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Energetics of particle-size segregation
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We introduce a continuum framework for the energetics of particle-size segregation in
bidisperse granular flows. Building on continuum segregation equations and a recent
segregation flux model, the proposed framework offers general analytical expressions to
study the physics of granular flows from a mechanical energy perspective. We demonstrate
the framework’s applicability by examining the energetics of shear-driven granular
flows. Numerical experiments with varying frictional coefficients and particle-size ratios
reveal two distinct phases in the energetics, marked by the separate onset of particle
segregation and diffusive remixing. Furthermore, our numerical simulations alongside
previous experimental results show that the bulk Richardson number Ri, defined as the
potential energy to kinetic energy ratio at steady state, follows the scaling relationship Ri ≡
Ê(s)

gp /Ê(s)
k ∝ Pe−1/2

sr for 0.1 ≤ Ri ≤ 103 and 10−4 ≤ Pesr ≤ 300, the segregation–rheology
Péclet number. Finally, we present a Péclet-number-dependent theoretical expression
for the degree of mixing (or segregation), validated by the compiled numerical and
experimental dataset. Our findings hint that the bulk segregation–mixing state can be
predicted and controlled using the segregation Péclet number Pe and Pesr, both determined
from known system parameters, providing an instrumental tool for engineering and
geophysical applications.

Key words: dry granular material, granular mixing, sediment transport

1. Introduction

Granular materials segregate and mix as they flow (Ottino & Khakhar 2000; Gray
2018; Umbanhowar, Lueptow & Ottino 2019). Although no general agreement exists on
the determining drivers, relative motion between particles of differing sizes comprising
a granular bulk is essential for segregation, occurring when available mechanical
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energy – sourced from external forcing or gravity – is transformed into kinetic energy.
However, how does the available energy partition between segregation, mixing and
interparticle friction within the granular bulk? Addressing this question is crucial not only
for understanding granular flow dynamics but also for optimising engineering processes
aiming at transporting, segregating or mixing polydisperse materials.

Research on the energetics of polydisperse granular flows remains limited. Most of the
studies have focused on characterising the energy dissipated by friction (e.g. Hurley &
Andrade 2015; Pereira & Cleary 2017; Jiang et al. 2018; Varela-Rosales et al. 2023),
and only a few have connected energy characteristics with granular flow regimes. Using
discrete element simulations, Sun, Jin & Zhou (2013) found that the effective friction
coefficient in sheared bidisperse granular flows is inversely proportional to the ratio
of elastic to kinetic energy, and emphasised that energetics studies could bridge the
mechanics from quasi-static to rapid flow regimes. Despite these insights, a comprehensive
understanding of how mechanical energy transforms and relates to segregation–mixing
states in flowing granular mixtures is still lacking.

The segregation–mixing states are intuitively related to the segregation Péclet number
Pe, defined as the ratio between segregation and diffusive fluxes in dense granular flows
(Gray & Chugunov 2006; Trewhela 2024). While large Pe values are associated with
enhanced segregation, small Pe results in more mixed states with diffusion acting as
the main mixing driver. Such determinant roles of segregation and diffusive remixing,
hence of Pe, have been found in theory (Gray & Chugunov 2006), and in both laboratory
(Wiederseiner et al. 2011; Maguire et al. 2024) and numerical (e.g. Thornton et al.
2012; Fan et al. 2014) experiments. However, a clear-cut general relationship between the
final state for segregation (or mixing) and Pe is missing. An additional non-dimensional
parameter, the segregation–rheology Péclet number Pesr, can be introduced to characterise
the coupling between segregation and rheology. This recently introduced definition
proposes a balance between segregation and momentum transfer within the granular
bulk and its different particle species (Trewhela 2024), yet the role of Pesr on mixing
and the species energy distribution remains unclear. Nonetheless, the state of mixing of
materials that segregate can also be explored in terms of other fundamental parameters.
One of them is the bulk Richardson number Ri, balancing the competition between the
stabilising effect of buoyancy and the destabilising impact of inertia in mixing stratified
systems (e.g. Caulfield 2021). In addition to Ri, the ‘degree of mixing’ Mφ or ‘degree of
segregation’ Sφ = 1 − Mφ , determined from the spatial variance of particles distribution,
provide a concise quantitative measure of how mixed or segregated polydisperse systems
are at any given time. These parameters, while not commonly utilised to characterise
segregation–mixing states of granular flows, have shown effectiveness in describing
stratified and convective fluid flows dynamics (Jha, Cueto-Felgueroso & Juanes 2011;
Caulfield 2021; Ulloa & Letelier 2022). As such, we propose that they also serve to
characterise granular flows.

Combining segregation theory (Gray 2018) with laboratory experiments, the Trewhela,
Ancey & Gray (2021a) scaling law for particle-size segregation provides robust predictions
for segregation in dense granular flows from various physical parameters. Yet advancing
the modelling of granular flows in complex configurations requires characterising the
energy source, and how this energy partitions and transforms within and by the granular
bulk. An energetics framework for granular flows is therefore instrumental in quantifying
how much of the available energy leads to particles’ motion, segregation, mixing and
irreversible dissipation due to friction.
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Energetics of particle-size segregation

This paper introduces a new continuum framework for characterising particle-size
segregation and mixing from an energetics perspective. In § 2, we present the
convection–diffusion model for particle-size segregation based on continuum–mixture
theory (Gray 2018). Building on this and recent scaling law for segregation (Trewhela
et al. 2021a), we derive the energetics for non-cohesive, inelastic, bidisperse particle
flows in § 3. In § 4, we illustrate the framework’s applicability by studying the energetics
for shear-driven, bidisperse granular flows, revealing a new scaling relationship between
the ratio of the bulk Richardson number and the segregation–rheology Péclet number.
Finally, we derive a Péclet-number-dependent analytical expression for the degree of
mixing and segregation of the granular flow – validated by numerical and laboratory
experiments – that offers potential applications for controlling industrial processes and
interpreting geophysical phenomena.

