges to oo by the condition A(S, {gr tren) = {0} and Corollary 5.3. If Y5 # 0, then we have

Ad(gmyhn, )Y = Ad(gm,) (Y1 + Ad(hn,)Y2)
= (Ad(gm, ) (Y1 + Ad(hy,)Y2) — (Y1 + Ad(hn,)Y2))
+ (Y1 + Ad(hy, ) Ya).

Since H normalizes U, we know that
Ad(gm,,) (Y1 + Ad(hn, )Y2) = (Y1 + Ad(hn, )Y2) € Lie(U).

Also Ad(hy,)Y2 € Lie(H) and Ad(hy,)Y2 — oo by our choice of {h}ren and Corollary 5.3.
Hence, Ad(gm, hn, )Y diverges to oo. O

We will fix a nonnegative function fy € C.(X) such that supp(fy) contains the compact orbit
NZ"™ in X. This implies that, for any ¢ € N, we have

/fO dg*MAace > 0.
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PROPOSITION 10.4. Suppose that the subalgebra A(S,{gr}ren) = {0}. Let f € C.(X). Then,
for any € > 0, there exists M > 0 such that, for any m,n > M,

ffdgmn*NAa:e ffde’
[ fod(gmhn)spiaz. [ fodmx

Proof. Suppose that there exists ¢ > 0 such that, for any [ > 0, there are m;, n; > [ satisfying

ffd gml nl)*,que _ ffde ’ S ¢
ffO gml nl)*,UAwe ffo de

By Proposition 10.3, we know that Ad(gm,hn,)Y — oo as | — oo for any nonzero Y € Lie(A).
Hence, by Theorem 2.4, we have

[(gml hnz )*MA:EE] - [mX]

which contradicts the inequality above. This completes the proof of the proposition. o

Proof of Theorem 2.6. We will prove the theorem by induction. Let {gx}ren be a sequence in G
and, by the discussions above, we may assume that every g = (ui;(k))i<ij<n isin U C N, and
for 1 <i < j <, u;(k) either equals 0 for all k£ or diverges to infinity as k — oo.

Suppose that A(S, {gx }ren) = {0}. Let f € C.(X). By Proposition 10.4, for any € > 0, there
exists M > 0 such that, for any m,n > M,

ffdgmn*HA:re ffde‘<
[ fod(gmhn)spas, [ fodmx

We now fix m, let n — oo and obtain

ffdgm *,U,er ffde'
ffO gm xMHz, fdemX

This implies that [(gx)«prz.] = [mx].
Now suppose that A(S, {gr}ren) # {0}. The proof in this case would be similar to that of
Theorem 2.5. By Corollary 5.3, the subgroup

S"={a€S:agy = gra}

is connected and nontrivial, and Lie(S’) = A(S, {gk }ren). This implies that all elements of H
and {g;} belong to Cg(S")Y. Moreover, we have

Cq(8") = 8 x H'

where H' is the semisimple component of C(S")? and H' is isomorphic to the product of various
SL(n;, R) with n; < n,

H' = [[SL(n;,R).
i
Let H; be the reductive subgroup H N SL(n;, R) in SL(n;, R), and we have
H=5x[]H&.
i
Since g € U is unipotent (Vk € N), we have g; € H'. Then we can write g = [[, gix (gir €
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Similarly to the proof of Theorem 2.5, the above discussions imply that the problem is
reduced to the following setting.

(i) The measure pp,, is supported in the homogeneous space Cg(S")?/(T'N Cq(S")°), where
we have

Ca(5")° /(T NCG(S)°)=5"/(CNS)xH'/(TNH)
= 9 x [[(SL(ni, R)/ SL(n;, Z)).
(ii) The measure up,, can be decomposed, according to the decomposition of Cg(S")?/(I' N
Ca(S")?), as
BHz, = Mg X HNHzxz

Here pg denotes the S’-invariant measure on S’. For each i, x; = eSL(n;,Z) is the
identity coset in SL(n;,R)/SL(n;, Z), and pp,, denotes the H;-invariant measure on H;z; in

(iii) The measure g, is pushed by the sequence {gi} in the space Cq(S")°/(I' N Cq(S")°) in
the following way:

(gr)witree = prsr X | [(Gik )t
(iv) If S; is the connected component of the center of H;, then we have A(S;, {gix}ren) = {0}.

