
J. Fluid Mech. (2023), vol. 966, A1, doi:10.1017/jfm.2023.282

Spiral flow instability between a rotor and a
stator in high-speed turbomachinery and its
relation to fan noise
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Hydrodynamic instabilities in the interstage of turbomachinery and their relation to
fan broadband noise are investigated over wide operating conditions. By applying
compressible linear stability analysis to the velocity profiles of NASA’s high-speed fan
rig, source diagnostic test (SDT), three distinct unstable regimes are found: the first
mode amplifies disturbances over a wide frequency range including the rotor speed. The
second mode rotates much slower and develops inside the outer-wall boundary layer. The
third mode spins in the opposite direction. An approach equivalent to dynamic mode
decomposition (DMD) successfully extracts these modes from a database of improved
delayed detached-eddy simulation (IDDES) solving the SDT geometry at approach and
cut-back conditions: the extracted DMD modes generally capture the characteristics of
eigenfunctions predicted by the linear stability analysis. At the approach condition, the
first two unstable modes seem to interact inside the outer-wall boundary layer, while at
the cut-back condition, disturbances associated with the first regime migrate away from
the wall. Moreover, outer-wall pressure fluctuations of the IDDES database are Fourier
decomposed in the interstage: coherent structures extracted using proper orthogonal
decomposition are found to be dominated by duct acoustic modes, and they can be
mapped not only to interaction tones but also to broadband noise likely associated with
the interaction between disturbances in the rotor wakes and quasi-stationary structures
near the outer wall. This interaction noise appears to be radiated to both inlet and exhaust
with similar azimuthal-mode distributions; however, the importance relative to other noise
sources decreases with the engine speed.

Key words: aeroacoustics, Taylor–Couette flow, wave–turbulence interactions

1. Introduction

For the current commercial jet airplanes, fan noise becomes one of the major
components of the community noise from approach to take-off conditions (Envia 2002a;
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Figure 1. Schematic diagram illustrating major fan-noise sources.

Burley et al. 2012; Huff 2013; Leylekian, Lebrun & Lempereur 2014). The fan noise
from a turbofan engine consists of several noise-generation mechanisms including the
rotor–stator interaction over the entire engine speed, the rotor-locked tones emitted at
supersonic fan-tip speeds and other broadband noise sources, such as the interaction
between the wall boundary layer and the rotor tip as well as the interaction between
the boundary layer over the blade surface and the trailing edge (see figure 1). The
rotor–stator interaction itself comprises (i) wakes and tip vortices originated from the
rotor, (ii) unsteady stator responses to them and (iii) resultant sound radiated upstream
and downstream via sound propagation/reflection/transmission through the duct and the
blade rows. The information about the balance of these fan-noise-source contributions is
important to strategize the liner design in engine nacelles and to model the noise sources
for the fan-noise prediction. However, it is non-trivial to isolate each noise source either
computationally or experimentally; accordingly, their relative importance as a function of
the engine speed is still controversial.

In recent numerical studies (Pérez Arroyo et al. 2016; Shur et al. 2018c; Suzuki
et al. 2018; Kholodov, Sanjose & Moreau 2020; Francois, Polacsek & Barrier 2022), the
importance of unsteady motions originated near the fan-blade tip has been paid attention,
and their interaction with the outlet guide vanes (OGVs) has been investigated in the
context of fan broadband noise. In particular, streamwise vortical structures evolving near
the outer wall seem to be related to a substantial part of the rotor–stator interaction noise.
In this regard, an axial-velocity deficit in the outer-wall boundary layer behind the rotor
should be highlighted. If the flow angle behind the fan is assumed to be aligned with
the fan-blade trailing-edge angle β, the azimuthal velocity V can be related to the axial
velocity U in the frame moving with the rotor angular speed Ω as a function of the radius
r as

V (r) ≈ Ωr + tan [β (r) − �β] U (r) , (1.1)

where �β denotes the deviation flow angle from the blade trailing-edge angle. Figure 2(a)
compares the estimated azimuthal-velocity profile with the actual simulation profile
(Suzuki et al. 2022) at a low-speed/approach condition of NASA’s high-speed fan rig,
called source diagnostic test (SDT) (Hughes et al. 2002) designed by General Electric,
by assuming �β = 2◦. Here, we have averaged the velocity components in time and
the azimuthal direction at x/D ≈ 0.13, which is right behind the rotor; subsequently, we
have multiplied (1.1) by a turbulent boundary-layer profile on the outer wall (the log-law
profile with 90 % reduced friction velocity plus the wake profile by Hinze 1959). The key
takeaway is that a sharp peak near the outer wall is inevitably created behind the rotor in
the azimuthal-velocity profile.

Such a pointy mean-velocity profile seems to invoke hydrodynamic instabilities in the
interstage region: the combination of the axial- and azimuthal-velocity profiles can break
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Figure 2. Mean-flow characteristics in the interstage. Velocity profiles are taken from the IDDES at an
approach condition (61.7 % RPM). (a) Comparison of the azimuthal mean-velocity profiles. (b) Stability
criterion (6.1) in Heaton & Peake (2006) for m = 22.

the generalized Rayleigh’s stability criterion for a parallel swirling flow proposed by
Heaton & Peake (2006) from low to mid frequencies. Figure 2(b) plots their metric at a
low frequency (corresponding to the peak of the second unstable regime explained below)
and at the high-frequency asymptote, which is mostly positive (i.e. stable) except for a
very thin layer near the outer wall. Our previous study (Suzuki et al. 2022) discovered
two types of instabilities using the interstage velocity profile based on incompressible
linear stability analysis: the first regime becomes unstable over wide frequencies including
the rotor speed, forming wavepacket-like structures above the outer-wall boundary layer.
The second unstable regime excites disturbances very close to the outer wall at much
lower frequencies with smaller axial wavenumbers. This study has shown that coherent
structures extracted from a turbulence-resolved simulation, referred to as improved delayed
detached-eddy simulation (IDDES), possess properties similar to those predicted by the
linear stability analysis. Our linear stability analysis of a different fan rig, called advanced
ducted propulsor (ADP), designed by Pratt & Whitney, has found similar unstable regimes
(Suzuki et al. 2021). Thus, it is highly possible that such instabilities are commonly excited
in the interstage of turbomachinery due to the nature of the velocity field behind the rotor.

In the old days, hydrodynamic instabilities between coaxial cylinders have been
investigated as Taylor–Couette flow with axial velocity or lately referred to as spiral
Poiseuille flow for many engineering applications (Diprima 1960; Chandrasekhar 1961;
Takeuchi & Jankowski 1981; Ng & Turner 1982), and several flow regimes have been
discovered at relatively low Reynolds numbers (Kaye & Elgar 1958; Lueptow, Docter &
Min 1992; Murai et al. 2018). More recently, acoustic wave propagation together with
spiral annulus-flow instabilities has also been analysed (Golubev & Atassi 1998; Tam &
Auriault 1998; Heaton & Peake 2006). In these studies, however, the velocity profiles
are mostly laminar or transient, and at least one of the walls is rotating and driving the
swirl velocity. Our focus is the instabilities rather in high-Reynolds-number interstage
flows of turbomachinery, in which both walls are mostly stationary. Our previous study
(Suzuki et al. 2022) numerically investigated such a flow by simulating the SDT fan rig,
and successfully extracted coherent structures resembling such instability waves using an
approach equivalent to dynamic mode decomposition (DMD, Schmid 2010). A successive
study (Suzuki et al. 2021) analysed a higher engine-speed condition including ADP fan rig.
However, these previous studies covered limited engine speeds and compared with linear
stability analysis only for incompressible flow.
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As mentioned above, the series of instability analyses on the interstage flow was
originally motivated by the fan broadband noise from the inlet, which is predominated
by co-rotating azimuthal modes along the inner side of the cut-on line (refer to figure 24
shown later). Such a ‘biased’ modal distribution seems to be collapsed toward the
cut-on line with increasing engine speed. This trend can be observed by the mode-ring
measurement in the SDT (see figure 4 in Premo & Joppa 2002) as well as the
simulations (Suzuki et al. 2019) covering a supersonic fan-tip Mach number at a take-off
condition (100 % RPM). In fact, analogous stripes along the cut-on line were found in
the IDDES at an approach condition (61.7 % RPM), and a potential noise-generation
mechanism associated with the aforementioned instabilities was discussed by Suzuki et al.
(2022): in addition to the amplification of vortical disturbances near the outer wall via
these hydrodynamic instabilities, additional broadband noise may be generated by the
interaction of coherent structures invoked by one of these instabilities with turbulence
in the rotor wakes. Now, the interest is how such instability characteristics change over
a range of the operating condition, and how they potentially influence the fan noise at
transonic fan-tip Mach numbers.

The objective is to expand the investigation on the instability analysis of the
turbomachinery interstage flow by focusing on the engine speed and on the relation to the
fan broadband noise. In this study, compressible linear stability analysis is applied over
a wide range of engine speed: by taking the velocity profiles from NASA’s SDT fan rig,
the stability characteristics are analysed at approach, cut-back and take-off conditions.
Moreover, the past IDDES data solving the SDT geometry are post-processed using
an approach equivalent to DMD at the approach and the cut-back conditions, and the
characteristics of the extracted coherent structures are compared with those predicted
by the linear stability analysis. Since the compressibility is included in this analysis,
acoustic modes coexisting with hydrodynamic unstable modes can be identified using
realistic velocity profiles. Thus, the relation of these instability waves with the rotor–stator
interaction noise can be investigated. Furthermore, mode distributions in the interstage
are analysed by focusing on pressure fluctuations on the outer wall. Throughout these
analyses, a fan-noise generation mechanism associated with nonlinear interaction between
two different types of coherent structures is supported rather than interaction between
acoustic and hydrodynamic disturbances.

