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Linear non-modal analyses are performed to study the mechanism of how deformable free
surfaces influence very-large-scale motions (VLSMs) in turbulent open channel flows. The
mean velocity and eddy viscosity profiles obtained from direct numerical simulations are
used in the generalised Orr–Sommerfeld and Squire equations to represent background
turbulence effects. Solutions of surface-wave eigenmodes and shear eigenmodes are
obtained. The results indicate that at high Froude numbers, free surfaces enhance
the maximum transient growth rate of VLSMs through surface-wave eigenmodes. We
then analyse the energy budget equation to reveal the underlying mechanism. For
streamwise-uniform motions, the energy growth rate is enhanced by an energy production
term associated with the correlation between the streamwise velocity, which is generated
by the lifting-up effect of streamwise vortices composed of shear eigenmodes, and the
vertical velocity, which is induced by a spanwise standing wave composed of surface-wave
eigenmodes. For streamwise-varying motions, the energy growth rate is enhanced by a
standing wave moving with a pair of vortices that travel at a speed approximately equal
to the projection of the mean surface velocity along the wavenumber vector direction.
Finally, an analytical expression of the energy production term is derived to provide the
initial conditions for the maximum transient growth and explain the weak free-surface
effect observed at large spanwise wavenumbers and low Froude numbers. The results
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demonstrate a linear non-modal mechanism in interactions between free surfaces and
VLSMs in open channel flows.

Key words: wave–turbulence interactions, channel flow, turbulent boundary layers

1. Introduction

Flows in shallow open waters, such as continental shelves, rivers and channels, are
characterised by turbulent shear flows with a free surface at the top. Research on turbulent
flows in open channels is important for various applications, such as remote monitoring,
environmental protection, aquaculture and river hydraulic engineering. Turbulent flows
impinging on free surfaces can lead to surface deformation, which is a basis for
non-invasive monitoring of underwater currents (Nichols et al. 2013; Legleiter, Mobley
& Overstreet 2017). Moreover, the kinematic and dynamic boundary conditions of the
free surface can constrain and distort turbulent motions, which control the transport of
dissolved gases, pollutants and sediment in water (Hunt 1984; Jähne & Haußecker 1998).
Research on the effects of free surfaces on turbulent motions in open channel flows aiming
at elucidating the fundamental mechanisms underlying interactions between free surfaces
and turbulence is crucial for providing a theoretical basis for developing turbulence models
in various applications.

For turbulent flows under free surfaces, the Froude number u∗/
√

gl∗ is a key parameter
that determines free surface deformation and turbulent flow properties, with u∗ being the
characteristic velocity and l∗ being the characteristic length scale. It has been found that
the effect of free surfaces can extend from the near-surface region to the bulk region as
the Froude number increases. At low Froude numbers, the free surface mainly modulates
turbulence eddies in the source layer near the surface (Rashidi & Banerjee 1988; Leighton
et al. 1991; Handler et al. 1993; Komori, Nagaosa & Murikami 1993; Borue, Orszag &
Staroselsky 1995; Shen et al. 1999), where the turbulence becomes anisotropic due to
the constraint of the free surface vertical motions (Hunt & Graham 1978; Shen et al.
1999; Calmet & Magnaudet 2003). Yoshimura & Fujita (2020) performed direct numerical
simulations and compared turbulence intensity in open channel flows at relatively high
Froude numbers and in closed channel flows. They found that the intensity of streamwise
velocity fluctuations in the outer layer increases slightly as the Froude number increases.
Based on direct numerical simulations at low Reynolds numbers, Di et al. (2019) reported
an increase in the energy spectrum of streamwise velocity fluctuations at low streamwise
wavenumbers (with the corresponding length scale longer than six times the water
depth) in the outer layer as the Froude number increases. Duan et al. (2020) conducted
laboratory experiments at moderate Reynolds numbers and found that the streamwise
velocity fluctuations in the outer layer, approximately one hundred wall units above the
wall, are larger in open channel flows with a deformable free surface than in closed channel
flows. This result was attributed to the amplification of the intensity of very-large-scale
streamwise velocity fluctuations, which have a streamwise length scale approximately
twenty times the water depth. These findings indicate that an increase in the Froude
number can lead to an increase in the intensity of very-large-scale streamwise velocity
fluctuations in the outer layer of open channel flows. The underlying mechanisms are the
subject of our study.

The length scale of the turbulent motions enhanced by the presence of a free surface is
consistent with that of very-large-scale motions (VLSMs) observed in the outer layer of
wall-bounded turbulent flows. Specifically, in open channel flows, the streamwise length
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scale of VLSMs is typically of the order of ten times the water depth (Cameron, Nikora
& Stewart 2017; Wang & Richter 2019; Duan et al. 2020; Peruzzi et al. 2020; Zampiron,
Cameron & Nikora 2020; Pinelli et al. 2022), although it is influenced by the aspect ratio in
open channel flows with sidewalls (Peruzzi et al. 2020; Zampiron et al. 2020). This length
scale can be identified according to one of the distinct peaks in the bimodal distribution of
the pre-multiplied streamwise energy spectrum of streamwise velocity fluctuations within
the outer layer (Hutchins & Marusic 2007; Monty et al. 2007; Marusic, Mathis & Hutchins
2010). VLSMs are known to emerge under moderate to high Reynolds numbers (Hutchins
& Marusic 2007), while the Reynolds numbers needed for generating VLSMs in open
channels are much lower than those required in closed channels (Wang & Richter 2019;
Duan et al. 2020; Peruzzi et al. 2020; Pinelli et al. 2022). For open channel flows with
sidewalls, VLSMs are observed when the friction Reynolds number is greater than 614
for a smooth bed (Duan et al. 2020) and greater than 442 for a rough bed (Shen, Yang &
Liu 2023). In recent direct numerical simulations of a plane open channel flow (without
sidewalls) in a large computational domain, a weak peak located around 10h can also
be observed in the pre-multiplied streamwise energy spectrum of the streamwise velocity
fluctuations even when the friction Reynolds number is as low as 200, and the spectral peak
representing VLSMs becomes clear at the friction Reynolds number 365 (Pinelli et al.
2022). Notably, in free-surface open channel flows, the amplification of turbulent motions
with length scales comparable with those of VLSMs has been observed at relatively
low and moderate Reynolds numbers. Hence, to discuss the effect of free surfaces on
underwater turbulent motions (and vice versa), we broaden the scope of ‘VLSMs’ to
include motions with length scales similar to those of VLSMs, removing the conventional
restrictions of high Reynolds numbers in canonical wall-bounded turbulence.

VLSMs play an important role in momentum transfer in the outer layer of wall-bounded
turbulent flows and have therefore attracted considerable attention (Kim & Adrian 1999;
Guala, Hommema & Adrian 2006; Hutchins & Marusic 2007; Marusic et al. 2010).
VLSMs manifest as low-speed streaks of streamwise velocity fluctuations and a hierarchy
of hairpin vortex packets (Adrian & Marusic 2012). VLSMs contribute to more than 50 %
of the streamwise velocity fluctuations and Reynolds shear stress in the outer layer of
turbulent open channel flows at moderate Reynolds numbers (Duan et al. 2020), similar
to observations in pipe flows and closed channel flows (Guala et al. 2006; Balakumar
& Adrian 2007; Monty et al. 2007). Distinctly, VLSMs in free-surface open channel
flows markedly influence the Reynolds shear stress near the free surface (Duan et al.
2020; Peruzzi et al. 2020), which differs from their counterparts in flat-plate boundary
layers, closed channel flows and pipe flows (Guala et al. 2006; Hutchins & Marusic
2007; Monty et al. 2007). This notable intensity of VLSMs near the free surface can be
linked to the impingement of hairpin vortices originating from the near-wall region on the
surface (Nakagawa & Nezu 1977; Rashidi & Banerjee 1988; Gulliver & Halverson 1989;
Nezu & Nakagawa 1997; Rashidi 1997; Tamburrino & Gulliver 2007), leading to surface
signatures characterised by low-speed streak patterns (Lam & Banerjee 1992; Rashidi
1997; Tamburrino & Gulliver 2007; Cameron et al. 2017). Consequently, VLSMs can
significantly impact surface renewal processes and scalar transport across free surfaces
(Rashidi & Banerjee 1988; Komori, Murakami & Ueda 1989; Rashidi 1997; Pinelli et al.
2022).

Given the importance of VLSMs, as reviewed above, it is worth exploring the
mechanism underlying the amplification of VLSMs with increasing Froude numbers in
free-surface open channel flows. In this paper, we use the term ‘free-surface open channel’
to denote the case with a deformable free surface, as opposed to the ‘rigid-lid open
channel’ case, in which the top boundary is a flat free-slip surface. We also note that it
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is widely recognised that interactions between externally generated waves and sheared
currents in open channel flows lead to the formation of Langmuir-type cells exhibiting
length scales comparable with those of VLSMs and intensities stronger than those of
VLSMs in canonical wall-bounded turbulence (Gargett et al. 2004; Tejada-Martínez &
Grosch 2007; Tejada-Martínez et al. 2013; Deng et al. 2019; Shrestha et al. 2019; Deng
et al. 2020; Peruzzi et al. 2021). The Craik–Leibovich mechanism (Craik & Leibovich
1976; Leibovich 1977) attributes the development of Langmuir-type cells to the vortex
force that results from the Stokes drift of water waves interacting with the vorticity.
However, the waves occurring in free-surface open channel flows (Dolcetti et al. 2016;
Yoshimura & Fujita 2020) are significantly weaker than the externally generated waves
that lead to the generation of Langmuir-type cells (Gargett et al. 2004; Tejada-Martínez &
Grosch 2007; Tejada-Martínez et al. 2013; Deng et al. 2019; Peruzzi et al. 2021); thus, the
Craik–Leibovich mechanism is not suitable under these conditions. Consequently, further
research is needed to investigate how the free surface enhances VLSMs in open channel
flows.

In canonical wall-bounded turbulence, the generation of VLSMs is linked to a
self-sustaining cycle involving VLSMs and large-scale motions (LSMs) (Cossu & Hwang
2017). This cycle encompasses three processes: the generation of streaks via the linear
lift-up effect driven by streamwise vortices, the meandering of streaks through streak
instability and/or transient growth, and the subsequent regeneration of streamwise vortices
by nonlinear vortex stretching (Hwang & Bengana 2016). Cossu & Hwang (2017)
confirmed that very-large-scale streaks can self-sustain by drawing energy directly from
the mean flow using the linear non-modal analysis. Based on the very-large-scale streaks
obtained by Cossu & Hwang (2017), de Giovanetti, Sung & Hwang (2017) further
discovered that LSMs are generated by the linear instability of very-large-scale streaks
in the outer region. In open channel flows, Camporeale et al. (2021) found that the
linear instability induced by secondary currents occurs at the length scales of LSMs,
suggesting that the generation mechanisms of LSMs in open channel flows are similar
to those in canonical wall-bounded turbulence. However, few studies have been conducted
on the free-surface effect on the linear lift-up process responsible for the generation of
very-large-scale streaks.

