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A NEW MINIMAX THEOREM AND A PERTURBED
JAMES'S THEOREM

M. Ruiz GALAN AND S. SIMONS

The main result of this paper is a sufficient condition for the minimax relation to
hold for the canonical bilinear form on X x Y, where X is a nonempty convex
subset of a real locally convex space and Y is a nonempty convex subset of its
dual. Using the known "converse minimax theorem", this result leads easily to a
nonlinear generalisation of James's ("sup") theorem. We give a brief discussion of
the connections with the "sup-limsup theorem" and, in the appendix to the paper,
we give a simple, direct proof (using Goldstine's theorem) of the converse minimax
theorem referred to above, valid for the special case of a normed space.

0. INTRODUCTION

This paper is in two main parts. The first three sections give various result about
bounded functions on an abstract set, while the last section is more functional-analytic
in character.

The main functional-analytic result is Theorem 14, which contains a sufficient
condition for the minimax relation to hold for the canonical bilinear form on X x Y,

where X is a nonempty convex subset of a real locally convex space, E, and Y is a
nonempty convex subset of its dual, E*. (The notation necessary for an understanding
of Theorem 14 appears at the beginning of Section 4.) Using the known "converse
minimax theorem", Theorem 14 leads easily to Theorem 16, a nonlinear generalisation
of James's ("sup") theorem.

Theorem 14 depends on Theorem 13, which gives a sufficient condition for there
to exist a set of functions, all of which fail to attain their maximum value on X. The
statement that g € liminfsup^ <?< means that lim inf j gi ^ g < lim sup^ gi on X — we
describe such a function g as an "undetermined function". In the situation of Theorem
14, condition (14.1) ensures that one of these undetermined functions can be chosen to
be the restriction to X of an element of E*, which is exactly what is needed for the
proof of Theorem 14. All proofs of James's theorem also seem to need this undetermined
function.
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44 M. Ruiz Galan and S. Simons [2]

Theorem 13 has two main components: a convexity argument specific to the canon-
ical bilinear form and Theorem 10, which gives a sufficient condition (again, with an
undetermined function) for there to exist a set of functions, all of which fail to attain
their maximum value on a set X, but now X is simply any nonempty set with no
vector space structure.

Theorem 10 relies on a technique used by Pryce in his proof of James's theorem
(see Lemma 9) and a strengthened form of an argument used in [8], (see Lemmas 4 and
5).

In Section 2, we digress a little to discuss the "sup-limsup theorem" proved in
[8], and show how its proof contrasts with what we need to obtain our results on
undetermined functions.

In the appendix to this paper, we give a simple, direct proof (using Goldstine's
theorem) of the converse minimax theorem referred to above, valid for the special case
when E is a normed space.

1. PRELIMINARY RESULTS

Let V be the set of all real sequences {^j}j^i such that, for all j ^ 1, Xj ^ 0 and
oo
52 Xj — 1. ('"P" stands for "probability".) We first give an elementary property of V.

LEMMA 1. Suppose that {^t}oi € V and, for all i ^ 1, {Kj}j>\ € "P. For all

j ^ l , let Vj := £ w A y ^ 0. Then {vj}m G V.
i

oo oooo o
PROOF: Since ^2 52 Mt^ij = 52 A1* 2 ^»i = 12 Mi = 1 J from the double series

OO OO 00

theorem, ^2 22 W<V» = * > t*iat *s t o sav> £ ui ~ * • "
j=ii=i j=i

Now let H be a real sequentially complete Hausdorff locally convex space and
oo

be a bounded sequence in if. If {^j}j^i € V then ]>2 XjCij is defined in

H to be lim Yl^iai (which exists by sequential completeness) and, whenever p is a
" - > o o j = l" > o o j = l , oo v oo

continuous seminorm on H, p( 52 ^jaj) ^ 52-\jP(aj)- We write coCT{aj: j ^ 1} for
the set j=1 j=1the set

The operator coa has a simple but important stability property, which is contained in
the following lemma:

LEMMA 2 . Suppose that {aj}j>\ is a bounded sequence in H and, for all i ^ 1,
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[3] A new minimax theorem 45

b{ e coa{aj: j ^ 1}. Then

coa{bi-. i ̂  1} C coa{a_,: j ^ 1}.

