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Abstract
The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive
an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss
models, that is of compound Poisson type, are not consistent with Mack’s distribution-free chain ladder. However,
for a sequence of compound Poisson loss models indexed by exposure (e.g., number of contracts), we show that
the chain ladder predictor and Mack’s estimator of conditional mean squared error of prediction can be derived by
considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with
Mack’s estimator without relying on the validity of the model assumptions of the distribution-free chain ladder.

1. Introduction
We consider the problem of predicting outstanding claims costs from insurance contracts whose cov-
erage periods have expired but for which not all claims are known to the insurer. Such prediction tasks
are referred to as claims reserving. The chain ladder method is arguably the most widespread and well-
known technique for claims reserving based on claims data organized in run-off triangles, with cells
indexed by accident year and development year. The chain ladder method is a deterministic predic-
tion method for predicting the not yet known southeast corner (target triangle) based on the observed
northwest corner (historical triangle) of a square with cell values representing accumulated total claims
amounts. The square and historical triangle can easily be generalized to rectangle and trapezoid, reflect-
ing claims data for more historical accident years. However, we will here consider the traditional setup
in order to simplify comparison with influential papers. We refer to the text book (Wüthrich and Merz,
2008) by Wüthrich and Merz for an overview of methods for claims reserving.

Important contributions appeared in the 1990s presenting stochastic models and properties of para-
metric stochastic models that give rise to the chain ladder predictor. Mack (1993) presented three model
properties, known as the distribution-free chain ladder model, that together with weighted least squares
estimation give rise to the chain ladder predictor. Renshaw and Verrall (1998) showed that independent
Poisson distributed cell values for incremental total claims amounts, together with Maximum Likelihood
estimation of parameters for row and column effects, give rise to the chain ladder predictor. The Poisson
model is inconsistent with the distribution-free chain ladder.

The most impressive contribution of Mack (1993) is the estimator of conditional mean squared error
of prediction. The key contribution is the estimator of the contribution of parameter estimation error to
conditional mean squared error of prediction. A number of papers have derived the same estimator based
on different approaches to statistical estimation in settings consistent with the distribution-free chain
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ladder, see for example Merz and Wüthrich (2008), Röhr (2016), Diers et al. (2016), Gisler (2019), and
Lindholm et al. (2020).

Different approaches to the estimation of, and estimators of, prediction error for the chain ladder
method sparked some scientific debate, both regarding which stochastic model underlies the chain ladder
methods, see for example the papers by Mack and Venter (2000) and Verrall and England (2000), and
regarding prediction error estimation for the chain ladder method, see Buchwalder et al. (2006), Gisler
(2006), Mack et al. (2006), and Venter (2006). Gisler revisited, in Gisler (2021), different estimators for
conditional mean squared error in the setting of the distribution-free chain ladder. Ultimately, Mack’s
estimator of conditional mean squared error of prediction has stood the test of time.

The main contribution of the present paper is that we show that a simple but natural com-
pound Poisson model is fully compatible with both the chain ladder predictor and Mack’s estimator
of conditional mean squared error of prediction, although the model is incompatible with Mack’s
distribution-free chain ladder, as long as we consider an insurance portfolio with sufficiently large expo-
sure (e.g., accumulated total claims amounts based on sufficiently many contracts). The Poisson model
considered by Renshaw and Verrall (1998) is a special case of the compound Poisson model we consider,
and consequently also their Poisson model gives rise to Mack’s estimator of conditional mean squared
error of prediction.

The rest of the paper is organized as follows. Section 2 presents the stochastic model we consider,
both a simple model called the special model and a more general model. The special model is a classical
insurance loss model (independent compound Poisson processes in each cell of the run-off triangle of
incremental total claims amounts). Section 3 recalls Mack’s distribution-free chain ladder. Section 4
presents asymptotic results that demonstrate that we can retrieve Mack’s classical estimators in model
setting that are incompatible with the distribution-free chain ladder. Section 5 presents a numerical
example that illustrates the theoretical results in Section 4. The proofs are found in Section 6.

2. The model
We will focus on a simple yet general class of models for the number of reported claims and the cost
of these claims. In line with classical reserving methods based on claims data organized in run-off
triangles, we consider T accident years and T development years. For i, t ∈ T = {1, . . . , T}, let Cα

i,t denote
the accumulated total claims amount due to accident events in accident year i that are paid up to and
including development year t. The parameter α is a measure of exposure, such as the number of contracts
of not yet fully developed accident years. We will analyze asymptotics as α → ∞ and use the findings
to motivate the use of well-established predictors and estimators in settings that are not consistent with
model assumptions used to derive the classical results for the chain ladder method. A given claims
reserving situation of course corresponds to a single, typically large, number α. As in any other situation
where asymptotic arguments are the basis for approximation, we embed the prediction problem in a
sequence of prediction problems, indexed by α.

The special model is simply a set of independent Cramér–Lundberg (compound Poisson) models,
indexed by accident year and development year, with a common claim size distribution with finite vari-
ance and positive mean, where exposure parameter α plays the role of time in the Cramér–Lundberg
models. For i, t ∈ T , consider the incremental total claims amount Xα

i,t due to accident events in acci-
dent year i that are paid during development year t: Xα

i,1 = Cα
i,1 and Xα

i,t = Cα
i,t − Cα

i,t−1 for t ≥ 2. Consider
constants λ1, . . . , λT ∈ (0, ∞) and q1, . . . , qT ∈ (0, 1) with

∑T
t=1 qt = 1. For each i, t ∈ T , (Xα

i,t)α≥0 is a
Cramér–Lundberg model with representation:

Xα

i,t =
Nα

i,t∑
k=1

Zi,t,k, α ≥ 0,

where (Nα
i,t)α≥0 is a homogeneous Poisson process with intensity λiqt ∈ (0, ∞), independent of the i.i.d.

sequence (Zi,t,k)∞
k=1. The claim size variables satisfy Zi,t,k

d= Z for all i, t, k for some Z with finite variance
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and positive mean. Moreover, the compound Poisson processes (Xα
i,t)α≥0, (i, t) ∈ T × T , are independent.

