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EMBEDDINGS, NORMAL INVARIANTS AND
FUNCTOR CALCULUS

JOHN R. KLEIN

Abstract. This paper investigates the space of codimension zero embeddings

of a Poincaré duality space in a disk. One of our main results exhibits a tower

that interpolates from the space of Poincaré immersions to a certain space of

“unlinked” Poincaré embeddings. The layers of this tower are described in terms

of the coefficient spectra of the identity appearing in Goodwillie’s homotopy

functor calculus. We also answer a question posed to us by Sylvain Cappell.

The appendix proposes a conjectural relationship between our tower and the

manifold calculus tower for the smooth embedding space.
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§1. Introduction

1.1 Background

Suppose that P and N are compact smooth n-manifolds, possibly with

boundary. Let Esm(P, N) be the space of smooth (C∞) embeddings from

P into the interior of N . The manifold calculus of Goodwillie and Weiss

produces a tower of fibrations

· · · → Esm
2 (P, N)→ Esm

1 (P, N)

and compatible maps Esm(P, N)→ Esm
j (P, N). If we assume that P admits

a handle decomposition with handles of index at most n− 3, then the maps
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Esm(P, N)→ Esm
j (P, N) have connectivity given by a linear function of j

with positive slope, so in this case the tower strongly converges [8], [7].

Furthermore, Esm
1 (P, N) has the homotopy type of the space of smooth

immersions from P to N . For j > 2, the layers of the tower, that is, the

homotopy fibers of the maps Esm
j (P, N)→ Esm

j−1(P, N), have an explicit

description in terms of configuration spaces.

In essence, the strong convergence result relies on the following schematic

passage:

Esm(P, N)→ Ebl(P, N)→ Epd(P, N),

where Ebl(P, N) is the space of smooth block embeddings of P in N and

Epd(P, N) is the corresponding space of Poincaré embeddings. Convergence

is proved by establishing certain higher excision statements, which are

known as “multiple disjunction” results for spaces of smooth embeddings.

One achieves such results by first proving analogous ones for spaces of

Poincaré embeddings. The Poincaré statements were proved in [6] using

homotopy theory. One then lifts the Poincaré statements to the block setting

using surgery theory. The final step is to lift the block statements to the

smooth ones using concordance theory. Given the method of proof, it seems

appropriate to ask:

Question 1.1. Is there an analogue of Goodwillie–Weiss manifold

calculus in the Poincaré duality space setting?

More precisely, suppose now that P and N are Poincaré spaces of

dimension n (possibly with boundary). One then has a space of Poincaré

embeddings Epd(P, N) and we wish to construct a Goodwillie–Weiss

calculus for it. Unfortunately, we do not know how to proceed. The problem

here is that the set-up of [22] does not properly translate over: in the

manifold case one considers the poset of subsets of the interior of P which

are diffeomorphic to finite collections of open balls. This poset has good

properties because a manifold is locally Euclidean. In the Poincaré case

there does not seem to be a sensible replacement for this, as Poincaré spaces

are not necessarily locally well-behaved.

A related but perhaps more accessible question is

Question 1.2. Is there a version of the Goodwillie–Weiss tower in the

Poincaré embedding case?
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We propose to attack Question (1.2) from a point-of-view arising out

of the surgery school in conjunction with one of the other functor calculi:

Goodwillie’s homotopy functor calculus.

To simplify the presentation, we will only consider the case when N =Dn

is an n-disk, and we will assume that P is “sectioned” in the sense defined

below. We will see that a certain space

LEpd(P, Dn)

of “unlinked” Poincaré embeddings of P in Dn does have a tower associated

with it. A point in this space consists of a Poincaré embedding of P in Dn

together with a choice of Null homotopy of the “link” of the embedding. We

will also see that the tower associated with this space strongly converges

under mild hypotheses, and its first stage coincides with the space of

“Poincaré immersions” of P in Dn. Furthermore, we will identify the

homotopy fibers of the canonical map LEpd(P, Dn)→ Epd(P, Dn) as spaces

of “unlinkings” of P in Dn.

In what follows we simplify notation by setting

E(P, Dn) := Epd(P, Dn).

1.2 Sectioned Poincaré spaces

Our goal will be to say something sensible about the embeddings of the

following class of Poincaré spaces:

Definition 1.3. A sectioning of a Poincaré space P with boundary ∂P

is a triple

ξ = (K, f, s)

in which

• K is a cofibrant space;

• f :K
'→ P is a homotopy equivalence;

• s :K→ ∂P is a map such that the composition

K
s→ ∂P → P

coincides with f .

We refer to ξ as sectioning data. For the sake of brevity, we will say that

P is sectioned when the sectioning data are understood.
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Example 1.4. Let D1 = [−1, 1] be the 1-disk. If Q is a Poincaré space,

possibly with boundary ∂Q, then Q×D1 is sectioned by means of the

homotopy equivalence Q× {−1} ⊂Q×D1 and the inclusion Q× {−1} ⊂
∂(Q×D1).

Example 1.5. Suppose η is a (j − 1)-spherical fibration over a Poincaré

space Q of dimension d having empty boundary. Let S(η) be its total space.

Suppose η comes equipped with a section s :Q→ S(η). Let D(η) be the

mapping cylinder of η, and let f :Q→D(η) be the inclusion. Then ξ :=

(Q, f, s) is sectioning data for the (n+ j)-dimensional Poincaré space D(ξ).

Definition 1.6. (Generalized Thom Space) If P is sectioned by ξ =

(K, f, s), then we define

P ξ := ∂P ∪s CK,

that is, the mapping cone of the map s :K→ ∂P . This is a based space.

The justification for this notation/terminology is that the spherical

fibration case in Example 1.5 gives the Thom space in the usual sense.

Lemma 1.7. Assume that P is sectioned by ξ = (K, f, s) and ∂P → P

is a cofibration. Then there is a preferred weak homotopy equivalence

ΣP ξ ' P/∂P.

That is, P ξ is a preferred desuspension of P/∂P .

Proof. One has a commutative diagram

K
f

∼
//

s

��

P // P ∪K CK

��
∂P //

��

P //

��

P ∪∂P C∂P

∼
��

P ξ // CP // CP ∪P ξ CP ξ

in which CX denotes the cone on a space X. The rows and columns of the

diagram form homotopy cofiber sequences (cf. 2.1; the null homotopies in

this case are evident). The space in the upper right corner is contractible so

the map P ∪∂P C∂P → CP ∪P ξ CP ξ is a weak equivalence. The domain of
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this map is identified with P/∂P up to a preferred weak equivalence (given

by collapsing CP to a point) and the codomain is identified with ΣP ξ.

In particular, the lemma gives a preferred isomorphism of singular

homology groups H̃k−1(P ξ)∼=Hk(P, ∂P ).

1.3 Homotopy codimension

A Poincaré space P of dimension n is said to have homotopy codimension

> j if the map ∂P → P is (j − 1)-connected.

Example 1.8. Let η :S(η)→Q be a (j − 1)-spherical fibration over a

Poincaré space without boundary. Then D(η) has homotopy codimension

> j.