The rest of the paper is organized as follows. After the introduction, the SDT fan rig
and the test conditions are briefly reviewed, and the numerical methods of the IDDES
and its database are summarized. The Taylor–Couette-/spiral-Poiseuille-flow instability is
then introduced by focusing on compressible flow, and the instability characteristics are
compared between compressible and incompressible flows by using a spectral method.
Subsequently, the post-processing results using the IDDES database are discussed: (i)
hydrodynamic modes and their dispersion relations of velocity disturbances extracted from
the IDDES are compared with those derived from the linear stability analysis; (ii) duct
acoustic modes are investigated by decomposing the outer-wall pressure fluctuations; and
(iii) the potential contributions of such an instability phenomenon to the fan noise are
considered. Conclusions are finally summarized, followed by the Appendix providing the
comparison of the IDDES results with the experimental data.

2. Testbed: SDT

A series of aerodynamic and aeroacoustic tests using the aforementioned model-scale
fan rig, called the SDT, was conducted in the 9′ × 15′ low-speed wind tunnel at the
NASA Glenn Research Center, and the test results were reported by Hughes et al.
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Engine Power Engine Speed (RPM) % RPM fBPF (Hz) Mtip ΩD/2a∞ Ū (m s−1) T̄ (K)

Approach 7809 61.7 % 2863 0.73 0.67 109.0 267.8
Cut-back 11 075 87.5 % 4060 1.04 0.95 153.4 262.1
Take-off 12 657 100.% 4641 1.20 1.09 173.2 273.6

Table 1. Operating conditions of different engine speeds for SDT.

(2002), Woodward et al. (2002), Heidelberg (2002), Premo & Joppa (2002), Envia
(2002b) and Podboy et al. (2002). This fan rig with D = 22′′ (= 0.5588 m) diameter
was equipped with a rotor and a stator in an axisymmetric hard-wall nacelle without a
pylon/bifurcation or core flow. The tunnel Mach number was set to be M∞ = 0.1. Among
several tested configurations, the baseline geometry, consisting of 22 fan blades (called
R4) and 54 unswept OGVs, is investigated throughout this study. Three engine speeds, one
representing an approach condition (61.7 % RPM, i.e. 7, 809 RPM), the other a cut-back
condition (87.5 % RPM, i.e. 11 074 RPM) and the last a take-off condition (100 % RPM,
i.e. 12, 657 RPM) are studied, the corresponding blade-passing frequencies (BPF) being
fBPF = 2, 863 Hz, 4, 060 Hz and 4, 641 Hz, respectively. These numbers are summarized
in table 1. For the post-processing of the numerical database, the first two engine speeds
are investigated.

3. Summary of the computational fluid dynamics (CFD) method and database

An in-house code, called ‘Numerical Turbulence Simulation’, developed by Shur et al.
(2008), was designed to predict both fan tones and broadband noise associated with the
rotor–stator interaction by simulating the SDT geometry. A series of the aerodynamic
and aeroacoustic results has been reported in Shur et al. (2018c), Suzuki et al. (2018)
and Suzuki et al. (2019), together with details of the numerical methods including
the turbulence treatments, the grid design and the acoustic extraction/projection. The
summary of the numerical methods and the points relevant to this study are reviewed
below.

The SDT geometry including the entire nacelle was solved using the zonal unsteady
Reynolds-averaged Navier–Stokes (URANS) wall-modelled large eddy simulation
approach based on IDDES (simply called IDDES hereafter) was taken together with
the volume synthetic turbulence generator (VSTG, refer to Shur et al. 2018a). This
technique was achieved by tailoring spatially distributed unsteady source terms in the
momentum and subgrid turbulent-kinetic-energy transport equations. The VSTG was
activated in a relatively narrow region right downstream of the fan trailing edge to trigger
the scale-resolving capability of the IDDES in the interstage and farther downstream. All
the empirical constants and parameters entering the VSTG had been determined by Shur
et al. (2014) and Shur et al. (2018a) based on the computation of three canonical turbulent
shear flows (developed channel flow, zero pressure gradient boundary layer and plane
mixing layer), and they have been used in the series of the fan-flow computations with no
further adjustment. To properly simulate the modal contents for the stability analysis, the
random-number generator used for the synthetic velocity fluctuations in the source terms
was specifically tailored: their wavenumber distribution smoothly diminishes beyond the
cut-off, which corresponds to m ≈ ±39 and ±57 at the approach and cut-back conditions,
respectively. These active wavenumbers approximately cover the unstable azimuthal-mode
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Figure 3. Computational domain of the IDDES. (a) Computational mesh (every other point in x and y) and
their azimuthal grid counts. (b) Vorticity field at 61.7 % RPM.

range of the second unstable regime, plotted in figure 17 later. Suzuki et al. (2022)
documented this upgraded VSTG in details.

The entire SDT geometry including the fan blades, the OGVs, the bypass duct and the
nacelle over 360◦ was gridded with multi-block structured meshes of the Chimera type,
distributing a total of approximately 140 or 170 million cells at the approach or cut-back
condition, respectively. The block including the rotor and its fore- and aft-adjacent blocks
were rotated together and communicated with the rest of the stationary blocks with a
sliding-interface technique (refer to Shur et al. 2018b). The grids in the vicinity of the
rotor were aligned with the fan trailing edges and clustered in the wakes (the azimuthal
cell count is no less than 12); subsequently, they were smoothly transitioned to a uniform
azimuthal distribution (36 cells between the fan-blade passage) in the middle of the
interstage and farther downstream. With such a grid design, combined with the weighted
fourth-order centred/fifth-order upwind-biased scheme for the inviscid gasdynamic fluxes,
turbulence in the interstage was resolved with sufficient accuracy. The computational mesh
and an instantaneous vorticity field are displayed in figure 3.

In Shur et al. (2018c) and Suzuki et al. (2018, 2019), aerodynamic and aeroacoustic
results of the IDDES at the approach and take-off conditions have been validated against
the SDT experimental data, and the limitations have also been discussed. In the Appendix,
the flow field at the cut-back condition simulated by the IDDES with the upgraded VSTG
is similarly validated with the LDV data. The radiated sound-power-level (PWL) spectra
in the inlet and the exhaust are also compared with traverse microphone data of the SDT
to demonstrate the validity of the IDDES database.

4. Taylor–Couette-/spiral-Poiseuille-flow instability

4.1. Systems of the equations and the spectral method
In this study, linear stability analysis is performed for both incompressible and
compressible flows to evaluate the compressibility effects. The procedure for
incompressible flows was documented in the aforementioned study (Suzuki et al. 2022);
accordingly, the procedure for compressible flows is mainly formulated in the rest of
this section. For both problems, the approach taken by Takeuchi & Jankowski (1981) is
essentially followed: the Navier–Stokes equations are linearized by assuming axisymmetry
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Figure 4. Mean-velocity profiles in the interstage of SDT at three engine speeds (normalized by the ambient
speed of sound) at x/D ≈ 0.18 computed by the IDDES. (a) Azimuthal velocity. (b) Axial velocity.

of the mean flow as well as homogeneity in the axial direction, and eigenvalue problems
are solved using a spectral method with the Chebyshev polynomials (Orszag 1971). The
axial and azimuthal mean-velocity profiles, expressed as U(r) and V(r) respectively, are
taken from the aforementioned IDDES (Suzuki et al. 2022) approximately at the middle of
the interstage, x/D ≈ 0.18 of the SDT geometry. Here, x = 0 is taken at the fan-blade pitch
axis, as shown in figure 3. These velocity profiles at three engine speeds are compared in
figure 4, highlighting that the azimuthal-velocity peak is most pronounced at the approach
condition for the SDT. For compressible flows, the mean density and temperature profiles,
expressed as ρ(r) and T(r) respectively, are additionally taken from the IDDES. Since all
these profiles including the thermodynamic quantities are assumed to be invariant in the
axial direction, the axial pressure gradient is accordingly neglected; namely, the viscous
effect generating the axial pressure gradient is assumed to be much smaller than the radial
variation and other terms.