Note that the counting variable Nα
i,t has a Poisson distribution with mean αλiqt. Hence, Nα

i,1 + · · · + Nα
i,T

has a Poisson distribution with mean αλi, from which it is seen that the distribution of the total number
of claims is allowed to depend on the index of the accident year. Note also that the parameter α in
(Nα

i,t)α≥0 allows us to understand effects arising by varying the exposure αλi. The parameter α should not
be interpreted as “time.”

We want to highlight the special case of the special model obtained by letting Z ≡ 1. In this case,
the special model is simply a set of independent homogeneous Poisson processes, indexed by accident
year and development year. In particular, for a fixed α, we obtain the model considered by Renshaw
and Verrall (1998) as a model underlying the chain ladder method since it gives rise to the chain ladder
predictor (see Section 3) upon replacing unknown parameters by their Maximum Likelihood estimates.

2.1. The general model
Several of the statements in Section 4 hold for a wider class of models than the special model. The
general model, (GM1)–(GM4), allows us to write

Cα

i,t =
Mα

i∑
k=1

Zi,kI{Di,k ≤ t},

where Mα
i denotes the number of accident events in accident year i, Zi,k denotes the size of the kth such

claim, and Di,k denotes the corresponding development year, the indicator I{Di,k ≤ t} equals 1 if Di,k ≤ t.
For instance, Di,k ≤ 2 means that the kth claim from accident events in accident year i was settled no more
than two years from the beginning of accident year i. The properties GM1–GM4 together constitute the
general model:

(GM1) (D1,k, Z1,k)∞
k=1, . . . , (DT ,k, ZT ,k)∞

k=1 are i.i.d. sequences. The common distribution of the terms
(Di,k, Zi,k) does not depend on the accident year i. With (D, Z) denoting a generic such pair,

E[Z2] < ∞ and E[ZI{D = t}] > 0 for each t ∈ T .

(GM2) For each i, (Di,k, Zi,k)∞
k=1 and Mα

i are independent.
(GM3) {Mα

1 , (D1,k, Z1,k)∞
k=1}, . . . , {Mα

T , (DT ,k, ZT ,k)∞
k=1} are independent.

(GM4) For each i, there exists λi ∈ (0, ∞) such that Mα
i /α

a.s.→ λi as α → ∞.

By (GM3), claims data variables are independent if they correspond to different accident years.
However, the components of (D, Z) are possibly dependent, allowing for the distribution of claim size to
depend on development year. Note that we allow for exposures to vary between accident years, reflected
in possibly different parameters λ1, . . . , λT in statement (GM4). Note also that the incremental total
claims amounts Xα

i,s and Xα
i,t, s 	= t, are in general not independent (unless Mα

i is Poisson distributed).
In order to derive Mack’s estimator in Mack (1993) of conditional mean squared error of prediction

for the chain ladder predictor, we must consider a special case of the general model:

(SM1) (GM1)–(GM3) hold.
(SM2) D and Z are independent.
(SM3) For each i, (Mα

i )α≥0 is a homogeneous Poisson process with intensity λi ∈ (0, ∞).

The properties (SM1)–(SM3) together form an alternative way of specifying the special model. Since
(SM3) implies (GM4), the special model is a special case of the general model.

Note that the special model allows for different representations/interpretations. For instance, if there
are αλi/γ contracts that may cause claim events during accident year i, and if each such contract,
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independently, gives rise to a Pois(γ ) number of claims payments, then we may write

Cα

i,t =
αλi/γ∑

j=1

Oi,j∑
k=1

Zi,j,kI{Di,j,k ≤ t}, Mα

i =
αλi/γ∑

j=1

Oi,j,

where (Oi,j)∞
j=1 is an i.i.d. sequence of Pois(γ )-distributed random variables independent of the i.i.d.

sequences (Di,j,k, Zi,j,k)∞
k=1, j ≥ 1, with (Di,j,k, Zi,j,k)

d= (D, Z).

3. Mack’s distribution-free chain ladder
The arguably most well-known method for claims reserving is the chain ladder method. In the seminal
paper (Mack, 1993), Thomas Mack presented properties, see (3.1) and (3.2) below, for conditional dis-
tributions of accumulated total claims amounts that, together with (3.3) below, make the chain ladder
prediction method the optimal prediction method for predicting outstanding claims amounts. However,
the main contribution of Mack (1993) is the explicit estimator (see (3.4) below) of the conditional mean
squared error of the chain ladder predictor.

With Ci,t denoting the accumulated total claims amount up to and including development year t for
accidents during accident year i, Mack considered the following assumptions for the data generating
process: for t = 1, . . . , T − 1, there exist constants fMCLt > 0 and σ 2

MCLt ≥ 0 such that

E[Ci,t+1 | Ci,1, . . . , Ci,t] = fMCLtCi,t, t = 1, . . . , T − 1, (3.1)

var(Ci,t+1 | Ci,1, . . . , Ci,t) = σ 2
MCLtCi,t, t = 1, . . . , T − 1, (3.2)

and

(C1,1, . . . , C1,T), . . . , (CT ,1, . . . , CT ,T) are independent. (3.3)

The conditions (3.1), (3.2), and (3.3) together are referred to as Mack’s distribution-free chain ladder
model. The parameters fMCLt and σ 2

MCLt are estimated by:

f̂t =
∑T−t

i=1 Ci,t+1∑T−t
i=1 Ci,t

and σ̂ 2
t = 1

T − t − 1

T−t∑
i=1

Ci,t

(
Ci,t+1

Ci,t

− f̂t

)2

,

respectively. We refer to Mack (1993) for properties of these parameter estimators.
The property (3.2) for the conditional variance is very difficult to assess from data in the form of run-

off triangles on which the chain ladder method is applied. We refer to Mack (1994) for tests assessing the
assumptions of Mack’s distribution-free chain ladder. Moreover, it is notoriously difficult to find stochas-
tic models that satisfy this property. Note that the special model, see Section 2, does not satisfy Mack’s
conditions: neither (3.1) nor (3.2) hold. By Theorem 3.3.6. in Mikosch (2009) for the special model,

Mα
i∑

k=1

Zi,kI{Di,k ≤ t} and
Mα

i∑
k=1

Zi,kI{Di,k = t + 1}

are independent. Consequently, for the special model,

E[Cα

i,t+1 | Cα

i,1, . . . , Cα

i,t] = Cα

i,t + E[Mα

i ]P(D = t + 1)E[Z]

and

var(Cα

i,t+1 | Cα

i,1, . . . , Cα

i,t) = E[Mα

i ]P(D = t + 1)E[Z2].