oo

PROOF: For all i ̂  1, let {Aij}^i € V and bi = £ KjO>j- Let c be an arbitrary
3 — ^ oo

element of coa{&i: i ^ 1}. Then there exists {^i}i^i 6 P such that c = £/*>&«•
Define {fj}j^i 6 T7 as in Lemma 1. We shall show that *~

oo

(2.1) c--

This establishes that c € coa{aj: j ^ 1}, which gives the required result since c was
an arbitrary element of coa{6j: i ̂  1}. Now, for all n ̂  1,

o o o o nn n
/ . / . IM^ij = 2—i 2—1 t^i^ij •" Z—i 2—i t^i^ij "•" ^ 2-i t^i^ij "•" 2-< 2-< f^i^ij•
i=lj=l »=lj=l «=lj=n+l i=n+lj=l i=n+lj=n+l

n n oo oo

Since it follows from the double series theorem that JZ E/^Ai j -^ E EMtAy as
n —̂  oo, we have *~ J~ *~ J~

n oo oo n oo oo
(2.2) £ E MiAjj + E E MtAij + E E A*tAij ->0asn->oo .

t=lj=n+l t=n+lj=l i=n+lj=n+l

Now, for all n ^ 1,

n n n / n oo \ n / n oo \
E Mî t - E via3 ~ E Mt I E AyOj + E AijOj I - E I E MiAy + E HKJ )O-J

T = 1 j = l i=l \j=l j=n+l / j=l \i=l t=n+l /
n oo n oo

= E t t E AjjOj - E E
«=1 j=n+l j = l i=n+l

( n n \ n oo n oo

E »ibi - E "iai J ^ E E »i*ijP{ai) + E E wAijP(aj) whenever p
> = 1 j=\ ' t=lj=n+l j=li=n+l

is a continuous seminorm on H, and it follows from (2.2) and the fact that {a;} ;^i is
n n

bounded that £ /Xjfci - E viaj -> 0 as n -^ oo. This gives (2.1), which completes the
t=i j=\

proof of Lemma 2. Q
Now let X ^ 0. We are going to apply Lemma 2 in Lemma 4, Theorem 7 and

Theorem 14, with H the Banach space tx{X) of bounded real functions on X with the
supremum norm. Lemma 2 is more general than we need for this particular application.
However, there are spaces in which Lemma 2 applies that are not Banach spaces — for
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46 M. Ruiz Galan and S. Simons [4]

instance, (when X is infinite) the space WLX of all real functions on X with the topology
of pointwise convergence.

If / € £00(^)1 w e write Sx(/) •= supx / and argmaxx/ for {t e X:
0

f(t) = Sx(f)} • In what follows, ^Z • • • 1S always interpreted to be 0.
t=i

DEFINITION 3: Let {a.j}j^i be a bounded sequence in (.^{X). We say that {6t}i^i
is a pseudo-subsequence of {a.j}j-^i if, for all i ^ 1, 6< € coa{a,j: j ^ i}.

LEMMA 4 . Let {a.j}j^i be a bounded sequence in ^oo(-̂ 0 and p£ (0,1).

(a) Let T) > 0. Then there exists a pseudo-subsequence {&i}ij>i of {o.j}j^i
such that

(4.1) k > 0 => 5x ( £ P ^ i ) ^ 5X (^p%) + pk \sx ( £ P

(b) Let B < inf 5x(coa{aj: j > 1}). Then there exists a pseudo-subsequence
{bi}i^i of {aj}j>x such that

(4.2) k > 0 => 5X ( £ p%) Z Sx (j2 p%) +B JT, p\

PROOF: (a) Suppose first that m ^ 1 and 61, . . . , bm £ coa{aj: j ^ 1}. Then

(4.3) Sxff^p'bi) > -(f^P^supWbiW > -dtp*) sup|K|| > -00.