2. Theoretical framework

2.1. Bidisperse particle-size segregation equations
We consider non-cohesive granular media of bidisperse, rigid spherical particles – of
differing small ds and large dl > ds diameters, but uniform density ρ∗ – within a fixed
volume V . The mass of the mixture is M = Ml + Ms, with Ms = ρ∗ns(π/6)d3

s and Ml =
ρ∗nl(π/6)d3

l the masses of the small ns particles and the large nl particles, respectively.
The solids volume fraction Φ is then determined by the ratio between M and the reference
mass M∗ = ρ∗V , so Φ = Φl + Φs. In dynamic systems, each concentration Φν (ν ∈ {s, l})
is, in principle, space- and time-dependent. However, the concentration Φ usually varies
little in most dense granular flows. By assuming Φ to be constant, we can express
each particle-size concentration in terms of its corresponding species concentration,
φs = Φs/Φ and φl = Φl/Φ. Thus φs + φl = 1 establishes the inherent mass conservation
law for the granular system.

The bidisperse granular material can be treated as a continuum medium, for which
mixture theory applied to the granular bulk yields the convective–diffusive equations for
segregation,

∂φs

∂t
+ ∇ · (φsu) + ∇ ·

(
fslφsφl

g
|g|

)
= ∇ · (Dsl ∇φs), (2.1a)

∂φl

∂t
+ ∇ · (φlu) − ∇ ·

(
fslφsφl

g
|g|

)
= ∇ · (Dsl ∇φl), (2.1b)

where u is the divergence-free granular bulk velocity, Dsl is the particle diffusivity,
and fslφsφlg/|g| characterises the segregation flux, with fsl the particle-size segregation
velocity magnitude (Trewhela et al. 2021a). The gravitational norm vector g/|g| is
included to confer a direction to size segregation, determined by the gravity-driven kinetic
sieving and squeeze expulsion mechanisms (Gray 2018). The functional form of fsl has
been proposed to be quadratic or cubic, symmetrical or asymmetrical (Gajjar & Gray 2014;
Umbanhowar et al. 2019). Recent scaling laws have aimed to parametrise fsl in terms of
physical quantities, such as pressure p, shear rate γ̇ , local particle concentrations φs, and
particle diameter d. With that goal, Trewhela et al. (2021a) proposed that the segregation
velocity magnitude fsl could be described as

fsl =
(Bρ∗gγ̇ d̄2

p

)
[(Rd − 1) + E(1 − φs)(Rd − 1)2], (2.2)
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μ1 = 0.342, μ2 = 0.557, I0 = 0.069, α = 1.9, μ∞ = 0.05, I1 = 0.005, A = 1.565 × 104,
dl = 143 μm, ρ∗ = 2500 kg m−3, Φ = 0.6, p0 = 300 Pa, u0 = 0.2 m s−1, χμ = 0.0075,

A = 0.108, B = 0.374, E = 2.096

Table 1. Parameters used in this work: frictional parameters μ1, μ2 and I0 for the μ(I)-rheology (Jop et al.
2006); coefficient μ∞ with the fitting parameters α, I1 and A for the partial regularisation of the μ(I)-rheology,
measured by Barker & Gray (2017) for dl = 143 μm glass beads; the grains’ intrinsic density ρ∗; the solids
volume fraction Φ; the specific values for pressure p0 and velocity u0 at the wall; and the frictional asymmetry
coefficient χμ (Trewhela 2024). Finally, we give the constants for diffusivity A (Utter & Behringer 2004) and
segregation B, E (Trewhela et al. 2021a).

where B = 0.374 and E = 2.096 are empirical constants, d̄ = φsds + φldl denotes the
particles’ concentration-averaged diameter, and Rd = dl/ds defines the particles’ size ratio.
Merging the above expressions for d̄ and Rd, the concentration-averaged diameter can
be expressed as d̄ = (1 − χdφs)Rdds, which captures the asymmetric behaviour of size
segregation by defining χd = (Rd − 1)/Rd as the asymmetry coefficient (Gajjar & Gray
2014; van der Vaart et al. 2015; Trewhela 2024). Note that the function (2.2) is not
particular or case-dependent; it describes the segregation velocity for small and large
particles at variable concentrations φs and φl = (1 − φs), respectively, and it also compiles
a comprehensive set of experimental and numerical results that hints at its dependence
with pressure p, shear rate γ̇ and size ratio Rd (Golick & Daniels 2009; Thornton et al.
2012; Fry et al. 2018; Chassagne et al. 2020; Trewhela, Gray & Ancey 2021b; Tripathi
et al. 2021).

From the definition of Φν , (2.1a) can be expressed directly as

∂Φν

∂t
+ ∇ · (Φνu) + ∇ · FΦν = ∇ · (Dsl ∇Φν), (2.3)

where the segregation flux FΦν for the ν-particle species is defined as

FΦν =

⎧⎪⎪⎨
⎪⎪⎩

+fslΦs[1 − φs]
g
|g| for ν = s,

−fslΦl[1 − φl]
g
|g| for ν = l,

(2.4)

whereas the particles’ diffusivity Dsl = Aγ̇ d̄2 (Utter & Behringer 2004) is responsible for
diffusive remixing and controls the final segregation state, with A = 0.108 an empirical
constant (table 1).

3. Energetics for the segregation of the ν-particle species

Assuming inelastic grains, the potential energy for the ν-particle species in the volume V
of domain Ω is only determined by the gravitational component,

E(ν)
gp =

∫
Ω

ρ∗gzΦν dV, (3.1)

with E (ν)
gp (t, x) = ρ∗gz Φν(t, x) the gravitational potential energy (GPE) density, and z the

vertical coordinate pointing upwards. Likewise, we define the kinetic energy (KE) of the
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ν-particle species within the volume V as

E(ν)
k = 1

2

∫
Ω

ρ∗Φν |u|2 dV, (3.2)

with E (ν)
k (t, x) = 1

2ρ∗ Φν(t, x) |u(t, x)|2 the KE density.