It is shown in Theorem 1 below that large exposure limits, as α → ∞, do exist for estimators f̂t and
σ̂ 2

t . The constant (a.s. convergence) limit for the parameter estimator f̂t has a meaningful interpretation
in terms of the general model we consider, and the parameter estimators f̂t can be transformed into esti-
mators of parameters of our model, see Remark 4. However, Mack’s parameter estimator σ̂ 2

t converges
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in distribution to a nondegenerate random variable. Hence, although σ̂ 2
t will generate numerical values

that may seem reasonable, such values do not correspond to outcomes of random variables converging
to a parameter.

The main contribution of Mack’s paper (Mack, 1993) is the derivation of an estimator of the
conditional mean squared error of prediction:

E
[
(Ci,T − Ĉi,T)2

∣∣D],
where D is the σ -algebra generated by the data observed at the time of prediction: {Cj,t : j, t ∈ T , j + t ≤
T + 1}. TheD-measurable estimator derived by Mack of E[(Ci,T − Ĉi,T)2 |D] is (see Theorem 3 in Mack,
1993)

(Ĉi,T)2

T−1∑
t=T−i+1

σ̂ 2
t

f̂ 2
t

(
1

Ĉi,t

+ 1∑T−t
j=1 Cj,t

)
, (3.4)

where Ĉi,T−i+1 = Ci,T−i+1 and Ĉi,t = Ci,T−i+1

∏t−1
s=T−i+1 f̂s for t > T − i + 1. We will show that when consid-

ering the special model (SM1)–(SM3), large exposure asymptotics naturally lead to Mack’s estimator
of conditional mean squared error of prediction despite the fact that the special model is inconsistent
with Mack’s distribution-free chain ladder. Hence, the chain ladder predictor Ĉi,T = Ci,T−i+1

∏T−1
s=T−i+1 f̂s

may be used together with an assessment of its accuracy by (3.4) without having to rely on the validity
of (3.1) and (3.2) of Mack’s distribution-free chain ladder.

4. Large exposure asymptotics
We will next present the main results, motivating the use of the chain ladder method and Mack’s estima-
tor of conditional mean squared error of prediction, in the setting of the general or special model. Recall
that, for i, t ∈ T , Cα

i,t =
∑Mα

i
k=1 Zi,kI{Di,k ≤ t}. Let χ 2

ν
denote a random variable with a chi-squared distribu-

tion with ν degrees of freedom. Let NT(μ, �) denote the T -dimensional normal distribution with mean
μ and covariance matrix �. In what follows, convergence of random variables should be understood as
convergence as α → ∞.

Theorem 1. Consider the general model (GM1)–(GM4). For each t ∈ T with t ≤ T − 1,

f̂t =
∑T−t

i=1 Cα
i,t+1∑T−t

i=1 Cα
i,t

a.s.→ E[ZI{D ≤ t + 1}]
E[ZI{D ≤ t}] = ft. (4.1)

For each i ∈ T with i ≥ 2,

Cα
i,T−i+1

∏T−1
t=T−i+1 f̂t

Cα
i,T

a.s.→ 1. (4.2)

For each t ∈ T with t ≤ T − 2,

σ̂ 2
t = 1

T − t − 1

T−t∑
i=1

Cα

i,t

(
Cα

i,t+1

Cα
i,t

− f̂t

)2
d→ σ 2

t

χ 2
T−t−1

T − t − 1
, (4.3)

where

σ 2
t = (ft − 1)

(
E[Z2I{D = t + 1}]
E[ZI{D = t + 1}] + (ft − 1)

E[Z2I{D ≤ t}]
E[ZI{D ≤ t}]

)
.

Remark 1. We do not index f̂t and σ̂ 2
t by the exposure parameter α. It should be clear from the context

whether f̂t should be seen as an element in a convergent sequence or simply as a function of the given
data. Similarly for σ̂ 2

t .
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Remark 2. For the convergence in (4.1) and (4.2), it is not necessary to assume that Mα
1 , . . . , Mα

T are
independent. If D and Z are independent, then the limit expressions in (4.1) and (4.3) simplify

ft =
∑t+1

s=1 qs∑t
s=1 qs

, σ 2
t = (ft − 1)ft

E[Z2]

E[Z]
= qt+1

∑t+1
s=1 qs

(
∑t

s=1 qs)2

E[Z2]

E[Z]
,

where qt = P(D = t).

Remark 3. The convergence (4.2) supports the use of the chain ladder predictor:

Ĉi,T = Ci,T−i+1̂fT−i+1 · . . . · f̂T−1

whose prediction error is studied in Mack (1993) and (1994). However, (4.3) says that from numerical
estimates σ̂ 2

t we may not conclude that there is empirical evidence in support of the assumption (3.2) of
Mack’s distribution-free chain ladder.

Remark 4. It follows from (4.1) that(
1∏T−1

s=1 f̂s

,
f̂1 − 1∏T−1

s=1 f̂s

,
(̂f2 − 1)̂f1∏T−1

s=1 f̂s

, . . . ,
(̂fT−1 − 1)

∏T−2
s=1 f̂s∏T−1

s=1 f̂s

)
converges a.s. to the probability vector (̃q1, . . . , q̃T), where q̃t = E[Z]−1E[ZI{D = t}]. In particular, if D
and Z are independent, then (̃q1, . . . , q̃T) = (q1, . . . , qT), where qt = P(D = t). Hence, the estimators f̂t

can be transformed into consistent estimators of the delay probabilities. Note that independence between
D and Z includes the special case Z ≡ 1 corresponding to considering data on the number of claims.