For all m ^ 1, let Cm :— coa{a,: j ^ m}. Then we can choose bm € Cn

inductively so that
• TO — 1 v sin—1

X \ ^ m/ fteCm x V £ t

(We note from (4.3) that inf Sx ( J2 P% + pmb\ > -oo . j Define c := ^) /9*6i and,

for all m ^ 1, cTO := X]/9*^ (so co = 0). Then (4.4) gives

(4.5) for all m > 1, S x ^ ) ^ infb6Cm Sx(cm-i + pmb)

(4.1) is obvious when A; = 0. Now let k ^ 1 and 1 ^ m ^ k. Then, from Lemma 2,
00

(1 - p)(c - cm-i)/pm = J2 (pi - pi+1)bi+m e Cm • Thus, from (4.5) and the sublinear-
ity of Sx o n / ( * ) i=0

Sx{cm)

= 5 x ( ( l - p ) c + pcm_1) + 7?(p

(c) + p5x(cm_i) + f)(p/2)m.
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Dividing this by pm, we obtain

(l/pm - \/pm-l)Sx{c) > Sx{cm)/pm -

Adding up these inequalities for m — 1,2,..., A; (and noting that c0 = 0) yields

(l/pk-l)Sx(c)>Sx(ck)/p
k-T],

which gives (4.1) on rearrangement.

(b) Let T) := Yl pl\ inf Sx(coa{a.j: j ^ 1}) — B > 0, and {&t}t>i be chosen

in (a) for this value of rj. Lemma 2 gives

x OO

M inf 5x(cof f{O j : j^ ^ 1}) - r, =

as

) - »7
t = i

and (4.2) follows by substituting this into (4.1).

LEMMA 5 . Let {6i}t^i be a bounded sequence in
p € (0,1) and B G E. Let M := sup ||b{|| € R. Then

(5.1) € argmaxx ( V) P^i inf

satisfying (4.2) for some

P

PROOF: Let p e argmaxx ( J2 p% ) .
\t=i /

Then, from (4.2),

from which

and so

which gives (5.1).

LEMMA 6 . Let {

pseudo-subsequence of

i =0

oo oo

i=0 t= l

be a bounded sequence in
• Then

liming aj ^ Uminfj b{ ^ limsupj 6< ^ limsup^ aj on X.
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This holds, in particular, if {6j}i^i is a subsequence of {a.j}j^i.
oo

PROOF: Let i ^ 1. Then there exists { A j } ^ € V such that bi = Yl^jaj- ^
follows that bi < sup a, on X, from which 3~l

limsupi bi ^ limsupj s u p ^ a,j = limsup^ a.j on X.

The proof that lim infj a,j ^ lim inf< bt on X is similar. D

2. T H E SUP-LIMSUP THEOREM

In this short section, we discuss the "sup-limsup theorem", first proved in a Banach
space context in [8]. (See also Oja, [4, Theorem 2.2, p.2807-2808].) Though it is a
digression from our main theme, it provides an interesting comparison. Theorem 7 uses
the technique of Lemma 5, organised in a slightly different way. It also uses Lemma
4 (a) with p — 1/2. This contrasts with the situation in Corollary 8, in which we take p

to be small. The precise place where we need this is the statement "since inf ^ ^ j on

X" towards the end of the proof of Corollary 8. (It is not true that sup g^ ^g on X.)

Corollary 8 leads to Theorem 10, the result on "undetermined functions", that leads in

turn to our main result, Theorem 14.

This is a good place to mention the paper [2] by Godefroy, which contains many

other applications of similar ideas to Banach spaces, as well as further references.

THEOREM 7 . Let {fk}k^\ be a bounded sequence in ^oo(^) and suppose that P

is a "peaic set" for coa{fk'- k ^ 1}, that is, for all f € co^/fc: k ^ 1}, PC\ argmax^-/
^ 0 . Then

SP (lim supfc fk) = Sx (lim supfc f k ) .

P R O O F : It is obvious that Sp (lfmsupfe/fc) ^ 5x(limsupfc/fc), so we now prove
" ^ " . Let r) > 0. We first choose i £ l s o that limsupfc fk(x) > Sx(limsupfc fk) - TJ,

and then choose a subsequence {aj}_,^i of {fk}k^i such that infa,-(a;) ^ 5 x
— 77. It follows that

(7.1) Sx(inf ,^i a,) > Sx(limsupfc fk) - TJ.