3.1. Energetics for the GPE
Building upon the convective–diffusive equations for φν in (2.3), the evolution equation
for the GPE density of the ν-particle species is given by

∂E (ν)
gp

∂t
= ρ∗gz[−∇ · (Φνu) − ∇ · FΦν + ∇ · (Dsl ∇Φν)]. (3.3)

Utilising vector identities and the divergence theorem, the evolution equation for the GPE
in the volume V unfolds as

dE(ν)
gp

dt
= −

∮
∂Ω

ρ∗gz[Φνu + FΦν − Dsl ∇Φν] · n̂ dS︸ ︷︷ ︸
Σ

(ν)
gp

+
∫

Ω

ρ∗gΦνw dV︸ ︷︷ ︸
Ψ

(ν)
c

+
∫

Ω

ρ∗gFΦν · k̂ dV︸ ︷︷ ︸
Ψ

(ν)
gps

−
∫

Ω

ρ∗gDsl
∂Φν

∂z
dV︸ ︷︷ ︸

Ψ
(ν)
gpd

. (3.4)

Therefore, the rate of change of E(ν)
gp is determined by four main energetics that characterise

the injection/extraction, transformation and dissipation of GPE due to redistribution and
dynamics of the ν-particle species.

The first term on the right-hand side of (3.4) quantifies the energetics associated with
the net boundary energy flux Σ

(ν)
gp , which integrates fluxes resulting from the advection,

segregation and diffusion of particles at the boundary of the granular bulk. In the case
of granular systems with adiabatic boundaries, Σ

(ν)
gp equals 0. Conversely, when granular

flows experience mass exchange at the boundaries, there is a resultant gain or loss of
GPE in which Σ

(ν)
gp > 0 or Σ

(ν)
gp < 0, respectively. The second term Ψ

(ν)
c quantifies the

rate of change of E(ν)
gp due to the energetics associated with vertical convective flows that

redistribute particles within the moving granular mixture. Whereas the third Ψ
(ν)
gps and

fourth Ψ
(ν)
gpd terms characterise the rate of change of E(ν)

gp owing to segregation and diffusion
of particles in the vertical direction, respectively. The nature of the last two energetics
reflects competitive dynamics, where both may contribute to increase or decrease the GPE,
depending on the ν-particle species involved. For instance, in a gravity-driven granular
current, larger particles (ν = l) tend to segregate to the free surface, thereby raising the
GPE at a rate Ψ

(l)
gps. However, the energetics associated with the diffusion of large particles

Ψ
(l)
gpd acts to counterbalance this by hindering complete segregation, hence reducing the

maximum attainable GPE. Conversely, in the same granular flow, smaller particles (ν = s)
tend to segregate (percolate) to the base due to kinetic sieving, resulting in an energy flux
that decreases GPE at a rate Ψ

(s)
gps. In this case, the vertical diffusion of small particles
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works to raise GPE at a rate Ψ
(s)
gpd, opposing the system’s tendency towards its minimum

GPE.

3.2. Energetics for the KE
The evolution equation for the KE density is derived from

∂E (ν)
k

∂t
= ρ∗

1
2

|u|2 ∂Φν

∂t
+ ρ∗Φνu · ∂u

∂t
, (3.5)

and the continuum linear momentum equation for the particles mixture,

ρ∗Φ
[
∂u
∂t

+ ∇
(

1
2

|u|2
)]

= ∇ · T + ρ∗Φg. (3.6)

The stress tensor can be decomposed into T = τ − p1, with p the pressure multiplying the
tensor identity, and τ the deviatoric shear stress. Consequently, from (2.3) and (3.6), the
evolution equation of E (ν)

k (t, x) is given by

∂E (ν)
k

∂t
= 1

2
ρ∗ |u|2 {−∇ · (Φνu) − ∇ · FΦsl + ∇ · (Dsl ∇Φν)}

+ u ·
{
−ρ∗Φν ∇

(
1
2

|u|2
)

+ φν ∇ · T + ρ∗Φνg
}

. (3.7)

Integrating (3.7) in the volume V , the evolution equation for the KE is given by

dE(ν)
k

dt
= −

∫
∂Ω

[ρ∗
2

|u|2 (Φνu + FΦν − Dsl ∇Φν) − (φνu · T )
]

· n̂ dS︸ ︷︷ ︸
Σ

(ν)
k

+
∫

Ω

FΦν · ∇
(ρ∗

2
|u|2

)
dV︸ ︷︷ ︸

Ψ
(ν)
ks

−
∫

Ω

Dsl ∇Φν · ∇
(ρ∗

2
|u|2

)
dV︸ ︷︷ ︸

Ψ
(ν)
kd

− Ψ (ν)
c −

∫
Ω

∇(φνu) : T dV︸ ︷︷ ︸
Ψ

(ν)
μ

. (3.8)

Therefore, the rate of change of E(ν)
k is determined by five main energetics, which

characterise the injection/extraction, transformation and dissipation of KE due to
redistribution and dynamics of the ν-particle species.

The first term Σ
(ν)
k on the right-hand side of (3.8) quantifies the energetics associated

with the net boundary energy flux, which integrates fluxes resulting from advection,
segregation, diffusion and interparticle friction. For granular systems with adiabatic and
frictionless boundaries, Σ

(ν)
k equals zero. Otherwise, boundaries act as surface areas

through which energy is either injected or extracted by friction, being shear-driven
granular flows, a canonical example of a system wherein Σ

(ν)
k is positive, thereby

contributing to the sourcing of KE.
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(a) (b)
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(c)

φl, dl

φs, ds

x̂
ŷ

ẑ

p0

u0μ0

ẑ

10
φs

φs û

t̂

t̂

Figure 1. (a) Schematic of the case study and an example of the numerical simulations. (b,c) Temporal
evolutions of the small-particle species concentration φs(t̂, ẑ) and velocity profile û(t̂, ẑ) for Rd = 2.5,
μ0 = 0.5.