Example 1.9. If P is a compact smooth manifold, possibly with

boundary, which admits a handle decomposition whose handles all have

index 6 k, then the homotopy codimension of P is > n− k.

Example 1.10. Suppose P is an n-dimensional Poincaré space,

n− k > 3. Then P has homotopy codimension > n− k if the map ∂P → P

is 2-connected and P has the weak homotopy type of a CW complex of

dimension 6 k. This is a consequence of duality, the relative Hurewicz

theorem and a result of Wall [20, Theorem E].

We will assume the following throughout the paper.

Hypothesis 1.11. The Poincaré space P has homotopy codimension > 3.

1.4 Poincaré embeddings

We recall the notion of codimension zero Poincaré embedding (see e.g.,

[13], [6]). We will restrict ourselves to the case when the ambient space is

an n-disk.

A Poincaré embedding of a Poincaré space P of dimension n inDn consists

of a “complement” space C equipped with a (gluing data) map

∂P q Sn−1→ C

making C into an n-dimensional Poincaré space with boundary ∂P q Sn−1.

Furthermore, we require the homotopy pushout of

P ← ∂P → C
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to have the weak homotopy type of Dn, that is, it is required to be weakly

contractible. The set of all such Poincaré embeddings comes equipped with

a topology (cf. Section 3).

We denote this space by E(P, Dn). We typically specify a Poincaré

embedding by writing its complement, that is, we write C ∈ E(P, Dn).

1.5 Unstable normal invariants

Assume P is sectioned by ξ.

Definition 1.12. An unstable normal invariant for P is a based map

α :Sn−1→ P ξ

such that

α∗([S
n−1]) ∈ H̃n−1(P ξ)∼=Hn(P, ∂P )

is a fundamental class for P .

Remark 1.13. The stable version of the normal invariant appeared

in the context of surgery theory [16]. Applications of unstable normal

invariants to embedding theory were investigated in [23], [18] and [13].

Proposition 1.14. Assume P is sectioned. Then an unstable normal

invariant for P gives rise to a Poincaré embedding of P in Dn.

Proof. The proof harkens back to a construction of Browder [2]. Let ξ

be the sectioning data. Set C := P ξ. We have an evident map

P ξ ∨ Sn−1→ C

where on the second wedge summand we use α. Let ∂P → P ξ be the evident

map. Consider the composite

∂P q Sn−1→ P ξ ∨ Sn−1→ C.

It follows from [11, Lemma 2.3] that this map gives C the structure

of a Poincaré space with boundary ∂P q Sn−1 and defines a Poincaré

embedding of P in Dn. (Note: since (P, ∂P ) is 2-connected and P ∪∂P C is

∞-connected, it follows that C is 1-connected. So Poincaré duality for C

only needs to be verified with constant Z coefficients.)
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Notation 1.15. If P is sectioned by ξ, then the space of its unstable

normal invariants will be denoted by

Ωn−1
⊥ P ξ.

This is to be topologized as a subspace of the (n−1)-fold based loop space

Ωn−1P ξ.

Remark 1.16. The subspace Ωn−1
⊥ P ξ ⊂ Ωn−1P ξ is a collection of con-

nected components: the Hurewicz map gives a (homotopy) Cartesian square

Ωn−1
⊥ P ξ

⊂
//

��

Ωn−1P ξ

��
Hn(P, ∂P )×

⊂
// Hn(P, ∂P )

where Hn(P, ∂P )× is the set of fundamental classes of P . This set is

nonempty if and only if P is orientable. If P is connected and orientable

then Hn(P, ∂P )× has precisely two elements.

The proof of Proposition 1.14 yields a map

(1) Ωn−1
⊥ P ξ→ E(P, Dn)

which we henceforth call the Browder construction.

1.6 The link; the first main result

We continue to assume that P is sectioned by ξ = (K, f, s). Given a point

C ∈ E(P, Dn), we have a weak map

(2) P
f←
∼
K

s→ ∂P → C.

Using the basepoint of Sn−1 we obtain a preferred basepoint for C. Let

(3) `0(C) ∈ [P+, C]∗ ∼= [P, C]

be the homotopy class of the weak map (2), where P+ is P with a disjoint

basepoint. We call `0(C) the link of the Poincaré embedding. The next

example motivates the terminology.
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Example 1.17. Let f :Mp→D2p+1 be a smooth framed embedding,

where M is connected. This means that f admits a preferred extension to

a smooth embedding F :Mp ×Dp+1→D2p+1. By Alexander duality and

the Hurewicz isomorphism we have a preferred isomorphism Hp(D
2p+1 \

f(Mp))∼= Z. Let ∗ ∈ Sp be the basepoint. Then the homology class

induced by

Mp × ∗ F→D2p+1 \ f(Mp)

is the self-linking number of f .

Theorem A. Assume P is sectioned by ξ. Given a Poincaré embedding

C ∈ E(P, Dn), then the homotopy fiber of the Browder construction (1)

taken at C is non-empty if and only if the link `0(C) is trivial.

Furthermore, if the link is trivial, then the Browder construction sits in

a homotopy fiber sequence

F∗(Σ(P+), C)→ Ωn−1
⊥ P ξ→ E(P, Dn),

where the homotopy fiber is taken at C and F∗(Σ(P+), C) is the function

space of based maps Σ(P+)→ C.

Remarks 1.18. (1). The null homotopy yielding the homotopy fiber

sequence will made explicit in the proof of Theorem A.

(2). Theorem A answers a question posed to me by Sylvain Cappell about

how far the Browder construction is from being a homotopy equivalence.

(3). Let Q be a Poincaré space of dimension n− 1 and homotopy

codimension > n− k > 4, but not necessarily sectioned. Then as in Example

(1.4), Q×D1 is sectioned with generalized Thom space Q/∂Q.

The “decompression” map E(Q, Dn−1)→ E(Q×D1, Dn) (cf. (8) below)

factors as

E(Q, Dn−1)→ Ωn−1
⊥ Q/∂Q→ E(Q×D1, Dn),

in which the first map is given by the Pontryagin–Thom construction, and

the second is the one of Theorem A. The results of [13] imply that the first

map is (2n− 3k − 6)-connected.

(4). The map F∗(Σ(P+), C)→ Ωn−1
⊥ P ξ can be described as an orbit map

of an “action” of ΩF∗(P+, P
ξ) on Ωn−1

⊥ P ξ: fix an unstable normal invariant

α :Sn−1→ P ξ. Then the Browder construction applied to α gives a Poincaré

embedding with complement C = P ξ.
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Let c :P ξ→ P ξ ∨ Σ(P+) be the Barratt–Puppe coaction map for the

based cofiber sequence P+→ (∂P )+→ P ξ. Given φ ∈ F∗(Σ(P+), P ξ) =

ΩF∗(P+, P
ξ), we obtain a new normal invariant φ ? α by taking the

composition

Sn−1 α→ P ξ
c→ P ξ ∨ Σ(P+)

id+φ−−−→ P ξ.

Then the operation φ 7→ φ ? α yields the desired description.

Example 1.19. (Embeddings of the n-disk) Let P =Dn where n> 3.