4.2. Temporal analysis and neutrally stable boundaries
The compressible Navier–Stokes equations are non-dimensionalized by using the ambient
density and speed of sound for the air, expressed as ρ∞ and a∞ = √

γ RT∞ (=
1.226 kg m−3 and 340.2 m s−1 in this study) respectively, as well as the fan diameter D
(= 0.5588 m). By expressing small flow perturbations as f̂ (r) exp[−i(ωt − kxx − mφ)],
where ω, kx and m respectively denote the angular frequency, the axial wavenumber and
the azimuthal-mode number, a system of the non-dimensional linearized equations in the
Fourier domain is written in the cylindrical coordinates as (the corresponding system for
an incompressible flow can be found in Suzuki et al. 2022)

ikxû + i
m
r

v̂ +
(

∂

∂r
+ 1

r
+ 1

ρ

∂ρ

∂r

)
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1
ρ

(
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ρ
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ŵ

− i
T
ρ

(
mV
r

+ kxU
)

ρ̂

+ i
γ − 1

[(
mV
r

+ kxU
)

+ iγμMa
ρRePr

{
� + dμ

dT

(
∂2 T
∂r2 + 1

r
∂T
∂r

+ 2
∂T
∂r

∂

∂r

)

+ (γ − 1) Pr
dμ

dT

((
∂U
∂r

)2

+
(

∂V
∂r

− V
r

)2
)}]

T̂ = iω

[
T̂

γ − 1
− T

ρ
ρ̂

]
, (4.1e)

where û, v̂ and ŵ denote the axial-, azimuthal- and radial-velocity components of
the perturbation, respectively, and ρ̂ and T̂ the density and temperature perturbations,
respectively. The Reynolds number, the Prandtl number and the Mach number are defined
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as Re ≡ ρ∞ŪD/μ̄, Pr ≡ γ Rμ̄/(γ − 1)κ̄ = 0.72 and Ma ≡ Ū/a∞, where the gas constant
R is assumed to be constant; moreover, the quantities with the top bar are those averaged
over the interstage station (refer to table 1 for Ū and T̄ in each condition) only to
characterize the Reynolds number. To include the temperature dependence of the dynamic
viscosity μ and the heat conductivity κ , the Sutherland formula (Sutherland 1893) is
adopted (the dimensional formula is given below)

μ = 0.72 (γ − 1)

γ R
κ ≡ μ0

(
T
T0

)1.5 T0 + C
T + C

, (4.2)

where μ0 = 1.716 × 10−5 kg (s m)−1, T0 = 273.15 K, C = 110.5 K, respectively. The
same constants are used for the heat conductivity, as it is related by the Prandtl number
defined above. The Laplacian in (4.1) is also defined as

� ≡ ∂2

∂r2 + 1
r

∂

∂r
− m2

r2 − k2
x , (4.3)

which is different from the notation by Takeuchi & Jankowski (1981). On both sides of the
walls, the no-slip boundary conditions are imposed for the three velocity components.

The equations above are cast such that the angular frequency ω is linearly placed on
the right-hand side and all the other terms on the left-hand side. Accordingly, temporal
instability can be solved as a generalized eigenvalue problem using a spectral method
developed by Orszag (1971): using the Chebyshev polynomials, the system of the equation
(4.1) is discretized in the radial direction into Np (= 256 in most cases) cells in a staggered
manner (Macaraeg, Streett & Hussaini 1988). Namely, the three velocity components are
located at Np + 1 grid points including the boundary points on the wall, while the density
and the temperature are assigned at Np mid points; accordingly, 3 × (Np + 1) equations for
the momentum and 2 × Np equations for continuity and energy are solved in essence. Yet,
six equations are sacrificed in the highest orders of these equations for the no-slip boundary
conditions on both walls. Consequently, the total of 5Np + 3 equations are simultaneously
solved for a compressible flow, as opposed to 4Np + 3 equations for an incompressible
flow. It should be noted that the incompressible solver has been verified by comparing
with the results reported by Takeuchi & Jankowski (1981).

We begin with comparing the neutrally stable boundaries (the lines at which the most
unstable growth rate vanishes) for incompressible and compressible solutions by solving
this temporal problem (as the boundaries are common to a spatial problem). Figure 5 plots
those for m = 22 (which is the same as the fan-blade count as an example) at the approach
condition up to the Reynolds number at which the current spectral code can resolve the
eigenvalue problem (the Reynolds number of the SDT/IDDES is Re ≈ 4 × 106). The
solutions for m = −22 become the mirror image of these figures (i.e. the signs of ω and
kx are flipped). First, the boundaries for incompressible and compressible flows almost
overlap each other, indicating negligible compressibility effects. Second, we find three
distinct unstable regimes, as labelled in figure 5(b): the first regime becomes unstable over
a relatively wide frequency range, and its boundary spreads with the Reynolds number.
This mode can destabilize disturbances moving with the rotor speed, indicated by the
dashed vertical line in figure 5(a), i.e. the rotating speed of the wakes given by ω = mΩ .
The second regime resides only within a narrow range of small axial wavenumbers at low
frequencies, corresponding to the local peak azimuthal velocity or lower near the outer
wall, i.e. ω ≈ mV/r, indicated by the dotted line. These two modes rotate in the direction
of the rotor. The third regime becomes unstable at relatively higher Reynolds numbers
but spreads its boundary very rapidly. This mode physically appears as a counter-rotating
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Figure 5. Neutrally stable boundaries in the interstage of SDT for m = 22 at 61.7 % RPM. (a) Frequency
dependence. (b) Wavenumber dependence.

mode (i.e. m = −22 in this case) with the opposite sign for ω and kx; hence, it can
still convect downstream. As discussed later, the rotational direction of a disturbance is
indistinguishable from snapshots of flow fields in post-processing unless we track the
evolution in time.

Figure 6 similarly compares the neutrally stable boundaries at the cut-back condition. It
is clear that the compressibility is still negligible. We find similar three unstable regimes;
to be precise, the second and the third regimes merge at higher Reynolds numbers, and the
boundary of the first regime depicts a gentle double-hump shape. More importantly, the
first unstable regime spreads over wider frequencies but migrates to a higher-frequency
range beyond the rotor speed; in addition, the critical Reynolds number of the first regime
becomes noticeably higher than that at the approach. This implies that disturbances in
the wakes are less amplified compared with the lower speed. On the other hand, the
second unstable regime hardly shifts the frequency range relative to the local azimuthal
velocity, but its wavenumber range migrates to the negative side in contrast to the approach
condition.

When the engine speed is increased to the take-off speed, the first and third regimes
cannot be found up to the Reynolds-number range which this code can handle (Re �
5 × 105), even though unstable modes are searched over a wider range than the two
previous lower engine speeds (i.e. −600 � kx � 500). Presumably, the critical Reynolds
numbers of these two regimes are even higher than the resolvable range, possibly because
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Figure 6. Neutrally stable boundaries in the interstage of SDT for m = 22 at 87.5 % RPM. (a) Frequency
dependence. (b) Wavenumber dependence.

the peak of the azimuthal velocity is smeared at the take-off speed, as shown in figure 4.
Figure 7 shows that the second unstable regime stays almost in the same ω and kx ranges
as those at the cut-back condition. We also notice that the boundaries for incompressible
and compressible flows still agree very well even at the full take-off speed (the tip Mach
number of Mtip ≈ 1.2). Therefore, it is safe to conclude that the compressibility effect
itself on the hydrodynamic instability is negligible in the interstage, while the velocity
profiles, particularly in the azimuthal component, change with the engine speed, and the
profile change has a greater impact on the instability characteristics.

Figure 8 also plots the neutrally stable boundaries for m = 39 at the approach condition.
This azimuthal-mode number is close to the upper threshold of the stripes associated
with the fan broadband noise in this condition (refer to the discussion in Suzuki et al.
2022). While the critical Reynolds numbers for m = 39 are higher in all the regimes,
the three unstable regimes depict similar patterns to those for m = 22 shown in figure 5
(interestingly, the first unstable regime depicts a clear double-hump shape even though
processing the same velocity profiles as m = 22). Thus, we still anticipate that the flow is
unstable over the range of azimuthal modes mainly contained in the wake turbulence.

We should remark that the second unstable regime stays close to the local peak velocity
regardless of the engine speed or the azimuthal mode (refer to the ω − Re plots from
figures 5–8). This suggests that the pointy velocity profile near the outer wall drives the
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Figure 7. Neutrally stable boundaries in the interstage of SDT for m = 22 at 100 % RPM. (a) Frequency
dependence. (b) Wavenumber dependence.
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Figure 8. Neutrally stable boundaries in the interstage of SDT for m = 39 at 61.7 % RPM. (a) Frequency
dependence. (b) Wavenumber dependence.
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second unstable mode. On the other hand, the first regime becomes highly unstable at
the rotor speed for both m = 22 and 39, but only at the approach condition. Referring
to the wave equation in the cylindrical coordinates (i.e. the Bessel equation), it may be
possible to scale ω and kx proportionally with m as a limit of a narrow annulus. Namely,
the ranges of the unstable frequency and wavenumber shift approximately proportionally;
as a result, these unstable ranges stay about the same relative to the rotor speed and the
local azimuthal velocity at the approach condition. As the engine speed increases, the
dispersion relation of Re[ω] − Re[kx] retains the same similarity, but the unstable regime
of the first instability shifts to higher frequencies relative to the rotor speed. Thus, the
first unstable mode amplifies the wake disturbances less at higher engine speeds. We will
closely observe the azimuthal-mode dependence in § 4.4.

