CHARACTERIZATIONS OF *-MULTIPLICATION DOMAINS

BY

EVAN G. HOUSTON, SAROJ B. MALIK AND JOE L. MOTT

ABSTRACT. Let * be a finite-type star-operation on an integral domain D. If D is integrally closed, then D is a *-multiplication domain (the *-finite *-ideals form a group) if and only if each upper to 0 in D[x] contains an element f with $c(f)^* = D$. A finite-type star operation on D[x] naturally induces a finite-type star operation on D, and, if each *-prime ideal P of D[x] satisfies $P \cap D = 0$ or $P = (P \cap D)D[x]$, then D[x] is a *-multiplication domain if and only if D is.

Introduction. Throughout this paper D will denote an integral domain, and K will denote its quotient field. We shall be concerned with finite-type star operations. A *star operation* on D is a mapping $I \rightarrow I^*$ from the set of non-zero fractional ideals of D to itself which satisfies the following axioms for each element $a \in K$ and each pair of non-zero fractional ideals I, J of D:

- (i) $(a)^* = (a)$ and $(aI)^* = aI^*$,
- (ii) $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$,
- (iii) $I^{**} = I^*$.

The star operation * is said to be of *finite type* if each non-zero ideal I of D satisfies $I^* = \bigcup \{J^* \mid J \text{ is a non-zero finitely generated ideal contained in } I\}$. For the pertinent facts about star operations, we refer the reader to [2, Sections 32 and 34] or to [6].

If * is a star operation on D, then we call D a *-multiplication domain if for each non-zero finitely generated ideal I of D there is a finitely generated fractional ideal J of D with $(IJ)^* = D$. If * is the identity star operation, then this is the definition of a Prüfer domain. At the other extreme is the well-known v-operation $(I_v = (I^{-1})^{-1} = \text{intersection of the principal fractional ideals containing } I)$, which is the coarsest star operation. The name "Prüfer v-multiplication domain" (PVMD) has been used for "v-multiplication domain" and PVMD's have been studied in [7], [6], [4], and [8]. It is easily shown that every *-multiplication domain is a PVMD.

In this paper we shall characterize PVMD's in terms of their uppers to 0 (see the definition below), an approach which not only yields new results but also offers a unified treatment of several old ones.

As far as possible, we shall state our results for general finite-type star

Received by the editors July 9, 1982 and, in final revised form, March 16, 1983. AMS(MOS) Subject Classifications: Primary-13F05, Secondary-13F20, 13G05.

[©] Canadian Mathematical Society, 1984.

operations *. In section 1 we prove our main theorem, a generalization of [3, Theorem 2]: D is a *-multiplication domain \Leftrightarrow each non-zero prime ideal P of D[x] with $P \cap D = 0$ contains an element f such that $c(f)^* = D$. (Here, c(f) denotes the content of f, that is, the ideal generated by the coefficients of f.) This yields a straightforward proof of Griffin's result that D is a *-multiplication domain $\Leftrightarrow D_P$ is a valuation domain for each *-prime ideal P ([4, Theorem 5]). In the second section we point out that star operations on D[x] induce star operations on D, and then we apply the main theorem to the v-operation.

§1. **The main theorem.** An ideal I of D[x] is called an upper to 0 if I is the contraction to D[x] of a nontrivial ideal of K[x]. A nontrivial primary ideal I of D[x] is an upper to $0 \Leftrightarrow I \cap D = 0$.

THEOREM 1.1. Let * be a finite-type star operation on D. The following statements are equivalent.

- (1) D is a *-multiplication domain.
- (2) For each nonzero $a, b \in D$ there is a finitely generated fractional ideal J such that $((a, b)J)^* = D$.
- (3) D is integrally closed and for each a, $b \neq 0$ in D the prime ideal $(ax b)K[x] \cap D[x]$ of D[x] contains an element f with $c(f)^* = D$.
 - (4) D_M is a valuation domain for each ideal M maximal in the set of *-ideals.
- (5) D is integrally closed and each prime upper to 0 in D[x] contains f with $c(f)^* = D$.
- (6) D is integrally closed and each upper to 0 in D[x] contains f with $c(f)^* = D$.

Proof. $(1) \Rightarrow (2)$ This is trivial.