From Lemma 4(a) with p = 1/2, there exists a pseudo-subsequence {&i}i^i of

such that,

j Sx (J£ bi/2^j + (sx ( f ) bi/2^ - ^ /2fc
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[7] A new minimax theorem 49

oo

Arguing as in Lemma 6, £3 bi/2l ^ inf 6; ^ inf a,j on X so, from (7.1),

By hypothesis and Lemma 2, there exists p € PC\ argmaxjf I Yl ^t/2* I • Consequently
\t=i /

i=fc+l

-2 r ? ) /2 f c

^ sup 6j(p) ^ 5x (limsupfc /fc) - 277.
i>k

Letting k -> 00, we obtain that limsupj bi(p) > 5x(limsupfc/fc) - 277. Two appli-
cation of Lemma 6 now give lim supfc fk ^ lim sup̂ - a.j ^ lim sup; bi on X, and so

pj fj(p) ^ 5x(limsupfc /fc) - 277. The result follows since 77 > 0 is arbitrary. D

3. THE TECHNIQUE OF THE UNDETERMINED FUNCTION

If {<7»}î i is a bounded sequence in t^X), we write liminfsupi <ft for the set

{9 6 4o(X): liminfj^j ^ g ^ limsup^j o n l } .

COROLLARY 8 . Let (f e 4o(.X) witi 9 ^ 0 on X, {^h^i be a bounded
sequence in ^^(X), A > 0 and suppose

(8.1) 5x(/io - limsupj /ij - <p) = Sx{h>o - liminfj hj - ip) ^ A

for all h0 G coa{hji j ^ 1}. Then there exist a pseudo-subsequence {<7i}î i of {ftj}j^i
and <7o € co^l^i: i ^ 1} such that

p e liminfsup • 5i => argmaxx (50 - g - <p) = 0.

PROOF: Let N := sup||/in|| and p € (0,1) be so small that (2JV + ||̂ >|| + l)p

< A. Let h :- lim infj hj € 4opO, ~h := lim sup j hj € 4oPO and, for all j ^ 1,
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Oj := hj - h- ip, so sup||<2j|| ^ 2N + \\cp\\ < co. We now apply Lemma 4(b) with

B := (2N + \\<p\\ + l)p. It follows that there exists a pseudo-subsequence {#i},^i of
such that

p\

Let g € liminfsupi gi. We have from Lemma 6 that g € liminfsup^- hj and so the

equality part of (8.1) gives us that

sx

For all i ^ 1, let pi ~ 9i—g — ip- Now sup ||6i|| ^ 2AT + \\<p\\ < oo, and so we can apply

Lemma 5. It follows that if p € argmaxx ( Y, p'(9i - 9 - f)) then
vi=i '

j £ - > 0.
1 p

fc>l 1 - 0 1 - p

which is impossible, since inf j t ^ j on 1 and <p(j?) ^ 0. Consequently,
K^ 1

argmaxx f ̂  P*(5i - 9 ~

00 • / °° n
and the required result follows with go ~ Y p*9i Yl Pl • "

i=i ' i=i

The proof of Lemma 9 below is based on a technique used by Pryce in his proof

([5]) of James's theorem.
LEMMA 9 .

(a) Let {aj}j^i be a bounded sequence in ^oo(-^) and e > 0. Then there

exists a subsequence {63}j^i of {aj}j^i such that

(9.1) Sx(liminfj 6j) ^ Sx (limsupjaj) — e.

(b) Let {aj}j^i be a bounded sequence in ^{X). Then there exists a sub-
sequence {bj}j-^\ of {aj}j^i such that

(9.2) Sx (lim infj bj) ~ Sx (limsup^- bj).
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[9] A new minimax theorem 51

(c) Let <p € 4 » P 0 and <p ^ 0 on X. Let {fj}j^i be a bounded sequence in

. Then there exists a subsequence {/ij}j^i of {fj}j^i such that

(9.3) Sx (ho - lim sup, hj - <p) = Sx (h0 - lim inf,- hj - <p)

for all ho € co,r{hj: j ^ 1}.

