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A b s t r a c t . Both linear and nonlinear calculations of the 331 day, long period variable star 
Mira have been undertaken to see what radial pulsation mode is naturally selected. Models 
are similar to those considered in the linear nonadiabatic stellar pulsation study of Ostlie 
and Cox (1986). Models are considered with masses near one solar mass, luminosities 
between 4000 and 5000 solar luminosities, and effective temperatures of approximately 
3000 K. These models have fundamental mode periods that closely match the pulsation 
period of Mira. The equation of state for the stellar material is given by the Stellingwerf 
(1975ab) procedure, and the opacity is obtained from a fit by Cahn that matches the low 
temperature molecular absorption data for the Population I Ross-Aller 1 mixture calcu­
lated from the Los Alamos Astrophysical Opacity Library. For the linear study, the Cox, 
Brownlee, and Eilers (1966) approximation is used for the linear theory variation of the 
convection luminosity. For the nonlinear work, the method described by Ostlie (1990) and 
Cox (1990) is followed. Results showing internal details of the radial fundamental and first 
overtone modes behavior in linear theory are presented. Preliminary radial fundamental 
mode nonlinear calculations are discussed. The very tentative conclusion is that neither 
the fundamental or first overtone mode is excluded from being the actual observed one. 

1. Background 

Mira variables have been studied observationally for hundreds of years, be­
cause many of them are bright enough to be seen with the naked eye or with 
small telescopes, and their periods are so long that constant attention is not 
needed. Theoretical studies, however have been far fewer, mostly because 
the extensive and deep convection is difficult to cope with in the context 
of stellar pulsation. In this paper we present new theoretical results, but a 
definitive conclusion for which radial mode of pulsation is actually occurring 
still eludes us. 

The basic parameters of Mira variables are their pulsation periods (or 
many periods for the red semiregular variables), their radii, and their lu­
minosities. Surface compositions seem to be at least hydrogen rich as for 
most stars, even though these stars are obviously remnants of more massive 
stars that have undergone significant mass loss. Thus the composition of the 
pulsating envelopes, while surely homogeneous, may not be that for normal 
solar type stars. Numerous composition anomalies are known. For example, 
these red giants are often in spectral classes R, N, and S. Mira masses are 
unknown and disputed, but most seem to come from stars with original mass 
of less than 2 solar masses. More massive progenitors become red supergiants 
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and even Mira variables, but their red supergiant lifetimes must be short 
as they rapidly lose mass to create planetary nebulae and ultimately white 
dwarfs. Most Miras have currently near only one solar mass. 

The evolution of the Mira stars is just at the Hayashi line on the Hertz-
sprung-Russell diagram, because their luminosity is very large for their mass. 
The vary low mass envelopes result from the high luminosity blowing out 
the matter to large radii. The low temperature of the matter gives it a high 
opacity, and consequently strong convection to carry the high luminosity. 

Nonlinear calculations to study the behavior of the Mira pulsations have 
been made by Wood (1974), by Tuchman, Sack, and Barkat (1978, 1979), 
and by Perl and Tuchman (1990). We at Los Alamos have been trying to 
do these calculations for 10 years, but we have not been able to be satisfied 
that our results are correct. We believe that the neglect of turbulent pressure 
in all previous calculations is a significant deficiency, and the instantaneous 
adaptation of convection by the Israel authors may be a bad approximation. 
Studies of the upper atmospheres of Miras have also been carried out by 
numerous groups using a driving piston boundary condition near the pho­
tosphere, with the latest papers being by Bowen (1988) and Beach (1990). 
The results of these various studies give conflicting conclusions as to the 
pulsation mode of Mira. Our conclusion is that either the fundamental or 
the first overtone mode is allowed, but our demonstration is not yet secure. 

2. Time-Dependent Convection Procedure 

In both our linear and nonlinear studies we have adopted the approximate 
time-dependent theory of Cox, Brownlee, and Eilers (CBE, 1966). The con­
cept is that the instantaneous conditions suggest a convection luminosity 
that cannot be realized because the turbulent eddies have an inertia that 
the hydrodynamic forces cannot overcome rapidly. Thus there is a lag be­
hind the desired luminosity that can be represented by the formula for the 
convection luminosity increment: 

At 
dLc = —[Lc(t) - Lc(t)}, 

T 

where r(i) is the mean eddy lifetime at time t at the level of interest in the 
convection zone, and Lc is the instantaneous convection luminosity desired. 
If r is small, convection can adapt well, but for Mira variables it is often 
comparable to the pulsation period II. The instantaneous luminosity is given 
by 

Lc = Aeiu\ 

where u is 2TT/II, and A is the amplitude for completely adapting convection. 
The solution for such a model with time-dependent convection is that the 

convection luminosity increment, with the r taken constant in time, is 
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6Lc{t) = B e'M-*', 

where 

p . A 

x / ( l + (27rr/n)2, 

and 

9 = tan_1(27rr/n). 