- $(2) \Rightarrow (3)$ Since $D = \bigcap \{D_M \mid M \text{ is a prime *-ideal}\}$ ([4, Proposition 4]), to prove that D is integrally closed, it is enough to show that D_M is integrally closed. Let $u \in K$ be integral over D_M . It follows from (2) that there is a finitely generated fractional ideal J of D with $((1, u)J)^* = D$. Hence $(1, u)J \not\equiv M$ and $(1, u)JD_M = D_M$. Thus $(1, u)D_M$ is invertible and must equal $1D_M$ or uD_M . In the former case we certainly have $u \in D_M$. In the latter case, $u^{-1} \in D_M$, which, together with the equation of integrality satisfied by u, implies that $u \in D_M$ as well. Thus D is integrally closed. Now consider $gK[x] \cap D[x]$, where g = ax b. By (2) we have $((a, b)A)^* = D$ with A finitely generated. Choose $k(x) \in K[x]$ with c(k) = A. By the content formula ([2, Theorem 28.1]) $c(g)c(k)c(g)^m = c(gk)c(g)^m$ for some integer m. Multiplying both sides by A^m and taking *'s yields $D = (c(g)c(k))^* = c(gk)^*$. Thus f = gk is the desired element.
- (3) \Rightarrow (4) Let M be any prime *-ideal. Let a, $b \neq 0$ in D and choose $f \in P = (ax b)K[x] \cap D[x]$ with $c(f)^* = D$. Then $c(f) \not\subseteq M$ so $P \not\subseteq MD[x]$. Thus,

by a well-known characterization of valuation domains ([2, Theorem $19.15(1) \Leftrightarrow (3)$ and its proof]) D_M is a valuation domain.

- $(4) \Rightarrow (5)$ Let $P = gK[x] \cap D[x]$. By the characterization of valuation domains just mentioned, $P \not\subseteq MD[x]$ for each ideal M maximal in the set of *-ideals. Thus for each such M, $c(P) \not\subseteq M$, so that $c(P)^* = D$. Since * is of finite type, $1 \in J^*$ and $J^* = D$, for some finitely generated ideal $J \subseteq c(P)$. Let the generators of J be coefficients of the polynomials $g_1, \ldots, g_n \in P$. It is easy to construct a polynomial $f \in (g_1, \ldots, g_n)$ with $c(f) = c(g_1) + \cdots + c(g_n)$. Clearly, $c(f)^* = D$.
- (5) \Rightarrow (6) Let $I = gK[x] \cap D[x]$. Write $g = h_1 \cdots h_m$ with each h_i irreducible in K[x]. If $P_i = h_i K[x] \cap D[x]$ then there exists $f_i \in P_i$ such that $c(f_i)^* = D$. If $f_i = h_i k_i$ then $f \equiv f_1 \cdots f_m = g$. $k_1 \cdots k_m \in gK[x] \cap D[x] = I$. That $c(f)^* = D$ follows easily from the content formula and induction.
- $(6) \Rightarrow (1)$ Let A = c(g) be a finitely generated ideal of D, and choose $f \in gK[x] \cap D[x]$ with $c(f)^* = D$. If f = gk then $D = c(f)^* \subseteq (c(g)c(k))^*$. We shall complete the proof by showing $c(g)c(k) \subseteq D$. By the content formula $c(g)c(k)c(g)^m = c(gk)c(g)^m \subseteq c(g)^m$ since $gk = f \in D[x]$. That $c(g)c(k) \subseteq D$ now follows from the fact that D is integrally closed.
- REMARK 1.2. The integral closure hypothesis cannot be omitted in (3), (5), or (6). This is illustrated by any one-dimensional local (Noetherian) domain which is not integrally closed.
- REMARK 1.3. Denote the upper to 0 in each of (3), (5), and (6) by I. Then in each case the existence of "f with $c(f)^* = D$ " can be replaced by " $c(I)^* = D$." To verify this it suffices to show that $c(I)^* = D$ implies the existence of $f \in I$ with $c(f)^* = D$. This may be demonstrated as in the proof of (4) \Rightarrow (5) above.
- §2. **Applications of the main theorem.** Verification of the following is routine.

PROPOSITION 2.1. Let * be a star-operation on D[x]. Define * on D by $A^* = AD[x]^* \cap D$. Then * is a star operation on D. Moreover, if * is of finite type on D[x], then the induced * is of finite type on D. In fact, $A^*D[x]^* = AD[x]^*$ for each ideal A of D.

PROPOSITION 2.2. Let * be induced from the finite-type star operation* on D[x] as above. If D is a *-multiplication domain, then each upper to 0 in D[x] is *-finite.

Proof. Let $I = gK[x] \cap D[x]$ be an upper to 0. Since D is integrally closed $I = gc(g)^{-1}D[x]$ ([2, Corollary 34.9]). Pick A finitely generated with $(c(g)A)^* = D$. One easily verifies that $A^* = c(g)^{-1}$. Thus $I = gA^*D[x]$. We next claim that I is a *-ideal. To verify this let I be a finitely generated ideal contained in I. Then there is a nonzero element I of I with I is I is a *-ideal ideal contained in I. Then there is a nonzero element I is a *-ideal ideal idea

 $sJ^* \subseteq (g)$ and $J^* \subseteq s^{-1}(g) \cap D[x] \subseteq gK[x] \cap D[x] = I$. Therefore, $I = (gA*D[x])^* = g(A*D[x])^* = (gAD[x])^*$, which is clearly *-finite.