The linear transient growth analysis has been found to be a useful tool for investigating
the linear lift-up process responsible for the generation of streaks in wall-bounded
turbulence (Butler & Farrell 1993; del Álamo & Jiménez 2006; Cossu, Pujals & Depardon
2009; Pujals et al. 2009; Hwang & Cossu 2010). Transient growth refers to the increase
in the perturbation energy, even for stable flows, induced by the non-normality of
the linearised Navier–Stokes operator (Trefethen et al. 1993; Schmid & Henningson
2001; Schmid 2007). del Álamo & Jiménez (2006) and Pujals et al. (2009) derived
the generalised Orr–Sommerfeld and Squire equations based on the mean velocity and
eddy viscosity profiles representing the effects of background turbulent fluctuations.
Although the perturbation in the transient growth analysis is small, the linear lift-up
effect responsible for the linear transient growth works well for perturbation in turbulence
(Jimenez 2018). The generalised Orr–Sommerfeld and Squire equations have been used to
study the response of turbulent flows to various boundary conditions (Cossu et al. 2009;
Willis, Hwang & Cossu 2010; Deng et al. 2013; Song et al. 2015; Song, Huang & Xu
2017) and predict turbulence statistics in canonical wall-bounded turbulence (Illingworth,
Monty & Marusic 2018). Regarding free-surface open channel flows, most of the previous
linear stability analyses and non-modal analyses were performed based on the original
Orr–Sommerfeld and Squire equations or the Rayleigh equation, and these works focused
on the stability of streamwise-propagating surface waves in laminar base flows (Burns
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1953; Yih 1972; Triantafyllou & Dimas 1989; Dimas & Triantafyllou 1994; Olsson &
Henningson 1995; Ambrosi & Onorato 2008; Samanta 2020). Essentially, these studies
investigated the transition from laminar flows to turbulent flows. To investigate the
mechanism underlying how the free surface enhances VLSMs in fully developed turbulent
open channel flows, there is a need to perform the non-modal transient growth analyses of
turbulence in free-surface open channels based on the generalised Orr–Sommerfeld and
Squire equations.

In this study, we perform a non-modal transient growth analysis based on the generalised
Orr–Sommerfeld and Squire equations to study the transient growth in plane open channel
flows with deformable free surfaces. We focus on the length scales where the transient
growth rate is influenced by the free surface and study the underlying mechanisms,
providing an explanation for the impact of free surfaces on underneath turbulent motions in
open channel flows. The reminder of this paper is structured as follows. The mathematical
formulation and computational method are introduced in § 2. In § 3, the transient growth
rates are compared among cases with different Froude numbers to illustrate the effect
of the free surface on turbulent motions. Then, the key mechanisms responsible for the
increase in the transient growth rate due to the free surface are examined in § 4. Both
streamwise-uniform and streamwise-varying motions are studied. The variation in the
free-surface effect with the Froude number and wavenumber is also investigated at three
different Reynolds numbers. Finally, the conclusions are given in § 5.

2. Mathematical formulation and computational method

We consider an incompressible viscous flow driven by a constant streamwise pressure
gradient in a free-surface open channel. Because this study focuses on the free-surface
effect, we employ plane open channel flows to exclude the influence of sidewalls on
turbulent motions through secondary currents (Peruzzi et al. 2020; Zampiron et al. 2020).
As depicted in figure 1, the plane open channel flow driven by a pressure gradient is
periodic and statistically homogeneous in the streamwise and spanwise directions. This
is a simplified model widely used in numerical studies to investigate free-surface effects
(Komori et al. 1993; Borue et al. 1995; Pan & Banerjee 1995; Wang & Richter 2019; Pinelli
et al. 2022). Following the rationales of previous linear non-modal analyses in canonical
wall-bounded turbulence (Reynolds & Hussain 1972; Butler & Farrell 1992; del Álamo
& Jiménez 2006; Pujals et al. 2009), the linear transient growth of the small-magnitude
perturbations u = (u, v, w), p and η in a mean flow with U = (U( y), 0, 0) is studied to
investigate the influence of the free surface. Here, u (or u1), v (or u2) and w (or u3) are the
velocity perturbations in the streamwise (x or x1), vertical (y or x2) and spanwise (z or x3)
directions, p is the disturbed pressure, and η is the surface height perturbation with respect
to the mean surface height y = h.

2.1. Linearised equations and boundary conditions
The perturbations u and p satisfy the continuity equation

∇ · u = 0 (2.1)

and the linearised momentum equation (Pujals et al. 2009)
∂u
∂t

+ U
∂u
∂x

+ (
vU′, 0, 0

) = −∇p + ∇ · (νT
(∇u + ∇uT)) . (2.2)

The total viscosity νT is equal to the sum of the molecular viscosity ν and the turbulent
eddy viscosity νt, which varies in the vertical direction. Hereinafter, the superscripts ‘′’ and
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Free surface

Bottom wall

Flow

x

y

z

Figure 1. Sketch of free-surface open channel flows without sidewalls. The flow is periodic and homogenous
in the streamwise (x) and spanwise (z) directions.

‘′′’ indicate the first- and second-order derivatives in the vertical direction, respectively.
The superscript ‘T’ represents the transpose of vectors and matrices.

Because the free surface is a material surface, η satisfies the kinematic boundary
condition (Mei, Stiassnie & Yue 2005)

∂η

∂t
+ (U + u)

∂η

∂x
+ w

∂η

∂z
= v, at y = h + η. (2.3)

In the present study, the pressure and shear stress imposed at the surface by the air are zero,
and the surface tension is negligible, as we focus on VLSMs. Therefore, the perturbations
satisfy the following free-surface dynamic boundary conditions:

n · σ · n = 0, t1 · σ · n = 0, t2 · σ · n = 0, at y = h + η. (2.4)

In (2.4), the first equation represents the equilibrium of the normal stress, and the second
and third equations respectively represent the balance of the shear stresses in the tangential
directions t1 and t2. The stress tensor σ is defined as (−p − P + gy)I + ν(∇(U + u) +
∇(UT + uT)), where I is the identity matrix, P is the mean pressure and g is the
gravitational acceleration. The unit vectors n, t1 and t2 are expressed as

n = (−∂η/∂x, 1, −∂η/∂z)√
(∂η/∂x)2 + 1 + (∂η/∂z)2

, t1 = (1, ∂η/∂x, 0)√
(∂η/∂x)2 + 1

, t2 = (0, ∂η/∂z, 1)√
(∂η/∂z)2 + 1

.

(2.5a–c)

Substituting the Taylor series of the perturbations u and p at y = h into (2.3)–(2.4) and
retaining the first-order terms of η, the free-surface boundary conditions (2.3)–(2.4) are
linearised as

∂η

∂t
+ U

∂η

∂x
= v, (2.6)

−p + gη = 2ν

(
U′ηx − ∂v

∂y

)
, (2.7)

∂u
∂y

+ ∂v

∂x
= −U′′η, (2.8)

∂w
∂y

+ ∂v

∂z
= 0, (2.9)

at y = h. The bottom is a no-slip wall, i.e. u = 0 at y = 0.
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By eliminating the pressure term in (2.2) using the continuity equation (2.1), the
generalised Orr–Sommerfeld and Squire equations for the vertical velocity v and vertical
vorticity ωy can be obtained (Schmid & Henningson 2001). We assume that the
perturbations in turbulent open channel flows have wave-like forms, i.e.

(v, ωy, η) = (
v̂( y), ω̂y( y), η̂

)
exp(i(αx + βz − λt)) + c.c., (2.10)

where c.c. is the complex conjugation. The generalised Orr–Sommerfeld and Squire
equations in the spectral space can be written as

−iλ(D2 − k2)v̂ = LOSv̂, (2.11)

−iλω̂y = −iβU′v̂ + LSQω̂y. (2.12)

Hereinafter, λ is a complex eigenvalue and k2 = α2 + β2, where α and β are the
wavenumbers in the streamwise and spanwise directions, respectively. The notation D
denotes the vertical derivative of the perturbations. The coupling term −iβU′v̂ is an
important source of the non-orthogonality of the linearised equations. This coupling term
leads to the generation of the elongated streaks in the streamwise direction, represented
by the vertical vorticity in wall-bounded turbulence, through the interaction between the
shear of the base flow and the spanwise-varying vertical velocity, which is known as the
‘lifting-up’ effect (Ellingsen & Plam 1975). The operators LOS and LSQ are expressed as
(Pujals et al. 2009)

LOS = −iα[U(D2 − k2) − U′′] + νT(D2 − k2)2 + 2ν′
T(D3 − k2D) + ν′′

T(D2 + k2),
(2.13)

LSQ = −iαU + νT(D2 − k2) + ν′
TD. (2.14)

The linearised free-surface boundary conditions at y = h in (2.6)–(2.9) can be rewritten as

−iλη̂ + iαUη̂ = v̂, (2.15)

[ − iλ+ iαU − νT(D2 − k2) + 2νk2]Dv̂ = [iαU′ + ν′
T(D2 + k2)]v̂ + (−g + 2iναU′)k2η̂,

(2.16)

−(D2 + k2)v̂ = −iαη̂U′′, (2.17)

Dω̂y = iβη̂U′′. (2.18)

The above linearised free-surface boundary conditions can regress to the rigid free-slip
lid conditions (η = 0) for infinitely small Froude numbers Frτ → 0. In the present study,
the friction Froude number Frτ is defined based on the friction velocity uτ at the bottom
wall, h and g as Frτ = uτ /

√
gh. The no-slip boundary conditions expressed by v̂ and ω̂y

at y = 0 are
v̂ = ω̂y = 0. (2.19)

Compared with the linear transient growth analysis of laminar flows in free-surface
open channels conducted by Olsson & Henningson (1995), we consider turbulence effects,
including the mean velocity of the turbulent flow and the eddy viscosity induced by
background turbulence. Because the mean velocity is relatively insensitive to the Froude
number (Yoshimura & Fujita 2020), the mean velocity profile U( y) in an open channel
with a rigid-lid surface is selected as the base flow. We mainly consider four friction
Reynolds numbers Reτ = 180, 360, 1000 and 6000. The friction Reynolds number is
defined as Reτ = uτ h/ν, where uτ is the friction velocity at the bottom wall. The mean
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Figure 2. Profiles of the mean velocity U and the total viscosity νT at Reτ = 180, 360, 1000 and 6000.

velocity and total viscosity profiles at Reτ = 180, 360 and 1000 are obtained using
direct numerical simulations based on a spectral and finite-differential method (Kermani
et al. 2011). The mean velocity and the eddy viscosity at Reτ = 6000 are obtained
using the data from Pirozzoli (2023). The profiles of the mean velocity U and total
viscosity νT are depicted in figure 2. The non-zero νT at the free surface is calculated
using L’Hôpital’s rule (Shen, Triantafyllou & Yue 2000). The distributions of U and νT
are similar to those shown by Borue et al. (1995). The surface mean velocity and bulk total
eddy viscosity increase with increasing Reynolds number. However, νT in the outer layer
of open channel flows is much smaller than what is determined by the Cess expression
in closed channel flows (Pujals et al. 2009). Therefore, similar to the linear non-modal
analysis in turbulent Couette flow conducted by Hwang & Cossu (2010), we use the U and
νT profiles obtained from the direct numerical simulations, instead of the Cess expression,
in our transient analyses below.

In our studies, we mainly consider four friction Froude numbers Frτ = 0, 0.05,
0.1 and 0.142. The corresponding bulk Froude numbers Frb, defined based on the
bulk mean velocity Um as Frb = Um/

√
gh, at different Reynolds numbers are listed in

table 1. According to Brocchini & Peregrine (2001), wave breaking in open shallow
waters primarily occurs when the turbulent Froude number, defined as FBP = q/

√
2gL,

exceeds 0.225. In their work, q represents the turbulent intensity near the water surface,
and L is the length scale of the most energetic turbulent motion near the surface.
The two Froude numbers Frτ and FBP satisfy the relation Frτ = FBP

√
2L/h(uτ /q).

In open channel flows, the turbulent intensity q is close to uτ , and L ≈ 1–10h (Pirozzoli
2023), leading to Frτ = 1.412FBP–4.47FBP. Consequently, surface breaking typically
occurs for Frτ > 0.312. It has also been observed in laboratory experiments (Auel,
Albayrak & Boes 2014) that no air entrainment or wave breaking occurred even for
the bulk Froude number Frb = 3.5. Thus, for plane open channel flows, the Froude
numbers used in the present study (table 1) are below the threshold for breaking free
surfaces.
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Non-modal analysis of free-surface plane open channel flows

Reτ 180 360 1000 6000

Frτ 0.05 0.1 0.142 0.05 0.1 0.142 0.05 0.1 0.142 0.05 0.1 0.142
Frb 0.78 1.56 2.21 0.86 1.73 2.45 0.98 1.96 2.79 1.23 2.46 3.49

Table 1. Friction Froude number Frτ and the corresponding bulk Froude number Frb at Reynolds numbers
Reτ = 180, 360, 1000 and 6000 considered in the present study.