Then P is sectioned by the basepoint of Sn−1. In this case, Theorem A

gives a homotopy fiber sequence

ΩSn−1→ Fn−1→ E(Dn, Dn),

where Fn−1 is the space of based self homotopy equivalences of Sn−1. In

fact, E(Dn, Dn)'Gn, the unbased self homotopy equivalences of Sn−1.

Furthermore, the above homotopy fiber sequence is principal and with

respect to the identifications is just a shift to the left of the evident fibration

Fn−1→Gn→ Sn−1.

Example 1.20. (Disjoint unions of n-disks) Assume n> 3. Let T be a

finite set and let P =Dn × T . Then P is sectioned by choosing a basepoint

∗ ∈ Sn−1. Theorem A gives in this case a homotopy fiber sequence

(4) Ω
∏
T

Sn−1 ∧ T+→ Ωn−1
⊥ (Sn−1 ∧ T+)→ E(Dn×T, Dn).

For each x ∈ T we have a projection map px : Sn−1 ∧ T+→ Sn−1. The

condition for a based map f :Sn−1→ Sn−1 ∧ T+ to be a normal invariant is

that every composite px ◦ f should lie in Fn−1.

Since Sn−1 ∧ T+ is a finite wedge of spheres, the Hilton–Milnor theorem

implies that the homotopy groups of the two spaces on the left of (4) can

be expressed explicitly in terms of the homotopy groups of spheres.

For example, if n is even, then these two spaces are rationally equivalent

to generalized Eilenberg–Mac Lane spaces with finitely generated homotopy

groups that only occur in even degrees. These rational homotopy groups

can be explicitly computed in terms of a Hall basis for the free Lie algebra

on |T |-generators (see e.g., [1, Theorem 4.7]). For parity reasons, the long

exact homotopy sequence of rational homotopy groups splits into short exact

sequences
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0 // π2k+1(E(Dn × T, Dn))Q // ⊕Tπ2k+1(Sn−1 ∧ T+)Q

��

π2k+n−1(Sn−1 ∧ T+)Q // π2k(E(Dn × T, Dn))Q // 0,

where we are assuming k > 0 (this is not a serious restriction: it can be shown

that π0(E(Dn × T, Dn)) is a set of cardinality 2|T | and π1(E(Dn × T, Dn))

is the direct sum of |T | copies of the cyclic group of order two). From this

we immediately obtain a crude bound for the rank of the rational homotopy

groups of E(Dn × T, Dn). To obtain finer information would require explicit

knowledge of the curved arrow in the diagram.

1.7 Unlinked embeddings; the second main result

Definition 1.21. Assume P is sectioned. The space of unlinked embed-

dings

LE(P, Dn)

consists of those points C ∈ E(P, Dn) such that the gluing data

∂P q Sn−1→ C

comes equipped with a factorization

∂P q Sn−1→ P ξ ∨ Sn−1→ C

where the first map is evident.

It is clear that the Browder construction (1) factors as

(5) Ωn−1
⊥ P ξ→ LE(P, Dn)→ E(P, Dn).

We call the map

(6) Ωn−1
⊥ P ξ→ LE(P, Dn)

the refined Browder construction.

Theorem B. The refined Browder construction (6) is a homotopy

equivalence.
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Remarks 1.22. (1). Theorem B is essentially a “space-ification” of a

result Williams [23, Theorem A(i)] who considered a version of the map (6)

on the level of path components. However, there are some minor differences:

• Williams restricts himself to sectioned Poincaré spaces of the type

appearing in Example 1.5.

• Williams studies Poincaré embeddings in the n-sphere rather than in the

n-disk. This distinction does not appear on the level of path components.

• Williams equips his Poincaré spaces and their embeddings with orienta-

tions. His unstable normal invariants are of degree one.

The disadvantage with the n-sphere is that Williams’ result does not

extend to higher homotopy groups without modifying the domain of the

refined Browder construction: the correct replacement is the space of “fiber-

wise unstable normal invariants over Sn” (cf. [13]). Another disadvantage is

that Williams has to work much harder than we do to prove his result.

(2). Let Q be as in Remark 1.18(1). Then Theorem B implies that the

decompression map

E(Q, Dn)→ LE(Q×D1, Dn+1)

is (2n− 3k − 4)-connected.

1.8 Poincaré Immersions

The space of (Poincaré) immersions I(P, Dn) is defined to be the

homotopy colimit of the diagram

E(P, Dn)→ E(P1, D
n+1)→ E(P2, D

n+2)→ · · ·

where Pj = P ×Dj . Note by construction

I(P, Dn)' I(P1, D
n+1)' · · · .

We view this as a reasonable definition, since the analogous statement is

valid in the case of smooth block embeddings.

We will exhibit below a homotopy equivalence

I(P, Dn)' Ωn
⊥Q(P/∂P ),

where the right-hand side denotes the space of stable normal invariants

of P : this is the space whose points are stable maps α :Sn→ P/∂P such

that α∗([S
n]) ∈Hn(P, ∂P ) is a fundamental class. We topologize this as a

subspace of ΩnQ(P/∂P ) := ΩnΩ∞Σ∞(P/∂P ).
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Remark 1.23. Assuming I(P, Dn) is non-empty, we will also exhibit

(Lemma 3.4) a homotopy equivalence

I(P, Dn)' F (P, G),

where G is the topological monoid of stable self-equivalences of the sphere.

The equivalence depends on choosing a basepoint in I(P, Dn).

Remark 1.24. Assume P is orientable. The Spivak normal fibration of

P is an orientable stable spherical fibration ξ over P that is equipped with

a stable map α :Sn→ P ξ/(∂P )ξ representing a fundamental class for P by

means of the Thom isomorphism. The data (ξ, α) are well-defined up to

contractible choice [19], [12].

Note that if ξ is fiber homotopically trivial, then α amounts to a stable

normal invariant for P . Furthermore, I(P, Dn) is identified with the space

of fiber homotopy trivializations ξ (in particular, it is non-empty if and only

if ξ trivializable). The fiber homotopy triviality of ξ is the Poincaré analog

of stable parallelizability.

1.9 A tower for unlinked embeddings; the third main result

We introduce some notation. If V is an orthogonal representation of

a group G, we let SV be the based G-sphere given by the one-point

compactification of V . If V and W are two orthogonal representations, then

we write V +W for the direct sum and nV will denote the direct sum

of n-copies of V . If W ⊂ V is an orthogonal sub-representation, then we let

V −W be its orthogonal complement. Let 1 denote the trivial representation

of rank one. Let Σj be the symmetric group on the standard basis for Rj .
Then we obtain the standard representation of Σj on Rj . The diagonal

gives an embedding of the trivial representation 1 inside the standard

representation. Let Vj be denote its orthogonal complement. Call this the

reduced standard representation; it has rank j − 1. For example, V2 is the

rank one sign representation.

If X is a based (cofibrant) space and E is a (fibrant) spectrum, then we

let F∗(X, E) be the (stable) function spectrum whose jth space is given

by the based maps X → Ej . If X and E are equipped with G-actions then

F∗(X, E) inherits a G-action by conjugation. In particular, one can consider

the homotopy orbit spectrum F∗(X, E)hG and its associated infinite loop

space Ω∞F∗(X, E)hG, the latter which will be denoted by F st
∗ (X, E)hG.