P R O O F : (a) We first choose x € X so that

pj a,j(x) ^ Sjf (limsupj a,) — e,

and then choose a subsequence {bj}j-^i of {a,}jj>i so that

limj bj(x) = limsupj a.j(x) — hence liminfj bj(x) ^ Sx (limsup^ a.j) - e.

This gives (9.1), and (a) follows immediately.

(b) For all j ^ 1, let &•• := a,j. From (a), for all m ^ 1, we can define inductively

a subsequence {bj }j^i of {bj"1"1 }j^i so that

(9.4) S* (lim inf,- &Jm)) ^ 5 X (limsuPj. b ^ ) - l/m.

From the diagonal argument, there exists a bounded sequence {bj}j^\ in ^oo(^) such

that, for all m ^ 1, {bj}j^m is a subsequence of {bj }j^i, and (9.2) now follows from
(9.4) by using Lemma 6 and letting m —> oo.

(c) Since the set coa{fj-. j ^ 1} is norm-separable, we can choose {dm: m ^ 1}

to be norm-dense in co<T{/J-: j ^ 1}. For all j ^ 1, let /ij := / j . Using (b)

with a.j := dm - hj~ — ip, for all m ^ 1, we can find a subsequence {hj }j^i of

{/ijm~1)}j^i inductively so that

(9.5) Sx (dm - lim suPj ft<
m) - <p) = 5 X (dm - lim inf,- /ijm) - v>).

From the diagonal argument, there exists a bounded sequence {/ij}j^i in ^oo(A') such

that, for all m ^ 1, {hj}j-^m is a subsequence of {/ij-ro }j^i • Then, from Lemma 6 and

(9.5),

for all m ^ 1, Sx (dm - limsup^ hj - cp) = Sx(dm — lim inf j hj - ip).

(9.3) now follows since Sx(-- f) is norm-continuous and {dm: m ^ 1} is norm-

dense in the set coa{fj\ j > 1}, and so certainly norm-dense in the (sub)set

coa{hj-.j^l}. D
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THEOREM 1 0 . Let tp £ 4o(-^0 anc* tp ^ 0 on X. Let {fj}j^i be a bounded
sequence in ^(X), A > 0 and

(10.1) Sx(/o - limsupj- fj -<p)^ A

for all /o € coa{!f j ^ 1} . Then there exist a pseudo-subsequence {gi}i^i of {fj}j^i

and go £ coa{(?i: i ^ 1} such that

argmax^ (go — g~ — tp) — 0 for all g~ £ liminfsup; <7J.

P R O O F : Prom Lemma 9(c), there exists a subsequence {/ij}jj>i of {fj}j^i satis-
fying (9.3) for all h0 £ co<T{/ii : j ^ 1}. Since coCT{/i,-: j ^ 1} C «>„{/,-: j > 1},

(8.1) follows by combining this with Lemma 6 and (10.1). The result now follows from
Corollary 8. D

4. A MINIMAX THEOREM THAT IMPLIES A NONLINEAR VERSION OF JAMES'S THEOREM

For the rest of this paper, we shall suppose that E is a real locally convex space with
dual E* and (•, •) is the canonical bilinear form on ExE*. We shall suppose also that X

is a nonempty convex subset of E and Y is a nonempty convex subset of E* such that
(•,•) is bounded on XxY. We write "<5" as an alias for (•,•),so "supx infy 6" stands for

sup inf (x,x*) and " in fysup x 6" stands for inf sup(x,x*). Then, as is well known,
xeXx*eY x*eYxex
supx infy S ^ infy s u p x <5. We write dgap(X, Y) := infy s u p x 8 — sup^ infy <5. "dgap"
stands for "duality gap". However, we should caution the reader that some authors use
the phrase "duality gap" for the interval [sup x infy S, infy s u p x 6]. If ip € (.^{X), we
write oscx f for the "oscillation" of ^ on I , denned by osc^ f '•= sup^ tp — inf^ (p..

We shall need a fact about convex functions for our analysis. We could use a
minimax theorem for this, but it is somewhat more direct to use the following result
(see [9, Lemma 2.1, p.15]), which can also be deduced from Fan-Glicksberg-Hoffman,
[1, Theorem 1, p.618], after some simple transformations.