2.2. Computation method for the transient growth rate
The energy growth rate for the non-dimensional wavenumber (αh, βh) is defined as

G(αh, βh, t) = sup
Ein /= 0

E(αh, βh, t)
Ein . (2.20)

Here, E is the total energy, which is defined as

E(αh, βh, t) = 1
2k2

∫ h

0

(
Dv̂(Dv̂)∗ + k2v̂v̂∗ + ω̂y(ω̂y)

∗
)

dy︸ ︷︷ ︸
EK

+ 1
2

gη̂η̂∗︸ ︷︷ ︸
Eη

= q∗Mq. (2.21)

In the above equation, EK is the kinetic energy and Eη is the potential energy. For the
vector q = (v̂, ω̂y, η̂)T, the superscript ‘∗’ indicates the conjugated transpose of a vector
or a matrix. The energy matrix M is an operator to compute the energy of the vector q.
As analysed below in § 4, energy is transformed between EK and Eη. Therefore, only the
growth rate of the total energy E is meaningful from the viewpoint of energy conservation.
The superscript ‘in’ refers to the initial energy at t = 0. The symbol ‘sup’ indicates the
supremum.

The total energy can be expressed by the eigenmodes q̄ and eigenvalues λ of the
linearised system (2.11)–(2.19). Assume an expansion of q using the eigenmodes, q(t) =
Sκ(t), in which the columns of matrix S are the eigenmode q̄. The parameter vector κ(t)
satisfies

κ(t) = exp (−iΛt) κ(t = 0), (2.22)

in which the diagonal elements of the diagonal matrix Λ are the eigenvalues λ. Therefore,

q(t) = S exp (−iΛt) κ(t = 0). (2.23)

Decompose the Hermitian energy matrix M into M = F ∗F , and then the total energy in
(2.21) can be further written as

E(αh, βh, t) = ‖FS exp (−iΛt) κ(t = 0)‖2
2. (2.24)

Here, ‖‖2 represents the 2-norm of the matrix. Then, the energy growth rate can be
expressed as (Schmid & Henningson 2001)

G(αh, βh, t) = sup
Ein /= 0

‖F S exp (−iΛt) S−1F−1‖2
2 = ‖A‖2

2. (2.25)

The value of G(αh, βh, t) and the corresponding initial and amplified perturbations are
solved by the singular value decomposition of the matrix Θ∗AΥ = Ξ . The elements of
the diagonal matrix Ξ are the singular values of A. Here, G(αh, βh, t) is equal to the
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largest singular value, and the initial and amplified perturbations are the corresponding
columns of the unitary matrices Θ and Υ , respectively.

The eigenmodes q̄ and eigenvalues λ of the linearised system (2.11)–(2.19) are solved
using a Chebyshev spectral collocation method on a grid of Ny + 1 collocation points. The
real part of the eigenvalue, λr, represents the frequency of the perturbation, and λr/k
represents the advection velocity of the perturbation along the direction of (αh, βh). The
imaginary part λi indicates the temporal stability of the system. The system is unstable
if λi is positive. In the present study, Ny = 96, 128, 192 and 384 are used for Reτ = 180,
360, 1000 and 6000, respectively. The convergence of the results has been validated by
doubling Ny. The code has been validated in our previous study in closed channel flows
(Deng et al. 2013).

The maximum transient growth rate for the non-dimensional wavenumber (αh, βh) is

Gmax(αh, βh) = max
t

G(αh, βh, t) = G(αh, βh, tmax), (2.26)

where tmax represents the instant at which the maximum transient growth rate is obtained.
In the non-modal analyses of canonical wall-bounded turbulence (del Álamo & Jiménez
2006; Cossu et al. 2009; Pujals et al. 2009; Willis et al. 2010; Song et al. 2015, 2017),
the amplified perturbations corresponding to Gmax have been shown to include the most
energetic turbulent motions to a certain extent, and the initial perturbations can provide the
conditions for generating these turbulent motions. Moreover, the variance in Gmax serves
as an indicator to assess the difference in the intensities among these turbulent motions.

3. Impact of the free surface on linear transient growth and stability

In this section, the effect of the free surface is first studied by comparing the transient
growth rate at different Froude numbers, and then the influence of the free surface on the
stability is discussed.

3.1. Transient growth rate in free-surface open channel flows
Figure 3 compares the contours of the maximum transient growth rate Gmax(αh, βh) at
Frτ = 0.05, 0.1 and 0.142 with that at Frτ = 0 (rigid free-slip lid case) for Reτ = 180.
The transient growth mainly occurs in the region of αh < βh. For any given spanwise
wavenumber βh, Gmax increases as the streamwise wavenumber αh decreases, reaching
its maximum value at αh = 0. These two features are similar to those observed in closed
channel flows (del Álamo & Jiménez 2006; Cossu et al. 2009). Figure 4 further compares
Gmax in different cases and the relative increase rate of Gmax in the cases with deformable
free surface with respect to that in the rigid-lid case for αh = 0. As shown in figure 4(a),
the peaks of Gmax at different Froude numbers all occur at approximately (αh, βh) =
(0, 2.7). The value of Gmax is insensitive to the free surface when βh > 2.7. However, as
the Froude number increases from Frτ = 0.05 to Frτ = 0.142, Gmax increases with Frτ

when βh < 2.7, and this growth is more obvious with lower βh (figure 4b).
To investigate the relationship between the free-surface effect on the transient growth

and the influence of the free surface on turbulent motions that has been observed in
experiments (Duan et al. 2020) and direct numerical simulations (Di et al. 2019), we
analyse the effect of the free surface on the growth rate of the kinetic energy GK
corresponding to Gmax. Here, GK is defined based on the optimal input and output
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Figure 3. Comparison of the contours of the maximum transient growth rate Gmax(αh, βh) at (a) Frτ = 0.05,
(b) Frτ = 0.1 and (c) Frτ = 0.142 with those at Frτ = 0 for Reτ = 180. The white dashed lines represent
αh = βh. The solid black contours are Gmax in the rigid-lid case (Frτ = 0), with its value changing from 1.4
to 5 with an interval 0.4 (the same as the colour contours).
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Figure 4. Comparison of (a) the maximum transient growth rate Gmax at Frτ = 0 (rigid-lid case), 0.05, 0.1 and
0.142 and (b) the relative increase rate, RGmax, of Gmax in the deformable free surface cases (Frτ = 0.05, 0.1
and 0.142) with respect to that in the rigid-lid case (Frτ = 0). The results shown are for αh = 0 at Reτ = 180.

perturbations corresponding to Gmax as

GK(αh, βh, tmax) = Eout
K (αh, βh)

Ein
K (αh, βh)

= Rout
K Eout(αh, βh)

Rin
K Ein(αh, βh)

= Rout
K

Rin
K

Gmax(αh, βh), (3.1)

where RK is the ratio of the kinetic energy to the total energy. If the ratio is larger for the
amplified output perturbation than for the input perturbation, i.e. Rin

K < Rout
K ≤ 1, GK >

Gmax > Gη, indicating that potential energy is transformed into kinetic energy during the
transient growth process. Here, Gη is the growth rate of the potential energy, which is
defined as

Gη(αh, βh, tmax) = Eout
η (αh, βh)

Ein
η (αh, βh)

= Rout
η

Rin
η

Gmax(αh, βh), (3.2)

where Rη is the ratio of the potential energy to the total energy. If Rout
K < Rin

K ≤ 1, kinetic
energy is transformed into potential energy during the transient growth process, leading to
Gη > Gmax > GK .

Figure 5 shows a comparison of Gmax, GK and GK/Gmax at different Froude numbers
and Reτ = 180. At Frτ = 0, the distribution of GK is the same as that of Gmax due to
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Figure 5. Comparison of (a i–iii) the maximum transient growth rate Gmax(αh, βh), (b i–iii) the corresponding
growth rate of the kinetic energy GK(αh, βh) and (c i–iii) the ratio GK(αh, βh)/Gmax(αh, βh) at Froude
numbers Frτ = (a i,b i,c i) 0.05, (a ii,b ii,c ii) 0.1 and (a iii,b iii,c iii) 0.142 with the rigid-lid case (Frτ = 0)
at Reτ = 180. The black solid contour lines are the results in the rigid-lid case, with its value changing from
1.4 to 5 with an interval 0.4 (the same as the colour contours). The black dashed contour lines represent the
locations where the imaginary part of the eigenvalue λi = 0. The white dashed lines represent αh = βh.

the zero η. As the Froude number increases, GK differs from Gmax. For αh < βh < 2.7,
where Gmax is enhanced by the free surface, GK/Gmax is close to or even larger than 1.
Especially, GK/Gmax is obviously larger than 1 when αh < βh < 1, with its largest value
located at αh = 0 (figure 5c iii). Therefore, when αh < βh < 2.7, the growth rate of the
kinetic energy also increases with increasing Froude number, with GK being obviously
greater than Gmax for αh < βh < 1.

The effect of the free surface on GK found at Reτ = 180 also exists at Reτ = 360,
1000 and 6000. Figure 6 compares GK at different Froude numbers for αh = 0 when
Reτ = 180, 360, 1000 and 6000. There are two peaks in GK at different Reynolds numbers.
The wavenumber of one peak is well scaled by the viscous length at approximately
βν/uτ = 0.07, corresponding to the spanwise spacing of near-wall streaks. The other peak
lies at approximately βh = 2.4, which agrees with the spanwise length scale of VLSMs
λz/h = 1 − 3 in plane open channel flows (Wang & Richter 2019; Pinelli et al. 2022). It
should be noted that these two peaks of GK at Reτ = 180 are close to each other with
comparable values, and the two peaks are more widely separated as the Reynolds number
increases from Reτ = 360 to 6000. While VLSMs were not observed at Reynolds numbers
lower than 442 in the experiments of open channel flows with sidewalls (Shen et al.
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Figure 6. Influence of the Froude number on the growth rate of the kinetic energy GK(αh, βh) corresponding
to Gmax for αh = 0 at (a) Reτ = 180, (b) 360, (c) 1000 and (d) 6000. The first peaks are located at approximately
βh = 2.4 (corresponding to λz/h = 2.6), and the secondary peaks are located at approximately βν/uτ = 0.07
(corresponding to λ+z = 90).

2023), recent direct numerical simulations of plane open channel flows (Pinelli et al. 2022)
showed that the bimodal distribution of the pre-multiplied streamwise energy spectrum of
the streamwise velocity fluctuations in the outer layer is clear at Reτ ≥ 365, and the peak
at the length scale of VLSMs becomes weaker at a lower Reynolds number Reτ = 200.
As such, the variation of the peak located around λz/h = 2.4 with the Reynolds number
in figure 6 is similar to VLSMs in plane open channel flows.

As shown in figure 6, at these four Reynolds numbers, GK grows with the Froude number
for βh ≤ 2.4, and the enhancement is more pronounced as βh decreases. From figure 7,
it can be further confirmed that the enhancement of GK by the free surface occurs for
αh < βh, i.e. the streamwise-elongated motions, at Reτ = 360, 1000 and 6000. Although
the value of GK (Gmax for the rigid-lid case) around the peak located at approximately
βh = 2.4 also slightly increases with the Reynolds number, similar to the finding that the
intensity of VLSMs grows with the Reynolds number (Marusic et al. 2010; Pinelli et al.
2022; Pirozzoli 2023), the Froude number effect is distinct at even smaller wavenumbers.
For a specified Reynolds number, the effect of free surfaces deserves attention. The above
analysis suggests that the free-surface effect on the transient growth rate is consistent at
least for 180 ≤ Reτ ≤ 6000 studied in this work, and the length scale range where the
free-surface effect is felt aligns with the length scale of the streamwise-elongated VLSMs
that are intensified at relatively high Froude numbers in free-surface open channel flows
(Di et al. 2019; Duan et al. 2020).