Let Wj denote the j-coefficient spectrum of the identity functor from

based spaces to based spaces in the sense of the calculus of homotopy
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functors [10]. In particular, Wj is a spectrum with Σj-action which is

unequivariantly weak equivalent to a wedge of (j − 1)! copies of the (1− j)-
sphere.

Theorem C. Assume P is sectioned and assume that the homotopy

codimension of P is > n− k > 3. Then there is a tower of fibrations

· · · → LEj(P, D
n)→ LEj−1(P, Dn)→ · · · → LE1(P, Dn)

equipped with compatible maps

φj :LE(P, Dn)→ LEj(P, D
n)

such that

• the map φj is (2−n+ (j+1)(n−k−2))-connected; in particular, the

induced map

LE(P, Dn)→ lim
j→∞

LEj(P, D
n)

is a weak equivalence;

• there is a preferred homotopy equivalence

LE1(P, Dn)' I(P, Dn);

• if j > 2 and x ∈ LEj−1(P, Dn) is a point, then there is an obstruction

`j−1(x) ∈ π0(F∗(P
×j
+ ,Wj ∧ S(n−1)Vj+1)hΣj )

which is trivial if and only if the homotopy fiber of the map LEj(P, D
n)→

LEj−1(P, Dn) at x is non-empty;

• if `j−1(x) is trivial, then there is a homotopy fiber sequence

F st
∗ ((P×j)+,Wj ∧ S(n−1)Vj )hΣj → LEj(P, D

n)→ LEj−1(P, Dn).

where the displayed homotopy fiber is taken at x.

Remarks 1.25. (1). The first part of Theorem C implies that if (j + 1)k +

2j 6 jn and LEj(P, D
n) is non-empty, then LE(P, Dn) is also non-empty.

(2). It follows from the last two parts of the theorem that the map

LEj(P, D
n)→ LEj−1(P, Dn) is (2−n+ j(n−k−2))-connected.

(3). Modulo torsion, a transfer argument shows that the class `j−1(x)

is detected in the singular cohomology group Hs(P×j ; Q(j−1)!), where

s= (n− 2)(j − 1) + 1.

(4). The layers of the tower depend only on the homotopy type of P and in

particular do not depend on the choice of sectioning data.
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Outline. The material of Section 2 is mostly language. The literate

reader can skip it and refer back to it as needed. In Section 3 we provide

constructions of the Poincaré embedding space, its unlinked variant and the

space of Poincaré immersions. We prove Theorems A and B in Section 4. In

Section 5 we prove Theorem C. The final section, Appendix A, is conjectural:

it poses a connection between the tower of Theorem C and the Goodwillie–

Weiss tower for smooth embeddings.

§2. Preliminaries

2.1 Spaces

Our ground category is T , the category of compactly generated weak

Hausdorff spaces. A non-empty space X is r-connected if πj(X, x) is trivial

for j 6 r, for all base points x ∈X. The empty space is (−2)-connected

and every non-empty space is (−1)-connected. A map X → Y of non-empty

spaces is r-connected if each of its homotopy fibers is (r − 1)-connected

(every map of non-empty spaces is (−1)-connected; a weak homotopy

equivalence is an ∞-connected map).

For unbased spaces X and Y we let F (X, Y ) be the unbased function

space and if X and Y are based we let F∗(X, Y ) be the based function

space. When we write [X, Y ], we mean homotopy classes of based maps

Xc→ Y , where Xc is a cofibrant replacement for X. When X and Y are

based, then the based homotopy classes are to be written as [X, Y ]∗. We use

the usual notation for the smash product: X ∧ Y , and the iterated smash

product of j-copies of X is denoted X [j].

We equip T with the Quillen model category structure given by the

Serre fibrations, Serre cofibrations and weak homotopy equivalences [17],

[9, Theorem 2.4.23]. Note that T is enriched over itself. We let T∗ denote

the model category of based spaces.

A commutative square of spaces

X∅ //

��

X2

��
X1

// X12

is homotopy co-Cartesian if the map

hocolim(X1←X∅→X2)→X12)→X12
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is a weak equivalence, where the domain of this map is given by the

homotopy pushout of the diagram obtained from the square by removing

its terminal vertex. In the special case when X2 is contractible, we abuse

notation and refer to X∅→X1→X12 as a homotopy cofiber sequence. This

is the same as equipping the composition X∅→X1→X12 with a preferred

choice of null homotopy such that the induced map X2 ∪X∅ CX∅→X12 is

required to be a weak equivalence.

Similarly, the above square is homotopy Cartesian if the map from X∅ to

the homotopy pullback of X1→X12←X2 is a weak equivalence. When X2

is contractible, we refer to X∅→X1→X12 as a homotopy fiber sequence.

The latter is equivalent to describing a null homotopy of the composition

X∅→X1→X12 such that the map from X∅ to the homotopy fiber of the

map X1→X12 is a weak equivalence.

In each of these notions, when the null homotopy is understood, we

typically omit it from the notation to avoid clutter.

2.2 Factorization categories

Fix a map of spaces f :A→B. Define a category

T (f) = T (f :A→B)

whose objects are spaces X and a factorization A→X →B by continuous

maps. A morphism X →X ′ is a map of spaces that is compatible with

the factorizations. When f is understood, we usually write this category as

T (A→B).

Here are some important special cases:

Example 2.1. Let A=B and use the identity map. Then T (B→B) is

the category of spaces which contain B as a retract.

Example 2.2. Let A= ∅ be the empty space. Then T (∅→B) is the

category of spaces over B.

Example 2.3. Let B = ∗ be the one-point space. Then T (A→∗) is the

category of spaces under A.

The forgetful functor T (A→B)→ T induces a model structure on

T (A→B) by declaring a morphism to be a cofibration, fibration or weak

equivalence if and only if it is one in T [17, 2.8, Proposition 6]. This model

structure is enriched over T . The category of weak equivalences is denoted

by

wT (A→B).
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Remark 2.4. We use the notation |C | for the realization (of the

nerve) of a small category C . The functor C 7→ |C | enables one to transfer

homotopical properties of spaces over to small categories. For example, we

declare a functor f :C →D to be r-connected if and only if it is so upon

taking realization. Likewise, it makes sense to ask whether a commutative

square of small categories is homotopy Cartesian.

In this paper the categories C that we will want to apply realization to

are full subcategories of wT (A→B) – but they are not small. This is not

a major dilemma; for a discussion of the options on how to deal with the

matter, see [6, p. 766].

2.3 Spectra

The spectra appearing in this paper are formed from objects of T∗. For

us, a spectrum will be a sequence of based spaces Ej and (structure) maps

ΣEj → Ej+1. We say that E is cofibrant if each of the spaces Ej is cofibrant

and each structure map is a cofibration. E is fibrant if each adjoint Ej →
ΩEj+1 is a weak equivalence.

