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Abstract. One of the most successful method in quantifying the structures in the Cosmic Web
is the Minkowski Functionals. In 3D, there are four minkowski Functionals: Area, Volume, In-
tegrated Mean Curvature and the Integrated Gaussian Curvature. For defining the Minkowski
Functionals one should define a surface. We have developed a method based on Marching cube
33 algorithm to generate a surface from a discrete data sets. Next we calculate the Minkowski
Functionals and Shapefinder from the triangulated polyhedral surface. Applying this method-
ology to different data sets , we obtain interesting results related to geometry, morphology and
topology of the large scale structure
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1. Introduction
A visual inspection of the galaxy surveys, like SDSS, 2dFGRS etc, reveals that the

galaxies are arranged into a magnificent architecture. This architecture, a complex dis-
tribution of galaxies in different structural elements (filaments, sheets and clusters), is
coined as Cosmic Web. Quantifying the Cosmic Web is a major problem in modern
cosmology.

There are many statistical tools to quantify the Cosmic Web. One of the most effec-
tive diagnostic to quantify the Cosmic Web is the Minkowski Functionals (henceforth
MFs), introduced in Cosmology by Mecke et al.(1994). Sahni et al. (1998) introduced
Shapefinders, using the ratio of MFs, to quantify individual structural elements in the
Cosmic Web. The 2D version of Shapefinders was introduced by Bharadwaj et al.(2000).

In the present work, we will describe an ansatz to accurately estimate the MFs and
hence the shapefinders. This include the construction of smoothed density field from
a point distribution and then construct triangulated isodensity surface using Marching
cube 33 algorithm (Chernyaev (1995)). We have studied this in details and applied it to
SDSS datasets.

2. Minkowski Functionals and Shapefinders
In 3D, there are four MFs, namely the Volume (V ), Surface Area(S), Integrated mean

curvature (C) and Genus(G). These MFs provide a global characterization of individ-
ual structures in the Cosmic Web. Using the above MFs, Sahni et al. (1998) devised
shapefinders which include those which have dimension of length as well as those that
are dimensionless, to classify the large scale structure. The shapefinder that have di-
mension of length, H1 = 3V/S, H2 = S/C, H3 = C/4πG, are used to evaluate the
size of the structures. Based on Hi , the useful dimensionless shapefinders − Planarity
(P = (H2 −H1)/(H2 +H1)) and Filamentarity (F = (H3 −H2)/(H3 +H2)) are defined
to quantify the shape of 3D objects.

250

https://doi.org/10.1017/S1743921316009960 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316009960


The Shapefinder diagonistic 251

It is interesting to note that P,F � 1. The dimensionless shapefinders (P, F) along
with the Genus(G) gives the complete information about the shape and the topology of
the structure.

For estimating MFs the first basic step is to construct a isodensity surface. For that,
we require to construct smoothed density field defined on a rectangular grid from point
distribution. Then given a density threshold (ρT H ), one can construct a triangulated
surface using Marching Cube-33 algorithm. For these triangulated surfaces, the MFs can
be evaluated by the following equations (also see Sheth (2006) for details):

(a) The Volume is given by V =
∑NT

i=1 Vi =
∑NT

i=1
1
3 Si(n̂ · �P )i where Vi is the volume

of the individual tetrahedron, n̂ is the normal vector of ith triangle and �P is the position
vector of the centroid of ith triangle. NT is the total number of triangles and Si is the
area of the ith triangle.

(b) The Surface Area is given by S =
∑NT

i=1 Si .
(c) The Genus is given by G = 1 − χ

2 = 1 − NT −NE +NV

2 , where χ is the Euler
characteristics, NE and NV denotes the total number of triangle-edges and triangle-
vertices of the triangulated surface respectively.

(d) The Integrated Mean Curvature is estimated by calculating the curvature
tensor per triangle based on vertex normals on the triangulated surface as describe in
Rusinkiewicz (2004)

3. Test with idealised structures
We first check reliability of the above technique with Standard Eikonal Surfaces. The

three different structures that we consider correspond to Spherical, Ellipsoidal and Torus.
We have generated a spherical surface by assigning density (ρ) on a grid using the fol-
lowing relations,

ρ(i, j, k) =
{

ρ0/R if (i, j, k) �= (11, 11, 11)
ρ0 if (i, j, k) = (11, 11, 11) (3.1)

where R is the radius of the sphere. The threshold ρT H associated with sphere of radius
R is ρ/ρT H . Figure 1(a) shows the percentage error in the MFs as a function of radius
of sphere. We note that the percentage errors for all radius (R > 1) are less than 0.5 for
all MFs. The genus estimated is 0 for sphere of all radii.