It should also be noted that the spanwise length scale of the peak, well scaled by h, in
open channel flows is different from that in closed channel flows (Pujals et al. 2009). This
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Figure 7. Comparison of the growth rate of the kinetic energy GK(αh, βh) corresponding to the maximum
transient growth rate Gmax(αh, βh) among different Froude numbers and Reynolds numbers. Panels (a i,b i,c i)
and (a ii,b ii,c ii) show the results for Frτ = 0.1 and 0.142, respectively, while panels (a i,ii), (b i,ii) and (c i,ii)
show the results for Reτ = 360, 1000 and 6000, respectively. Here, the black solid contour lines are the results
at Frτ = 0, with its value changing from 1.5 to 6.5 with an interval of 0.5 (the same as the colour contours).
The black dashed contour lines denote the locations for which the imaginary part of the eigenvalue is zero. The
white dashed lines represent αh = βh.

discrepancy can be attributed to the differences in the symmetry of the mean flow and the
boundary conditions. In closed channel flows, the mean velocity and boundary conditions
are symmetric with respect to the channel centreline y = h, and hence there are two types
of perturbations: one with symmetric vertical velocity and the other with asymmetric
vertical velocity (Jimenez 2018). The perturbation leading to the peak in closed channel
flows is a pair of streamwise vortices occupying the entire channel with symmetric vertical
velocity (Pujals et al. 2009). However, due to the constraint imposed by the free surface,
only the perturbation with asymmetric vertical velocity exists in rigid-lid open channel
flows.

3.2. Unstable eigenmodes induced by the free surface
In addition to the influence of free surfaces on the transient growth of streamwise-elongated
motions, as shown in figures 5(a ii,a iii) and 7, the free surface also induces unstable
eigenmodes for spanwise-elongated motions (αh > βh). In this section, we discuss these
unstable eignmodes.

Figure 8(a,c) compares the eigenvalues in the free-surface open channel at Frτ = 0.142
with those in the rigid-lid case at Reτ = 180 and 6000, with αh = 0.4 and βh = 0.
There are two additional eigenvalues in the free-surface open channel case compared with
the rigid-lid case. These two additional eigenvalues and the corresponding eigenmodes,
induced by the free surface, are referred to as the ‘surface-wave eigenvalues’ and
‘surface-wave eigenmodes’, respectively, while the other eigenvalues and eigenmodes
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Figure 8. (a,c) Comparison of eigenvalues λ between the free-surface open channel with Frτ = 0.142 and
the rigid-lid open channel. The points represent the eigenvalues of the shear eigenmodes in the free-surface
open channel, the diamonds represent the eigenvalues of the surface-wave eigenmodes in the free-surface open
channel and the hollow circles represent the eigenvalues in the rigid-lid open channel. (b,d) Vertical profiles
of the velocity moduli of the surface-wave eigenmodes. The lines without symbols denote the results of the
unstable surface-wave eigenmode and those with symbols denote the stable surface-wave eigenmode. The
results are obtained at (a,b) Reτ = 180 and (c,d) 6000 for αh = 0.4 and βh = 0.

are called the ‘shear eigenvalues’ and ‘shear eigenmodes’, respectively (Yih 1972).
In figure 8(b,d), the modulus of the vertical velocity |v̄| increases monotonically with
y/h, reaching its maximum value at the surface and inducing surface deformation, which
is another distinct feature of surface-wave eigenmodes compared with shear eigenmodes
(Yih 1972).

As shown in figure 8(a,c), the propagation speeds c = λr/α of these two surface-wave
eigenmodes are different. Assume that these two speeds are c1 = cs + cw and c2 =
cs − cw. It can be found that the values of cs (equal to λs

r/α) at Reτ = 180 and 6000 are
approximately 16.3uτ and 25uτ , respectively, close to the mean velocity near the surface.
The value of cw/uτ is close to the phase speed determined by the dispersion relationship√

tanh (kh)/(Frτ

√
kh). The unstable eigenmode is the surface-wave eigenmode with c1 =

cs + cw.
In the stability analysis using the laminar base flow, the unstable surface-wave

eigenmode also has been found at small αh. For the horizontal plane open channel flow,
the condition leading to the unstable eigenmodes is Frb > 0.8 (Olsson & Henningson
1995). In the present work, the unstable eigenmodes exist in supercritical cases. Because
the mean velocity profile used in this study is complex, it is difficult to provide an exact
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Figure 9. Variations of the phase difference between the vertical velocity and the surface elevation θ and
the corresponding eigenvalue λi with αh at βh = 0 for the surface-wave eigenmodes with c1 = cs + cw.
(a) θ + 90◦ at Reτ = 180, (b) θ + 90◦ at Reτ = 6000, (c) 100λih/uτ at Reτ = 180, (d) 100λih/uτ at Reτ =
6000.

formulation to determine the lowest unstable Froude numbers. We provide another feature
based on the boundary condition. From (2.15), it can be derived that

η̂ = v̂

−iλr + iαUs + λi
= v̂

|i(αUs − λr) + λi| exp(iθ), with tan θ = λr − αUs

λi
. (3.3)

Here, Us is the mean velocity at the free surface. For the free-surface eigenmode with
c1 = cs + cw, the flow is neutrally stable (λi = 0) when θ = −90◦, and becomes unstable
when θ > −90◦. This is confirmed by figure 9, which shows that the range of βh where
θ + 90◦ > 0 (figure 9a,c) agrees with that with λi > 0 (figure 9b,d) for different Reynolds
numbers and Froude numbers. From figure 9, the streamwise length of these unstable
eigenmodes is longer than 2πh, i.e. αh < 1. These unstable modes are much longer than
those obtained in the secondary stability analysis of open channel flows with secondary
currents (close to 3h) (Camporeale et al. 2021).

As these unstable eigenmodes are surface waves with βh < αh, their exponential growth
is not directly responsible for the enhancement of streamwise-elongated VLSMs found in
free-surface open-channel flows (Di et al. 2019; Duan et al. 2020). It is known that surface
waves can enhance VLSMs through the nonlinear Craik–Leibovich mechanism (Craik &
Leibovich 1976) when the surface waves are strong enough. However, the exponential
growth rates of these unstable eigenmodes are small. For example, the imaginary part
of the eigenvalue for the most unstable eigenmode is λih/uτ ≈ 0.07 at Frτ = 0.142 and
Reτ = 6000, and the corresponding exponential growth rate of the perturbation energy
exp(2λit) is equal to exp(0.14tuτ /h). The maximum value of tmax, the time when the
maximum transient growth is reached, slightly increases with the Reynolds number
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Non-modal analysis of free-surface plane open channel flows

from 1.8h/uτ at Reτ = 180 to 2.4h/uτ at Reτ = 6000 (see Appendix A), comparable
with the time required for the growth of very-large-scale streaks (Hwang & Bengana
2016). During the time scale of the growth of very-large-scale streaks, the exponential
growth rate of the unstable surface wave is less than 1.25. In fact, the features of
Langmuir-type flow driven by the nonlinear Craik–Leibovich mechanism, such as the
disrupted logarithmic layer (Deng et al. 2019; Peruzzi et al. 2021), have not been reported
in free-surface open-channel flows without externally generated waves. Therefore, these
unstable surface-wave eigenmodes cannot grow sufficiently to influence VLSMs through
the nonlinear Craik–Leibovich mechanism.

The above analyses suggest that compared with the linear instability induced by the
free surface, the effect of the free surface on non-modal transient growth is more closely
associated with the amplification of VLSMs by the free surface. This result is consistent
with the findings in other canonical wall-bounded turbulence, that the non-modal transient
growth is crucial for the generation of very-large-scale streaks (Hwang & Bengana 2016;
Cossu & Hwang 2017). The mechanism of free surfaces influencing the transient growth
rate is analysed in detail in § 4 below.

4. Effects of the free surface on streamwise-elongated motions

In this section, we investigate the mechanisms by which the free surface affects
the transient growth of streamwise-elongated (αh � βh) motions. The mechanism for
streamwise-uniform (αh = 0) motions is first investigated in § 4.1, and the effects of the
Froude number Frτ and the spanwise wavenumber βh at different Reynolds numbers are
examined. Then, in § 4.2, the mechanism is extended to streamwise-varying motions to
show the influence of the streamwise wavenumber αh.

4.1. Streamwise-uniform motions
In this section, we conduct transient growth analyses of motions that are uniform in the
streamwise direction, i.e. αh = 0. The case with Reτ = 180, Frτ = 0.142, αh = 0 and
βh = 1 is used as an example to illustrate the results. We first show the influence of the
free surface on the eigenvalues, eigenmodes and energy growth rate. The budget equation
of the perturbation energy is analysed to elucidate the dynamic mechanism underlying how
the free surface influences the energy growth rate. Then, we derive the initial conditions
of the flow field and the free-surface elevation that enhance the energy transient growth
rate. Finally, the mechanism is used to explain the variation in the free-surface effect on
the energy transient growth rate with the Froude number and the spanwise wavenumber at
different Reynolds numbers.

4.1.1. Surface-wave eigenmodes and their impacts on energy growth
Figure 10(a) shows the eigenvalues in the free-surface open channel at Reτ = 180,
Frτ = 0.142, αh = 0 and βh = 1. The eigenvalues in the corresponding rigid-lid open
channel at the same wavenumber and Reynolds number are also plotted in figure 10(a) for
comparison. There are two additional eigenvalues in the free-surface open channel case
compared with the rigid-lid open channel case. These two additional eigenvalues and the
corresponding eigenmodes induced by the free surface are referred to as the ‘surface-wave
eigenvalues’ and ‘surface-wave eigenmodes’, respectively, while the other eigenvalues and
eigenmodes are called the ‘shear eigenvalues’ and ‘shear eigenmodes’, respectively (Yih
1972). In contrast to the zero values of the real parts of the eigenvalues of the shear
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Figure 10. (a) Comparison of eigenvalues λ between the free-surface open channel with Frτ = 0.142 and
the rigid-lid open channel. The points represent the eigenvalues of the shear eigenmodes in the free-surface
open channel, the diamonds represent the eigenvalues of the surface-wave eigenmodes in the free-surface open
channel and the hollow circles represent the eigenvalues in the rigid-lid open channel. (b) Vertical profiles
of the velocity moduli of the surface-wave eigenmodes. The results are obtained at Reτ = 180, αh = 0 and
βh = 1.

eigenmodes, λr = 0, the two surface-wave eigenmodes have the same imaginary parts
λi but opposite non-zero real parts λr, indicating that the two surface-wave eigenmodes
propagate in opposite spanwise directions with identical phase speeds |λr/β| and the
same damping rate λi. Here, |λr| represents the frequency of the surface-wave eigenmodes.
The velocity moduli of the two surface-wave eigenmodes have the same vertical profiles.
Figure 10(b) shows the profiles of the velocity moduli |ū|, |v̄| and |w̄| of the surface-wave
eigenmodes. The streamwise velocity modulus |ū| is non-zero due to the presence of the
non-uniform base flow U( y), and a viscous Stokes layer appears in the profiles of |ū| and
|w̄| near the bottom. The modulus of the vertical velocity |v̄| increases monotonically with
y, reaching its maximum value at the surface and inducing surface deformation, which
is another distinct feature of surface-wave eigenmodes compared with shear eigenmodes
(Yih 1972).