A map of spectra f :E→ E′ is a collection of maps fj :Ej → E′j that

are compatible with the structure maps. Any spectrum E has a fibrant

replacement, which is a spectrum Ef equipped with a natural map of spectra

E→ Ef, where Ef
j := colimk Ωk(Sj ∧ Ek). The map f :E→ E′ is a (stable)

weak equivalence if the associated map Ef→ (E′)f is such that for each j the

map of based spaces Ef
j → (E′)f

j is a weak equivalence. If E is a spectrum,

we write Ω∞E for the associated infinite loop space given by the zeroth

space of its fibrant replacement. If X is a based space, then we let Σ∞X

be its suspension spectrum whose jth space is Sj ∧X. For it to have the

correct homotopy type we should assume that X is cofibrant. The zeroth

space of Σ∞X is denoted Q(X).

Given a based space X and a spectrum E we can form X ∧ E which is

the spectrum whose jth space is X ∧ Ej . This has the correct homotopy

type if both X and E are cofibrant. Similarly we can form the functions

F∗(X, E) which is the spectrum whose jth space is F∗(X, Ej). This has

the correct homotopy type when X is cofibrant and E is fibrant (when E

fails to be fibrant, we will implicitly replace it by its fibrant model). The

associated stable function space is Ω∞F∗(X, E). We will typically be sloppy

and omit the Ω∞ from the notation. Thus, F∗(X, E) can mean either the

spectrum or its associated infinite loop space. If X is unbased then we set

F (X, E) = F∗(X+, E) whereX+ =X q ∗. IfX and Y are based spaces, then

https://doi.org/10.1017/nmj.2016.37 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.37


168 J. R. KLEIN

a stable map X → Y is an element of the stable function space F∗(X, Σ
∞Y ),

that is, a point of the function space F∗(X, Q(Y )), where Q(Y ) = Ω∞Σ∞Y .

We let {X, Y }∗ denote the stable homotopy classes of maps from X to Y ;

this is the same as π0 ( F∗(X, Q(Y )) when X and Y are cofibrant.

Smash products of spectra are barely used in this paper, and are confined

to the proof of Theorem C. It is for this reason that we are content to work

in the above category of spectra. The reader is free to use a more modern

approach.

2.4 Spectra with group action

Fix a discrete group G. We say that a spectrum E has a G-action if each

Ej has the structure of a basedG-space and each structure map ΣEj → Ej+1

is equivariant, where G acts trivially on the suspension coordinate. A map

E→ E′ of spectra with G-action is just a map of underlying spectra which is

G-equivariant. A map of spectra is a weak equivalence if it is when considered

as a map of spectra without action. We say that E is fibrant if its underlying

spectrum (without action) is. Call a based G-space X G-cofibrant if it is

built up from the basepoint by attaching freeG-cells along equivariant maps;

a free G-cell has the form Dn×G.

If X is a G-space and E is a spectrum with G-action, then G acts

diagonally on X ∧ E. We write X ∧G E for the orbit spectrum. This has

the correct homotopy type if X and E are both G-cofibrant. The homotopy

orbits of G acting on E is the spectrum

EhG = EG+ ∧G E

where EG the universal contractibleG-space. This has the correct homotopy

type of the underlying spectrum of E is cofibrant.

2.5 Poincaré spaces

The Poincaré spaces of this paper are orientable. An orientable Poincaré

space of dimension d consists of a homotopy finite space P for which there

exists a fundamental class [P ] ∈Hd(P ; Z) such that the cap product

∩ [P ] :H∗(P ; M )→Hd−∗(P ; M )

is an isomorphism in all degrees for any locally constant sheaf M .

If π : P̃ → P is a choice of universal cover, then the cap product is an

isomorphism for all M if and only if it is an isomorphism for the locally
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constant sheaf Λ whose stalk at x ∈ P is given by the free abelian group

with basis π−1(x) (cf. [21, Lemma 1.1]).

Poincaré spaces P with boundary ∂P , also known as Poincaré pairs, are

defined similarly, where now [P ] ∈Hd(P, ∂P ; Z), the cap product

H∗(P ; M )
∩[P ]−−−→Hd−∗(P, ∂P ; M )

is an isomorphism, and the class [∂P ] ∈Hd−1(∂P ; Z), obtained by applying

the boundary homomorphism to [P ], equips ∂P the structure of a Poincaré

space of dimension d− 1 (this assumes in particular that ∂P is homotopy

finite). We will be relaxed about language and refer to a Poincaré space

with or without boundary simply as a Poincaré space.

We will also sometimes omit the condition that the map ∂P → P is an

inclusion. The definition of a Poincaré space still makes sense in this instance

since we can replace any map by its mapping cylinder inclusion.

§3. Poincaré embeddings

Let P be a Poincaré space of dimension n. We will assume here that

∂P → P is a cofibration. An (interior) Poincaré embedding of P in Dn

consists of a space C and a map ∂P q Sn−1→ C such that

• C is a Poincaré space with boundary ∂P q Sn−1;

• the amalgamated union

P ∪∂P C

is weakly contractible.

In what follows we set

A := ∂P q Sn−1.

Then

C ∈ wT (A→∗)

is an object. Let

E (P, Dn)⊂ wT (A→∗)

be the full subcategory whose objects give Poincaré embeddings of P in

Dn. The space of Poincaré embeddings of P in Dn is then defined as the

realization

E(P, Dn) = |E (P, Dn)|.

This is an open and closed subspace of |wT (A→∗)|.
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Remark 3.1. The version of the Poincaré embedding space appearing

here is slightly different from the one in [6, Definition 2.8]. There it is defined

to be the homotopy fiber of the functor

(7) I (A)→I (Sn−1)

given by “gluing in P ,” where for a Poincaré space ∂ without boundary,

the category I (∂) has objects Poincaré spaces X with ∂ as boundary, and

morphisms are weak homotopy equivalences X →X ′ which restrict to the

identity on ∂. In the definition of [6, Definition 2.8], the homotopy fiber

of (7) is taken at Dn ∈I (Sn−1). Our definition here amounts to taking a

certain open and closed subspace of I (A) rather than a homotopy fiber.

This definition is equivalent to the one in [6] because the component of

Dn ∈I (Sn−1) is contractible.

The decompression functor

E (P, Dn)→ E (P×D1, Dn+1)

is defined by mapping C ∈ E (P, Dn) to its unreduced suspension SC. On

realizations it defines the decompression map

(8) E(P, Dn)→ E(P×D1, Dn+1).

3.1 Unlinked embeddings

If P is sectioned, then we set

A′ = P ξ ∨ Sn−1.

There is then a cofiber sequence P+→A→A′. The map A→A′ induces a

(forgetful) functor

wT (A′→∗)→ wT (A→∗).

Definition 3.2. The space of unlinked embeddings LE(P, Dn) is the

realization of the full subcategory

LE (P, Dn)⊂ wT (A′→∗)

consisting of objects C which become Poincaré embeddings when considered

in wT (A→∗).
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Unraveling the definition, we see that an unlinked embedding consists of

a space C and a map P ξ ∨ Sn−1→ C such that the composition

∂P q Sn−1→ P ξ ∨ Sn−1→ C

defines a Poincaré embedding of P in Dn.

By definition, there is a homotopy Cartesian square

(9)

LE (P, Dn) //

��

wT (A′→∗)

��
E (P, Dn) // wT (A→∗).