4.1. Conditional mean squared error of prediction
The natural measure of prediction error is

E
[
(Cα

i,T − Ĉα

i,T)2
∣∣Dα

]
, (4.4)

where Dα is the σ -algebra generated by {Cα
j,t:j, t ∈ T , j + t ≤ T + 1}, the run-off triangle that is fully

observed at the time of prediction. We are considering large exposure limits and the conditional expec-
tation (4.4) diverges as α → ∞ (the divergence of (4.4) is a consequence of the convergence in (4.5)
below). However, we show (Theorems 2, 3, and 4 together with Remark 10) that there exists a random
variable L such that the standardized (division by Cα

i,T−i+1) mean squared error of prediction converges
in distribution:

E

[
(Cα

i,T − Ĉα
i,T)2

Cα
i,T−i+1

∣∣∣∣Dα

]
d→ L, (4.5)

and that the limit L has a natural Dα-measurable estimator L̂α (Remarks 5, 6, and 8). Consequently, the
natural estimator of the prediction error (4.4) is Cα

i,T−i+1L̂α:

E
[
(Cα

i,T − Ĉα

i,T)2
∣∣Dα

]= Cα

i,T−i+1E

[
(Cα

i,T − Ĉα
i,T)2

Cα
i,T−i+1

∣∣∣∣Dα

]
≈ Cα

i,T−i+1L̂α.

Our aim is to arrive at an estimator of conditional mean squared error of prediction that coincides with
Mack’s estimator (3.4), and this is not in general true in the setting of the general model. Therefore, we
need to consider the special model (SM1)–(SM3).

Combining Theorems 2, 3, and 4 and Remarks 5, 6, and 8 below, we show that

Cα

i,T−i+1L̂α = (Ĉα

i,T)2

T−1∑
t=T−i+1

σ̂ 2
t

f̂ 2
t

(
1

Ĉα
i,t

+ 1∑T−t
j=1 Cα

j,t

)
(4.6)
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which coincides with the estimator of conditional mean squared error of prediction obtained by Mack
in (1993). Note that in (4.6), we use the notation

Ĉα

i,T−i+1 = Cα

i,T−i+1, Ĉα

i,t = Cα

i,T−i+1

t−1∏
s=T−i+1

f̂s, t > T − i + 1.

Note that Cα
i,T−i+1 is independent of f̂T−i+1, . . . , f̂T−1, since the latter estimators are functions of only data

from accident years ≤ i − 1. Hence, Ĉα
i,T = Cα

i,T−i+1

∏T−1
s=T−i+1 f̂s is a product of two independent factors.

In order to verify the convergence in (4.5), note that the left-hand side in (4.5) can be expressed as:

E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 fs)2

Cα
i,T−i+1

∣∣∣∣Dα

]
(4.7)

+ Cα

i,T−i+1

( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)2

(4.8)

+ 2E

[
Cα

i,T − Cα

i,T−i+1

T−1∏
s=T−i+1

fs

∣∣∣∣Dα

]( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)
. (4.9)

In the literature, the first term (4.7) (upon multiplication by Cα
i,T−i+1) is referred to as process variance,

and the second term (4.8) (upon multiplication by Cα
i,T−i+1) is referred to as estimation error. In the set-

ting of the distribution-free chain ladder, (4.7) is a conditional variance. However, in our setting (the
general or special model, see Section 2), this term is not a conditional variance. Hence, we will not use
the terminology “process variance.” Note that the two factors in (4.9) are independent because of inde-
pendent accident years. This fact will enable us to study the asymptotic behavior of (4.9), convergence
in distribution, and verify that the limit distribution has zero mean.

Theorem 2 shows that the second term (4.8) converges in distribution in the setting of the general
model. Theorem 3 shows that the first term (4.7) converges in distribution in the setting of the spe-
cial model. In fact, the Poisson assumption for the counting variables is not needed for convergence in
distribution. However, we need it in order to obtain an estimator of conditional mean squared error of
prediction that coincides with the estimator derived in Mack (1993). Theorem 4 shows that the third
term (4.9) converges in distribution in the setting of the special model. Remark 10 clarifies that the sum
of the terms converges in distribution in the setting of the special model.

Theorem 2. Consider the general model (GM1)–(GM4). For each i ∈ T with i ≥ 2, there exists γi ∈
(0, ∞) such that

Cα

i,T−i+1

( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)2
d→ γ 2

i χ 2
1 .

If Z and D are independent, then

γ 2
i = λiE[ZI{D ≤ T − i + 1}]

T−1∏
s=T−i+1

f 2
s

T−1∑
t=T−i+1

σ 2
t /f 2

t∑T−t
j=1 λjE[ZI{D ≤ t}] .

Remark 5. Motivated by (4.1) and (4.3), we estimate ft by f̂t and σ 2
t by σ̂ 2

t . Since α−1Cα
j,t

a.s.→ λjE[ZI{D ≤
t}], we estimate λjE[ZI{D ≤ t}] by α−1Cα

j,t. Hence, the estimator of γ 2
i is

γ̂ 2
i = Cα

i,T−i+1

T−1∏
s=T−i+1

f̂ 2
s

T−1∑
t=T−i+1

σ̂ 2
t /̂f 2

t∑T−t
j=1 Cα

j,t

.
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Consequently, the estimator of

(
Cα

i,T−i+1

)2
( T−1∏

s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)2

is Cα
i,T−i+1γ̂

2
i which equals

(Cα

i,T−i+1)
2

T−1∏
s=T−i+1

f̂ 2
s

T−1∑
t=T−i+1

σ̂ 2
t /̂f 2

t∑T−t
j=1 Cα

j,t

= (Ĉα

i,T)2

T−1∑
t=T−i+1

σ̂ 2
t /̂f 2

t∑T−t
j=1 Cα

j,t

(4.10)

and coincides with Mack’s estimator (see Mack, 1993, p. 219).

Theorem 3. Consider the special model (SM1)–(SM3). For each i ∈ T with i ≥ 2,

E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 fs)2

Cα
T−i+1

∣∣∣∣Dα

]

= α

Cα
T−i+1

(
E[Mα

i ]

α
E[Z2]P(D > T − i + 1) + (Hα)2

( T−1∏
s=T−i+1

fs − 1

)2)

d→ E[Z2]

E[Z]

(( T−1∏
s=T−i+1

fs − 1

)
+
( T−1∏

s=T−i+1

fs − 1

)2

χ 2
1

)
, (4.11)

where

(Hα)2 = (Cα
i,T−i+1 − E[Cα

i,T−i+1])
2

α

d→ λiE[Z2]P(D ≤ T − i + 1)χ 2
1 = H2.