The second term Ψ
(ν)
ks on the right-hand side of (3.8) quantifies the energetics of

E(ν)
k due to ν-particle species segregation within the moving granular bulk. Since

FΦν is parallel to the gravitational acceleration vector g/|g|, commonly characterised
by −ẑ (see figure 1), spatial gradients of ρ∗ |u|2/2 in directions perpendicular to
g/|g| do not contribute to Ψ

(ν)
ks . As an example, let us consider a bidisperse granular

flow driven by shear stress exerted at the granular bulk’s surface, moving at a speed
u0. The resulting velocity profile increases linearly with height z, i.e. u = u0(z/h) x̂,
with h the sheared layer. In this context, the energetics of segregation simplifies
to Ψ

(ν)
ks = ∫

Ω
FΦν · (ρ∗u ∂u/∂z) ẑ dV . Interestingly, the sign of Ψ

(ν)
ks depends on the

ν-particle species. If u(∂u/∂z) > 0, then the KE flux owing to segregation is positive
for large particles (ν = l): Ψ

(l)
ks = ∫

Ω
fslΦl[1 − φl](ρ∗u ∂u/∂z) dV > 0. In this scenario,

large particle species segregate into upper regions characterised by a granular flow with
higher inertia and density of KE. Conversely, for the case of small particles (ν = s), the
KE flux owing to segregation is negative: Ψ

(s)
ks = − ∫

Ω
fslΦs[1 − φs](ρ∗u ∂u/∂z) dV < 0.

Here, small-particle species segregate into deeper regions characterised by a granular flow
with a lower inertia and density of KE, resulting in a global loss of their KE.

The third Ψ
(ν)
kd and fourth Ψ

(ν)
c terms on the right-hand side of (3.8) correspond to the

energetics that quantify the rate of change of E(ν)
k owing to diffusion and convective flows

that redistribute ν-particle species vertically within the granular matrix. We remark that
the sign of the energy flux due to diffusion Ψ

(ν)
kd also depends on the ν-particle species.

To illustrate this, we consider the same bidisperse granular flow discussed earlier, which
allows us to simplify the term to Ψ

(ν)
kd = ∫

Ω
Dsl(∂Φν/∂z)(ρ∗u ∂u/∂z) dV . Assuming that

u(∂u/∂z) > 0, the actual sign of Ψ
(ν)
kd is determined by the gradient ∂Φν/∂z, which may

also change over time, as shown later in figure 1(b) and evaluated in § 4. Finally, the term
Ψ

(ν)
μ is general and characterises the energetics associated with the irreversible loss of KE

due to interparticle friction, commonly referred to as the KE dissipation rate. Note that a
closed-form mathematical expression for Ψ

(ν)
μ requires a constitutive relationship between

the stress tensor T and the granular mixture rheology. In this direction, the proposed
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framework is flexible enough to allow the usage of local or non-local rheological models
(Kamrin et al. 2024), without loss of generality.

4. Application: shear-driven granular flow

The framework introduced in § 3 allows us to investigate granular flows from an energy
perspective. We illustrate its applicability by examining the energetics of sheared granular
flows undergoing segregation and mixing dynamics. For such a configuration, we must
have a constitutive law relating stresses and the granular mixture rheology to determine the
energy injection and dissipation resulting from particles’ friction, Ψ

(ν)
μ , which are defined

next.

4.1. Stress tensor and μ(I)-rheology for bidisperse granular mixtures

To calculate Σ
(ν)
k and Ψ

(ν)
μ in (3.8), the stress tensor T needs to be described thoroughly.

A widely used relationship to do so is the μ(I)-rheology, that relates the shear τ and normal
p stresses through a Coulombic relation τ = μ(I) p. Embedded within this definition, the
frictional coefficient μ(I) is found to be dependent on the inertial number (e.g. MiDi 2004)

I = γ̇ d̄√
p/ρ∗ . (4.1)

The frictional coefficient is obtained by fitting the empirically determined function
μ(I) = μ1 + (μ2 − μ1)/(I0/I + 1), where μ1 and μ2 are the static and dynamic frictional
coefficients, respectively (Jop, Forterre & Pouliquen 2006). These two coefficients,
alongside the material parameter I0, correspond to the experimental parameters that define
the μ(I)-rheology. However, the above relationship for μ(I) is ill-posed. Barker & Gray
(2017) partially regularised the μ(I) definition with the extended relationship

μ(I) =

⎧⎪⎨
⎪⎩

√
α/ log(A/I), for I ≤ I1,

μ1I0 + μ2I + μ∞I2

I + I0
, for I > I1,

(4.2)

where μ∞, α and I1 are material-dependent coefficients. The two latter parameters with
A serve as fitting constants for the partially regularised μ(I)-rheology, which guarantees
continuity of (4.2). For this work, the values for all these parameters and constants defining
the μ(I)-rheology are presented in table 1.