4.3. Spatial analysis of instability waves and acoustic waves
Next, a spatial problem is solved to observe the dispersion relations and the eigenfunctions
representative of a turbomachinery problem. Here, (4.1) is recast so that the axial
wavenumber kx is linearly placed on the right-hand side as

i
m
r

v̂ +
(

∂

∂r
+ 1

r
+ 1

ρ

∂ρ

∂r

)
ŵ + i

1
ρ

(
mV
r

− ω

)
ρ̂ = −ikx

[
û + U

ρ
ρ̂

]
, (4.4a)

[
i
(

mV
r

− ω

)
− μMa

ρRe

(
� − k2

x

3
+ dμ

dT
∂T
∂r

∂

∂r

)]
û

+ ∂U
∂r

ŵ − μMa
ρRe

dμ

dT

(
∂U
∂r

∂

∂r
+ ∂2 U

∂r2 + 1
r

∂U
∂r

)
T̂ = −ikx[

Uû − i
mμMa
3rρRe

v̂ − μMa
ρRe

(
1
3

∂

∂r
+ 1

3r
+ dμ

dT
∂T
∂r

)
ŵ + T

γρ
ρ̂ + 1

γ
T̂
]

, (4.4b)

[
i
(

mV
r

− ω

)
− μMa

ρRe

{
� − 1

r2 − m2

3r2 + dμ

dT
∂T
∂r

(
∂

∂r
− 1

r

)}]
v̂

+
[(

∂V
∂r

+ V
r

)
− imμMa

rρRe

(
7
3r

+ 1
3

∂

∂r
+ dμ

dT
∂T
∂r

)]
ŵ + i

mT
γ rρ

ρ̂

+
[

i
m
γ r

− μMa
ρRe

dμ

dT

{(
∂V
∂r

− V
r

)
∂

∂r
+
(

∂2 V
∂r2 + 1

r
∂V
∂r

)}]
T̂ = −ikx

×
[
−i

mμMa
3rρRe

û + Uv̂

]
, (4.4c)

−
[

2V
r

− i
mμMa
3rρRe

(
7
r

− ∂

∂r
+ 2

dμ

dT
∂T
∂r

)]
v̂ +

[
i
(

mV
r

− ω

)

−μMa
ρRe

{
� + 1

3
∂2

∂r2 + 1
3r

∂

∂r
− 4

3r2 + 2
3

dμ

dT
∂T
∂r

(
2

∂

∂r
− 1

r

)}]
ŵ

+ 1
γρ

(
T

∂

∂r
+ ∂T

∂r

)
ρ̂

+
[

1
γ

(
∂

∂r
+ 1

ρ

∂ρ

∂r

)
− i

mμMa
rρRe

dμ

dT

(
∂V
∂r

− V
r

)]
T̂ = −ikx
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×
[
− μMa

3ρRe

(
∂

∂r
− 2

dμ

dT
∂T
∂r

)
û + Uŵ − μMa

ρRe
dμ

dT
∂U
∂r

T̂
]

, (4.4d)

− 2γμMa
ρRe

∂U
∂r

∂

∂r
û − 2γμMa

ρRe

(
∂V
∂r

− V
r

)(
∂

∂r
− 1

r

)
v̂

+
[

1
γ − 1

∂T
∂r

− T
ρ

∂ρ

∂r
− i

2γ mμMa
rρRe

(
∂V
∂r

− V
r

)]
ŵ

− i
T
ρ

(
mV
r

− ω

)
ρ̂ + i

γ − 1

[(
mV
r

− ω

)

+ i
γμMa
ρRePr

{
� + dμ

dT

(
∂2T
∂r2 + 1

r
∂T
∂r

+ 2
∂T
∂r

∂

∂r

)

+ (γ − 1) Pr
dμ

dT

((
∂U
∂r

)2

+
(

∂V
∂r

− V
r

)2
)}]

T̂ = −ikx

×
[
−2γμMa

ρRe
∂U
∂r

ŵ + U
γ − 1

T̂ − TU
ρ

ρ̂

]
. (4.4e)

Namely, it is expressed as A(kn
x)u = kn+1

x Bu, where u represents a column vector
consisting of the density, temperature and three velocity perturbations, and the superscript
n for kx denotes the iteration counter. A general eigenvalue problem can then be solved
for given ω and m by iteratively updating kx for a few times (refer to the numerical
technique proposed by Bridges & Morris 1984). Thus, an eigenvalue kx for only one mode
is accurately computed at a time for a spatial problem. The system of equations for an
incompressible flow is formulated in (5) of Suzuki et al. (2022).

We should remark that at greater |ω|, solutions for the system of the compressible
equations include acoustic modes. This section also reviews duct acoustic modes for
the Euler equations and explores their potential interaction with unstable modes. By
assuming the axial mean velocity to be uniform (the azimuthal mean velocity and the
thermodynamic mean quantities are still functions of radius), Golubev & Atassi (1998)
derived the wave equation in an infinitely extended co-axial cylinder as

∂2ϕ̂

∂r2 +
(

1
r

+ ∂ log ρ

∂r

)
∂ϕ̂

∂r
+
[(

ω − kxU − mV/r
a

)2

− k2
x − m2

r2

]
ϕ̂ = − 1

ρ
∇ · (ρûrot

)
,

(4.5)

where ϕ̂ and ûrot represent the velocity potential function and the rotational part of the
velocity perturbation in the Fourier domain, respectively, and a denotes the mean speed
of sound. Although the density gradient is created in the radial direction due to the
swirl velocity, the variation is mostly within ±5 % in the interstage even at the cut-back
condition; therefore, the mean density gradient in (4.5) is neglected below, and the mean
speed of sound is assumed to be constant (= a∞) as well.

Since the rotational-velocity perturbation is related to the velocity potential as

− i
(

ω − kxU − mV
r

)
ûrot + ûrot · ∇U = − (∇ × U) × ∇ϕ, (4.6)

where U denotes the mean-velocity vector, it can be estimated as ω|ûrot| ∼ |∂V/∂r||∇ϕ|
by assuming |ω| � |kxU| + |mV/r| + |∂V/∂r|. In the asymptote of ω 	 |∂V/∂r|, (4.5)
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can be simplified as

∂2ϕ̂

∂r2 + 1
r

∂ϕ̂

∂r
+
[(

ω − kxU − mV/r
a∞

)2

− k2
x − m2

r2

]
ϕ̂ = 0. (4.7)

Golubev & Atassi (1996) derived this equation by assuming that the mean velocity has
no vorticity, while Heaton & Peake (2005) expanded the right-hand side by assuming
rigid-body rotation. In reality, the azimuthal velocity in the interstage is in between them
(i.e. the slope is rather flat). If the azimuthal velocity can be further characterized by
rigid-body rotation, such as V ≈ χΩr, (4.7) can be regarded as the Bessel function. For a
given frequency, a pair of real-value solutions can be found when

(
ω − mχΩ

a∞

)2

− κ2
(

1 − U2

a2∞

)
≥ 0, ∴ ω ≥ κa∞

√
1 − U2

a2∞
+ mχΩ, (4.8)

where κ2a2∞ ≡ (ω − kxU − mV/r)2 − k2
xa2∞ scales the independent variable r of the

Bessel function. Thus, (4.8) crudely determines the cut-on boundaries of the duct acoustic
modes in the interstage: the first term governs the cut-on duct acoustic modes in a uniform
flow, and the second term implies the motion associated with the frame of reference
spinning at χΩ . We will evaluate this relation in § 5.3 later.

Figure 9 plots the dispersion relations solved as a spatial problem (4.4) near unstable
ranges for the same condition as figure 5 (i.e. m = 22 at the approach condition). Here,
the figure compares three cases: the incompressible solutions at Re = 105 and Re = 106

and the compressible solution at Re = 105. The three solutions for the phase relation
in figure 9(a) virtually overlap, indicating no impacts of the Reynolds number and the
compressibility effect. The slope of the second unstable regime is slightly higher than the
other two regimes. The growth rates in figure 9(b) somewhat depend on the Reynolds
number; namely, the growth rates increase and the unstable ranges spread at the higher
Reynolds number, particularly for counter-rotating modes (i.e. the third regime). The
second mode always takes the highest growth rate, likely even at the Reynolds number
of the real fan rig (Re ≈ 4 × 106).

For m = 22, acoustic modes start to branch out as a pair of highly decaying modes,
one propagating downstream and the other upstream, somewhere at the non-dimensional
angular frequencies of ω � 60 (≈ 2.03fBPF) and ω � −40 (≈ −1.35fBPF) at the approach
condition. These frequencies act as the threshold cut-on frequencies, which are skewed due
to the swirl velocity, as explained in (4.8). As the frequency increases, the second pair of
acoustic modes appears, and their decay rates become much less, say Im[kx] < 0.2, at ω �
72 (≈ 1.64fBPF) and ω � −49 (≈ −1.11fBPF). At these two frequencies, the eigenvalue
distributions of the compressible analysis are plotted in figure 10 in the low Im[kx] range
on the complex kx plane: as noted above, because the spatial problem is iteratively solved
for a specific kx due to the nonlinear kx terms on the left-hand side of (4.4), values of kx
are approximate except for the least-decaying acoustic mode in these plots.

In figure 10(a), there are no modes in the fourth quadrant (i.e. downstream-propagating
growing mode) and in the second quadrant (i.e. upstream-propagating growing mode).
In general, for co-rotating modes (i.e. m > 0), the hydrodynamic mode is stable or very
weakly unstable at such high frequencies; therefore, we expect that no acoustic modes
excite hydrodynamic modes significantly at the same frequency and azimuthal mode.
For ω < 0, figure 10(b) plots kx by setting m = −22 so that Re[kx] takes the opposite
sign relative to figure 9. We now find an unstable mode in the fourth quadrant. Namely,
for counter-rotating modes (i.e. m < 0), acoustic modes in both directions can excite the
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Figure 9. Dispersion relations as a spatial problem of SDT for m = 22 at 61.7 % RPM. (a) Axial
wavenumber. (b) Growth rate.
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Figure 10. Eigenvalue distribution of kx at 61.7 % RPM (Re = 105); (a) m = 22 at ω = 72, (b) m = −22 at
ω = 49.
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Figure 11. Dispersion relations as a spatial problem of SDT for m = 22 at 87.5 % RPM. (a) Axial
wavenumber. (b) Growth rate.

hydrodynamic mode in the third regime, but magnitudes of counter-rotating hydrodynamic
disturbances may be insignificant in the interstage.