In particular, the expectation of the limit variable in (4.11) is

λiE[Z2]P(D > T − i + 1) + E[H2](
∏T−1

s=T−i+1 fs − 1)2

λiE[Z]P(D ≤ T − i + 1)

=
T−1∑

t=T−i+1

fT−i+1 · . . . · ft−1σ
2
t f 2

t+1 · . . . · f 2
T−1. (4.12)

Remark 6. Since (4.12) equals
T−1∑

t=T−i+1

( T−1∏
s=T−i+1

f 2
s

)
σ 2

t /f 2
t∏t−1

u=T−i+1 fu

= Cα

i.T−i+1

T−1∏
s=T−i+1

f 2
s

T−1∑
t=T−i+1

σ 2
t /f 2

t

Cα
i,T−i+1

∏t−1
u=T−i+1 fu

,

estimating ft by f̂t and σ 2
t by σ̂ 2

t gives the estimator of (4.12) given by:

Cα

i.T−i+1

T−1∏
s=T−i+1

f̂ 2
s

T−1∑
t=T−i+1

σ̂ 2
t /̂f 2

t

Ĉα
i,t

.

Consequently, we estimate

Cα

i,T−i+1E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 fs)2

Cα
T−i+1

∣∣∣∣Dα

]
by

(Cα

i.T−i+1)
2

T−1∏
s=T−i+1

f̂ 2
s

T−1∑
t=T−i+1

σ̂ 2
t /̂f 2

t

Ĉα
i,t

= (Ĉα

i.T)2

T−1∑
t=T−i+1

σ̂ 2
t /̂f 2

t

Ĉα
i,t

(4.13)

which coincides with Mack’s estimator (see Mack, 1993, p. 218).
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Remark 7. Convergence of the conditional expectations considered in Theorem 3 does not require the
Poisson assumption for the counting variables. However, we have used the fact that E[Mα

i ] = var(Mα
i ) to

derive the limit in (4.11). If E[Mα
i ] and var(Mα

i ) would increase with α at rates that differ asymptotically,
then a limit corresponding to (4.11) would look differently and consequently we would arrive at an
estimator of conditional mean squared error of prediction that would differ from the one obtained in
Mack (1993).

Note that by adding (4.10) and (4.13), one obtains the right-hand side in (4.6). Since we expressed
the conditional mean squared error of prediction as a sum of three terms, it remains to show that the
third term should be estimated by zero.

Theorem 4. Consider the special model (SM1)–(SM3). Let

Aα

1 = α−1/2E

[
Cα

i,T − Cα

i,T−i+1

T−1∏
s=T−i+1

fs

∣∣∣∣Dα

]
,

Aα

2 = α1/2

( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)
.

Then (Aα
1 )α≥0 and (Aα

2 )α≥0 are independent and both converge in distribution to normally distributed ran-
dom variables with zero means. In particular, (Aα

1 Aα
2 )α≥0 converges in distribution to a random variable

with zero mean.

Remark 8. By Theorem 4, the third term (4.9) in the expression for the standardized mean squared
error of prediction converges in distribution to a random variable with zero mean. Consequently, we
estimate (4.9) by 0.

Theorem 5 analyzes the asymptotic behavior of a vector-valued process (Sα
j )α≥0, centered by

subtracting its mean process, where

Sα

j =
Mα

j∑
k=1

Zj,k

(
I{Dj,k = 1}, . . . , I{Dj,k = T}).

From the statement in Theorem 5, we will be able to make the corresponding statements about the
asymptotic behavior of the centered version of

Cα

j,t =
Mα

j∑
k=1

Zj,kI{Dj,k ≤ t} =
t∑

k=1

Sα

j,k,

where the right-hand side is the sum of the first t components of Sα
j .

Theorem 5. Suppose that for each accident year j, (Mα
j )α≥0 is a renewal counting process given by

Mα
j = sup{m ≥ 1:Tj,m ≤ α}, where the steps Yj,k of the random walk Tj,m =∑m

k=1 Yj,k satisfy E[Yj,k] = 1/λj

and var(Yj,k) < ∞. Suppose properties (GM1) and (GM2) of the general model hold. Then

Sα

j =
Mα

j∑
k=1

Zj,k

(
I{Dj,k = 1}, . . . , I{Dj,k = T})

satisfies α−1/2(Sα
j − E[Sα

j ])
d→ NT(0, �), where

�s,t = λjE[Z2I{D = s}I{D = t}]
+ λj(λ

2
j var(Y) − 1)E[ZI{D = s}]E[ZI{D = t}]

with (D, Z)
d= (Dj,k, Zj,k) and Y

d= Yj,k.
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Note that a renewal counting process (Mα
j )α≥0 satisfies Mα

j /α
a.s.→ λj as the exposure parameter α → ∞

if the step-size distribution of the corresponding random walk (Tj,m)m≥1 has finite expectation 1/λj.
Hence, property (GM4) is automatically satisfied for the renewal counting process considered in
Theorem 5. Theorem 5 presents sufficient conditions under which α−1/2(Sα

j − E[Sα
j ]) converges in dis-

tribution for each accident year j. If property (GM3) holds, then the sequences (α−1/2(Sα
j − E[Sα

j ]))α>0,
j = 1, . . . , T , are independent and therefore they converge jointly in distribution.

Corollary 1. Consider the setting of Theorem 5. Let

Hα = α−1/2
(
Cα

i,T−i+1 − E[Cα

i,T−i+1]
)
,

Fα = α−1/2
(
Cα

i,T − Cα

i,T−i+1 − E[Cα

i,T − Cα

i,T−i+1]
)
.

Then (Hα, Fα)
d→ (H, F), where (H,F) is jointly normally distributed with

var(H) = λiE[Z2I{D ≤ T − i + 1}] + λi(λ
2
i var(Y) − 1)E[ZI{D ≤ T − i + 1}]2,

var(F) = λiE[Z2I{D > T − i + 1}] + λi(λ
2
i var(Y) − 1)E[ZI{D > T − i + 1}]2,

cov(H, F) = λi(λ
2
i var(Y) − 1)E[ZI{D ≤ T − i + 1}]E[ZI{D > T − i + 1}].

Remark 9. If (Mα
j )α≥0 is a homogeneous Poisson process, then var(Y) = λ−2

j , the random vectors Sα
j in

Theorem 5 have independent components, and Hα and Fα in Corollary 1 are independent.