LEMMA 1 1 . Let C be a nonempty convex subset of a vector space and A, . . . , / „
be concave reai functions on C. Then there exist A i , . . . , An ^ 0 such that Xi + h

An — 1 and

supc[/ i A • • • A /„] = supc[Ai/i + 1- Xnfn].

LEMMA 1 2 .

(a) Suppose that infy s u p x 6 > /3. Then, for all x{,..., x* £ Y, there exists

x £ X such that {x, x{) A • • • A (x, x*) > (3.

(b) Suppose that s u p x infy 6 < a. Then, for all x\,..., xn £ X, there exists

x* £ Y such that (xi,x*) V---V (xn,x*) < a.
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[11] A new minimax theorem 53

PROOF: From Lemma 11, there exist A i , . . . , An ^ 0 such that Ai + • • • + An = 1

sup[(x,a;J> A • • • A (x,<)] = sup[Ai(x,x{) + • • • + An(x,x*n)}
x€X x£X

and

^ sup (x, AixJ + • • • + Anx^) > 0,
xex

since AixJ + • • • + Anx* € Y. This completes the proof of (a), and the proof of (b) is
similar. D

THEOREM 13 . Suppose that <p G 4o W and osc* <p < dgap(X, Y). Then there

exist a sequence {xj}j^i in Y, a pseudo-subsequence {gi)i^\ of {XJ\X}J^I in ^oo(X)
and go G coa {gi1. i ^ 1} such that

(13.1) argmaxx(go — 9~—<p) = ®, for all g € liminfsupj gi.

PROOF: Since oscx<p and (13.1) are unaffected by adding a constant to tp, we
can and shall suppose that mix (p = 0, so ip ^ 0 on X and also oscx </? = Sx{<f)-

Let M := sup | (X,Y)\ , and choose a > s u p x i n f y 5 and /3 < i n f y s u p x J so that
P - a > oscx V • Let x\ be an arbitrary element of Y. Then, using (a) and (b) of
Lemma 12 alternately, we can find xi G X, x\ € Y, xi G X, ... so that

(xn,xl)A---A(xn,x^) >P and (xux^+1) V • •• V (xn,x;+ 1) < a.

Write fj := x*\x G ̂ (X). Then j ^ n ==> jj{xn) > /3 and n < j => fj{xn) < a.
It follows that, for all n > 1, limsup^- fj(xn) ^ a . On the other hand, if

/o G coa{fj-.j ^ 1 } , then there exists a sequence {^j}j^i of elements of [0,1] such
oo oo

that J2 ^j ~ 1 an<^ fo=J2 ^jfj • Thus, for all n ̂  1,
ii ji

j=n+l

oo oo
^ — ^ i n \ — ^

j=\ j=n+l j=\ j=n+l j=n+l

oo

j=n+l

oo

Thus Sx(fo — limsupj fj) ^ / 0 (x n ) - l imsup j , fj(xn) ^ (3 —a— £ Aj(/3+ M). If we

now let n —> oo, we obtain Sx(fo — limsupj fj) ~£ ft — a , and the result follows from

Theorem 10 since Sx (/o — lim sup -̂ fj - ip) ^fi — a-Sx (<p) > oscx V - Sx (<p) = 0. D

We now come to our main result, a minimax theorem generalising [7, Theorem 14,

p.715-6].
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THEOREM 1 4 . Suppose that

(14.1) every sequence in Y has a w(E*, X)-cluster point in E*

and there exists tp € 4x>(-̂ 0 such that,

(14.2) for all x* € E*, argmaxx(x*|x - 1>) # 0-

Then

(14.3) inf y sup x 6 = supx inf y 6.

PROOF: If (14.3) fails then dgap(X, Y) > 0, so we can choose p > 0 so that

dgap(X, Y) > poscx tp = oscx prp.