3.2 Poincaré Immersions

Recall Pj := P ×Dj . The immersion space I(P, Dn) is defined as the

homotopy colimit of the sequence of decompression maps

E(P, Dn)→ E(P1, D
n+1)→ E(P2, D

n+2) · · · .

Lemma 3.3. There is a homotopy equivalence

I(P, Dn)' Ωn
⊥Q(P/∂P ).

Proof. The Browder construction gives a factorization of the filtration

defining I(P, Dn) as

E(P, Dn)→Ωn
⊥P/∂P →E(P1, D

n+1)→Ωn+1
⊥ P1/∂P1→E(P2, D

n+2)→· · ·

The homotopy colimit of the odd terms appearing in the sequence yields

I(P, Dn) by definition, whereas the homotopy colimit of the even terms

gives the space of stable normal invariants

Ωn
⊥Q(P/∂P ),

since Ωn+j(Pj/∂Pj) = Ωn+jΣj(P/∂P ).

Lemma 3.4. (Smale–Hirsch for Poincaré Spaces) If I(P, Dn) is non-

empty and equipped with a basepoint, then there is preferred weak homotopy

equivalence

I(P, Dn)' F (P, G),

where the right side denotes the function space of unbased maps from P to

the topological monoid of stable self equivalences of the sphere.
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Remark 3.5. The corresponding statement in the smooth case is that

the smooth immersions of P to Dn is weak equivalent to the function space

F (P, On), where On is the group of orthogonal n× n matrices. Note that

the smooth version depends on n.

To obtain a smooth statement which does not depend on n, one should

replace the smooth immersion space by its block analogue. In this instance

one obtains a weak equivalence to the function space F (P, O).

Proof of Lemma 3.4. If I(P, Dn) is non-empty then the Spivak fibration

for P is trivializable, implying that P/∂P is n-dual to P+. By S-duality, we

have a weak equivalence

F∗(P+, Q(S0))' ΩnQ(P/∂P ).

Restricting to stable normal invariants on the right corresponds to replacing

Q(S0) on the left by its units, namely G. The result now follows by

Lemma 3.3.

§4. Proof of Theorems A and B

Consider the following situation: fix a map of based spaces

f :A→X

and let Y denote its reduced mapping cone. Consider the forgetful functor

wT (Y →∗)→ wT (X →∗).

Let Z ∈ wT (X →∗) be an object; in particular, Z has the structure of

a based space. The map X → Z factors through Y precisely when the

composition

A→X → Z

is null homotopic. In what follows we fix based null homotopy CA→ Z.

Lemma 4.1. With these assumptions, there is a homotopy fiber sequence

F∗(ΣA, Z)→ |wT (Y →∗)| → |wT (X →∗)|,

where the displayed fiber is taken at the basepoint Z ∈ |wT (X →∗)|.
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Proof. By [6, Proposition 2.14], the homotopy fiber of |wT (Y →∗)| →
|wT (X →∗)| taken at Z identified up to preferred weak equivalence with

the function space of liftings/extensions

X //

��

Z

��
Y

>>

// ∗.

We employ the notation

FX(Y, Z)

for this space. The given extension equips FX(Y, Z) with a basepoint and the

restriction map FX(Y, Z)→ FA(CA, Z) is a homeomorphism. Let ρ :CA→
Z be the given null homotopy. The cofiber sequence A→A→ CA has a

coaction map δ :CA→ CA ∨ ΣA. Given a map g :ΣA→ Z, we form

ρ ? g :CA
δ→ CA ∨ ΣA

ρ+g→ Z.

Then g 7→ ρ ? g defines a weak equivalence F∗(ΣA, Z)' FA(CA, Z).

Proof of Theorem B. Recall that A= ∂P q Sn−1 and A′ = P ξ ∨ Sn−1.

Consider the full subcategory

wT (A′→∗;∼P ξ)⊂ wT (A′→∗)

with objects C such that the composite

P ξ ⊂A′→ C

is a weak homotopy equivalence. We claim there is a homotopy equivalence

|wT (A′→∗;∼P ξ)| ' Ωn−1P ξ.

To see this, note that wT (A′→∗;∼P ξ) is the right fiber taken at P ξ ∈
wT (∗→ ∗) of the forgetful functor

wT (Sn−1→∗)→ wT (∗→ ∗)

and by [6, Proposition 2.19] we may identify this right fiber with Ωn−1P ξ.

This gives the claim.
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We restrict our attention to the full subcategory

wT⊥(A′→∗;∼P ξ)⊂ wT (A′→∗;∼P ξ)

of those objects C such that the weak map Sn−1→ C
∼← P ξ corresponds to

an unstable normal invariant. This additional constraint yields a homotopy

equivalence

|wT⊥(A′→∗;∼P ξ)| ' Ωn−1
⊥ P ξ.

The refined Browder construction defines a functor

F :wT⊥(A′→∗;∼P ξ)→ LE (P, Dn).

On the other hand, the identity defines a functor

G :LE (P, Dn)→ wT⊥(A′→∗;∼P ξ).

It is tautological that these functors are inverses to each other.

Proof of Theorem A. By Theorem B it suffices to consider the map

LE(P, Dn)→ E(P, Dn).

We will make use of the cofiber sequence

P+→A→A′.

If C ∈ E (P, Dn) is an object, then clearly the obstruction to lifting it to an

object of LE (P, Dn) up to weak equivalence is that the composite

P+→A→ C

is null homotopic. This proves the first part. Now suppose a null homotopy

P+→ C has been chosen. Using Lemma 4.1, we have a homotopy fiber

sequence

F∗(Σ(P+), C)→ |wT (A′→∗)| → |wT (A→∗)|.

One completes the proof using the homotopy Cartesian square (9).
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§5. Proof of Theorem C

5.1 Principal fibrations

We recall a basic result about principal fibrations from [14, Lemma 6.1].

Suppose p :E→ Z is a fibration. We say that p is principal if there exists a

commutative homotopy Cartesian square of spaces

E //

p

��

C

��
Z // B

such that C is contractible. Note that the property of being a principal

fibration is preserved under base changes. Choose a basepoint for C. This

gives a basepoint for B.

Suppose that Z is connected. If p :E→ Z is principal, there is an “action”

ΩB × E→ E. If there exists a section Z→ E, one can combine it with this

action to produce a map of fibrations ΩB × Z→ E covering the identity

map of Z. This implies that p is weak fiber homotopically trivial. Let sec(p)

denote the space of sections of p. Then we have shown

Lemma 5.1. Assume p :E→ Z is principal. Assume that sec(p) is non-

empty and comes equipped with basepoint. Then there is a preferred weak

equivalence sec(p)' F (Z, ΩB).

Let p :E→ Z be a principal fibration and suppose that A→ Y is a

cofibration. Then given a lifting problem

A

��

// E

p

��
Y

f

//

??

Z

we let lifts(f |p) be the solution space: the space of maps Y → E of f making

the diagram commute.

Corollary 5.2. If lifts(f |p) is non-empty then a choice of lift deter-

mines a weak equivalence lifts(f |p)' F∗(Y/A, ΩB).

Proof. Observe that f∗E→ Y is principal. Furthermore lifts(f |p)∼=
sec(f∗E→ Y ). Hence if lifts(f |p) is nonempty we can identify f∗E with
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the trivial fibration ΩB × Y → Y once a basepoint lift has been chosen.