Remark 10. Theorems 2, 3, and 4 show convergence in distribution separately for the three terms (4.7),
(4.8), and (4.9) of conditional mean squared error of prediction. We treat them separately since we want
to emphasize that convergence to the appropriate limits occurs under different assumptions; only for
two of the terms we use the compound Poisson assumption of the special model. However, the sum of
the terms converges in distribution under the assumptions made in Theorem 3. This convergence of the
sum is a consequence of the convergence in distribution of the random vectors α−1/2(Sα

j − E[Sα
j ]) in

Theorem 5. That the convergence in distribution in Theorems 2, 3, and 4 can be extended to joint
convergence in distribution can then be verified by combining the convergence of α−1/2(Sα

j − E[Sα
j ]) in

Theorem 5 with an application of the continuous mapping theorem for weak convergence together with
Slutsky’s theorem. Such an argument verifies that

E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 f̂s)2

Cα
T−i+1

∣∣∣∣Dα

]
d→ L = L(1) + L(2) + L(3),

where L(1), L(2), and L(3) correspond to the limits in Theorems 2, 3, and 4.

5. Numerical illustration
In the setting of the special model, we may simulate a run-off triangle {Cα

j,t:j, t ∈ T , j + t ≤ T + 1} and
explicitly compute the standardized conditional mean squared error of prediction (standardized means
division by Cα

T−i+1) in (4.5) as a known function of the simulated run-off triangle. For the same run-off
triangle, we may compute the standardized estimator of mean squared error by Mack,

L̂α = (Ĉα
i,T)2

Cα
i,T−i+1

T−1∑
t=T−i+1

σ̂ 2
t

f̂ 2
t

(
1

Ĉα
i,t

+ 1∑T−t
j=1 Cα

j,t

)
, (5.1)

and then compare the two random variables, or their distributions.
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We first show how to explicitly compute the standardized conditional mean squared error of predic-
tion. Since Cα

i,T = Cα
i,T−i+1 +∑Nα

k=1 Zk with Nα ∼ Pois(αλi

∑T
t=T−i+2 qt) independent of the i.i.d. sequence

(Zk), and

E

[ Nα∑
k=1

Zk

]
= E[Nα]E[Z],

E

[( Nα∑
k=1

Zk

)2]
= E[Nα]var(Z) + E[Nα]E[Z]2 + E[Nα]2E[Z]2,

we may use the independence between
∑Nα

k=1 Zk and Dα to get

Lα = E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 f̂s)2

Cα
T−i+1

∣∣∣∣Dα

]
(5.2)

= (Cα

T−i+1)
−1E

[( Nα∑
k=1

Zk

)2]
− 2

( T−1∏
s=T−i+1

f̂s − 1

)
E

[ Nα∑
k=1

Zk

]

+ Cα

i,T−i+1

( T−1∏
s=T−i+1

f̂s − 1

)2

.

From Theorems 2, 3, and 4 together with Remark 10, we know that Lα d→ L and we may compute
E[L] explicitly. We have not shown convergence in distribution for L̂α, but it follows from Theorem 1
and Slutsky’s theorem that each term in the expression for L̂α converges in distribution, and the cor-
responding expectations of the limits add up to E[L]. Hence, if we draw many realizations of run-off
triangles based on the special model and convert these into a random sample from the distribution of
Lα − L̂α, then we expect the empirical mean to be approximately zero.

For the numerical illustration, we take the claims data from Table 1 in Mack (1993), originally pre-
sented by Taylor and Ashe (1983), in order to choose values for the model parameters of exposure and
distribution of delay. Applying the formula from Remark 4, we can transform the development factors
f̂t corresponding to Table 1 in Mack (1993) into

(̂qt)
T
t=1 = (0.069, 0.172, 0.180, 0.194, 0.107, 0.075, 0.069, 0.047, 0.070, 0.018).

For the exposures, we simply use the first column of the run-off triangle in Mack (1993) and normalize it
by dividing by its first entry (this procedure suffices for illustration, more sophisticated estimation could
be considered). This yields

(̂λi)
T
i=1 = (1.000, 0.984, 0.812, 0.868, 1.239, 1.107, 1.230, 1.005, 1.053, 0.961)

across accident years. For simplicity, we choose Z ≡ 1 and α = 4, 000, 000, which roughly corresponds
to the order of magnitude as can be found in Mack (1993). We generate 100,000 realizations of run-off
triangles and for each one compute both the true standardized conditional mean squared error (5.2) and
the standardized version of Mack’s estimator of conditional mean squared error (5.1) for accident years
i=3, 5, and 8. The results can be seen in Figure 1. The results are not sensitive to the value chosen for α,
and the histograms in Figure 1 are essentially indistinguishable from those with α = 10, 000. Although
the distribution of the true standardized conditional mean squared error is not the same as that for the
standardized version of Mack’s estimator of conditional mean squared error, as seen in Figure 1, the
mean values of the empirical distributions are essentially identical.
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Figure 1. Blue histograms: standardized Mack’s estimator (5.1) of conditional mean squared error.
Orange histograms: true standardized conditional mean squared error (5.2). The three plots shown
correspond to accident years i = 3, 5, 8 (left, right, bottom). For each of the three cases, the empirical
means differ by less than 0.01.

6. Proofs
Before the proof of Theorem 1, we state a result, on stochastic representations of norms of multivariate
normal random vectors, that will be used in the proof of Theorem 1.

Lemma 1. If W ∼ Nn(0, �), then WTW
d=∑n

i=1 μiQ2
i , where Q1, . . . , Qn are independent and standard

normal and μ1, . . . , μn are the eigenvalues of �.

Proof of Lemma 1. Write � = LLT and note that W
d= LQ with Q ∼ Nn(0, I). Hence, WTW

d= QTLTLQ.
The matrix LTL is orthogonally diagonizable and has the same eigenvalues as � = LLT. Write LTL =
OTDO, where O is orthogonal and D = diag(μ1, . . . , μn). Hence,

WTW
d= QTLTLQ

d= QTOTDOQ
d= QTDQ

since OQ
d= Q.

Proof of Theorem 1. We first prove (4.1). Note that, for 1 ≤ i0 < i1 ≤ T , using Theorem 2.1 in Gut
(2009),

1

α

i1∑
i=i0

Cα

i,t+1 =
i1∑

i=i0

Mα
i

α

1

Mα
i

Mα
i∑

k=1

Zi,kI{Di,k ≤ t + 1}

a.s.→ E[ZI{D ≤ t + 1}]
i1∑

i=i0

λi.
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Consequently, ∑i1
i=i0

Cα
i,t+1∑i1

i=i0
Cα

i,t

a.s.→ E[ZI{D ≤ t + 1}]
E[ZI{D ≤ t}] .