The surface-wave eigenmodes induced by the free surface have significant effects on the
transient growth of the total energy E and kinetic energy EK . Figure 11 shows the evolution
of E(t)/Ein and EK(t)/Ein

K with time. The results are compared among the rigid-lid
open channel, free-surface open channel (Frτ = 0.142) with surface-wave eigenmodes,
and free-surface open channel (Frτ = 0.142) without surface-wave eigenmodes at Reτ =
180, αh = 0 and βh = 1. In each case, the initial input perturbations are those that
lead to the homologous maximum transient growth rates. As shown in figure 11(a),
in the rigid-lid case, E(t)/Ein initially increases monotonically with time due to the
non-orthogonality of the eigenmodes; then the maximum value Gmax is reached at tuτ /h ≈
1.5; and finally, E(t)/Ein decreases because the eigenmodes are stable. For the free-surface
open channel case, when the surface-wave eigenmodes are excluded, E(t)/Ein is the
same as in the rigid-lid case, indicating that the surface elevation induced by the shear
eigenmodes is negligible. In contrast, when the surface-wave eigenmodes are considered,
E(t)/Ein increases with oscillations for 0 < tuτ /h < 1.5. The oscillation period is close
to the period of the surface-wave eigenmodes T = 2πh/(|λr|uτ ) = 1.05h/uτ (see |λr|
in figure 10a). Accompanied by the oscillation, E(t)/Ein is larger in the free-surface
open channel case with surface-wave eigenmodes than in the other two cases for most
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Figure 11. Comparisons of (a) E(t)/Ein and (b) EK(t)/Ein
K among the rigid-lid open channel flow, free-surface

open channel flow (Frτ = 0.142) with surface-wave eigenmodes and free-surface open channel flow (Frτ =
0.142) without surface-wave eigenmodes. Note that the curves in the first case and the third case overlap. The
results are obtained at Reτ = 180, αh = 0 and βh = 1, with the initial perturbations leading to Gmax.

of the duration 0 < tuτ /h < 1.5. The above comparison of E(t)/Ein among the three
cases indicates that the surface-wave eigenmodes are responsible for the larger Gmax in
the free-surface open channel than in the rigid-lid open channel.

The temporal development of the kinetic energy EK(t)/Ein
K is also considerably

influenced by the surface-wave eigenmodes. As shown in figure 11(b), when the
surface-wave eigenmodes are excluded, EK(t)/Ein

K in the free-surface open channel is
equal to EK(t)/Ein

K (which is equal to E(t)/Ein) in the rigid-lid open channel (figure 11a).
However, when the surface-wave eigenmodes in the free-surface open channel are
included, EK(t)/Ein

K oscillates with a value larger than E(t)/Ein shown in figure 11(a). The
maximum value of EK(t)/Ein

K in the free-surface open channel case is approximately 27 %
larger than that in the rigid-lid open channel case. Similar to the analyses of GK (figure 5)
based on the relationship in (3.1), the ratio of the kinetic energy to the total energy satisfies
Rin

K < RK(t) ≤ 1, implying that the larger value of EK(t)/Ein
K than E(t)/Ein is correlated

with the initial potential energy induced by the surface-wave eigenmodes. This result is
confirmed by the analyses in the next section.

4.1.2. Impact of surface-wave eigenmodes on the energy budget
Next, the governing equations of the total perturbation energy and kinetic energy are
derived and analysed to elucidate how the surface-wave eigenmodes affect the maximum
transient growth rate. By applying the dot product of u on both sides of (2.2), integrating
over the whole open channel and over time, and replacing the surface pressure with the
surface boundary condition (2.7), we derive that

E(t)
Ein = 1 + P(t)

Ein + S(t)
Ein + V(t)

Ein + ε(t)
Ein . (4.1)

In (4.1), P, S, V and ε refer to the integrals of the energy production term, the surface
energy transfer term, the non-constant eddy viscosity term and the viscous dissipation
term, respectively. They are defined as

P(t) = −
∫ t

0

∫ h

0
uvU′ dy dt, (4.2)

S(t) =
∫ t

0

[
−ν

∂vv

∂y
+ 1

2
νT

∂uiui

∂y

]
y=h

dt, (4.3)
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Figure 12. Time evolution of the budget terms (4.1) and their components (4.7) and (4.9) normalised by Ein in
the rigid-lid open channel (red dashed lines with symbols) and free-surface open channel (black solid lines with
symbols) cases. The results are obtained at Reτ = 180, αh = 0 and βh = 1, with the initial input perturbations
leading to Gmax. For the free-surface open channel, Frτ = 0.142.

V(t) =
∫ t

0

∫ h

0

∂νT

∂y

(
∂vv

∂y
+ 1

2
∂uiui

∂y

)
dy dt, (4.4)

ε(t) = −
∫ t

0

∫ h

0
νT

∂ui

∂xj

∂ui

∂xj
dy dt. (4.5)

The overline denotes averaging over the horizontal plane. The term S is zero in the rigid-lid
open channel flow. For a given wavenumber, (ui, η) = (ûi, η̂) exp(i(αx + βz − λt)) + c.c.

Figure 12(a) shows the time evolution of the budget terms normalised by Ein in (4.1) at
Reτ = 180, αh = 0, βh = 1 and Frτ = 0.142. The vertical dashed line indicates the time at
which the maximum transient growth rate is reached. In contrast to common expectations,
the contribution of the surface transfer term S to the total energy growth is negligible in
the free-surface open channel case, although the surface is deformable. The non-uniform
eddy viscosity term V is also negligible in both the rigid-lid and free-surface open channel
cases, because it works as a turbulent diffusion term in the transport of turbulent kinetic
energy. Therefore, the transient growth rates in the two cases are governed by the net effect
of the other two terms, the production term P and the dissipation term ε.

The effect of the free surface on the balance between the energy production term P
and the dissipation term ε is investigated next. Assume that the perturbation consists of a
surface-wave part and a shear part, i.e.

(ui, η) = (uiw + uis, ηw + ηs). (4.6)

The subscript ‘w’ denotes the surface-wave part, which is a linear combination of the
surface-wave eigenmodes, and the subscript ‘s’ refers to the shear part, which is a linear
combination of the shear eigenmodes. Correspondingly, P and ε can also be decomposed
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Non-modal analysis of free-surface plane open channel flows

into a surface-wave part, a shear part and an interaction part, i.e.

P = −
∫ t

0

∫ h

0

(
uwvw + usvs + usvw + uwvs

)
U′ dy dt = Pw + Ps + Pinter, (4.7)

and

ε = −
∫ t

0

∫ h

0
νT

(
∂uiw

∂xj

∂uiw

∂xj
+ ∂uis

∂xj

∂uis

∂xj
+ ∂uiw

∂xj

∂uis

∂xj
+ ∂uis

∂xj

∂uiw

∂xj

)
dy dt (4.8)

= εw + εs + εinter. (4.9)

The interaction parts, denoted by the subscript ‘inter’, exist because the eigenmodes are
non-normal. For the rigid-lid case, the surface-wave part and the interaction part do not
exist, and thus, P = Ps and ε = εs.

For the shear part, figure 12(b) shows that the magnitudes of Ps and εs normalised by
Ein are slightly smaller in the free-surface open channel than in the rigid-lid open channel,
and Ps + εs is comparable between these two cases. Therefore, the free surface has an
insignificant effect on the contribution of the shear part to the energy growth rate E(t)/Ein.

For the surface-wave part, as illustrated in figure 12(c), the surface wave gains little
energy from the base flow because the surface-wave part of the energy production term
Pw is nearly zero. The dissipation εw is negative, consistent with the negative imaginary
parts of the eigenvalues λi in figure 10(a). Consequently, the combined surface-wave part
Pw + εw has a negative contribution to the energy growth rate E(t)/Ein. However, when the
surface-wave part is present, figure 12(d) shows that the net contribution of the interaction
between the surface-wave part and the shear part, Pinter + εinter, oscillates with mainly
positive values, and the magnitude of this term is greater than Pw + εw. Therefore, the
presence of the surface-wave part increases the energy growth rate E(t)/Ein through the
interaction part.

Due to the small magnitude of εinter, the quasi-positive contribution of the interaction
part to E(t)/Ein occurs due to Pinter (figure 12d). The interaction production term Pinter
can be decomposed as follows:

Pinter = Pinter1 + Pinter2 = −
∫ t

0
usvwU′ dy dt −

∫ t

0
uwvsU′ dy dt. (4.10)

As shown in figure 13, Pinter is dominated by Pinter1, i.e.

Pinter ≈ Pinter1 = −
∫ t

0
usvwU′ dy dt. (4.11)

This is because among the four velocity components in (4.10), only us increases with time
(shown below). In conclusion, the free surface leads to the amplification and oscillation
of E(t)/Ein due to the energy production, which is related to the interaction between the
vertical velocity of the surface-wave part vw and the streamwise velocity of the shear
part us. The effect of the interaction production term is also confirmed at Reτ = 6000 in
Appendix B.
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Figure 13. Decomposition of Pinter (4.10) obtained at Reτ = 180, Frτ = 0.142, αh = 0 and βh = 1.
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Figure 14. Time evolution of the budget terms in (4.12). The results are obtained in a free-surface open
channel at Reτ = 180, αh = 0, βh = 1 and Frτ = 0.142.

The governing equation of the kinetic energy EK(t)/Ein
K can be derived from (4.1) as

EK(t)

Ein
K

= 1 + P + S + V + ε

Ein
K

+ Ein
η − Eη(t)

Ein
K

. (4.12)

The second term on the right-hand side of (4.12),

P + S + V + ε

Ein
K

= P + S + V + ε

EinRin
K

, (4.13)

represents the net contribution of the energy production, surface energy transfer, and the
effects of non-uniform eddy viscosity and dissipation. The third term, (Ein

η − Eη(t))/Ein
K ,

represents the transformation of potential energy to kinetic energy. Figure 14 shows
the time evolution of the budget terms in (4.12), with the term (P + S + V + ε)/Ein

included for comparison. The results demonstrate that (P + S + V + ε)/Ein
K is larger

than (P + S + V + ε)/Ein, indicating the large initial potential energy Ein
η . In addition,

(Ein
η − Eη(t))/Ein

K is positive and oscillates at a period equal to half of the period of
the surface-wave eigenmodes T = 1.05h/uτ , suggesting that the initial potential energy
is associated with the surface-wave part.

The above analyses of the energy budget equation show that the initial surface-wave part
contains considerable potential energy Ein

η and interacts with the shear part, leading to a
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Non-modal analysis of free-surface plane open channel flows

maximum in the quasi-positive energy production term. This in turn leads to greater values
of Gmax and GK in the free-surface case than in the rigid-lid case, as shown in figures 3–7.

4.1.3. Initial fields that enhance the energy growth rate of streamwise-uniform motions
Next, we study the state of the initial flow, especially the phase relationship between the
surface-wave part and the shear part, which can maximise the energy production term
Pinter1/Ein in (4.11).

Figure 15 displays the flow fields, surface deformation, and their shear and surface-wave
parts at t = iT/4, with i = 0, 1, . . . , 6. Here, T is the period of the two surface-wave
eigenmodes corresponding to the frequency |λr| in figure 10(a), which equals 1.05h/uτ .
The initial flow field consists of a pair of strong streamwise vortices denoted by the
vector (v, w) and relatively weak streaks of streamwise velocity u, with an apparent
surface elevation η (figure 15a i). The initial (v, w) originates from the shear part (vs, ws)
(figure 15b i), because the initial vertical and spanwise velocities contributed by the
surface-wave part are approximately zero, i.e. vw ≈ 0 and ww ≈ 0 (figure 15c i). The initial
streamwise velocity u (figure 15a i) is contributed by the shear part us (figure 15b i) and the
relatively weak surface-wave part uw, which have opposite signs (figure 15c i). The initial
surface deformation η is determined by the surface-wave part ηw (figure 15a i,c i). The
zero initial vertical and spanwise velocities under the obvious spanwise wave (figure 15c i)
indicate that the surface wave is not a progressive wave but rather a standing wave
composed of two surface-wave eigenmodes with the same frequency propagating in
opposite directions (figure 10a). This finding is confirmed by the time evolution of the
surface deformation of the surface-wave part (figure 15c i–c vii). The surface elevation
of the initial standing wave is in phase with the streamwise velocity generated by the
lifting-up of the mean shear by streamwise vortices.

Over time, the streamwise vortices (figure 15b i–b vii) in the shear part attenuate to
amplify the streamwise velocity us, similar to the generation of streaks by the lifting-up
effect in closed channel flows (Pujals et al. 2009). Moreover, due to the small negative
value of λi for the two surface-wave eigenmodes (figure 10a), the magnitudes of the
surface elevation and the velocity fields induced by the standing wave attenuate slowly
and oscillate (figure 15c i–c vii), which is consistent with the oscillation of the positive
(Ein

η − Eη(t))/Ein
K term in figure 14. Combining the two parts, the amplified flow field at

the time when Gmax is reached is featured by strong streaks (figure 15a vii). Therefore,
the streaks are amplified at the expense of the initial streamwise vortices and the standing
wave in the free-surface open channel.