With respect to the identification, the given map A→ f∗E corresponds to

the inclusion ∗ ×A→ ΩB × Y .

Hence, lifts(f |p) is then identified up to weak equivalence with the space

of sections of the trivial fibration ΩB × Y → Y which are fixed on A. But

this is just F∗(Y/A, ΩB).

5.2 The Goodwillie tower of the identity

Let I :Top∗→Top∗ be the identity functor. We recall some of the basic

properties of its Goodwillie tower. (cf. [3], [4], [5], [10]).

Theorem 5.3. There is a tower of fibrations of homotopy functors on

based spaces

· · · → P2I(X)→ P1I(X)

and compatible natural transformations X → PjI(X) such that

• if X is 1-connected, then the natural map

X → lim
j
PjI(X)

is a weak equivalence.

• There is a natural weak equivalence P1I(X)'Q(X);

• For j > 2, the fibration

PjI(X)→ Pj−1I(X)

is principal (cf. [5, Lemma 2.2]);

• the jth layer LjI(X) := fib(PjI(X)→ Pj−1I(X)) is naturally weak equiv-

alent to the functor

X 7→ Ω∞(Wj ∧hΣj X
[j]);

where the spectrum with Σj-action Wj is as in [10].

5.3 The spaces Ej(P, D
n)

Recall that P is sectioned by ξ. We fix the natural identification P1I(X)'
Q(X). Then we have a map

(10) Ωn−1
⊥ Q(P ξ)→ Ωn−1P1I(P ξ).

Note that the source of this map is identified with a collection of components

of the target.
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Definition 5.4. The space LEj(P, D
n) is defined to be the union

of path components of Ωn−1PjI(P ξ) given by taking the pullback of the

diagram

Ωn−1
⊥ Q(P ξ)→ Ωn−1P1I(P ξ)← Ωn−1PjI(P ξ).

Proof of Theorem C. It is a consequence of the definition that there is a

tower of fibrations

(11) · · · → LE2(P, Dn)→ LE1(P, Dn).

By definition LE1(P, Dn)∼= Ωn−1
⊥ Q(P ξ) and by Lemma 3.3, Ωn−1

⊥ Q(P ξ)'
I(P, Dn). Moreover, the square

(12)

limj LEj(P, D
n) //

��

limj Ωn−1PjI(P ξ)

��

LE1(P, Dn) // P1I(P ξ)

is homotopy Cartesian. The lower right corner of this diagram is identified

with Q(P ξ). Since that map ∂P → P is at least 2-connected, it follows that

the section K→ ∂P is at least 1-connected. Hence, P ξ is 1-connected and

the upper right corner of diagram is identified with Ωn−1P ξ. Substituting

these identifications, we obtain a homotopy Cartesian square

(13)

limj LEj(P, D
n) //

��

Ωn−1P ξ

��

I(P, Dn) // Ωn−1Q(P ξ).

Clearly, if we replace the upper left corner by the space of unstable normal

invariants Ωn−1
⊥ P ξ the square remains homotopy Cartesian, since a point

of Ωn−1P ξ yields an unstable normal invariant if and only if the associated

point of Ωn−1Q(P ξ) yields a stable normal invariant. It follows that the map

Ωn−1
⊥ P ξ→ lim

j
LEj(P, D

n)

is a weak equivalence. Therefore, the composite map

LE(P, Dn)
∼→ Ωn−1

⊥ P ξ
∼→ lim

j
LEj(P, D

n)

is also a weak equivalence.
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We next identify the layers of the tower (11) whenever they are non-

empty. The fiber of the map Ωn−1PjI(P ξ)→ Ωn−1Pj−1I(P ξ) at any base-

point is just the lifting space

(14)

∗ //

��

PjI(P ξ)

��

Sn−1 //

99

Pj−1I(P ξ).

If this lifting space is non-empty, then Corollary 5.2 says that after making

a choice of lift, the space of all such lifts is identified with the stable function

space

F∗(S
n−1,Wj ∧hΣj (P ξ)[j]).

We need to rewrite this stable function space up to homotopy in the requisite

form. First identify it as the zeroth space of the homotopy orbit spectrum

(15) (S1−n ∧Wj ∧ (P ξ)[j])hΣj .

The plan is to rewrite the latter in terms of P+ using Spanier–Whitehead

duality. Assuming that I(P, Dn) is non-empty guarantees that P ξ is (n− 1)-

dual to P+. We can write this as

Σ∞P ξ ' Σn−1D(P+),

where D(P+) is the 0-dual of P+, that is, F∗(P+, S), where S denotes the

sphere spectrum. If we smash this identification with itself j-times, we obtain

an equivariant weak equivalence of spectra with Σj-action

Σ∞(P ξ)[j] ' F∗((P×j)+, Σ
∞S(n−1)(Vj+1)).

Substituting this into (15), and doing some minor rewriting, we obtain the

spectrum

F∗((P
×j)+,Wj ∧ S(n−1)Vj )hΣj .

The zeroth space of this spectrum is thus identified with the homotopy fibers

of LEj(P, D
n)→ LEj−1(P, Dn) whenever these are non-empty.

Lastly, we need to exhibit the obstruction `j−1. According to [5,

Lemma 2.2] there is a j-homogeneous functor X 7→RjI(X) and a homotopy

Cartesian square
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PjI(X) //

��

C

��
Pj−1I(X) // RjI(X)

where C is contractible. By the classification of j-homogeneous functors [5],

[3, p. 5], we infer

RjI(X)' Ω∞Vj ∧hΣj X
[j]

for a some spectrum with Σj-action Vj . Furthermore, the map

LjI(X)→ ΩRjI(X)

is a weak equivalence of j-homogenous functors. It follows that there is a

weak equivalence of spectra with Σj-action

Vj ' ΣWj .

Consequently, setting X = P ξ, we have a homotopy Cartesian square

PjI(P ξ) //

��

C

��

Pj−1I(P ξ) // Ω∞ΣWj ∧hΣj (P ξ)[j]

in which C is contractible. Hence, the obstruction up to homotopy to a

lifting a based map x :Sn−1→ Pj−1I(P ξ) to a based map Sn−1→ PjI(P ξ)
is given by the homotopy class of the composition

(16) Sn−1→ Pj−1I(P ξ)→ Ω∞ΣWj ∧hΣj (P ξ)[j].

In particular, if x ∈ Ej−1(P, Dn)⊂ Ωn−1Pj−1I(P ξ) is a point, then we define

`j−1(x) to be the homotopy class of (16). Then `j−1(x) a priori lies in the

abelian group

{Sn−1, ΣWj ∧hΣj (P ξ)[j]}∗

Again by duality, we can rewrite the latter up to canonical isomorphism as

π0(F∗(P
×j
+ ,Wj ∧ S(n−1)(Vj−1)+1)hΣj ).
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Appendix A. Relationship with manifold calculus

It is legitimate to ask what the tower of Theorem C has to do with

the Goodwillie–Weiss manifold calculus [22]. Here is one possible scenario:

suppose that Q is a compact smooth (n− 1)-manifold—which we assume

admits a handle decomposition with handles of index at most k 6 n− 4. We

consider the forgetful/decompression map

(A1) Esm(Q, Dn−1)→ LE(Q×D1, Dn)

from the space of smooth embeddings of Q in Dn to the space of unlinked

Poincaré embeddings of Q×D1 in Dn.