In order to prove (4.2), Note that, similarly to the above,

Cα
i,T

Cα
i,t

a.s.→ E[ZI{D ≤ T}]
E[ZI{D ≤ t}] and

T−1∏
s=t

f̂s
a.s.→ E[ZI{D ≤ T}]

E[ZI{D ≤ t}] .

We proceed to the more involved task of proving (4.3). For j = i0, . . . , i1, let

Wα

j =
α−1/2

(
(Cα

j,t+1 − Cα
j,t) −

∑i1
i=i0

(Cα
i,t+1−Cα

i,t)∑i1
i=i0

Cα
i,t

Cα
j,t

)
(α−1Cα

j,t)1/2
.

Some algebra shows that (
Wα

j

)2 = Cα

i,t

(
Cα

i,t+1

Cα
i,t

− f̂t

)2

that is the jth term in the sum in the expression for σ̂ 2
t . The numerator of Wα

j can be written as:(
1 − Cα

j,t∑i1
i=i0

Cα
i,t

)
α−1/2

Mα
j∑

k=1

Zj,k

(
I{Dj,k = t + 1} − E[ZI{D = t + 1}]

E[ZI{D ≤ t}] I{Dj,k ≤ t}
)

− Cα
j,t∑i1

i=i0
Cα

i,t

α−1/2

i1∑
i=i0,i 	=j

Mα
i∑

k=1

Zi,k

(
I{Di,k = t + 1} − E[ZI{D = t + 1}]

E[ZI{D ≤ t}] I{Di,k ≤ t}
)

.

We can now write Wα = BαUα, where

Uα

j = α−1/2

Mα
j∑

k=1

Zk,j

(
I{Dj,k = t + 1} − E[ZI{D = t + 1}]

E[ZI{D ≤ t}] I{Dj,k ≤ t}
)

and Bα is a square matrix with entries:

Bα

j,l =

⎧⎪⎪⎨⎪⎪⎩
(
α−1Cα

j,t

)−1/2
(

1 − Cα
j,t∑i1

i=i0
Cα

i,t

)
, j = l(

α−1Cα
j,t

)−1/2
(

− Cα
j,t∑i1

i=i0
Cα

i,t

)
, j 	= l.

The multivariate Central Limit Theorem together with Theorem 1.1 in Gut (2009) yield Uα d→ U, where
U ∼ Ni1−i0+1(0, c2

t diag(λi0 , . . . , λi1 )) with

c2
t = var

(
Z

(
I{D = t + 1} − E[ZI{D = t + 1}]

E[ZI{D ≤ t}] I{D ≤ t}
))

= E[Z2I{D = t + 1}] +
(

E[ZI{D = t + 1}]
E[ZI{D ≤ t}]

)2

E[Z2I{D ≤ t}].

By the strong law of large numbers, Bα a.s.→ B, where

Bj,l =E[ZI{D ≤ t}]−1/2 ·

⎧⎪⎪⎨⎪⎪⎩
λ

−1/2
j

(
1 − λj∑i1

i=i0
λi

)
, j = l

λ
−1/2
j

(
− λj∑i1

i=i0
λi

)
, j 	= l.
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Hence, by Slutsky’s theorem (multivariate version), Wα = BαUα d→ BU = W, where W ∼ Ni1−i0+1(0, �)
with

� = B cov(U)BT = c2
t

E[ZI{D ≤ t}] �̃ = σ 2
t �̃

The eigenvalues of �̃ are μ1 = 1, μ2 = 0 with corresponding eigenspaces:

Eig1 = span

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
1/2
i0+1

−λ
1/2
i0

0

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
1/2
i0+2

0

−λ
1/2
i0

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
1/2
i1

0

0

...

0

−λ
1/2
i0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Eig0 = span

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

λ
1/2
i0

...

λ
1/2
i1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

and hence geometric multiplicities i1 − i0 and 1, respectively. By Lemma 1,
i1∑

i=i0

W2
i

d= σ 2
t

i1−1∑
i=i0

Q2
i ,

where Qi0 , . . . , Qi1−1 are independent and standard normal. Altogether, we have shown that

σ̂ 2
t

d= 1

i1 − i0

i1∑
i=i0

(
Wα

i

)2 d→ σ 2
t

χ 2
i1−i0

i1 − i0

.

Proof of Theorem 2. Write St = f̂T−i+1 · . . . · f̂t−1(ft − f̂t)ft+1 · . . . · fT−1 and note, as noted in Mack
(1993), that fT−i+1 · . . . · fT−1 − f̂T−i+1 · . . . · f̂T−1 =∑T−1

t=T−i+1 St. Hence, the statement of the theorem
follows if we show the appropriate convergence in distribution of

α−1/2Cα
i,T−i+1

(α−1Cα
i,T−i+1)1/2

T−1∑
t=T−i+1

St. (6.1)

Write

St =
( t−1∏

s=T−i+1

f̂s

)( T−1∏
s=t+1

fs

)(
E[ZI{D ≤ t + 1}]

E[ZI{D ≤ t}] −
∑T−t

j=1 Cα
j,t+1∑T−t

j=1 Cα
j,t

)

= (
∏t−1

s=T−i+1 f̂s)(
∏T−1

s=t+1 fs)∑T−t
j=1 Cα

j,t

α1/2

T−t∑
j=1

(
Mα

j

α

)1/2

Uα

j,t,

where

Uα

j,t = (Mα

j )−1/2

Mα
j∑

k=1

Zj,k

(
E[ZI{D = t + 1}]

E[ZI{D ≤ t}] I{Dj,k ≤ t} − I{Dj,k = t + 1}
)

.

Therefore, we may write (6.1) as:
T−1∑

t=T−i+1

Bα

t

T−t∑
j=1

(
Mα

j

α

)1/2

Uα

j,t =
i−1∑
j=1

(
Mα

j

α

)1/2 T−j∑
t=T−i+1

Bα

t Uα

j,t,
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where

Bα

t = (α−1Cα
i,T−i+1)1/2

α−1
∑T−t

j=1 Cα
j,t

( t−1∏
s=T−i+1

f̂s

)( T−1∏
s=t+1

fs

)
.