Figure 11(a) compares the dispersion relations at the cut-back condition. The phase
relations for the three cases again overlap each other and retain the features found at the
approach condition in figure 9(a). The comparison of the growth rates in figure 11(b)
reveals that the Reynolds number has a significant impact, while the compressibility effect
is still negligible at the cut-back condition. Compared with the approach condition, the first
unstable regime spreads over a wider high-frequency range with a double-hump shape,
but the peak growth rate at Re = 105 becomes lower; in contrast, the other two unstable
regimes tend to remain in similar frequency ranges. These trends are consistent with those
derived by the temporal analysis shown in figures 5 and 6.

Such a large high-frequency shift of the first unstable regime can keep the hydrodynamic
mode unstable beyond the cut-on frequency of the acoustic mode mentioned above. At the
cut-back condition, the acoustic modes start to brunch out at ω � 65 (≈ 1.55fBPF) as a
co-rotating mode of m = 22, and ω � −35 (≈ −0.84fBPF) as a counter-rotating mode of
m = −22. Figure 12 similarly plots the complex kx distributions of both m = ±22 when
the second acoustic modes appear on both directions. We confirm from figure 12(a) that
the acoustic mode and the unstable hydrodynamic mode in the first regime now coexist
with the same m at the same ω; however, this frequency (ω � 77) is much greater than the
rotor speed (mΩ ≈ 41.9). Therefore, it is unlikely that the amplification of hydrodynamic
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Figure 12. Eigenvalue distribution of kx at 87.5 % RPM (Re = 105); (a) m = 22 at ω = 77, (b) m = −22 at
ω = 43.
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Figure 13. Dispersion relations as a spatial problem of SDT for m = 22 at 100 % RPM. (a) Axial
wavenumber. (b) Growth rate.

disturbances in the first unstable regime by acoustic modes has an appreciable impact on
the rotor-related interaction noise.

At the take-off condition, we are unable to find unstable modes in the first and
third regimes up to Re = 106 (the first regime may exist beyond ω > 300, which is yet
unresolvable with the current polynomial order). This is consistent with the observation in
figure 7. This suggests that the interaction between the first and second unstable modes
becomes weaker at higher engine speed. Accordingly, figure 13 plots the dispersion
relations only in the second unstable regime. The growth rate is nearly doubled by
increasing the Reynolds number by one order of magnitude. Across the three engine
speeds, the peak growth rates of the second mode are found to be comparable at Re = 106,
indicating the existence of the second unstable mode regardless of the engine speed
(more precisely, the velocity profiles of these engine speeds). On the other hand, the
compressibility effect remains to be negligible even at the take-off condition.

We now observe the eigenfunctions in the radial direction based on the compressible
analysis. Figure 14 plots the eigenfunctions of the first and second unstable modes near
the most unstable frequency in each regime at the approach condition. Both modes largely
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Figure 14. Eigenfunctions of the two unstable regimes for m = 22 at 61.7 % RPM (Re = 105). (a) First
mode (ω = 33 in figure 9). (b) Second mode (ω = 9). (i) Axial-velocity fluctuation. (ii) Azimuthal-velocity
fluctuation. (iii) Pressure fluctuation.

fluctuate near the outer wall; to be precise, the first mode forms a peak approximately
above the outer-wall boundary layer, while the second mode resides inside of it. In contrast,
figure 15, which similarly compares the eigenfunctions at the cut-back condition, reveals
that the first mode is peaked away from the outer wall, while the second mode is still
confined within the outer-wall boundary layer. These features are consistent with the
radial profiles of turbulent kinetic energy in the interstage compared later in figure 18(b).
This may also imply that the two modes can readily couple each other at 61.7 % RPM,
while they can hardly interact at 87.5 % RPM. If the interaction between the two modes
contributes to the fan broadband noise, as hypothesized by Suzuki et al. (2022), this
noise-generation mechanism would be less important at high engine speeds. This may
be one of the reasons why the contribution of the stripe patterns to the broadband noise
is diminished in the azimuthal-mode map at higher speeds, as discussed in § 5.4 later, as
well as from the mode-ring measurement by Premo & Joppa (2002).

4.4. Azimuthal-mode dependence
We observe the azimuthal-mode dependence, which clarifies the unstable range relevant
to the rotor wakes. Figure 16 compares the dispersion relations of three different
azimuthal modes near unstable frequency ranges at the approach condition by solving
the incompressible problems at Re = 105. As discussed in figure 8, ω and kx should reach
the linear dependence on m for a large asymptote of m in (4.4); accordingly, figure 16
normalizes ω and Re[kx] with m by taking the reference as the fan-blade count B = 22,
except for −Im[kx]. The phase relations collapse very well across all three regimes in
figure 16(a). The unstable frequency ranges of the first and second regimes tend to align
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Figure 15. Eigenfunctions of the two unstable regimes for m = 22 at 87.5 % RPM (Re = 105). (a) First
mode (ω = 119 in figure 11). (b) Second mode (ω = 7). (i) Axial-velocity fluctuation. (ii) Azimuthal-velocity
fluctuation. (iii) Pressure fluctuation.
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Figure 16. Dispersion relations of different azimuthal modes at 61.7 % RPM (Re = 105). (a) Axial
wavenumber. (b) Growth rate.

with the rotor speed and the local azimuthal velocity, respectively, in figure 16(b), but the
peak growth rates depend on the azimuthal-mode number.

Figure 17 compares the peak growth rates of the first and second unstable regimes
as a function of the azimuthal mode at Re = 105. At the approach condition, the first
and second regimes take the maximum values at similar azimuthal-mode numbers;
accordingly, the first mode tends to amplify the wake disturbances in the vicinity of the
fan-blade count. Moreover, the peak growth rate vanishes for m � 40, and also other types
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Figure 17. Peak growth rates as a function of the azimuthal mode at Re = 105; (a) 61.7 % RPM,
(b) 87.5 % RPM.

of modes seem to take a higher peak growth rate for m � 6 (not shown) in both regimes.
At the cut-back condition, in contrast, the unstable range of the first mode substantially
shifts to the lower m side, while the that of the second mode extends on the higher m side.
In fact, the unstable ranges of the second regime at both engine speeds coincide with the
bundle of the stripe pattern in the azimuthal-decomposition map, shown later in figures 24,
29 and 30 (we discuss this point in §§ 5.3 and 5.4).

5. Analysis using the IDDES database

5.1. Post-processing of the IDDES database
To analyse the mode structures in the interstage and minimize artifacts in post-processing
of the IDDES data for a limited time duration, the computational time-step was set to be
�tCFD ≡ 2π/(2112Ω), and an instantaneous velocity field was recorded in the rotating
frame at every 16 and 6 time steps, i.e. �tDMD ≡ 2π/(132Ω) and 2π/(352Ω), at the
approach and cut-back conditions, respectively. During two and one revolutions, a total of
Nt = 264 and 352 frames were recorded, respectively, while the azimuthal grid count in
the interstage block was set to be Nφ = 792. At the approach condition, the flow quantities
in the rotating frame can then be projected onto the stationary frame by just clocking the
mesh by six grids in the uniform grid region (in the upstream non-uniform grid region,
they are interpolated into the same uniform grid), and also the same fan-blade position is
repeated at every six recorded frames. At the cut-back condition, the flow quantities can
be similarly projected on the stationary mesh by clocking 2.25 grids with interpolation;
consequently, the same fan-blade position is repeated at every 16 recorded frames. In this
process, the steady-wake component can be subtracted by averaging the flow quantities in
the rotating frame, and the fluctuating components can be post-processed in the stationary
frame to track their time evolution.

To extract coherent structures and compare them with the eigenfunctions from the linear
stability analysis, the velocity fields were recorded on two planes, one plane being on a
mid-axial station at x/D ≈ 0.18 and the other on a ‘quasi’-cylindrical surface (i.e. along
iso-radial grid points) near the peak turbulent kinetic energy above the outer wall, as
plotted in figure 18. On each plane, an approach equivalent to DMD formulated by Schmid
(2010) is applied to turbulent kinetic energy, which dictates hydrodynamic disturbances
(details of the procedure are given in Suzuki et al. 2022): after velocity fluctuations
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Figure 18. Surfaces on which DMD modes are extracted. (a) Mid-station plane and quasi-cylindrical surface.
(b) Position of the quasi-cylindrical surface relative to turbulent kinetic energy at x ≈ 0.18.

are azimuthally decomposed up to m = 44 modes (i.e. twice the fan-blade count) on
each plane, snapshot proper orthogonal decomposition (POD) modes (Sirovich 1987) are
obtained by optimizing the turbulent kinetic energy, and the time histories of the POD
coefficients are then computed. Subsequently, the linear evolution among limited POD
coefficients is calculated using a generalized-inverse technique (Perret, Collin & Delville
2006). If the linear transfer matrix is eigen-decomposed, the sets of the eigenvalue and
eigenvector can be regarded as DMD modes except that higher-order POD modes, which
are less coherent, have been excluded.

In addition to the velocity fields, pressure fields on the interstage outer wall are also
post-processed mainly to analyse acoustic modes. The wall-pressure fluctuations in the
stationary frame are obtained by similarly clocking and interpolating the azimuthal grids,
and those at x/D ≈ 0.18 are azimuthally decomposed using the full Nφ = 792 grids over
the frequencies. In addition, the snapshot POD analysis is applied to extract coherent
modes dominating the wall pressure, and the time histories of the leading POD-mode
coefficients are Fourier transformed to calculate their frequency spectra.