The amplitude B actually realized is often much smaller than the amplitude 
A. This is because as the convection is struggling to reach its amplitude, 
the pulsation configuration changes sign rapidly, overcoming any convection 
luminosity changes before they can be attained. 

Implementation of this time-dependent convection involves first calculat­
ing the partial derivatives of the convection luminosity with respect to the 
temperature and density on both sides of an interface between Lagrangian 
mass shells in the stellar model. These are calculated during model construc­
tion. They are then converted to derivatives with respect to the perturba­
tions of our linear theory, that is 6r and T8S. Then these terms are added 
to the existing matrix elements (coefficients of the perturbation variables) 
that represent the linearized momentum and energy equations for the stellar 
mass elements. Allowance is made for the fraction of the total luminosity 
due to convection, the actual reduced amplitude from the CBE procedure, 
and the cosine of the lag angle 6. Additional matrix elements are necessary 
for the imaginary parts of the convection luminosity variations also, and 
they use the sine of the lag angle instead of the cosine. 

For many stellar models, the logarithmic derivatives of the convection 
luminosity are huge, maybe over 200! For radiation they rarely get about 15 
for the temperature derivative and much smaller for the density derivative. 
Thus matrix elements are sometimes greatly increased, and the nonadia-
batic eigenvector and eigensolution can be considerably different from the 
adiabatic one. 

3. Mira Models 

For this work we have constructed many models. The one discussed in detail 
here has one solar mass, a luminosity of 4000 solar luminosities, and an 
effective surface temperature of 3000 K. The opacity used is given by a fit 
by Cahn to the Ross-AUer 1 solar composition with .Y = 0.70 and Z = 0.02. 
The Stellingwerf (1975ab) analytic equation of state is used throughout. For 
both linear and nonlinear studies 60 mass shells have been used. Table I 
gives additional interior details. 

The construction of our envelope models necessarily includes turbulent 
pressure using only the convective velocity at the exterior interface of each 
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TABLE I 
Mira Variable Star Model 

Mass: l.OMg (1.989 x 103Y) 
Luminosity (constant through model): 1.53 x 1037 erg/s (4000/,©) 
Effective Temperature: 3000 K (1.628 x 1013 cm) 
Composition (constant through model): A" = 0.70 Z — 0.02 
Mass Shells: 60 
Last Shell Mass: 7 x 1028<? (r = 3 x 10"2) 
Central Ball Mass: 9.2 x 1032

S (q = 0.46) 
Central Ball Radius Fraction: 0.04 
Mass Ratios: range from 1.3 to 1.0 to 1.1 to 0.965 
Convection Zone Temperature Range: 2.6 x 103 K to over 2.8 x 106 K 
Radiative Luminosity Minimum: 2.0 x 10 - 5 at 15,800 K 
Mixing Length/Pressure Scale Height: 2.60 
Turbulent Pressure 
Time Dependent Convection 

Fundamental Mode Period and Kinetic Energy Growth Rate: 330 days, 1.23 
First Overtone Mode Period and Kinetic Energy Growth Rate: 152 days, 0.73 

mass shell, because as the integration proceeds, the interior interface convec­
tion is not yet known. When this model and its linear theory eigenvector is 
used to start the hydrodynamic calculations, turbulent pressure from both 
sides of a mass shell is needed. This is produced linearly over the first hy­
dro period, and it affects the entire mean structure as well as the nonlinear 
solution. The relaxation can be done rather easily, because the time scale 
of the layers where the turbulent pressure is significant is typically a small 
number of pulsation periods. 

4. Linear Results 

Plots of the work per pulsational cycle to drive or damp pulsations are given 
in the five figures. The first one shows the hydrogen ionization driving that 
has been considered for years as the sole cause of the instability. This driving 
occurs just exterior to the strong convection zone top near 9000 K, because 
at the usual hydrogen driving temperature of 11,000 K, convection is too 
strong to allow the K effect periodic radiation blocking. Figure 1 presents the 
strong fundamental and weaker overtone net driving, with extremely small 
damping. 