We will use the facts that (Uα
1,t)

T−1
t=T−i+1, (Uα

2,t)
T−2
t=T−i+1, . . . , Uα

i−1,T−i+1 are independent and that each one
converges in distribution to a centered normally distributed random vector/variable and that each Bα

t

converges a.s. as α → ∞. A multivariate version of Slutsky’s theorem (essentially the continuous map-
ping theorem for weak convergence) then implies convergence in distribution of (6.1) to a centered
normally distributed random variable.

Note that

Bα

t

a.s.→ (λiE[ZI{D ≤ T − i + 1}])1/2
∏T−1

s=T−i+1 fs∑T−t
j=1 λjE[ZI{D ≤ t}]ft

= Bt.

Note that, for each j, as α → ∞, (Uα
j,t)

T−1
t=T−i+1 converges in distribution to a centered normal random

vector with covariance matrix � with, for integer-valued h > 0,

�t,t = (ft − 1)2E[Z2I{D ≤ t}] + E[Z2I{D = t + 1}]
= σ 2

t E[ZI{D ≤ t}],
�t,t+h = (ft+h − 1)

(
(ft − 1)E[Z2I{D ≤ t}] − E[Z2I{D = t + 1}]).

If D and Z are independent, then it is seen from the above expression that � is diagonal. In this case,
T−j∑

t=T−i+1

Bα

t Uα

j,t

d→ N1

(
0,

T−j∑
t=T−i+1

(Bt)
2�t,t

)
and consequently (6.1) converges in distribution to a centered normally distributed random variable with
variance:

i−1∑
j=1

λj

T−j∑
t=T−i+1

(Bt)
2�t,t =

T−1∑
t=T−i+1

(Bt)
2�t,t

T−t∑
j=1

λj

= λiE[ZI{D ≤ T − i + 1}]
T−1∏

s=T−i+1

f 2
s

T−1∑
t=T−i+1

σ 2
t /f 2

t∑T−t
j=1 λjE[ZI{D ≤ t}] .

Proof of Theorem 3. By Corollary 1, (Hα, Fα)
d→ (H, F), where H and F are independent and

normally distributed with zero means and variances var(H) = λiE[Z2]P(D ≤ T − i + 1) and var(F) =
λiE[Z2]P(D > T − i + 1). Write gT−i+1 = E[ZI{D≤T}]

E[ZI{D≤T−i+1}] =∏T−1
s=T−i+1 fs and note that

E

[
(Cα

i,T − Cα
i,T−i+1gT−i+1)2

Cα
T−i+1

∣∣∣∣Dα

]
= α

Cα
T−i+1

E
[(

Fα − Hα(gT−i+1 − 1)
)2
∣∣∣Hα

]
= α

Cα
T−i+1

(
E[(Fα)2] + (Hα)2(gT−i+1 − 1)2

)
= α

Cα
T−i+1

(E[Mα
i ]

α
E[Z2]P(D > T − i + 1) + (Hα)2(gT−i+1 − 1)2

)
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Since Cα
i,T−i+1/α

a.s.→ λiE[Z]P(D ≤ T − i + 1) and (Hα)2 d→ λiE[Z2]P(D ≤ T − i + 1)χ 2
1 , the conclusion

follows from Slutsky’s theorem.

Proof of Theorem 4. Aα
2 can be expressed as:

Aα

2 = α1/2

T−1∑
t=T−i+1

St

with St as in the proof of Theorem 2. Hence, the arguments in the proof of 2 shows that (Aα
2 )α≥0 converges

in distribution to a normally distributed random variable with zero mean. Since

E[Cα

i,T−i+1] = E[Mα

i ]E[Z]P(D ≤ T − i + 1),

E[Cα

T |Dα] = Cα

T−i+1 + E[Mα

i ]E[Z]P(D > T − i + 1)

and
∏T−1

s=T−i+1 fs = P(D ≤ T − i + 1)−1, Aα
1 can be expressed as:

Aα

1 = −P(D > T − i + 1)

P(D ≤ T − i + 1)
α−1/2

(
Cα

i,T−i+1 − E[Cα

i,T−i+1]
)

from which convergence in distribution to a normally distributed random variable with zero mean
follows immediately from Corollary 1. Since (Aα

1 )α≥0 and (Aα
2 )α≥0 are independent, individual conver-

gence in distribution implies joint convergence in distribution. Consequently, mapping theorem for weak
convergence implies that the product converges in distribution.

The proof of Theorem 5 is based on the proof of Theorem 2.5.15 in Embrechts et al. (2003).

Proof of Theorem 5. In order to ease the notation, we drop the index j and write Sα =∑Mα

k=1 Xk. From
the renewal process representation of Mα, there exists an i.i.d. sequence (Yk) independent of (Xk) such
that the sequence (Tm) given by Tm =∑m

k=1 Yk satisfies Mα = sup{m ≥ 1:Tm ≤ α}. Therefore, λ = 1/E[Y]
and

α−1/2(Sα − E[Sα]) = α−1/2(Sα − E[X]Mα + E[X](Mα − λα)) + oP(1)

using that limα→∞ α−1/2(λα − E[Mα]) = 0 by Proposition 2.5.12 in Embrechts et al. (2003), and where
oP(1) means a remainder term converging in probability to zero as α → ∞. Using (2.41) in Embrechts
et al. (2003), α−1/2(Mα − λα) = α−1/2(Mα − λTMα ) + oP(1). Hence,

α−1/2(Sα − E[Sα]) = α−1/2
(
Sα − λE[X]TMα

)+ oP(1)

= α−1/2

Mα∑
k=1

(Xk − λE[X]Yk) + oP(1)

=
(

Mα

α

)1/2

(Mα)−1/2

Mα∑
k=1

(Xk − λE[X]Yk) + oP(1).

Consequently, α−1/2(Sα − E[Sα])
d→ NT(0, �), where

� = λcov(X − λE[X]Y) = λcov(X) + λ3var(Y)E[X]E[X]T.

If Mα is Poisson distributed, then var(Y) = 1/λ2 and hence � = λE[XXT] is diagonal with �t,t =
λE[Z2I{D = t}].
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