It can be proven that only the initial state of the surface-wave part shown in figure 15(c i)
can maximise the energy production term Pinter1/Ein, which is correlated with the
interaction between the surface-wave part and the shear part (4.11). For the shear part, the
shear eigenmodes have λr values of zero (figure 10a), i.e. zero frequency. The distribution
of the shear part in the y–z plane is similar at different times, with the magnitude varying
with time (figure 15b i–b vii). In particular, the locations of the streamwise vortices and
streaks do not change with time. However, the magnitudes of the streamwise vortices
decrease with time, and the intensity of the streaks increases with time. Therefore, the
velocities of the shear part can be assumed to be

us = fus( y)g(t) cos(βz + θs), (4.14)

vs = −fvs( y)m(t) cos(βz + θs), (4.15)

ws = −fws( y)n(t) sin(βz + θs). (4.16)
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Figure 15. Velocity field and surface elevation, as well as their shear and surface-wave parts, at (a i–c i)
t = 0, (a ii–c ii) t = T/4, (a iii–c iii) t = T/2, (a iv–c iv) t = 3T/4, (a v–c v) t = T , (a vi–c vi) t = 5T/4
and (a vii–c vii) t = 3T/2. Panels (a i–a vi) show the total, panels (b i–b vii) depict the shear part and
panels (c i–c vii) display the surface-wave part. Here, T is the period of the two surface-wave eigenmodes, and
the maximum transient growth is reached at t = 3T/2. The vector is composed of the vertical and spanwise
velocities, and the contours are the streamwise velocity.

Here, fus and fvs are positive, and the sign of fws changes near the channel centre. The
time functions satisfy g(t) ≥ 1, m(t) ≤ 1 and n(t) ≤ 1, with g(0) = m(0) = n(0) = 1. The
angle θs indicates the phase of the shear part in the spanwise direction.

The surface-wave part is a linear combination of the two surface-wave eigenmodes,
i.e.

uw = fuw( y) [−a1 sin(βz + |λr|t + θw1) + a2 sin(βz − |λr|t + θw2)] eλit, (4.17)

vw = fvw( y) [a1 cos(βz + |λr|t + θw1) + a2 cos(βz − |λr|t + θw2)] eλit, (4.18)
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Non-modal analysis of free-surface plane open channel flows

ww = fww( y) [−a1 sin(βz + |λr|t + θw1) − a2 sin(βz − |λr|t + θw2)] eλit, (4.19)

ηw = fη [a1 sin(βz + |λr|t + θw1) − a2 sin(βz − |λr|t + θw2)] eλit, (4.20)

where fuw( y), fvw( y) and fww( y) are the moduli of the surface-wave eigenmodes
(figure 10b) and θw1 and θw2 are the phases of the two surface-wave eigenmodes. Note
that λi and λr are the attenuation rate and frequency of the surface-wave eigenmodes,
respectively (figure 10a), and fη is the surface elevation in the eigenmodes. The parameters
a1 and a2 are positive. We assume that for the surface-wave part, the small phase
change in the vertical velocity of the surface-wave eigenmodes can be ignored. The phase
relationships θs − θw1 and θs − θw2, and the relationship between a1 and a2 needed to
maximise Pinter1/Ein are derived below.

Here, Pinter1 (4.11) can be approximated as

Pinter1 ≈ −1
2

F
N∑

n=0

Φ(n)(0)

|λr|n!
tn(a1 sin(|λr|t + θw1 − θs) + a2 sin(|λr|t + θs − θw2)

+ a1F sin(θw1 − θs) + a2F sin(θs − θw2)

2|λr| , (4.21)

with

F =
∫ h

0
fus( y)fvw( y)U′ dy (4.22)

and

Φ(t) = g(t)eλit. (4.23)

Here, Φ(n)(0) is the nth derivative of Φ at t = 0. Equation (4.21) is obtained based on the
Taylor expansion of Φ at t = 0. The first term on the right-hand side of (4.21) is responsible
for the oscillation of Pinter1, and the second term is a constant. When θw1 − θs = π/2 and
θs − θw2 = π/2, the second term reaches its positive maximum value, which leads to a
quasi-positive Pinter. Under such conditions,

Pinter1 = −(a1 + a2)F
2

N∑
n=0

Φ(n)(0)

|λr|n!
tn sin(|λr|t + π/2) + (a1 + a2)F

2|λr| . (4.24)

For specified Reτ , Frτ , αh and βh, the values of F, λr and Φ(n)(0) are constant. The
maximum value of Pinter1 increases with a1 + a2.

To obtain the maximal Pinter/Ein, the relationship between a1 and a2 that minimises
Ein must be determined. Keeping the shear part constant, a1 and a2 should be chosen to
minimise the sum of the surface-wave part of the kinetic energy (EK)in

w , the interaction part
of the kinetic energy (EK)in

inter and the surface-wave part of the potential energy (Eη)
in
w . The

interaction part of the potential energy is ignored because the surface deformation of the
shear part is negligible. With θw1 − θs = π/2 and θs − θw2 = π/2, the energy (EK)in

w +
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(EK)in
inter + (Eη)

in
w contributed by the surface-wave eigenmodes is

(EK)in
w + (EK)in

inter + (Eη)
in
w = (a1 + a2)

2

2

(∫ h

0
f 2
uw( y) dy + f 2

η

)

− 2(a1 + a2)

∫ h

0
fuw( y)fus( y) dy

+ (a1 − a2)
2

2

∫ h

0
f 2
vw( y) + f 2

ww( y) dy. (4.25)

Because a1, a2 and fuw( y)fus( y) are positive and fuw < fww, a1 = a2 minimises (EK)in
w +

(EK)in
inter + (Eη)

in
w as

(EK)in
w + (EK)in

inter + (Eη)
in
w = 2a2

1

(∫ h

0
f 2
uw( y) dy + f 2

η

)
− 4a1

∫ h

0
fuw( y)fus( y) dy,

(4.26)
which is finally determined by a1.

Therefore, under the conditions of a1 = a2, θw1 − θs = π/2 and θs − θw2 = π/2, the
final analytical result of Pinter1/Ein is

Pinter1

Ein =
−a1F

|λr|

(∑N
n=0

Φ(n)(0)

n!
tn sin(|λr|t + π/2) − 1

)

2a2
1

(∫ h
0 f 2

uw( y) dy + f 2
η

)
− 4a1

∫ h
0 fuw( y)fus( y) dy + (EK)in

s

, (4.27)

which is a function of a1 and t for specified Reynolds number, Froude number and
wavenumber. For the maximum Pinter1/Ein, the value of a1 can be obtained from
∂(Pinter1/Ein)/∂a1 = 0.

Note that when a1 = a2, θw1 − θs = π/2 and θs − θw2 = π/2, the velocities and surface
elevation perturbations of the surface-wave part satisfy

uw = −2a1fuw( y) cos(βz + θs) cos(|λr|t)eλit, (4.28)

vw = −2a1fvw( y) cos(βz + θs) sin(|λr|t)eλit, (4.29)

ww = 2a1fww( y) sin(βz + θs) sin(|λr|t)eλit, (4.30)

η = 2a1fη cos(βz + θs) cos(|λr|t)eλit, (4.31)

which represent a standing wave, as shown in figures 15(c i)–15(c vii).

4.1.4. Effects of the spanwise wavenumber and Froude number at different Reynolds
numbers

The above analyses indicate that the free surface enhances the transient growth rate
through the interaction production term Pinter (4.11). Next, we confirm this mechanism
at different spanwise wavenumbers, Froude numbers and Reynolds numbers, and explain
the variation in the free-surface effect on the transient growth rate of streamwise-uniform
motions with different spanwise wavenumbers and Froude numbers.

Figure 16 shows a comparison of the time histories of the interaction production term
Pinter at different Froude numbers and spanwise wavenumbers for Reτ = 180, 360 and
1000. The term Pinter increases with increasing Frτ but decreases sharply with increasing
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Figure 16. Time evolution of the interaction production term Pinter (a i–c i) at different Froude numbers Frτ

for αh = 0 and βh = 1 and (a ii–c ii) at different spanwise wavenumbers βh for Frτ = 0.142 and αh = 0. The
results are obtained at (a i,a ii) Reτ = 180, (b i,b ii) Reτ = 360 and (c i,c ii) Reτ = 1000.

spanwise wavenumber βh. For the same Froude number and spanwise wavenumber, the
change in Pinter with the Reynolds number is negligible. Recall that at three different
Reynolds numbers Reτ = 180, 360 and 1000, the free-surface effects on the transient
growth rate are similar (figures 5 and 7), increasing with increasing Froude number but
attenuating obviously with increasing spanwise wavenumber. Thus, the variation in Pinter
with the Froude number and spanwise wavenumber is consistent with the variation in the
transient growth rate with these parameters, confirming that the interaction production
term is an important mechanism underlying that the free surface influences the transient
growth of motions.

The variations in Pinter and the transient growth rate with the Froude number and
spanwise wavenumber can be explained using the analytical expression of the production
term (4.27). The interaction production term Pinter decreases as the frequency of the
surface-wave eigenmodes |λr| increases. Additionally, Pinter in (4.27) is proportional
to the integral term F (4.22) associated with the vertical velocity modulus of the
surface-wave eigenmodes. The variations in the frequency and vertical velocity modulus
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of the surface-wave eigenmodes with the Froude number and spanwise wavenumber
are shown in figure 17. The frequency of the surface-wave eigenmodes decreases with
increasing Froude number, whereas the vertical velocity modulus does not change with
the Froude number. Therefore, an increase in the Froude number leads to an increase in
Pinter (figure 16a i–c i), and this escalation can be attributed solely to the decrease in the
frequency of the surface-wave eigenmodes |λr|. Moreover, an increase in the spanwise
wavenumber has dual effects on the surface-wave eigenmodes, increasing their frequency
while also reducing the integral term F. The integral term F is determined by the product
of the streamwise velocity, which is composed of shear eigenmodes, and the vertical
velocity, which is composed of surface-wave eigenmodes. As the spanwise wavenumber
increases, the moduli of the vertical velocity of the surface-wave eigenmode becomes more
concentrated near the free surface and rapidly diminishes away from it. Simultaneously, in
the present result (figure 15b i–b vii) and other canonical wall-bounded turbulence (Cossu
et al. 2009), the streamwise velocity of the perturbation composed of shear eigenmodes is
more concentrated near the bottom wall. Consequently, the vertical locations where both
components are significant start to separate, leading to a reduction in their product and
thus a decrease in F. Combining with the increase of |λr|, Pinter decreases with increasing
spanwise wavenumber (figures 16a ii–c ii). Thus, the effect of the free surface on the
transient growth rate is significant only for small spanwise wavenumbers at relatively high
Froude numbers.

In summary, the free surface affects the transient growth process of streamwise-uniform
motions through the interaction between spanwise standing waves consisting of
surface-wave eigenmodes and streamwise vortices consisting of shear eigenmodes. In
particular, the growth rates of the total energy and kinetic energy are enhanced by the
energy extracted from the mean velocity gradient through the correlation between the
streamwise velocity induced by the lifting-up effect of the streamwise vortices and the
vertical velocity induced by the spanwise standing wave. This occurs if the initial surface
elevation of the standing wave is at its maximum and the phase is the same as that of
the streamwise velocity induced by the lifting-up effect of the streamwise vortices. The
maximal transient growth rate is inversely proportional to the frequency of the standing
wave, which decreases with increasing Froude number, but increases with increasing
spanwise wavenumber. In the transient growth process, only the energy of the streamwise
velocity is amplified, which is at the expense of the attenuation of the streamwise vortices
and standing waves. Because the initial flow field tends to trigger the transient growth,
the amplified flow field represents commonly observed flow states in turbulence. The
amplified flow field is featured by energetic very-large-scale u and relatively weak v and
w, which is consistent with the results of direct numerical simulations and laboratory
experiments of free-surface open channel turbulent flows (Borue et al. 1995; Kumar, Gupta
& Banerjee 1998; Duan et al. 2020; Yoshimura & Fujita 2020).