To include bidispersity effects in the bulk’s frictional response, we define a
concentration-averaged frictional coefficient μ̄ = μsφs + μlφl = (1 − χμφs)Rμμs, where
μν denotes the frictional coefficient for the ν species, and Rμ = μl/μs is a ratio that
defines the asymmetry parameter χμ = (Rμ − 1)/Rμ (Trewhela 2024) (see table 1). From
the above definitions, the stress tensor components are given by

Tij =
{

μ̄(I) p − p, for i = j,

μ̄(I)p, for i /= j,
with i, j = {x, z}, (4.3)

which are naturally averaged over the concentrations of particle species.
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Energetics of particle-size segregation

4.2. Energetics of a sheared bidisperse granular layer
As a case study, we consider a bidisperse granular bulk of depth h sustaining shear exerted
by a top plate imposing a uniform normal pressure distribution p = p0 and moving at a
constant velocity u0 in the streamwise x-direction (figure 1a). Based on the rheological
model in § 4.1, the pressure p0, velocity u0 and frictional coefficient μ0 set a shear τxz =
τ0 = p0μ0 (table 1) at the top boundary. In contrast, the granular material in contact with
the motionless bottom does not slip or roll. Under these conditions, the granular system
develops a zero-gravity shear flow, which, for simplicity, is treated as two-dimensional and
periodic in the x-direction. As a result, the sheared layer depends on the upper boundary
condition (John Soundar Jerome & Di Pierro 2018)

h =
(

μ0

μ1
− 1

)
p0

ρ∗gΦ
. (4.4)

The top and bottom boundaries are closed, so fluxes across them are null. Without loss
of generality, we examine the momentum–segregation equations of the small-particle
species, i.e. ν = s, which, in non-dimensional form, are given by

∂ û
∂ t̂

= ∂

∂ ẑ
([1 − χμφs]Rμμsp̂),

∂φs

∂ t̂
= ∂

∂ ẑ

(
f̂slφs[1 − φs] + D̂sl

∂φs

∂ ẑ

)
, (4.5a,b)

where û = u/u0, p̂ = p/p0, ẑ = z/h, t̂ = t/(h/u0), f̂sl = fsl/u0 and D̂sl = Dsl/(u0h) denote
the non-dimensional variables (Trewhela 2024). From (4.5a,b) and considering the energy
scale per unit area Φρ∗gh2, the evolution equation for the non-dimensional GPE, Ê(s)

gp =∫ 1
0 φsẑ dẑ, reduces to

dÊ(s)
gp

dt
=

∫ 1

0
−f̂slφs[1 − φs] dẑ︸ ︷︷ ︸

Ψ̂
(s)
gps

−
∫ 1

0
D̂sl

∂φs

∂ ẑ
dẑ︸ ︷︷ ︸

Ψ̂
(s)
gpd

. (4.6)

Likewise, considering the same energy scale, the evolution equation for the
non-dimensional KE, Ê(s)

k = 1
2 Fr2 ∫ 1

0 û2 dẑ, simplifies to

dÊ(s)
k

dt̂
= Fr2 (û[1 − χμφs]Rμμsp̂)|ẑ=1︸ ︷︷ ︸

Σ̂
(s)
k

− Fr2
∫ 1

0
[1 − χμφs]Rμμsp̂

∂ û
∂ ẑ

dẑ︸ ︷︷ ︸
Ψ̂

(s)
μ

, (4.7)

where Fr = u0/
√

gh is the Froude number of the bulk granular flow. The energetics
Σ̂

(s)
k and Ψ

(s)
μ are positive definite and determine the rate of kinetic (mechanical) energy

production due to surface shear and KE dissipation owing to friction, respectively.
In contrast, the energetics Ψ̂

(s)
gps and Ψ̂

(s)
gpd quantify the transformation rate of potential

(mechanical) energy due to vertical segregation and diffusion of particles, respectively;
their signs are not defined a priori. The energy pathways controlled by the processes
responsible for transforming the mechanical energy – i.e. segregation, particle diffusion
and friction – are unknown and investigated next.
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Figure 2. Numerical results for μ0 × Rd = {0.8} × {1.25, 1.5, 1.75, 2.0, 2.25, 2.5}. (a) Energetics of GPE,
Ψ̂

(s)
gps and Ψ̂

(s)
gpd versus time t̂. (b) Energetics of KE, Σ̂

(s)
k and Ψ̂

(s)
μ versus time t̂. (c) Temporal gradient of

KE and its (e) budget versus time t̂. (d) Temporal gradient of GPE and its ( f ) budget versus time t̂.

4.3. Numerical experiments
Following Trewhela (2024), we resolved numerically the coupled, nonlinear partial
differential equation system in (4.5a,b) using the method of lines. This numerical scheme
is unconditionally stable and considered a constant pressure distribution p = p0, so its
robustness is not compromised by the ill-posed μ(I)-rheology, even though it is regularised
in (4.2). A total of 18 simulations were run, considering first a set of parameters μ0 ×
Rd = {0.5, 0.8} × {1.25, 1.5, 1.75, 2.0, 2.25, 2.5} yielding 12 simulations to understand
mid-range values, and second the set {0.4, 1.2, 1.6} × {1.25, 2.5} to explore extreme
values for μ0.

From the parameters introduced in table 1, the size ratio Rd and frictional coefficient
μ0 are the most determinants for segregation dynamics. The μ(I)-rheology defining
parameters are also relevant. Still, these are material dependent and altogether compile
a large set of parameters that are particular for a type of grain. It is then hard to
vary each parameter separately while extracting relevant information for segregation,
and it is also at risk of exponentially increasing the number of simulations. Next,
the empirical constants from the Trewhela et al. (2021a) scaling law and Utter &

1000 A50-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1053
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Behringer (2004) need further validation in other flow configurations and particles, yet
these have delivered consistent results against experimental and numerical data (Maguire
et al. 2024; Singh, Liu & Henann 2024). For completion, Trewhela (2024) analysed the
relevance of the parameters at the wall imposing shear, namely p0, u0 and μ0 in this
work. These parameters control the time scales at which segregation operates, but only μ0
determines the segregation–diffusion balance or the resulting concentration φs profiles.
Also, Trewhela (2024, figure 5) shows that Rμ does not have a determinant role in the
segregation–diffusion balance, hence the resultant small-particle distribution φs, only on
the velocity profiles û. Thus we propose a brief but comprehensive set of simulations
to shed light on the energetics under various frictional regimes and a wide range of
segregation–mixing dynamics. Figure 1 illustrates an example of the spatiotemporal
evolution of small-particle concentration φs(t̂, ẑ) and vertical profiles of the shear-driven
granular flow û(t̂, ẑ), which are utilised to compute the energetics in (4.6) and (4.7).