5.2. The DMD modes extracted from velocity fields on two planes
We first observe mode structures on the cylindrical surface near the outer wall by
taking m = 23 at the approach condition, which is considered to be the peak of the
azimuthal-mode power in figure 31(a) shown later. Figure 19 exhibits the velocity
fluctuations of typical DMD modes that represent eigenfunctions in the first and second
unstable regimes. In this study, we count the order of DMD modes so that the first mode
contains the greatest turbulent kinetic energy. The first unstable mode, which is the fifth
DMD mode in this case, changes the phase rapidly due to a high axial wavenumber. In
contrast, the second unstable mode, which is the second DMD mode in this case, appears
to grow monotonically with a very small negative wavenumber. For m = 23, the first four
DMD modes all belong to the second unstable regime, and many higher modes depict
wavepacket structures, growing and decaying weakly in the axial direction, relevant to the
first unstable regime, as shown in figure 20(b i) below.

Likewise, figure 20 shows typical DMD modes at the cut-back condition. Here, we
take m = 18, which is a local peak in the azimuthally decomposed PWL contour shown
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Figure 19. Typical DMD modes near the wall for m = 23 at 61.7 % RPM. Colour schemes are common to all
plots. (a) Second DMD mode representing the second unstable regime. (b) Fifth DMD mode representing the
first unstable regime. (i) Amplitude. Line patterns are common to all components. (ii) Phase. Negative slope
denotes an upstream-propagating mode and vice versa.

later in figure 31(b). The first DMD mode seems to be close to an eigenfunction in the
second unstable regime (or a slightly higher frequency/wavenumber). The third DMD
mode represents the characteristics of the first unstable regime; in particular, this DMD
mode indicates a clear wavepacket structure. Compared with the approach condition, the
number of DMD modes in the first regime becomes more dominant than that in the second
regime for the cut-back condition, which can be confirmed in figure 21 below.

966 A1-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.282


T. Suzuki

–6

–4

–2

0

2

4

6

Azimuthal

Axial

Radial

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
–5

0

5

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28

x

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
–5

0

5

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28

–10

–5

0

5

10

P
h
as

e 
(r

ad
)

û,
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Figure 20. Typical DMD modes near the wall for m = 18 at 87.5 % RPM. Colour schemes and line patterns
are the same as figure 19. (a) First DMD mode representing the second unstable regime. (b) Third DMD mode
representing the first unstable regime. (i) Amplitude. (ii) Phase.

Figure 21 overlays the dispersion relations of the first ten DMD modes for each
azimuthal mode from m = 14 to 41 extracted from the IDDES at the approach and cut-back
conditions. Here, we take the frequency directly from the DMD analysis and calculate
the axial wavenumber from the slope of the phase averaged among the three velocity
components at x/D = 0.18. If there is either a discontinuity in the phase over the axial
extent or a discrepancy between the three phase slopes, such a DMD mode is declared as
an outlier. To also compare them with the dispersion relation predicted by the compressible
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Figure 21. Dispersion relations of the first 10 DMD modes overlaid from m = 14 to 41. ω and kx are
multiplied by ×B/m (i.e. normalized to m = 22); (a) 61.7 % RPM, (b) 87.5 % RPM.

linear stability analysis in figures 9 and 11, ω and kx are scaled by multiplying them by
B/m. For reference, the local peak of the azimuthal velocity and the rotor speed are also
drawn.

Figure 21 reveals that the IDDES data collapse very well at both approach and
cut-back conditions. The linear stability analysis predicts the extracted dispersion relations
generally well except for outliers, although it slightly under-estimates the wavenumber for
the first unstable regime for an unknown reason. For both engine speeds, we can find one
cluster in the second unstable regime (i.e. along the straight line near the origin), and
another cluster near the rotor speed, which represents modes convecting with the rotor
wakes. In particular, the separation between the first and second regimes is discernible
in figure 21(a). In figure 21(b), in contrast, the biggest cluster appears between the first
and second regimes. We should recall that the eigenfunction for the first regime forms
a peak away from the outer wall at 87.5 % RPM, as plotted in figure 15(a); hence, the
velocity fluctuations on this cylindrical surface may not be exactly representative of the
first unstable mode. Nonetheless, figures 20(b) and 21(b) suggest that the first unstable
mode carries coherent structures in the rotor wakes without decaying the amplitude.

Next, we observe the radial dependence of the coherent structures. Figure 22 plots the
velocity fluctuations of typical leading-order DMD modes for m = 23 at the approach
condition. In this example, the second and fourth DMD modes take the frequencies
corresponding to the first and second unstable regimes, respectively. In both DMD modes,
we find large fluctuations near the outer wall, and the difference in the peak radial position
is not as clear as that of the eigenfunctions between the first and second modes plotted
in figure 14. Since coherent structures between the two unstable regimes seem to interact
in the outer-wall boundary layer, separation between them on the same station might be
difficult in the post-processing.

At the cut-back condition, the coherence becomes weaker than the approach condition;
namely the turbulent kinetic energy contained in the leading-order POD modes becomes
less, and this makes the extraction of coherent modes challenging. Figure 23 similarly plots
the radial profiles of typical DMD modes for m = 18 at the cut-back condition. The second
DMD mode takes a frequency in the second unstable regime, while the frequency of the
third DMD mode is close to the first unstable regime. The latter mode shows relatively
large fluctuations in the mid span, which is consistent with the linear stability analysis in
figure 15, but also near the outer wall. In many fast co-rotating DMD modes (i.e. large
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Figure 22. Typical DMD modes on the mid-station plane at 61.7 % RPM (m = 23). (a) Second DMD
mode (ω = 31.1). (b) Fourth DMD mode (ω = 0.11). (i) Axial-velocity fluctuation. (ii) Azimuthal-velocity
fluctuation.

0.25 0.30 0.35 0.40 0.45 0.50

Real part
Imaginary part

–25
–20
–15
–10
–5
0
5

10
15
20
25

0.25 0.30 0.35 0.40 0.45 0.50
–15

–10

–5

0

5

10

15

r
0.25 0.30 0.35 0.40 0.45 0.50

–25
–20
–15
–10
–5
0
5

10
15
20
25

r
0.25 0.30 0.35 0.40 0.45 0.50

–15

–10

–5

0

5

10

15

û
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Figure 23. Typical DMD modes on the mid-station plane at 87.5 % RPM (m = 18). (a) Second DMD
mode (ω = 27.1). (b) Third DMD mode (ω = 78.5). (i) Axial-velocity fluctuation. (ii) Azimuthal-velocity
fluctuation.

ω > 0), we find similar structures (not shown). In contrast, the former mode forms a peak
clearly in the outer-wall boundary layer, as predicted by the linear stability analysis. The
number of DMD modes found in the second unstable regime is relatively small at the
cut-back condition, while the DMD modes with large fluctuations in the mid span are
rather dominant. In fact, figure 18(b) supports this observation.

966 A1-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.282


Spiral flow instability between the rotor and the stator
F

re
q
u
en

cy
 (

H
z)

Azimuthal mode number: mAzimuthal mode number: m

 

 

–60–40–30 –20–10 0 10 20 30 40 –40 –20 0 20 40 60
80

85

90

95

100

105

110

115

120

80

85

90

95

100

105

110

115

120

00

2000
2000 4000

4000
6000

6000

8000

8000

10 000

10 000

12 000

14 000

16 000

18 000

20 000

SPL(dB)SPL(dB) (b)(a)

Figure 24. Azimuthal-mode decomposition of the wall SPL in the interstage. Horizontal white dotted lines
denote the BPF and the harmonics. Skewed V-shape black dashed lines represent the cut-on boundaries
predicted by (4.8). Inclined magenta dashed line denotes the rotor speed interacting with the threshold m0;
(a) 61.7 % RPM (m0 = −39), (b) 87.5 % RPM (m0 = −57).

5.3. Pressure fluctuations on the outer wall
By azimuthally decomposing the wall-pressure fluctuations at the middle of the interstage,
we can directly observe the rotor–stator and rotor-related interactions and the cut-on
boundaries of the duct acoustic modes. Unlike the inlet/exhaust mode analysis, it is
non-trivial to prescribe duct acoustic modes for the mode-extraction method (Ovenden &
Rienstra 2004) due to the swirl velocity, as explained in § 4.3. Thus, we only consider the
azimuthal-mode decomposition along a single ring at x/D ≈ 0.18, and figure 24 displays
the decomposed sound pressure level (SPL) as a function of m over the frequencies at the
approach and cut-back conditions. The shaded area on the top left corner of figure 24(a)
indicates the region in which aliased positive m modes are contaminated due to a low
sampling rate. Although non-acoustic components are included on the wall-pressure
fluctuations, a V-shape cut-on region can be clearly seen for both conditions. Here, the
skewed cut-on boundaries are very well predicted by (4.8) by setting χ = 0.35. High SPL
can be observed along these boundaries, especially on the co-rotating side (i.e. m > 0),
which can also be found in the experiment (Premo & Joppa 2002). Some SPL can be
discerned along the boundary on the counter-rotating side, but these modes are decaying
once the cut-on boundaries become symmetric in the inlet or the exhaust.