Since n; < n, we can now apply the induction hypothesis to the sequence (g; k)«ftH,z,, and
obtain that [(gi k) «ftr,z;] converges to the equivalence class of the Haar measure mgr,n, g/ sL(n;,2)
on SL(n;,R)/SL(n;, Z). Now, by putting all the measures [mgy,,R)/SL(n;,z)] and ps: back
together in the space SL(n,R)/SL(n,Z), we have [(g)x«ptrz.] = [Heog(A(S{ge)))0m]- O

11. An application to a counting problem

In this section we will prove Theorem 2.10. Let pp(A) be a monic polynomial in Z[x] such that
po(A) splits completely in Q. Then, by Gauss’s lemma, we have pg(A) = (A—aq)(A—a2) - - - (A=)
for a; € Z. We assume that the «; are distinct and nonzero. Let M (n,R) be the space of n x n
matrices with the norm

1M = Te(M'M) = ) o

1<i,5<n

for M = (xi;)1<i,j<n. Note that this norm is Ad(K)-invariant. We will denote by By the ball of
radius T centered at 0 in M (n,R). We write

M, = diag(ay, ag,...,an) € M(n,Z).
For M € M (n,R), we denote by pas(\) the characteristic polynomial of M. We consider
V(R) ={M € M(n,R) : ppr(A) = po(A)}
and its subset of integral points
V(Z) ={M € M(n,Z) : pp(A) = po(M)}-
We would like to get an asymptotic formula for
#V(Z) N Br| = #[{M € M(n,Z) : ppr(A) = po(A), [|M| < T}
We begin with the following proposition which is a corollary of [BHC62, LM33].
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ProprosITION 11.1. We have

Ad(SL(n,R))M, = V(R)
and there are finitely many SL(n,Z)-orbits in V(Z). The number of SL(n, Z)-orbits in V(Z) is
equal to the number of classes of nonsingular ideals in the ring Z[M,].

By Proposition 11.1, it suffices to compute the integral points of an SL(n, Z)-orbit. In what
follows, we will consider the SL(n,Z)-orbit of M,. We will apply Theorem 2.8 (more precisely,
Corollary 10.1) with initial point x = eI" to compute

#|Ad(SL(n,Z))M, N Br|.
For any other SL(n,Z)-orbit of M’ € V(Z), there exists M, € SL(n, Q) such that
Ad(M)M' = M,

and the treatment for Ad(SL(n,Z))M’ would be similar, just with a change of initial point from
el’ to x4y = M,yI'. See also the beginning of § 4.

As explained in § 2, the metric ||- || on g defines a Haar measure 14 on A and a Haar measure
un on N. Let g be the K-invariant probability measure on K. Then we define a Haar measure
ua on G by Iwasawa decomposition G = KN A. Let c¢x be the volume of X = G/I" with respect

to HG-
Now let h = (us5)1<ij<n € N and write

Ad(h)M, = hMah™t = (z45)1<i j<n
where z;; = o; and u;; =0 (i > j). We have

hMo = (25)1<i,j<nh

ajuijzg TikUkyj, ( uz] g TipUky-

k k#i

and

Let ¢i(z) = [[i_,(z — az). The next two lemmas describe the relation between wu;; and z;;.

LEMMA 11.2. For j > i, we have
1
U= + fij(@)
where f;; is a polynomial in variables xp, with 0 < q—p < j—1, and f;; =0 for j —i=1. In
particular, we have the change of coordinates of the Haar measure uy on N,

Hdulﬂ |a ~ o del]
j>i ]>1 J ¢ j>i

Proof. 1t is easy to see that u;; = ;5 = 0 (i > j) and u;; = 1. We prove the lemma by induction
on j —i. For j —¢ =1, we have

1
Uiy = Uj—1,5 = E : Lj-1,kUkj = —a Lj-1,5-
Qj— k#] 1 Jj—1
Now we have
(0 — og)uyj = E TipUpj = g TipUkj + T
k#i 1<k<j

where j — k < j —i. We complete the proof by applying the induction hypothesis on uy;. O
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LEMMA 11.3. For j > i, we have
Jj—1 T ai-1(ay)
kk+1 i—1(
wy = [ 2L 4 fi(a ||xkk1+f
o= I8+ ot = 2200 o1+ Fi@)
where f;;(x) is a polynomial in variables x,, (p < q) of degree less than j — i.

Proof. We prove the lemma by induction on j —i. For j — ¢ = 1, we have

(= )uyy = (g = j1)ujo15 = D Tj-1piuky = Tj-1.

k£j—1
Now we have
(Oé ’LL@] = lek‘ukj Z TikUkj
k#i i<k<j

where j — k < j — 4. By applying the induction hypothesis on u;; we have

xr

p.p+1

(j — ai)uij = E Tik | | — +
a; — Qp

1<k<y p=k

-1
T
p,p+1
= Tji+1 H m‘i‘
p=i+1 7 p

Here we omit terms of degree less than j — 4. This completes the proof of the lemma.