Figure 2(a) shows time series of the segregation energy flux Ψ̂
(s)
gps and the diffusive

energy flux Ψ̂
(s)
k for the frictional coefficient μ0 = 0.8 and a range of size ratio values

1.25 ≤ Rd ≤ 2.5. The energy flux Ψ̂
(s)
gps is always negative, i.e. segregation continuously

consumes the available GPE that the small particles have. Yet Ψ̂
(s)
gps exhibits two striking

phases. The first phase is characterised by an exponential-like increase of the segregation
flux, supported by the diffusive flux Ψ̂

(s)
gpd that also consumes GPE during this phase. The

second phase is characterised by a change in the diffusive flux direction, which starts
to raise the GPE until the granular flow balances into dÊ(s)

gp /dt̂ → 0. This final state
equilibrium is shown in figure 2(c), which illustrates dÊ(s)

gp /dt̂ versus time. Figure 2(b)
shows time series of the KE production due to shear taken by the small particles Σ̂

(s)
k

and the KE dissipation rate owing to friction Ψ̂
(s)
μ . The magnitude of KE energetics is

larger than the GPE energetics, showing that the system is dominated by particle–particle
interactions with a short-lived transient phase, in which shear production at the boundary
Σ̂

(s)
k is slightly higher than friction dissipation Ψ̂

(s)
μ . This results in the KE reaching a

shear friction equilibrium significantly faster than the GPE equilibrium, which is hindered
due to the slow pace segregation and the counter effect of diffusive remixing, as shown in
figure 2(d). At the equilibrium state, the KE injected by shear is utilised to mobilise grains
horizontally and maintain the bidisperse granular material fully or partially segregated
across the sheared layer h. Such a balanced state – and therefore its GPE – should strongly
depend on the competition between segregation and diffusion fluxes, which fosters mixing
within the granular bulk.

The temporal evolutions of the bulk GPE and KE are shown in figures 2(e, f ). These two
plots confirm and aggregate the observations made from the overall energetics and their
rates in figures 2(a–d). Much of the variation in Ê(s)

gp comes from segregation that decreases
the small particles’ energy as a result of the onset of the kinetic sieving mechanism.
Naturally, this decrease comes to a halt when it is balanced with diffusion, as observed
in figure 2(a). The behaviour of the KE Ê(s)

k is different, showing a strong and immediate
increment due to the upper plate transferring momentum to the small particles located at
the top. After the momentum is transferred through the whole bulk, the transient velocity
profile is achieved, producing a plateau in Ê(s)

k . Finally, the KE plateau value is then
modified by the segregation and diffusion balancing out into a steady state that varies
with μ0 and Rd. Notably, the plateau values for Ê(s)

k show higher KE values for larger Rd
values, which is consistent with the notion that larger particles result in larger inertia. This
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trend is inverted after segregation and diffusion balance, with smaller Rd values having
more KE. The latter shows the influence of diffusion and the effect of partially averaged
quantities.

4.4. Non-dimensional parameters and scalings
From the numerical solutions (figures 1b,c) and the results shown in figure 2, the
roles of segregation, diffusion and friction (or dissipation) are evident in the energetics
distribution and balance. Besides the energy injection Σ̂

(s)
k , the other three energetics

represent well-defined processes that control the bidisperse granular flow dynamics. When
combining and balancing these three main energetics, several non-dimensional parameters
arise. A first quantity appears when analysing the GPE energetics: the competition between
segregation Ψ

(s)
gps and diffusion Ψ

(s)
gpd is controlled by the segregation Péclet number

Pe = hfsl

Dsl
, (4.8)

which directly compares the segregation velocity fsl to the particles’ diffusion velocity
scale Dsl/h (Gray & Chugunov 2006; Wiederseiner et al. 2011; Gray 2018), with h
the thickness of the active sheared layer, which depends on the boundary condition
parameters μ0 and p0 (see (4.4)). Yet in terms of the physical forcing of our system, it
appears naturally that two other non-dimensional quantities balance the energetics. The
second non-dimensional parameter, the Schmidt number Sc = Dsl/νg, balances particle
diffusivity Dsl (Ψ (s)

gpd) and momentum diffusion (Ψ (s)
μ ), represented by the granular

kinematic viscosity νg. This viscosity is defined as νg = μp/(ργ̇ ) when the Coulombic
relation τ = μp combines with the equivalent Newtonian description τ = ηgγ̇ for the
granular flow. Thus the remaining combination from the main three energetics is that of a
balance between segregation Ψ

(s)
gps and momentum diffusion or frictional dissipation Ψ

(s)
μ .

This balance results in the segregation–rheology Péclet number, which can be interpreted
alternatively as a segregation Reynolds number and can be obtained as a combination of
the other two non-dimensional numbers (Trewhela 2024):

Pesr = Pe
Sc

= hfsl

νg
. (4.9)

The competition between segregation and frictional dissipation is condensed by the
segregation–rheology Péclet number Pesr, which in our numerical experiments spans
Pesr = Pe/Sc ∈ [0.4, 300]. For the specific case study, the granular kinematic viscosity
νg is introduced following Trewhela (2024, (3.5)), which depends on size ratio Rd via the
shear rate γ̇ . This results in a segregation–rheology Péclet number that can be defined and
computed as

Pesr = I2

ΦPμ̂0
F(Rd, φs) = ρ∗gh

p0

ρ∗γ̇ 2d̄2

μ0p0
B(Rd − 1)(1 + E(Rd + 1)(1 − φs)), (4.10)

where ΦP = ρ∗gh/p0 is a non-dimensional pressure that can also be interpreted as a solids
volume fraction, and μ̂0 is a χμ-dependent frictional coefficient that approximates to μ0
when χμ → 0, in our numerical solutions.