4.2. Effects of the free surface on streamwise-varying motions
The analyses in § 4.1 reveal the mechanism by which the free surface influences the
streamwise-uniform motions. As shown in § 3, the maximum growth rate Gmax in the
streamwise-varying case (αh /= 0) is also enhanced by the free surface, although its value
is smaller than that of the streamwise-uniform case (αh = 0). In this section, the case with
αh = 0.2 and βh = 1 is used as an example to elucidate the reason underlying this result.
First, the effects of the surface-wave eigenmodes on the energy growth are analysed. Then,
the conditions of the surface wave part and the shear part for enhancing Gmax are derived
based on the features of the surface-wave and shear eigenmodes. The following analyses
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Figure 17. Variations in (a,c) the eigenvalues and (b,d) the vertical velocity modulus of the surface-wave
eigenmodes (a,b) with the Froude number Frτ (Frτ = 0.071, 0.1, 0.142 and 0.212) for αh = 0 and βh = 1
and (c,d) with the spanwise wavenumber βh (βh = 1, 2, 3 and 4) for Frτ = 0.142 and αh = 0. The results are
obtained at Reτ = 180.

elucidate the mechanism by which the free surface influences the streamwise-varying
motions. In addition, we have confirmed the mechanism for the streamwise-varying
motions cases across different wavenumbers, Froude numbers and Reynolds numbers in a
manner similar to that for the streamwise-uniform case in § 4.1.4 (see the confirmation by
the results at αh = 0.5, βh = 1 and Reτ = 6000 in Appendix C).

4.2.1. Effect of the free surface on the energy budgets for the streamwise-varying case
Similar to the streamwise-uniform case analysed in § 4.1, the energy growth rate E(t)/Ein

in the streamwise-varying case is dominated by the difference between the production term
and the dissipation term. According to (4.7) and (4.9), the budget terms can be decomposed
into a shear part, a wave part and an interaction part, with the latter two associated with the
free surface. To examine the net contribution of these three parts to E(t)/Ein, figure 18(a)
illustrates the time evolution of the combination of the shear parts of the production term
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Figure 18. (a) Comparison of the time evolution of the budget terms (Ps + εs)/Ein, (Pw + εw)/Ein, (Pinter +
εinter)/Ein and E(t)/Ein (definitions provided in § 4.1.2) between the streamwise-uniform case (αh = 0, dashed
lines with symbols) and the streamwise-varying case (αh = 0.2, solid lines with symbols). (b) Time evolution
of the budget terms Pinter , Pinter1, Pinter2 and εinter in the streamwise-varying case (αh = 0.2). The results are
obtained at Reτ = 180, βh = 1 and Frτ = 0.142.

and dissipation term (Ps + εs)/Ein, the combination of the wave parts of the production
term and dissipation term (Pw + εw)/Ein, and the combination of the interaction parts of
the production term and dissipation term (Pinter + εinter)/Ein in the streamwise-uniform
case (dashed line with symbols) and the streamwise-varying case (solid line with
symbols). As shown, for both the streamwise-varying and streamwise-uniform cases,
the net contribution of the wave part is negligible, while the interaction part (Pinter +
εinter)/Ein has a significant positive contribution. As shown in figure 18(b), the net
contribution of (Pinter + εinter)/Ein is due mainly to Pinter. Further decomposing Pinter into
Pinter1 and Pinter2, as shown in (4.10), we find that Pinter is governed by Pinter1. Therefore,
similar to the streamwise-uniform case, the free surface enhances the energy growth rate
of the streamwise-varying motions through the energy production term that arises due to
the correlation between the streamwise velocity of the shear part and the vertical velocity
of the surface-wave part (4.11).

Because the values of (Pinter + εinter)/Ein in the streamwise-varying and streamwise-
uniform cases in figure 18(a) are comparable, the energy growth rate E(t)/Ein in the
streamwise-varying case is smaller than that in the streamwise-uniform case, mainly due
to the smaller net contribution from the shear part (Ps + εs)/Ein. In closed channel flows,
the energy growth rate, which is governed by the difference between the shear parts of the
production and dissipation terms, also decreases with increasing αh (Cossu et al. 2009).

4.2.2. Initial conditions for the transient growth of streamwise-varying motions
Next, the features of the surface-wave part and shear part in the streamwise-varying
case are analysed to study the initial state of the surface-wave part, which can lead to
the maximum production term Pinter1/Ein that is responsible for the enhancement of the
energy growth rate by the free surface.

Figure 19 shows the eigenvalues of the surface-wave and shear eigenmodes, and the
velocity moduli of the two surface-wave eigenmodes. As shown in figure 19(a), there
are two surface-wave eigenmodes with different λr, indicating different propagation
speeds c = λr/k along the wavenumber direction (α/k, β/k). The propagation speeds of
the two surface-wave eigenmodes are c1 = cs + cw and c2 = cs − cw, with cs = (λr1 +
λr2)/(2k) = λs

r/k and cw = |λr1 − λr2|/(2k) = λw
r /k. The velocity cs is approximately

equal to the projection of the surface base flow speed in the wavenumber direction
U(h)α/k. In addition, the λr values of the shear eigenmodes are all close to λs

r, implying
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Figure 19. (a) Eigenvalues of the surface-wave eigenmodes (diamonds) and the shear eigenmodes (circles).
(b,c) Velocity moduli of the two surface-wave eigenmodes. The surface-wave eigenmode with the larger λr
is shown by lines without symbols, and the other eigenmode is shown by lines with symbols. The velocity
moduli are shown in the coordinate system (b) (x, y, z) and (c) (x̃, ỹ, z̃). The results are obtained at Reτ = 180,
αh = 0.2, βh = 1 and Frτ = 0.142.

that the shear part consisting of the shear eigenmodes propagates in the direction of
(α/k, β/k) at a speed of cs = λs

r/k. The velocity cw represents the propagation speed of
the surface-wave eigenmodes relative to the shear eigenmodes.

Based on the propogation directions of the surface-wave eigenmodes and shear
eigenmodes, a new coordinate system is defined using the transformation

x̃ = x
β

k
− z

α

k
, ỹ = y, z̃ = z

β

k
+ x

α

k
. (4.32)

Here, the z̃-axis is parallel to the wavenumber vector. Correspondingly, the velocity
components ũi in the new coordinate system (x̃, ỹ, z̃) are

ũ = u
β

k
− w

α

k
, ṽ = v, w̃ = w

β

k
+ u

α

k
. (4.33)

1002 A9-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
40

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1140


B.-Q. Deng, Z. Yang and L. Shen

As shown in figure 19(b), in the coordinate system (x, y, z), the vertical velocity moduli
of the two surface-wave eigenmodes are similar, while the streamwise velocity moduli
of the two surface-wave eigenmodes are noticeably different. However, in the new
coordinate system (x̃, ỹ, z̃), the streamwise velocity moduli |ũ| of the two eigenmodes in
the x̃-direction are much closer (figure 19c).

The difference between the exponential damping rates of the two surface-wave
eigenmodes, i.e. eλi1t and eλi2t (figure 19a), is small within the time needed to reach
the maximum transient growth rate (tmax ≈ 1.5h/uτ ). Therefore, the velocity of the
surface-wave part can be approximated as

ũw = a1fũw sin(k˜̃z + λw
r t + θw1)eλit − a2fũw sin(k˜̃z − λw

r t + θw2)eλit, (4.34)

ṽw = a1fṽw cos(k˜̃z + λw
r t + θw1)eλit + a2fṽw cos(k˜̃z − λw

r t + θw2)eλit, (4.35)

w̃w = −a1fw̃w sin(k˜̃z + λw
r t + θw1)eλit − a2fw̃w sin(k˜̃z − λw

r t + θw2)eλit, (4.36)

η̃w = a1fη sin(k˜̃z + λw
r t + θw1)eλit − a2fη sin(k˜̃z − λw

r t + θw2)eλit. (4.37)

Here, fũw, fṽw, fw̃w, fη and λi are approximations of the moduli of ũ, ṽ, w̃, η and the damping
rate of the two surface-wave eigenmodes, respectively, and

˜̃z = z̃ − cst. (4.38)

The two surface-wave eigenmodes in the streamwise-varying case propagate in opposite
˜̃z-directions at the same phase speed; hence, the surface-wave part has a similar expression
to that in the streamwise-uniform case (4.17)–(4.20).

Figure 20 displays the flow field and surface deformation in the transient growth process
in the plane (ỹ = y, ˜̃z = z̃ − cst), as well as the corresponding shear and surface-wave
parts, at t = iT/4, with i = 0, 1, . . . , 6. Here, the period T is equal to 2π/(kcw), and the
velocity cw is the propagation speed of the surface-wave eigenmode relative to the speed of
the shear eigenmodes (figure 19a). As shown in figure 20(b i–b vii), the shear part consists
of initially strong vortices in the x̃-direction, as evidenced by (ṽ, w̃) and the streaks of
ũ. As time increases, the vortices decay and the streaks are enhanced. Because the phase
speed of the shear eigenmodes in the wavenumber vector direction is approximately cs
(figure 19a), the spanwise locations of the vortices are essentially unchanged in the plane
(ỹ = y, ˜̃z = z̃ − cst). As a result, the velocities of the shear part can be approximated as

ũs = fũs(ỹ) cos(k˜̃z + θs)g̃(t), (4.39)

ṽs = −fṽs(ỹ) cos(k˜̃z + θs)m̃(t), (4.40)

w̃s = −fw̃s(ỹ) sin(k˜̃z + θs)ñ(t), (4.41)

with g̃(t) ≥ 1, m̃(t) ≤ 1 and ñ(t) ≤ 1. The moduli fũs and fṽs are positive, while the sign
of fw̃s( y) changes near the channel centre. The shear part in the streamwise-varying case,
expressed using ỹ and ˜̃z, is similar to that in the streamwise-uniform case (4.14)–(4.16).

Here, Pinter1 can be expressed as

Pinter1 =
∫ h

0

∫ t

0
usvwU′ dt dy =

∫ h

0

∫ t

0

(
β

k
ũsṽw + α

k
w̃sṽw

)
U′ dt dy

≈
∫ h

0

∫ t

0

β

k
ũsṽwU′ dt dy. (4.42)
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Figure 20. Velocity field (ũ, ṽ, w̃) and the surface elevation η, as well as their shear and surface-wave
parts, in the plane (ỹ = y, ˜̃z = z̃ − cst) at (a i–c i) t = 0, (a ii–c ii) t = T/4, (a iii–c iii) t = T/2, (a iv–c iv)
t = 3T/4, (a v–c v) t = T , (a vi–c vi) t = 5T/4 and (a vii–c vii) t = 3T/2. Panels (a i–a vii) show the total,
panels (b i–b vii) depict the shear part and panels (c i–c vii) display the surface-wave part. Here, T is equal
to 2π/(kcw), where cw is the propagation speed of the surface-wave eigenmodes relative to that of the shear
eigenmodes, and the maximum transient growth rate is reached at t = 3T/2. The vector is composed of the
vertical and spanwise velocities (ṽ, w̃), and the contours are the streamwise velocity ũ. The results are obtained
at Reτ = 180, αh = 0.2, βh = 1 and Frτ = 0.142.