Importantly, fluctuations are noticeable even outside the cut-on zone along multiple lines
from the left bottom to the right top with the slope representing the rotor speed. When a
disturbance of the azimuthal mode nB spinning at the rotor speed Ω is interacting with
a quasi-stationary object of the azimuthal mode m0 moving at Ω0 (≈ 0), it creates the
azimuthal mode of m = nB + m0; hence, the mode line appears in figure 24 along

f (Hz) = nBΩ − m0Ω0

2π
= Ω

2π
(m − m0) − Ω0

2π
m0 ≈ Ω

2π
(m − m0) . (5.1)

If multiple quasi-stationary structures of m0 are moving with different speeds of Ω0, the
second term Ω0m0/(2π) becomes obscure, and lines only along the rotor speed remain
to be noticeable. Namely, figure 24 suggests that multiple quasi-stationary structures
are interacting with broadband motions spinning at the rotor speed. The threshold
azimuthal-mode count m0 drawn by the magenta dashed line approximately corresponds
to the cut-off wavenumber of the VSTG (|m0| � 39 and � 57 at the approach and the
cut-back conditions, respectively). When the n − 1th harmonic of the fan-blade count B
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Figure 25. First snapshot POD mode of the wall-pressure fluctuation at 61.7 % RPM. (a) Unwrapped pressure
contour. (b) Azimuthal-mode distribution averaged over x. (c) Frequency spectrum of the POD-mode
coefficient.
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Figure 26. Fourth snapshot POD mode of the wall-pressure fluctuation at 61.7 % RPM. Same layout as
figure 25.

(i.e. nB = nB) interacts with the kn − 1th harmonic of the OGV count Vn (i.e. m0 = knVn
and Ω0 = 0), it yields the Tyler & Sofrin (1962) relation, generating the nB + knVn
azimuthal mode at the frequency nBΩ/(2π), where the BPF is given by fBPF ≡ BΩ/(2π).

To extract coherent modes among the wall-pressure fluctuations, the snapshot POD
method (Sirovich 1987) is applied in the physical domain. On the x − φ domain in the
stationary frame, snapshot POD modes on the outer wall are unwrapped, and a few
representative modes are displayed from figures 25 to 28. The azimuthal-mode distribution
averaged over x is also plotted for each POD mode. Moreover, time histories of the
POD-mode coefficients are calculated, and a frequency spectrum of each POD mode is
given as well. Although the sampling rate was low at the approach condition, it is still
meaningful to show it beyond the Nyquist frequency; thus, the spectrum including both
sides (i.e. symmetric spectrum across 3fBPF) being depicted in figures 25(c) and 26(c).
At the approach condition, the first POD mode captures the rotor–stator interaction tones;
namely, 2BPF with m = −10 and 4BPF with m = 34. The second POD mode (not shown)
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Figure 27. Third snapshot POD mode of the wall-pressure fluctuation at 87.5 % RPM. (a) Unwrapped
pressure contour. (b) Azimuthal-mode distribution averaged over x. (c) Frequency spectrum of the POD-mode
coefficient.
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Figure 28. Fifth snapshot POD mode of the wall-pressure fluctuation at 87.5 % RPM. Same layout as
figure 27.

is very similar to the first POD mode. The fourth (and sixth, not shown) POD mode has a
peak around 2.8fBPF in the broadband with the azimuthal peak of m = 31. We can find the
corresponding spot along a stripe of the broadband noise in figure 24(a), suggesting that
the aforementioned stripes have strong coherency.

Likewise, figures 27 and 28 show representative snapshot POD modes at the cut-back
condition. Unlike the approach condition, the sampling rate was high enough so that each
figure (c) plots one side of the spectrum. The third (and fourth, not shown) POD mode
captures the 2BPF tone with m = −10 in figure 27 (although not shown, the first two POD
modes take the BPF tone with m = −32). Compared with the approach condition, these
tone intensities are clearly higher downstream, indicating the conventional rotor–stator
interaction. In contrast, the fifth (and sixth, not shown) POD mode represents broadband
noise around 4.2fBPF with m ≈ 66 in figure 28. This peak appears as a strong SPL spot in
figure 24(b) along a stripe. We should remark that when the POD mode is found close to
the cut-on boundary, i.e. non-dimensional wavenumber of kx � 1 so that the unwrapped
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Figure 29. Azimuthal-mode decomposition of the duct-mode PWL at 61.7 % RPM. Horizontal white lines and
inclined magenta line are the same as figure 24. Yellow inclined lines denote the azimuthal peaks identified in
figure 31. (a) Inlet. (b) Exhaust.

pressure contour depicts almost horizontal stripes regardless of tones or broadband noise.
In this sense, the wavenumber structures of these acoustic modes are somewhat similar
to the aforementioned second unstable modes. Yet, because of the difference in the
frequency range, these POD modes can be confirmed as the acoustic modes (note that
the pressure field in the aforementioned quasi-cylindrical surface is dominated by these
acoustic modes).

The results above suggest that the wall-pressure fluctuations in the interstage are
largely influenced by the rotor–stator interaction tones satisfying the Tyler–Sofrin relation
(Tyler & Sofrin 1962) as well as the interaction between disturbances moving with the
rotor speed and those generated downstream of the rotor (likely spinning slowly). The
latter disturbances may be governed by the instability in the second regime, which is
found to dominate coherent hydrodynamic structures near the outer wall. Within the
skewed cut-on boundaries of the interstage flow, strong coherent acoustic modes can be
found in the broadband noise as a result of such an interaction. Although it has been
revealed by Golubev & Atassi (1998) that acoustic modes possess a vortical component
and hydrodynamic modes possess pressure fluctuations under swirl velocity, which has
been confirmed in figures 10 and 12, such couplings do not seem to be the dominant
interaction mechanism. These broadband noise generation seems to be rather caused by
the nonlinear product of two different types of non-acoustic disturbances.

5.4. Contribution to fan broadband noise
Finally, we relate the stripe patterns with the sound properties radiating from the
inlet and the exhaust. Figures 29 and 30 display the azimuthal-mode decomposition
of the inlet/exhaust duct acoustic-mode PWL at the approach and cut-back conditions,
respectively. Suzuki et al. (2019) described the procedure of the mode-extraction method
(Ovenden & Rienstra 2004) specifically tailored for the fan-noise simulations. In general,
these IDDES results are consistent with the azimuthal-mode decomposition of the
wall-pressure fluctuations measured by Premo & Joppa (2002). A particular interest here
is the stripe patterns drawn by the inclined lines: as explained in § 5.3, the slope of these
lines represents the rotor speed, and the azimuthal-mode numbers at the root of the lines
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Figure 30. Azimuthal-mode decomposition of the duct-mode PWL at 87.5 % RPM. (a) Inlet. (b) Exhaust.
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Figure 31. Integrated PWL along the inclined lines on the azimuthal PWL contours in the inlet and the exhaust
(scaled by dB on the left axis). Integrated SPL of the azimuthal SPL contours in the interstage is also plotted
(offset by 25 dB); (a) 61.7 % RPM, (b) 87.5 % RPM.

(i.e. at 0 Hz) indicate the mode counts of the quasi-stationary structures. The magenta line
corresponds to the threshold wavenumber of the VSTG, introduced in § 3 and figure 24
(|m0| ≤ 39 and ≤ 57 at the approach and cut-back conditions, respectively). The yellow
lines represent the local azimuthal peaks of the inlet/exhaust PWL spectra identified in
figure 31 below.

By integrating the PWL along these inclined lines, the radiating sound power can be
calculated as a function of the azimuthal-mode number associated with the potentially
stationary structures (i.e. m values at 0 Hz). In figure 31, such PWLs are compared between
the inlet and the exhaust together with the SPL on the interstage wall similarly integrated
along the inclined lines in figure 24 (the interstage SPL is offset by 25 dB). Here, similar
azimuthal-mode patterns are depicted between the inlet and the exhaust as well as the
interstage, particularly at the approach condition. At the cut-back condition, the PWL is
rapidly decreased toward greater −m in the inlet due to the transonic rotor speed, while the
PWL is spread over a wide azimuthal-mode range in the exhaust and the interstage. More
importantly, many common peaks, indicated by the vertical dotted lines, can be identified
among the three regions, but they are smeared in the inlet and the exhaust at the cut-back
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Figure 32. Breakdown of the PWL spectra at 61.7 % RPM assessed by the steps given by Suzuki et al.
(2022). Line patterns: − − −, total; · · · · ·, background; —–, segregated. (a) Inlet. (b) Exhaust.

condition. This suggests an existence of a broadband noise-generation mechanism at both
approach and cut-back conditions, and it contributes commonly to the inlet and exhaust
PWL spectra. This noise-generation mechanism appears to play a major role in the fan
broadband noise at the approach condition but the relative importance becomes less at the
cut-back condition, particularly in the inlet. By comparing figures 29(a) with 30(a), it is
clear that the noise directly related to the transonically spinning rotor, which is distributed
along the cut-on line on the co-rotating side, is significantly increased at the cut-back
condition.

To crudely assess the magnitude of the PWL contained in the stripes of the IDDES
results, the following steps are taken (for a detailed procedure, refer to Suzuki et al. 2022,
particularly figure 10): first, the azimuthally decomposed PWL along the inclined lines
in figure 29 or 30 is filtered using the five-point smoothing (Savitzky & Golay 1964)
in frequency. Second, troughs are identified in the azimuthal distribution of the PWL
within the azimuthal bundle confined by the aforementioned threshold m0 of the VSTG. By
linearly connecting the troughs together with the PWL distribution outside the azimuthal
range, the background PWL is then defined, and the logarithmic difference between the
total and the background PWLs is eventually treated as the segregated PWL in the stripes.
Thus, the extra contribution in the stripes is graphically extracted.

Figure 32 plots the breakdown of the spectra from the mode extraction at the approach
condition by summing the background and segregated PWL over the azimuthal modes.
Fluctuations in the PWL spectra are somewhat high even in the total spectra due to a
narrow bandwidth to compare with the test spectra in the series of this study; however,
these figures capture the trends of the PWL in the stripes. In the inlet, the segregated
spectrum in the stripes appears to have comparable PWL to the rest of the background
PWL, which should characterize the conventional rotor–stator interaction noise. In the
exhaust, the PWL in the stripes steeply declines at higher frequencies, partially because
of the greater total PWL in the exhaust at higher frequencies. As visually observed, the
contribution from the stripes seems to be more relevant to the inlet broadband noise.