Figure 2 shows a very different situation where our time-dependent con­
vection is allowed to adapt completely to the current configuration. This 
means that 6 is zero at all times for all mass zones. Again the fundamental 
mode is more strongly driven. The overtone has two peaks in its driving be-
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Fig. 1. The work per zone each pulsation cycle versus zone number and external mass 
fraction for a linear solution with frozen-in convection. 

cause it has a node in its oscillation eigenvector at a temperature just over 
11,000 K. The driving for both modes occurs between about one and ten 
percent of the mass of the star, but the damping extends deeply to almost 
half of the mass. 

Figure 3 presents our best linear interpretation of what occurs for driving 
and damping in Mira stars. Here 8 is allowed to be greater than zero, as 
appropriate for convection lagging. Note first that there are two fundamental 
mode peaks and three overtone peaks in the driving, whereas completely 
adapting convection gave only one for the fundamental and two for the 
overtone. 

Figure 4 shows the time-dependent convection case when turbulent pres­
sure is ignored. Again significant differences can be seen. The fundamental 
mode period is changed from 330 days to 343 days, but the growth rate is 
unchanged. For the overtone, the period is changed from 152 days to 153 
days, and the growth rate is decreased from 0.73 to 0.44 per cycle relative 
to our best case in figure 3. 

An interpretation of these time-dependent cases is displayed as Figure 5. 
Here T$ — 1 is plotted versus the same zone numbers. This quantity reveals 
the relation between the temperature, density, and entropy variations as 

6T/T = {T3-l)6p/p + SS/cv. 
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Fig. 2. The work per zone each pulsation cycle versus zone number and external mass 
fraction for a linear solution with completely adaptive convection. 
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Fig. 3. The work per zone each pulsation cycle versus zone number and external mass 
fraction for a linear solution with the properly lagging adaptive convection. 
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Fig. 4. The work per zone each pulsation cycle versus zone number and external mass 
fraction for a linear solution with the properly lagging adaptive convection, but no turbu­
lent pressure. 

Places where (T3 - 1) is small are where the temperature fluctuations are 
small and where convection cannot be modulated so much. These then are 
places where the pulsation damping is smaller. Convection seems to drive 
when the F^ — 1 is rapidly changing giving a rapid change in space of the 
temperature eigenvector. Note that the driving comes largely from the spa­
tial variations of 6r and T6S in the eigenvector. The other factors in the 
convection luminosity variations, such as the fraction of the luminosity being 
carried by convection, the CBE amplitude, and the lag angle are only very 
slowly varying throughout the model. 

5. Nonlinear Results 

Our procedures for nonlinear calculations were described by Ostlie (1990) 
and Cox (1990). The main features are: Turbulent pressure is included. Tur­
bulent viscosity, while small, is included. There is weighted spatial averaging 
of convective velocities from neighboring interfaces at the previous time step, 
with an adjustment for their velocities relative to the interface of interest. 
This spatially averaged velocity for an interface is time lagged according 
to the CBE procedure, and this velocity is then used in the mixing length 
luminosity formula. Finally, for an interface with a subadiabatic gradient, 
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Fig. 5. The 1?3 — 1 versus mass zone number and external mass fraction for the 3000 K, 
5000 solar luminosity model. 

the spatially average convective velocity is decreased in time by the mix­
ing length theory dragging formula, and the luminosity at this subadiabatic 
interface is taken to be negative. 

Current results for our nonlinear work include a fundamental mode case 
at the very long period of 998 days with an amplitude of about one kilometer 
per second. We have found that most models tend to decay in amplitude as 
they expand and cool from the hydrostatic models. Many more calculations 
are in progress. 

6. Current Conclusions 

Since turbulent pressure plays a significant role in limiting Mira pulsation 
amplitudes, hydrodynamic calculations without this real pressure, such as 
those by all earlier calculations, are probably not realistic. 

Completely adapting convection produces a different phasing of the con­
vection luminosity than that for the correct lagging, and thus results using 
completely adapting convection are not highly accurate. 

Our use of masses at and above one solar mass produces unobserved low 
pulsation amplitudes, indicating that Mira masses are small. 

For masses as low at 0.9 solar mass, both fundamental and overtone 
modes grow rapidly in amplitude and do not reach realistic limiting values. 
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Most important, fundamental mode pulsation for Mira variables is not 
excluded. 
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