Because the sign of w̃s changes in the y (or ỹ) direction and the sign of ṽw remains the same
in the y direction, the integral αw̃sṽw/k in the y direction is negligible. Additionally, α is
much smaller than β for streamwise-elongated motions, which we focus on in the present
study. Therefore, the αw̃sṽw/k part is ignored. Because ũs and ṽw in (4.39) and (4.34) have
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the same forms as those in the streamwise-uniform case, we obtain following (4.21) that

Pinter1 ≈ β

k

(
−1

2
F̃

N∑
n=0

Φ̃n(0)

|λw
r |n!

tn(a1 sin(λw
r t + θw1 − θs) + a2 sin(λw

r t + θs − θw2))

)

+β

k
a1F̃ sin(θw1 − θs) + a2F̃ sin(θs − θw2)

2|λw
r | , (4.43)

with

F̃ =
∫ h

0
fũs( y)fṽw( y)U′ dy (4.44)

and
Φ̃(t) = g̃(t)eλit. (4.45)

Similar to the streamwise-uniform case, the maximum value of Pinter1 is obtained when
θw1 − θs = π/2 and θs − θw2 = π/2 are satisfied. Under this condition, the portion of the
initial input energy associated with the surface-wave part is

(EK)in
w + (EK)in

inter + (Eη)
in
w = (a1 + a2)

2

2

(∫ h

0
f 2
ũw( y) dy + f 2

η

)

−2(a1 + a2)

∫ h

0
fũw( y)fũs( y) dy + (a1 − a2)

2

2

∫ h

0

(
f 2
ṽw( y) + f 2

w̃w( y)
)

dy. (4.46)

The minimum value is obtained when a1 ≈ a2. Because the moduli of the two
surface-wave eigenmodes are only approximately the same, i.e. not identical, a1 is not
exactly equal to a2.

The above analyses show that in the streamwise-varying case, the maximum Pinter1/Ein

is obtained when a1 ≈ a2, θw1 − θs = π/2 and θs − θw2 = π/2. Under these conditions,
the velocities and surface elevation of the surface-wave part are

ũw ≈ −2a1fũw( y) cos(k˜̃z + θs) cos(|λw
r |t)eλit, (4.47)

ṽw ≈ −2a1fṽw( y) cos(k˜̃z + θs) sin(|λw
r |t)eλit, (4.48)

w̃w ≈ 2a1fw̃w( y) sin(k˜̃z + θs) sin(|λw
r |t)eλit (4.49)

and
η ≈ 2a1fη cos(k˜̃z + θs) cos(|λw

r |t)eλit. (4.50)

This solution represents a standing wave in the plane (ỹ, ˜̃z) parallel to the wavenumber
vector that moves with speed cs in the wavenumber-vector direction. Initially, the surface
elevation of the standing wave is at its maximum value, and its phase is the same as that
of ũs. The standing wave can be confirmed by the variation in the surface elevation at
different times, as shown in figure 20(c i–c vii).

In summary, the above analyses show that for the streamwise-varying case, in a
plane parallel to the wavenumber vector moving at a speed equal to the surface mean
velocity projected in the wavenumber-vector direction, the two surface-wave eigenmodes
propagate in opposite directions at the same speed, and the vortices consisting of the shear
eigenmodes are approximately fixed in space. If a standing wave reaches its maximum
surface elevation and its phase is identical to that of the streamwise velocity induced by
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Non-modal analysis of free-surface plane open channel flows

the lifting-up effect of the vortices at the initial time, the transient growth rate can be
enhanced by the free surface to a maximal level. In other words, the transient growth
rate is enhanced by a standing wave riding on the vortices moving at a speed equal to the
projection of the surface mean velocity in the wavenumber direction. While the interaction
between the surface-wave part and the shear part can enhance the transient growth rate of
the streamwise-varying motions in a way similar to that of streamwise-uniform motions,
the growth of the total perturbation energy of the streamwise-varying motions is slower
because of the decrease in the transient growth rate of the shear part with increasing
streamwise wavenumber.

5. Conclusions

In this study, a linear non-modal analysis is performed to investigate the linear mechanism
by which free surfaces influence turbulent motions in open channels with a deformable
free surface. We use the generalised Orr–Sommerfeld and Squire equations derived from
the Reynolds-averaging equation, with the turbulent mean velocity and eddy viscosity
included, in our analyses; therefore, the effects of background turbulence are considered
in the present study. Because of the transformation of surface potential energy into kinetic
energy in the flow, the growth rate of the total energy is considered. The growth rate is
calculated by discretising the generalised Orr–Sommerfeld and Squire equations using a
Chebyshev spectral collocation method. The results at Reτ = 180, 360, 1000 and 6000 are
analysed to elucidate the mechanism by which the free surface influences the transient
growth rate.

As observed from the contours of the maximum energy growth rate Gmax in the
spectral space, the Gmax value of the streamwise-elongated motions (for which the
streamwise wavenumber αh is smaller than the spanwise wavenumber βh) at small
spanwise wavenumbers βh < 2.7 is amplified by the free surface at relatively high Froude
numbers. This effect is more obvious when the wavenumber decreases and the Froude
number increases. The growth rate of the kinetic energy EK corresponding to Gmax is
also amplified by the free surface. There are two additional surface-wave eigenmodes
in the free-surface open channel case compared with the rigid-lid open channel case. If
the surface-wave eigenmodes are ignored, Gmax in the free-surface open channel is the
same as that in the rigid-lid open channel, indicating that the surface-wave eigenmodes
are important in the enhancement of Gmax.

The budget equation for the energy growth rate is derived to elucidate the mechanism
by which the surface-wave eigenmodes influence the growth rate. The budget analysis
indicates that the energy growth rate is determined by the difference between the
energy production term and the dissipation term, and the surface energy transfer term
is negligible. By decomposing the perturbation term into a shear part consisting of the
shear eigenmodes and a surface-wave part consisting of the surface-wave eigenmodes, we
discover that the increase in Gmax is due to the interaction term Pinter, which involves the
correlation between the shear part of the streamwise velocity and the surface-wave part of
the vertical velocity. The interaction production term exists owing to the non-orthogonality
of the eigenmodes.

In the streamwise-uniform case (αh = 0), the initial shear part of the flow field consists
of a pair of streamwise vortices and relatively weak streaks of streamwise velocity that do
not move in the spanwise direction over time, similar to other canonical wall-bounded
turbulent flows without free surfaces. The two surface-wave eigenmodes propagate in
opposite directions along the spanwise axis. Based on the characteristics of the shear
eigenmodes and the surface-wave eigenmodes, an analytical expression of the interaction
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energy production term is derived (4.27). The maximum value of the interaction energy
production term is obtained when the surface wave is a standing wave, for which the
surface elevation is initially at its maximum value and the spanwise phase is the same
as that of the shear part of the streamwise velocity. According to the derived analytical
expression of the interaction energy production term, the increase in Gmax due to the free
surface becomes more pronounced when the frequency of the surface-wave eigenmodes
decreases. When the Froude number increases or the spanwise wavenumber decreases, the
frequency of the surface-wave eigenmodes decreases. Therefore, the free surface has more
pronounced effects at large Froude numbers and small spanwise wavenumbers.

For the streamwise-varying case (αh /= 0), the shear part of the flow field also consists
of a pair of streamwise vortices and relatively weak streaks of streamwise velocity moving
at a speed cs, which is approximately the same as the projection of the surface base
flow speed in the wavenumber direction. We define a new coordinate system (x̃, ỹ, z̃)
with its spanwise-axis z̃ along the wavenumber direction. In the plane (ỹ, z̃ − cst), i.e.
the plane moving with the streamwise vortices and streaks at a speed of cs, the two
surface-wave eigenmodes propagate in opposite directions along the z̃-axis at the same
speed, and the spanwise location of the shear part remains fixed over time. Similar to the
streamwise-uniform case, it is also proven that in the moving plane, a standing wave riding
on the streamwise vortices can lead to the maximum energy growth rate, provided that the
surface elevation of the standing wave is maximised at the initial time and the spanwise
phase is the same as that of the shear part of the streamwise velocity.

Finally, we remark that although the present study reveals only a linear mechanism,
our results are consistent with the observations from direct numerical simulations and
laboratory experiments. In other canonical wall-bounded turbulence problems, it has
been found that linear processes are highly important for sustaining turbulence. There
exists a consensus in the research community that the linear lifting-up effect, leading
to the non-modal transient growth of perturbation energy, plays an important role in the
generation of very-large-scale streaks, and the secondary instability of the very-large-scale
streaks induced by the lift-up mechanism is linked to the generation of LSMs. The
present work and the work of Camporeale et al. (2021) also show these two processes
in open channel flows. In the free-surface open channel flows, other possible nonlinear
mechanisms may also be important for wave–turbulence interactions, which should be
studied in a nonlinear framework in future works.
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Appendix A. Reynolds-number effect on the time reaching the maximum transient
growth in open channel flows

Figure 21 compares the time reaching the maximum transient growth rate tmax at different
Reynolds numbers in the rigid-lid open channel flows. As shown, tmax is of the order
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Figure 21. Comparison of the time reaching the maximum transient growth rate tmax at Reτ = 180, 360, 1000
and 6000 in the rigid-lid open channel flows for αh = 0.
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Figure 22. Time evolution of (a) the budget terms (4.1) and (b) the components of the production terms (4.7)
normalised by Ein at Reτ = 6000 and Frτ = 0.142 for αh = 0 and βh = 1, with the initial input perturbations
leading to Gmax.

of h/uτ for βh around 1, close to the growth time of very-large-scale streaks found
in the direct numerical simulations of closed channel flows (Hwang & Bengana 2016).
Additionally, tmax gradually grows with Reτ , with its maximum value increasing from 1.8
at Reτ = 180 to 2.4 at Reτ = 6000, which is similar to that in closed channel flows (Pujals
et al. 2009).

Appendix B. Energy budget for streamwise-uniform motions at Reτ = 6000

In this section, we confirm the mechanism of how the free surface influences
streamwise-uniform motions at Reτ = 6000. Figure 22 shows the time evolution of the
energy budget terms in (4.1) at Reτ = 6000 with Frτ = 0.142, αh = 0 and βh = 1. It can
be found that the energy is mainly generated by the production term (figure 22a). From
figure 22(b), we can further find that the production term is mainly contributed by the
shear production Ps and the interaction production term Pinter1, consistent with the finding
at Reτ = 180.
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normalised by Ein at Reτ = 6000 and Frτ = 0.142 for αh = 0 and βh = 0.6, with the initial input perturbations
leading to Gmax.
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leading to Gmax.

Figure 23 also shows the time evolution of the energy budget terms in (4.1) at a smaller
spanwise wavenumber βh = 0.6 in the streamwise-uniform case, with the Reynolds
number and the Froude number the same as those in figure 22. As shown in figure 23(a),
although the surface term S is larger than that for βh = 1, the energy is still mainly
generated by the production term (figure 23a). Compared with the production terms at
βh = 1 (figure 22b), the contribution of the interaction production Pinter1 is much larger.
This is consistent with the variation tendency of Pinter1 with βh in § 4.1.4 at lower Reynolds
numbers, which is responsible for the more obvious free-surface effect at smaller βh found
in § 3.

Appendix C. Confirmation of the mechanism for streamwise-varying motions at
Reτ = 6000

In this section, we confirm the mechanism of how the free surface influences the
streamwise-varying motions at Reτ = 6000 and αh = 0.5, as the typical streamwise length
scale of VLSMs in open channel flows is approximately 10h (Pinelli et al. 2022). As shown
in figure 24, the energy is mainly provided by the production term, and the interaction
production term Pinter1 involving the vertical velocity of the surface-wave eigenmode has
a significant contribution, agreeing with the finding at αh = 0.2 and Reτ = 180.
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Figure 25. (a) Eigenvalues of the surface-wave eigenmodes (diamonds) and the shear eigenmodes (circles).
(b) Velocity moduli of the two surface-wave eigenmodes. The surface-wave eigenmode with the larger λr is
shown by lines without symbols, and the other eigenmode is shown by lines with symbols. The results are
obtained at Reτ = 3000, αh = 0.5, βh = 1 and Frτ = 0.142.

Figure 25 further shows the eigenvalues and eigenmodes at Reτ = 6000 for αh = 0.5
and βh = 1. It can be found that there are two surface-wave eigenmodes travelling
downstream and upstream with respect to the shear eigenmodes that transport at the speed
around cs = λs

r/k. Although the streamwise and spanwise velocity components of these
two surface-wave eigenmodes are different, the vertical velocity component in these two
surface-wave eigenmodes are close to each other. Because Pinter1 is related to the vertical
velocity of the surface-wave eigenmodes, the derivation of Pinter1 in § 4.2 still works.
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