Likewise, figure 33 plots the breakdown at the cut-back condition. The contribution
from the segregated spectrum relative to the total PWL spreads over wide frequencies,
but it is typically lower by 6 dB or more; hence the relative contribution of this
noise-generation mechanism seems to be weaker at 87.5 % RPM than 61.7 % RPM,

966 A1-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.282


Spiral flow instability between the rotor and the stator

Resolvable frequency
range

Resolvable frequency
range

 

P
W

L
 (

d
B

)

110

100

90

80

70

60

50

115

110

105

100

95

90

85

(a) (b)

Frequency: f /fBPF

0 1 2 3 4

Frequency: f /fBPF

0 1 2 3 4

Figure 33. Breakdown of the PWL spectra at 87.5 % RPM assessed by the steps given by Suzuki et al.
(2022). Line patterns are the same as figure 32. (a) Inlet. (b) Exhaust.

which can be observed by comparing figures 29 and 30. Although the procedure of
this breakdown is nothing but a pattern recognition, these results suggest that such a
noise-generation mechanism appreciably contributes to the fan broadband noise at the
approach condition, but becomes less important at the cut-back condition.

6. Conclusions

Unstable modes in an interstage flow between the rotor and the stator in turbomachinery
have been analysed, and their impact on the fan noise has been investigated. By viewing
the interstage flow as Taylor–Couette flow with the axial component or as spiral Poiseuille
flow, compressible and incompressible linear stability analyses have been performed
with velocity profiles taken from the IDDES simulation of a high-speed turbofan rig,
called SDT. From this CFD database, which solved an entire rotor–stator system with
a hard-wall nacelle, coherent hydrodynamic modes have been successfully extracted in
the interstage using an approach equivalent to DMD, and these DMD modes have been
compared with eigenfunctions of the linear stability analysis. The outer-wall pressure
fluctuations have also been Fourier decomposed in the interstage, and the relation between
these hydrodynamic instabilities and duct acoustic modes has been explored. Eventually,
possible impacts of these instabilities on the fan broadband noise associated with the
rotor-related interaction have been considered.

The viscous linear stability analysis has included the compressibility effect and assumed
an infinitely extended annulus by ignoring the eddy viscosity and the steady-wake pattern.
A spectral method using the Chebyshev polynomials can solve a temporal or spatial
eigenvalue problem up to approximately Re ≈ 3 × 105. The analysis has revealed three
distinct unstable regimes: the first mode can excite disturbances above the outer-wall
boundary layer over a wide frequency range including the rotor speed. This mode has
higher axial wavenumbers and relatively low growth rates at low Reynolds numbers. The
growth rate diminishes downstream with increasing thickness of the azimuthal-velocity
peak, forming wavepacket-like structures above the outer-wall boundary layer. The second
mode evolves approximately with the local azimuthal velocity and stays closer to the
outer wall. The growth rate depends less on the Reynolds number and the velocity
profile variation. This mode fluctuates at lower frequencies with much smaller axial
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wavenumbers, potentially acting like quasi-stationary structures over the outer wall.
The third mode rotates in the opposite direction (i.e. a counter-rotating mode) and
possesses characteristics similar to the first unstable regime. This study confirmed that the
compressibility effect is negligible even at the take-off condition; however, the resultant
velocity profile has a significant impact so that only the second unstable regime survives
at the take-off condition.

By post-processing the IDDES database, the analysis equivalent to DMD supports the
existence of these instabilities in the interstage even at Re ≈ 4 × 106: typical DMD modes
capture the dispersion relations and the radial shapes of the eigenfunctions predicted by
the linear stability analysis in spite of its idealizations. Thus, these unstable modes dictate
coherent structures of the velocity fluctuations in the interstage. At the approach condition,
the first and second unstable modes can strongly interact near the outer wall. At the
cut-back condition, however, fluctuations associated with the first unstable regime seem
to migrate away from the outer wall, so that the interaction between the first and second
modes may become weaker. Decomposition of the outer-wall-pressure fluctuations has
demonstrated that duct acoustic modes characterized in a uniform flow with rigid-body
rotation govern the pressure field in the interstage, and the azimuthally decomposed SPL
contours depict a stripe pattern similarly to the inlet and exhaust PWL contours. We
can relate primary POD modes of the interstage pressure fluctuations not only to the
Tyler–Sofrin tones but also to high SPL spots along the stripes on these contours.

The series of the analyses in this study implies the impact of the interstage instabilities
on the fan broadband noise as follows: from the frequency and azimuthal-mode ranges
of the first unstable regime and the DMD of the IDDES data, it becomes clear that the
first unstable mode enhances coherent structures in the rotor wakes. The wall-pressure
decomposition in the interstage has revealed that these coherent structures moving with the
rotor wakes nonlinearly interact with quasi-stationary structures and generate duct acoustic
modes, causing a stripe pattern in the fan broadband noise at both approach and cut-back
conditions. A candidate of such a structure is the second unstable mode near the outer
wall, which has been confirmed through the DMD analysis. This interaction noise seems
to be radiated to both inlet and exhaust with similar azimuthal-mode distributions. This
mechanism is different from the fan broadband noise sources considered in the past, and
may occupy a good fraction of it, particularly at low speeds. At higher engine speeds,
however, the relative importance of this noise source decreases because the broadband
noise originated from the fan blades becomes stronger beyond the cut-back condition.
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Appendix. Comparison of IDDES results with SDT test data

In figure 34, the phase-locked axial- and azimuthal-velocity components in the interstage at
the cut-back condition are compared between the IDDES result and the LDV measurement
by G. Podboy. The time-averaged velocity field is very well predicted by the IDDES,
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Figure 34. Comparison of the phase-locked velocity components at 87.5 % RPM. Time-averaged and r.m.s.
axial and azimuthal components at x ≈ 0.18 are displayed. (a) IDDES. (b) LDV (figure is taken from
Gonzalez-Martino & Casalino (2018) with permission).

as observed at the approach and take-off conditions in Shur et al. (2018c). The velocity
fluctuations are also captured well, except for the thin outer-wall region. A high
root-mean-square (r.m.s.) spot, which probably represents a tip vortex from a fan blade,
is clearly found in the LDV result, while it is less emphasized in the IDDES partly because
the wall boundary layers were solved as the Reynolds-averaged Navier–Stokes (RANS)
mode. Nonetheless, two separated high fluctuation regions, one near the outer wall and the
other in the middle of the span, are identified in the IDDES, which can also be confirmed
in figure 18(b).

The PWL spectra calculated from the IDDES are compared with the SDT data taken by
a traverse microphone by Woodward et al. (2002) at the approach and cut-back conditions
in figures 35 and 36, respectively. The PWL of the IDDES was obtained in two ways:
one was to integrate the SPL computed by the Ffowcs-Williams & Hawkings technique
(Ffowcs Williams & Hawkings 1969) from 0◦ to 180◦ along the traverse-microphone
line. The control surfaces were designed to separately enclose the inlet and the exhaust
including the fan-stream jet (refer to figure 3(b) in Suzuki et al. 2019). The other was
to sum all cut-on duct acoustic modes, which were extracted with the method developed
by Ovenden & Rienstra (2004) by fitting pressure and axial-velocity fluctuations on four
planes. Correspondingly, the spectra of the complete rotor–stator configuration and the
spectra associated only with the stator are plotted from the SDT experimental data.

At the approach condition, very good agreement is found in both inlet and exhaust
spectra up to the resolvable frequency ranges in figure 35. The low-frequency noise of
the SDT data in the exhaust may be caused by the interaction of the fan-stream jet with
the downstream strut, which was not modelled in the CFD. At the cut-back condition, in
contrast, the broadband level is significantly under-predicted by the IDDES, particularly in
the inlet in figure 36(a) (here, the assumed averaged Mach number in the inlet needs to be
additionally increased by 10 % for the mode-extraction method to make the rotor-locked
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Figure 35. Comparison of PWL spectra between the IDDES and the SDT data at 61.7 % RPM. (a) Inlet.
(b) Exhaust.
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Figure 36. Comparison of PWL spectra between the IDDES and the SDT data at 87.5 % RPM. Line patterns
are the same as figure 35. (a) Inlet. (b) Exhaust.

tones cut-on). In Suzuki et al. (2019), very similar trends were reported at the take-off
condition.

It should be recalled that unsteady turbulence was not resolved in the boundary layers
on the inlet walls as well as on the fan blades, and the broadband noise sources associated
with these components were not included in the IDDES. From these results, it may be
deduced that the broadband noise mechanisms at low-speed conditions are captured by
the rotor–stator interaction, while at high speeds, additional mechanisms, such as the
interaction between the wall boundary layer and the rotor tip as well as the interaction
between the boundary layer over the blade surface and the fan trailing edge, are probably
more important. It should also be noted that the mechanical engine speed at the cut-back
condition in the test appears to be higher than the reported/corrected speed (11 074 RPM)
by approximately 1.6 % based on the BPF tones. This might substantially broaden the
cut-on region such that the BPF is clearly cut-on in the SDT, while the BPF tone of the
IDDES is buried underneath the broadband in figure 36(b). In fact, Suzuki et al. (2018)
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demonstrated that the IDDES predicts the cut-on tone PWL relatively well even at the
take-off condition.
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