LEMMA 11.4. Forany 1 <l <nand1<i <io <-- <1 <n, we have

qr—1(0;)

) 40,
Qirl(aij) 1<k<,1<5<

c(it,ig, ... 10) == det(

Proof. By algebraic manipulations, we can rewrite the determinant above as

1 1 1
ﬁ aies,)  qilosy) - qie)
<1 ) : : :
a-1(ay) @-1(ay) - g-1(ay)
Since deg ¢g; = i, row reductions yield
1 1 1 1 1 -1
dot QI((.Xil) Q1(C'¥i2) Q1(f11‘l) _ det Oé.zd Oéliz Oé.i, 40,
q-1(aiy)  q-1(ai,) - q-1(q,) a b oalt e ot

PROPOSITION 11.5. For any h € N (recall Ad(h)M, = (xij)1<i,j<n), we have

l ij—l

h(ei, Neiy N---Nejy) = c(il,ig,...,il)H H Tppri(er Nea A---Nep)+---
j=lp=j
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Here c(i1,1i2,...,%;) is the number in Lemma 11.4 and we omit the terms of polynomials in
variables x,q (p < q) of degree smaller than Zé.:l(ij —7)-

Proof. By Lemma 11.3, we know that w;; is a polynomial of degree j — ¢. This implies that the
term in h(e;; Aej, A--- Ae;) corresponding to the ej; Aej, A--- Aej-coordinate has degree at
most 1 +i2 + -+ -+ 14 — j1 — j2 — - - - — ji. To prove the proposition, it suffices to prove that the
term corresponding to e; Aea A--- A e is a polynomial with its leading term

l ijfl

C(ila i?v s 7Z.l) H H xp7p+1

Jj=1p=j

of degree i1 + g+ -+ +i —1—2—--- —1.
We know that the coefficient of e Aea A--- A g is equal to

det(ur,i;)1<k<t,1<i<ls

and by Lemma 11.3 we know that the leading term of this coefficient is equal to

Qre—1(
det< H $p,p+1>

Gij—1(cx 1<k<L,1<5<]

The expansion formula of determinant then gives

l Z]'—l

51 n( J) 1 aZ]
> (-1 H IT o

o€ES) Jj=1 B ZJ p=0(j)

where ¢ runs over all the permutations in the symmetric group S;. Note that we have

1 i1 l ij—1 l ij—1 1 oij—1
_ [L-: *Tp,p-i-l _ H] et Tppe _
H H Tp,p+1 = H H H Tp,p+1-

a(7)
j=1p=c(j) j=1 Hp:1 Tp,p+1 H] 1 Hp— Lp,p+1 j=1 p=j

This implies that

z~—1
qr—1(
det< H Tp,p+1
qi;—1(O; 1<k<,1<<
l Z]
_ s1gn (o) q‘T(J aZJ
= 4, 1(0 Lp,p+1
UESZ j=1 71 13 j=1 p=j
1 ij—1
- C(i17i2a ceey Zl) H H Tp,p+1
Jj=1p=j
where ¢(i1,19,...,4;) is the number as in Lemma 11.4. O

Now we define

N( ) - {h EN: Ad(h’) o — (xlj)1<lj<n € BT}
N(e,T)={h € N : Ad(h)My = (2ij)1<i,j<n € Br,|2iit1| = €T for all i < n}.
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LEMMA 11.6. We have

un(N(T)\ N(e, T)) = O(e1" "= D/2).

Tn(n—l)/Q’

Here Vol(By) is the volume of the unit ball in R™"~1)/2,
Proof. This follows immediately from Lemma 11.2. O

Let y1g/4 be the G-invariant measure on G/A. In the following, we compute the volume of
V(R) N By with respect to a volume form py ) on V(R) induced by a G-invariant measure
on G/Cg(A). We may assume that the natural projection map G/A — G/Cg(A) sends pig/a
to py (). By Iwasawa decomposition, we have G JA = KN, and it is well known that, for any

f e C(G/A),
/G o= /K /N F(kh) dpe (k) dp (h)

via this isomorphism.

PROPOSITION 11.7. The volume of V(R) N By with respect to the volume form py gy equals

VOI(Bl)

Tn(n—l)/Q'
Hj>i |laj —

Here Vol(B) is as in Lemma 11.6.