Conjecture A.1. The map (A1) induces a map of towers from the

Goodwillie–Weiss tower for Esm(Q, Dn−1) to the tower of Theorem C for

LE(Q×D1, Dn).

Remark A.2. By Theorem B we can identify the map with the

Pontryagin–Thom construction

Esm(Q, Dn−1)→ Ωn−1
⊥ (Q/∂Q)

from a space of smooth embeddings to the space of unstable normal

invariants, the latter which is collection of components of Ωn−1(Q/∂Q).

Recall that the tower of Theorem C is arises from the Goodwillie tower of the

identity functor I applied to the based space Q/∂Q. The conjecture therefore

concerns how the manifold calculus tower for the embedding functor relates

to the homotopy calculus for the functor I.

We will give some evidence for the conjecture on the level of layers. In

what follows we shall assume that the reader is familiar with [22]. Here is

some notation: suppose T is a finite set. We write

P(Q, T )

for the configuration space of the injective functions from T to the interior

of Q. This has a free action of ΣT , the symmetric group of automorphisms
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of T . In the case when T = j = {1, . . . , j}, we write P(Q, j) := P(Q, j).

Let (
Q

T

)
:= P(Q, T )ΣT

the orbit space of the action of ΣT on P(Q, T ); this is the configuration

space of (unordered) subsets of the interior of Q of cardinality |T |. Similarly,

we write
(
Q
j

)
:=
(
Q
j

)
.

The quotient map π :P(Q, j)→
(
Q
j

)
is a principal covering space with

respect to the group Σj ; we let i :
(
Q
j

)
→BΣj denote its classifying map.

Then i ◦ π is the constant map to the basepoint. Let c :Q×j →BΣj be the

constant map. Then c restricted to P(Q, j) is i ◦ π. There is an inclusion

P(Q, j)⊂Q×j whose complement is the diagonal ∆⊂Q×j .
The evidence we give for Conjecture A.1 is a diagram

H•cs(
(
Q
j

)
; Ej)

(a)
// H•cs(

(
Q
j

)
; Fj)

(b)

��

H•cs(
(
Q
j

)
; i∗Gj)

H•cs(P(Q, j); (i ◦ π)∗Gj)hΣj

' (c)

OO

H•(Q×j ,∆; c∗Gj)hΣj

(e)
//

' (d)

OO

H•(Q×j ; c∗Gj)hΣj
.

We first summarize what the maps of the diagram are about and thereafter

we give some of the details. For j > 2, the source of (a) is the jth

layer for the manifold calculus tower of the smooth embedding space

Esm(Q, Dn−1). The target of (a) is the jth layer for the manifold calculus

tower of, in the terminology of [22, Definition 2.2], the good cofunctor

O 7→ Ωn−1Σn−1O+, where O ⊂Q varies over the open subsets of the interior

of Q and O+ denotes one-point compactification. The map (a) is induced by

the Pontryagin–Thom construction. The map (b) is a kind of stabilization

map. The equivalence (c) is a version of the Adams isomorphism (which is

valid since the source and target in this case are infinite loop spaces) and
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the equivalence (d) is excision. The map (e) is a relaxation of constraints.

The target of (e) coincides with the jth layer of the tower of Theorem C for

LE(Q×D1, Dn).

We now proceed to give more detail. In the above, Ej and Fj are fibrations

over
(
Q
j

)
, and Gj is a fibration over BΣj . The notation H•(B; U ) refers to

the space of sections of a fibration U →B (which we feel compelled to

indicate as “unstable” cohomology), and similarly, H•cs(B; U ) refers to the

space of sections with compact support relative to a given fixed section;

these are the sections which agree with the given one outside a compact

subset of B.

The fibration Ej →
(
Q
j

)
may be described as follows: if T ∈

(
Q
j

)
, then we

form the j-cube of spaces

(A2) U 7→P(Dn−1, U), U ⊂ T.

The total homotopy fiber of (A2) is the fiber at T of the fibration Ej →
(
Q
j

)
(we will leave it to the reader to provide the topology on Ej as well as on

Fj). By [22, sum. 4.2] we know that H•cs(
(
Q
j

)
; Ej) is the jth layer of the

Goodwillie–Weiss tower for the space of smooth embeddings Esm(Q, Dn−1)

when j > 2.

The fibration Fj →
(
Q
j

)
has fiber at T given by the total homotopy fiber

of the j-cube

(A3) U 7→ Ωn−1Σn−1(U+), U ⊂ T.

The map Ej →Fj is induced by the Pontryagin–Thom construction

P(Dn−1, U)→ Ωn−1Σn−1(U+) with respect to the trivial framing. This

induces the map (a). The map (a) is (2n− 3k − 5)-connected [13].

The fibration Gj →BΣj arises as follows: take the unreduced Borel

construction of Σj acting on Wj ∧ S(n−1)Vj . This gives a fibered spectrum

(A4) EΣj ×Σj (Wj ∧ S(n−1)Vj )→BΣj .

Then Gj is the fiberwise zeroth space of (A4), i.e, Gj is the unreduced Borel

construction of Σj acting on Ω∞(Wj ∧ S(n−1)Vj ). The fibration i∗Gj →
(
Q
j

)
is obtained by taking the base change of Gj along i.

The source of (c) is the homotopy orbits of Σj acting on the section

space with compact supports of the fibration (i ◦ π)∗Gj →P(Q, j). Here

we are using the observation that this last map is Σj-equivariant (Σj-acts

on (i ◦ π)∗Gj because it is a trivial fibration over P(Q, j) whose fiber
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Ω∞(Wj ∧ S(n−1)Vj ) comes equipped with a Σj-action). As already men-

tioned, the map (c) is a homotopy equivalence by the Adams isomorphism

[15, Section 2] and the map (d) is an equivalence by excision. The map (e)

is the map which forgets that a section is fixed along the diagonal; it is

((j−1)(n−2)−k−1)-connected.

The map (b) is induced by a map Fj → i∗Gj which on the level of fibers

at T arises from the natural map

Ωn−1Σn−1(U+)→ Ωn−1PjI(Σn−1(U+))

which induces map of j-cubes. As noted above, the total homotopy fiber of

the source is identified with the fiber of Fj at T . The total homotopy fiber

of the target cube can be obtained by replacing the jth stage PjI in the

above with the j-layer in the tower for I. An analysis which we omit shows

that total homotopy fiber of the target is identified with the fiber of i∗Gj
at T .

In fact, the Hilton–Milnor theorem shows that the map Fj → i∗Gj is

((j + 1)(n− 2) + 2− n)-connected. By subtracting the handle dimension of

Q×j (i.e., jk) we infer that (b) is j(n−k−2)-connected.

Finally, observe that the connectivity of each of the maps (b) and (e) is

a linear function of j with positive slope. Thus the map (a) is the only map

of the diagram which does not tend to weak equivalence as j gets large.
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