However, as emphasised earlier, Péclet numbers do not provide explicit information
about the energy state of granular flows. To understand how segregation, mixing and
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(s)Ême
/
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Figure 3. Results for all 18 numerical solutions. (a) Mechanical energy partition versus the
segregation–rheology Péclet number Pesr. Reddish markers denote Ê(s)

k /Ê(s)
me, blueish markers denote

Ê(s)
gp /Ê(s)

me, with Ê(s)
me = Ê(s)

k + Ê(s)
gp . (b) Ratio of the mechanical energy components, i.e. the Richardson number

Ri versus Pesr. The inset shows experimental data of †van der Vaart et al. (2015) and ‡Wiederseiner et al.
(2011) compared to the proposed scaling Ri ∼ Pe−1/2

sr .

dissipation dynamics affect the energy partition between GPE and KE, we can borrow
the Richardson number Ri definition for stratified flows, weighting the balance between
buoyancy and inertia (e.g. Caulfield 2021). Estimating Ri a priori is challenging, which
leads us to explore a potential link between Ri and Pesr directly from our numerical
experiments.

To unravel the relation between Pesr and Ri, we first examine the partition
of the mechanical energy components (of the small-particle species) versus the
segregation–rheology Péclet number. Figure 3(a) shows Ê(s)

gp /Ê(s)
me (blue) and Ê(s)

k /Ê(s)
me

(red) versus Pesr, with Ê(s)
me = Ê(s)

k + Ê(s)
gp the mechanical energy. For low Pesr (≤10), the

KE is substantially smaller than the GPE, whereas for high Pesr (≥102), the KE scales with
or surpasses the GPE. From these results, we therefore expect the segregation–mixing state
to be sensible to the energy partition, and in particular to the ratio between GPE and KE,
here termed as the bulk Richardson number Ri of the granular flow:

Ri ≡ Ê(s)
gp

Ê(s)
k

= gh

u2
0/2

∫ 1

0
φsẑ dẑ∫ 1

0
û2 dẑ

. (4.11)

This specific Ri is defined for small particles, but is extensible for other particle species.
Figure 3(b) plots Ri versus Pesr for our numerical solutions and experimental data from

the literature. For the latter, we used the results from a 50 : 50 mixed shear cell experiment
of van der Vaart et al. (2015), and the chute flow experiments of Wiederseiner et al.
(2011). These studies provide measurements of the resulting small-particle distribution
φs at steady-state conditions, which is key to determining the energy partition, hence the
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ratio between GPE and KE. We determined the small particle concentration φs profiles of
Wiederseiner et al. (2011) using their reported segregation rates q, diffusion coefficients D,
and flow heights h (for their runs 22–25), and we directly used their flume slope (equivalent
to μ0 in steady state), particle density and shear rates to calculate the granular viscosity
νg. Hence with their reported Péclet numbers Pe, we could obtain Pesr = Pe/(νg/D). For
the van der Vaart et al. (2015) experiment, we computed Pe at the middle of their shear
cell ẑ = 1/2 – in similar fashion to Trewhela et al. (2021a) – as Pe varies with depth ẑ in
such an experimental configuration. While a range of Pe values could be used, the balance
between segregation and diffusion is most relevant at the small–large particle interface,
which is precisely at ẑ = 1/2 in their experiment.

The results of this numerical and experimental dataset exhibit the distinct scaling
relationship Ri ∝ Pe−1/2

sr for six decades of Pesr, a direct result from a linear regression
of the plot in logarithmic scale (dash-dotted line in figure 3b). Intriguingly, the empirical
scaling law for Ri–Pesr does not seem straightforward to justify theoretically. However,
a possible explanation for this scaling law relies upon the relationship between the
active shear layer h – where the mechanical energy is stored and transformed – and
the segregation–rheology Péclet and bulk Richardson numbers. Following the definitions
in (4.10) and (4.4) yields that Pesr ∝ h−2. At the same time, the relation Ri ∝ h is
retrieved directly from the bulk Richardson number definition. Therefore, combining both
relationships, one may derive that Ri ∝ Pe−1/2

sr . Remarkably, this scaling shows excellent
agreement with our compiled numerical results and experimental data from the literature
(see the inset of figure 3b). Despite the fact that these experiments inherently have
dispersion in their measurements, which we could not quantify from the reported data,
the proposed scaling proves to be consistent as a follow-up to our numerical results. From
this scaling, the energy partition of the granular flow can be readily predicted since Pesr
is determined from prescribed system parameters in most cases, as our calculations from
previous experiments demonstrate.

4.5. Degree of mixing (and segregation)
Yet how does the energy partition relate to the segregation–mixing state? We investigate
this question through the ‘degree of mixing’

Mφ = 1 − (σφ/σsg)
2, (4.12)

with σ 2
sg = 1/2 the variance of the fully segregated state of the species concentration φs,

and σ 2
φ the variance of φs. Thus Mφ = 0 denotes a perfectly segregated state, and Mφ = 1

a perfectly mixed state. It is apparent that the ‘degree of segregation’ in the system can be
quantified from the reciprocal Sφ = 1 − Mφ . To explore first how the degree of mixing
evolves in time throughout our numerical solutions, we plot Mφ for five different cases in
figure 4(a). The selected cases cover the whole range of friction coefficients μ0 and size
ratios Rd, and they result in differing mixing degrees Mφ at steady state. These results
show that all solutions pass by an intermediate, yet maximum, apparent mixing state,
independently of whether the steady-state solution is mixed or segregated. Interestingly,
the moment when this apparent mixing state happens is not the same for all cases. It
appears to be controlled by diffusion, based on the results shown in figure 2(a). We plot in
figure 4(b) the degree of mixing as a function of time for the experimental data of van der
Vaart et al. (2015) against an equivalent numerical solution of their 50 : 50 mix experiment.
Despite the evident point-to-point differences, numerical and experimental results show
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Figure 4. (a) Degree of mixing Mφ as a function of time t̂ for a subset of our numerical simulations.
(b) A comparison between the degree of mixing Mφ in the 50 : 50 mix experiment of van der Vaart et al. (2015)
and its corresponding numerical solution, both as a function of the van der Vaart et al. (2015) non-dimensional
time t̂∗, which depends on their shear cell oscillation period. (c) Degree of mixing Mφ at steady state as
a function of the Péclet number Pe for our numerical simulations. Experimental data from †van der Vaart
et al. (2015) and ‡Wiederseiner et al. (2011) are also included and plotted by considering their depth-averaged
small-particle concentration. The whole dataset is compared to the here introduced theoretical expression
Mφ = (4/Pe) tanh(Pe/4).