We next study the accuracy for triaxial ellipsoid, which depending on the relative scales
of the three axes (a, b, c) can be prolate, oblate or spherical. We first study the Prolate
deformation. We start with a >> b = c, and then increase the b and c-axis, until we
get a = b = c. Figure 1(b) shows the percentage error of MFs as they evolve with the
dimensionless variable c/a. The results clearly demonstrate the matching MFs with the
exact value to a remarkable degree of accuracy. At the c/a � 0.2, the percentage error of
all MFs is less than 0.7%. Next we study the oblate deformation of the Ellipsoid. We start
we a << b = c and increase a until to a value such that a = b = c. As a increases, the
planarity starts decreasing. Figure 1(c) shows the variation of MFs with dimensionless
variable a/c. The figure clearly shows that the MFs obtained using triangulation match
the exact value with high degree of accuracy. We find that C is estimate to the worst
accuracy with maximum percentage error of 1.2%. The genus estimated is 1 for both
types of ellipsoid irrespective of axis length.

We now demonstrate the accuracy of ansatz for Torus deformation. The torus can be
describe by three parameters a, b and c. We have considered the deformations of a two
kind of torus − Circular Torus (a = c << b) having circular cross-sections and elliptical
Torus (a �= c << b) having elliptical cross-section. It is an important test, since it contains

https://doi.org/10.1017/S1743921316009960 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316009960


252 P. Sarkar

2 4 6 8 10
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

R

%
 E

rr
or Area

Volume
IMC

(a) Spherical Surface
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(b) Prolate Ellipsoid
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(c) Oblate Ellipsoid
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(d) Circular Torus
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(e) Prolate Torus
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(f) Oblate Torus

Figure 1. The figures shows the variation of percentage error of different MFs with Radius
(for sphere) or the ratio of the axis length.

both convex and concave region. For both deformations we have consider b = 20. Figure
1(d) shows the variation of percentage error for different MFs with a. The small error
becomes even smaller with increasing a. We next study the accuracy for two different
types of elliptical Torus −, prolate (a > c, a = 10) and oblate (c > a, c = 10). Figure
1(e) and 1(f) shows the variation of percentage error estimated by ansatz with respect
to increasing values c/a and a/c respectively. The results again prove the accuracy of
the algorithm. Our results clearly demonstrate the excellent agreement of the calculate
value of Minkowski Functionals with the exact analytic formulae.

4. Results for the SDSS and Conclusion
We now apply the MFs estimator to quantify the shape of the galaxy distribution in the

Sloan Digital Sky Survey Data Release 7. A volume-limited sample of 116, 877 galaxies
is constructed by restricting the absolute r-band magnitude brighter than −21.6. The
details of the sample have been discussed in Park et al.(2012). The analysis was carried
out by identifying structures using Friend-of-Friend (fof) algorithm. The critical linking
length is determined by choosing that linking length which results in maximum number
of structures. In our case the critical linking length is found out to be 5.6 h−1 Mpc when
the minimum number of member galaxies is set to 20. There are about 873 structures
discovered by fof method. For each structures, we apply a Cloud in Cell (CIC) technique
to construct a density field on the grid of size 1 h−1 Mpc. Next we smooth this density
field with a Gaussian kernel of smoothing length 1.9 h−1 Mpc. Now considering a density
threshold of 4.15 times the mean density to estimate the Minkowski Functionals and
Shapefinders. For comparison we have used 200 mock samples extracted from the Horizon
Run 2 (Kim et al.(2011)) simulation. Each Mock samples are analyse in the same way
as the SDSS data. This gives the linking lengths of 5.55 ± 0.13 h−1 Mpc from these 200
mock SDSS samples.
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(a) Filamentarity
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(b) Planarity

Figure 2. This left and right panel show the fraction of structures with Filamentarity and
Planarity respectively. The red curve in the figure shows the results of SDSS while the blue
dash curve shows the results of Simulations. 200 Mock samples are used to estimate the 1 − σ
error-bars.

Figure 2(a) and 2(b) shows the fraction of structures with different Filamentarity and
Planarity value respective. The red curve shows that of SDSS and the blue dash curve
shows the results for the Mock samples. We find that more than 60% structures have
Filamentarity values in between 0.1 and 0.3. While more that 80% of structures are
found to have planarity values in the range 0.05 to 0.15. We find that the results from
the Millennium Simulation shifts toward the right to those obtained for the actual SDSS
data. This discrepancy is seen for both figures. The origin of this discrepancy is, at the
moment, not clear and is an issue we plan to address in future work.

In summary, we can say that the ansatz discussed above gives an accurately estimate
the Minkowski Functionals and shapefinders for any arbitrary shape. When apply to
structures identified from SDSS galaxies using Friend-of-Friend algorithm, we observe a
clear dominance of Filamentarity and Planarity at value 0.2 and 0.1 respectively. We
have seen that the Minkowski Functionals and shapefinder estimated using the above
method is a robust method to accurately quantify the individual structures in the galaxy
distribution.
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