From Theorem 13, we can find a sequence {x}}j^i in Y, a pseudo-subsequence {<?t}t̂ i
of {x^\x}j^i in 4 o P 0 and ^0 € c o , , ^ : i ^ 1} such that

(14.4) argmaxx (go — g — pip) = 0, for all g e

Lemma 2 implies that go S coa{Xj\x- j ^ 1}. Thus there exists { A j } ^ ! e P such

that go = J2 )>jXj\x in ^oo(^)- Fix n0 ^ 1 so that Ano > 0. For n^ n0, let

From (14.1), {y*}n^n0
 h a s a «'(-E*>-X')-cluster point y* € E*. Since j / ^x ->• g0

in ^oo(^)) it follows that go = y*\x • Now suppose that i ^ 1 and examine <7i. The
argument above shows that there exists zt* € y such that \\zj\x — 9i\\ ^ 1/* a nd! from
(14.1), { ,̂*}î i has a w(E*, X)-cluster point z* e E*. It follows from all this that

lim infi3i = liminfjZ? < z* ^ limsupjZ,* = limsup^j on X,

and so z*\x 6 liminfsupjgi. (14.4) now gives argmaxx(y*|x - z*\x — pip) — 0, which

would contradict (14.2) since x* := (y* - z*)jp 6 E*. D

The following converse minimax theorem was proved in [7, Theorem 15, p.717].

However, we include in Lemma 18 in the appendix a proof (using Goldstine's theorem)

of Lemma 15 that is valid for the special case when E is normed space.
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LEMMA 1 5 . Suppose that X is bounded and complete in E and, for all nonempty

convex equicontinuous subsets Y of E*, infy sup^ <5 = sup^ infy S. Then X is

w{E,E") -compact.

If we now combine Theorem 14 and Lemma 15, we obtain the following nonlinear
version of James's theorem. (If Y is equicontinuous in E* then (•,-) is bounded on
X xY and, further, Y is w(E*,E) relatively compact in E*, from which (14.1) is
satisfied.)

THEOREM 1 6 . Suppose that X is bounded and complete in E and there exists

if> € 4 o ( X ) such that

(14.2) for all x* € E*, argmaxx(x*\x - tp) / 0.

Then X is w(E,E*)-compact.

REMARK 17. James gave an example in [3] of an incomplete normed space E such
that every bounded linear functional on E attains its norm on the unit ball, X, of E.

X clearly satisfied the condition (14.2) with ip = 0. However, since E is not reflexive,
X is not weakly compact.

APPENDIX

While the preceding analysis is valid for locally convex spaces, it is possible to give
another proof of Lemma 15 for normed spaces that uses more standard techniques. For
the convenience of the reader, we give details of this proof in Lemma 18 below.

LEMMA 1 8 . Let E be a reai normed space and suppose that X is bounded
and complete in E and, for all nonempty convex equicontinuous subsets Y of E*,
infy s u p x 6 = s u p x infy S. Then X is w(E, E*)-compact.

PROOF: Let ~ stand for the canonical map from E into E** or the canonical
map from E* into E***, as the case may be. Write X for the w(E**,E*)-closure of
X in £ " . We first prove that

(18.1) x** e X and x"* € E*** = » (x**,x***) ^ sup(x,x'") .

To this end, suppose that x" e X and x*" e E"*. Then

(18.2) x* e E* ==> (x*,x**) ^ sup(x*,x) = sup(x,x*)
X X

and Goldstine's theorem (see, for instance, [6, Section 28.40, p.777]), provides us with

a bounded net {x*x}x€\ in E* such that x^ -> x*** in w(E***,E"). Let Ao € A, and

Y = co{xj: A ̂  Ao} C E*. Then, from (18.2)
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Since Y is equicontinuous, by hypothesis,

inf (x**,x*x) ^ supx infy S — sup inf (x, x*)

— sup inf (x, x*x) ^ sup lim^a;, x*x) = sup(x, x***).
xex \^\0 xex x

This completes the proof of (18.1), since inf (x**,x*x) -¥ Y\m\{x** ,x\) = (x**,x***) as
A ^ A

Ao runs through A. Now the canonical map is a norm-isometry from X onto X, and
so X is norm-closed and (by convexity) also w(E**, E***)-c\osed. Thus (18.1) implies
that X C X, from which X = X. The Banach-Alaoglu theorem now gives us that
X is w(E**,E*)-compact. On the other hand, the canonical map is also a w(E,E*)

-w(E**,E*) homeomorphism from X onto X, and so X is w(E,.E*)-compact, as
required. D
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