remarkable agreement – in magnitude and trend – both passing by the apparent mixing
state, with the difference in Mφ closing out at steady state. Notice that the evolution of
the degree of mixing Mφ in figure 4(b) differs from that observed in figure 4(a); this
is because in the shear cell experiment, the onset of the shear rate is almost immediate
compared to the shear flow studied here, which requires momentum to be transferred first.

Finally, to focus on the segregation–mixing state attained by the system, we examine
Mφ in terms of the segregation Péclet number Pe instead of Pesr. This allows us to isolate
the mechanisms controlling mass distribution and GPE, excluding the friction needed
to account for KE. Figure 4(c) shows Mφ versus Pe. The results show that Pe strongly
controls the degree of mixing, characterised by a nonlinear yet monotonic relationship.
Within our parameter space, the maximum mixing state is attained at Pe ≈ 1, with
Mφ ≈ 0.99. Conversely, the minimum mixing state, Mφ ≈ 0.05, is achieved at Pe ≈ 102,
indicating the onset of a saturation state. Statistically, we expect Mφ not to be zero at
high Pe values as the transition region between small and large particles experiences a
persistent remixing–segregation process, as seen in laboratory and numerical experiments
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(e.g. Golick & Daniels 2009; van der Vaart et al. 2015; Ferdowsi et al. 2017; Singh &
Henann 2024).

The nonlinear relationship between the degree of mixing and the segregation Péclet
number can be derived theoretically from the steady-state solution for φs. From the
segregation–diffusion equation in (4.5a,b), φs can be integrated to yield

φs = ePe (K−ẑ)

1 + ePe (K−ẑ)
, (4.13)

which is analogue to the solutions of Trewhela (2024, (3.3)), Wiederseiner et al. (2011,
(11)) and Gray & Chugunov (2006, (3.4)). The integration constant K corresponds to
the depth-averaged concentration, i.e. φs = 0.5 for the studied case, and variable for the
Wiederseiner et al. (2011) experiments. With this analytical solution for φs, its variance
can be expressed as σ 2

φ = E(φ2
s ) − E(φs)

2, where E(·) denotes the expected value. The
theoretical calculation of σ 2

φ alongside the value σsg = 1/2 yields an analytical expression
for the degree of mixing:

Mφ = − 4
Pe

(
1 − ePe/2

1 + ePe/2

)
= 4

Pe
tanh

(
Pe
4

)
. (4.14)

Reciprocally, the latter expression provides an explicit function for the degree of
segregation as a function of the Péclet number for segregation:

Sφ = 1 − Mφ = 1 − 4
Pe

tanh
(

Pe
4

)
, (4.15)

where Pe for a first-order approximation in Rd − 1 is a function of the empirical
constants A (Utter & Behringer 2004) and B (Trewhela et al. 2021a) corresponding to
Pe = B(Rd − 1)ρgh/(Ap0).

In figure 4(c), our compiled dataset of numerical solutions and experimental data from
van der Vaart et al. (2015) and Wiederseiner et al. (2011) shows excellent agreement with
the proposed theoretical curve in (4.14) (dash-dotted line), which indicates that mixing
(and segregated) states depend solely on Pe, hence on the parameters that define it. The
latter provides a general relationship that does not depend on flow configuration or scale, a
fact inherited from the variable conditions considered in our shear flow case, and the shear
cell and chute flow configurations from the previous experimental results included here.

5. Concluding remarks

This paper introduces a continuum framework for the energetics of particle-size
segregation in granular flows, providing general analytical expressions for the energetics
governing the mechanical energy budget in the system. The framework builds upon the
convective–diffusion equation (Gray 2018) for segregation and a recent segregation scaling
law (Trewhela et al. 2021a), enabling the study of the complex physics of bidisperse
granular flows from a mechanical energy perspective. The proposed approach is easily
extensible to polydisperse systems, and does not depend on a particular rheological model,
local or non-local, as long as the stress tensor is properly described.

We illustrate the framework’s applicability by studying the energetics and mechanical
energy partition in shear-driven bidisperse granular flows alongside the partially
regularised μ(I)-rheology (Barker & Gray 2017). Numerical solutions exploring different
friction coefficients μ0 and particle-size ratios Rd reveal: (i) the existence of distinctive
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phases in the segregation–mixing energy pathways, heavily marked by segregation and
diffusive remixing; and (ii) that the bulk Richardson number, defined as the ratio
between GPE and KE at equilibrium, follows the scaling relationship Ri ≡ Ê(s)

gp /Ê(s)
k ∝

Pe−1/2
sr = (Sc/Pe)1/2, for 10−4 ≤ Pesr ≤ 300, with Pesr the segregation–rheology Péclet

number, and Pe and Sc the segregation Péclet number and Schmidt number, respectively.
Furthermore, we derived a theoretical expression for the degree of mixing Mφ (and
segregation Sφ = 1 − Mφ), which depends only on Pe; our numerical simulations and
laboratory experiments from the literature (Wiederseiner et al. 2011; van der Vaart
et al. 2015) validate this theoretical result. Our findings hint that the energy partition of
bidisperse granular flows can be predicted from the Péclet and Schmidt numbers, providing
a powerful tool for understanding and controlling segregation–mixing states in granular
flows across various engineering applications and geophysical systems.
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