Proof. Note that by the discussion above, we have

py @) (V(R) N Br) = pg/a({gA : Ad(g) M, € Br})
— e x e ({kh : Ad(kh) M, € Br)).

By Lemma 11.6 and the Ad(K)-invariance of the norm on M (n,R), we compute
pr X pun({kh : Ad(kh)M, € Br})

Vol(B
=un({h:Ad(h)M, € Br}) = ol(B1) Tr(n—1)/2

Hj>i aj — ay
This completes the proof of the proposition. O
PROPOSITION 11.8. For any k € K and h € N(T'), we have
Vol(Qp5) = O((InT)" ")
where the implicit constant depends only on § and M,. Furthermore, for h € N(e,T'), we have
Vol(Qn,s) = (co + o(1))(In T)"

where the implicit constant depends on €, 9, M, and ¢y equals the volume of

l
Jj=

(j—ij),wglgn,wgil<---<z’l<n}.

l
{t € Lie(A) : > t;; >
j=1

1
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Proof. From the definition of 2, 5, we know that

J

Qins = {t € Lie(A) : Zti‘ > Ind — In||khes|| for any nonempty I € In}.
j=1

Since k € SO(n,R), by Proposition 11.5, for any i; < iz < --- < i; we have

Iné —In||kh(ei, Aeiy A+ Aei)]
>0(1) = (i1 +ig+--+ig—1=2—---=1)(InT)

where the implicit constant depends only on § and M,,. Moreover, if h € N (e, T') then we have

Iné —1In||kh(e;, Aeiy A Aey)l|

=0(1)—- (1 +ig+-+4—-1-2—---=1)(InT)
where the implicit constant depends only on ¢,  and M,. The proposition now follows from
these equations. O
Define

Frg)= Y xr(Ad(g)Ma)
Y€l /T,

where xr is the characteristic function of By in M(n,R) and I'yz, is the stabilizer of M, in
I'. This defines a function on G/I'. Note that yr is Ad(K)-invariant and I"ys, is finite. In the
following proposition, we will write

(f,0) = f(9)d(g9) dmx(g)

G/T
for any two functions f, ¢ on G/T', whenever this integral is valid.
PRroOPOSITION 11.9. For any ¢ € C.(G/T"), we have

Car, ex 7
nOTn(n—l)/Q (h’l T)n—l T

1#) = (L,9).
Here

¢ Vol(By)
Hj>i |aj — ai

where cg is the number as in Proposition 11.8 and Vol(B1) is as in Lemma 11.6.

ng =

Proof. We have

1
(Prot) = = /G S xr(Ad(g7) M) ib(g) dmx
1

/FWGF

— e [ (A ule) duclo)
=i [ [ e Adhe) 2, ikt e di d

1
= oo S JL A M) de dpc | k) i
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Now fix € > 0. By Corollary 10.1, we can continue the calculation and we have

1
= / / x1(Ad(h)My) Vol(Qep 5) dun duK/ Y(kha) dpa
T, lex Ji J e Vol(Qpn,s

1
TR S / / o (Ad(h)Ma) dyux dyusc / (kha) dpa
Ty lex Jr J NN (eT) A

1
= — / / XT(Ad(h)Ma)VOI(Qkh75) dun d,uK< PYdmx —1-06(1))
T, lex N(e,T) a/r

1
+/ / XT(Ad(h)Ma)d/LNdMK/ Y(kha)dpa.
Targlex Ji N\N(e,T) A

Note that, since ¢ € C.(G/T"), we can find d,, > 0 such that
[ wthaydua= [ whaydn
A Qkh,by

So by Lemma 11.6 and Proposition 11.8, we can continue the calculation and we have

/ / xr(Ad(h)Ma) Vol(Qen5) dun diir Ydmy
|FMQ|CX N(e,T) G/T

+ o (T V(I T)™ 1) + Oy (e D2 (InT)" )
g2 (In )t
a ITar, lex G/T
+ 05 (T D2(InT)" 1) 4 Oy (e D/2(InT)" 1.

Ydmx

This implies that

lim sup
T— o0

Frov) = (1,0)] <040,

Cas, lex
nOTn(n—l)/2 (ln T)n—

We complete the proof by letting ¢ — 0. O

Proof of Theorem 2.10. Following the same proofs as in [DRS93, EMS96], and combining
Lemma 11.6 and Proposition 11.9, we conclude that

T lex
noTn(n—l)/Z (hl T)n—l

FT—>1.

Now Theorem 2.10 follows from this equation and Proposition 11.1. O
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