PROPOSITION 2.3. Let * be induced from the finite-type star operation* on D[x] as above. Assume that for each prime *-ideal P of D[x], either $P = (P \cap D)D[x]$ or $P \cap D = 0$. Then D is a *-multiplication domain $\Leftrightarrow D$ is integrally closed and each prime upper to 0 in D[x] is a maximal *-ideal (i.e., maximal in the set of *-ideals of D[x]).

Proof. Suppose that D is a *-multiplication domain, and let P be a prime upper to 0. Then P is certainly a *-ideal. If P is not maximal in the set of *-ideals of D[x], then by hypothesis $P \subseteq QD[x]$ for some prime *-ideal Q of D. Thus $c(P) \subseteq Q$. However, by Theorem 1.1 $c(P)^* = D$, a contradiction.

Conversely, assume that each prime upper P to 0 in D[x] is a maximal *-ideal. We shall verify that $c(P)^* = D$, which will complete the proof by Theorem 1.1 and Remark 1.3. If $c(P)^* \neq D$ then c(P) is contained in a prime *-ideal Q of D. This implies that $P \subseteq QD[x]^*$, a contradiction.

PROPOSITION 2.4. Under the hypotheses of Proposition 2.3 D is a *-multi-plication domain $\Leftrightarrow D[x]$ is.

Proof. Assume that D is a *-multiplication domain. Let P be a *-prime of D[x]; we shall show that $D[x]_P$ is a valuation domain. We distinguish two cases: $P \cap D = 0$ and $P = (P \cap D)D[x]$. In the first case it is well known that $D[x]_P$ is a valuation domain. In the second case $D[x]_P = V[x]_{(P \cap D)V[x]}$, where $V = D_{P \cap D}$ is a valuation domain by Theorem 1.1. Thus $D[x]_P$ is a valuation domain in this case as well.

For the converse let Q be a *-prime of D. Then $QD[x]^* \cap D = Q^* = Q$, and there is a prime ideal I of D[x] with $I \cap D = Q$ and $QD[x]^* \subseteq I$. Now any prime minimal over $QD[x]^*$ is a *-prime ([5, Proposition 1.1 (5)], and by hypothesis $I = (I \cap D)D[x] = QD[x]$. Thus $QD[x]^* = QD[x]$. Since $D[x]_{QD[x]}$ is a valuation domain, D_Q must be a valuation domain also.

We now examine Propositions 2.3 and 2.4 in the context of the v- and t-operations. The t-operation is defined as follows: for a non-zero ideal I of D, $I_t = \bigcup \{J_v \mid J \subseteq I \text{ is a finitely generated ideal}\}$. Thus the t-operation is of finite type. By [5, Proposition 4.3], the v- and t-operations on D[x] induce, respectively, the v- and t-operations on D. Hence Proposition 2.2 is valid for these operations.

LEMMA 2.5. If D is integrally closed, then for each prime t-ideal P of D[x], either $P = (P \cap D)D[x]$ or $P \cap D = 0$.

Proof. Assume $P \cap D \neq 0$ and pick a nonzero element $a \in P \cap D$. Let $f \in P$ and let $k \in (a, f)^{-1}$. Since $a \in D$, $k \in K[x]$. Since D is integrally closed $c(fk)_v = (c(f)c(k))_v$ ([2, Proposition 34.8]), whence $c(f)c(k) \subseteq D$. Thus $c(f)(a, f)^{-1} \subseteq C(f)(a, f)$

D[x] and $c(f) \subseteq (a, f)_v \subseteq P$. It follows that $f \in (P \cap D)D[x]$, and the proof is complete.

REMARK. An alternate proof can be based on [9, Lemme 2].

Theorem 1.1, Propositions 2.2, 2.3, 2.4 and Lemma 2.5 can be combined to give the following.

PROPOSITION 2.6. The following statements are equivalent for an integrally closed domain D:

- (1) D is a PVMD.
- (2) Each upper I to 0 in D[x] is v-finite with $c(I)_v = D$.
- (3) Each upper $I = gK[x] \cap D[x]$ satisfies $I = (g, f)_v$ for some $f \in I$, and $c(I)_v = D$.
 - (4) Each prime upper to 0 in D[x] is a maximal t-ideal of D[x].
 - (5) D[x] is a PVMD.

REFERENCES

- 1. E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D+M, Michigan Mathematics Journal **20** (1973), 79–95.
 - 2. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- 3. R. Gilmer and J. Hoffman, A characterization of Prüfer domains in terms of polynomials, Pacific Journal of Mathematics 60 (1975), 81-85.
- 4. M. Griffin, Some results on Prüfer v-multiplication rings, Canadian Journal of Mathematics 19 (1967), 710–722.
- 5. J. Hedstrom and E. Houston, *Some remarks on star-operations*, Journal of Pure and Applied Algebra **18** (1980), 37–44.
 - 6. P. Jaffard, Les Systems d'ideaux, Dunod, Paris, 1960.
 - 7. W. Krull, Idealtheorie, Springer-Verlag, Berlin, 1935.
- 8. J. Mott and M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math. 35 (1981), 1–26.
- 9. J. Querré, Ideaux divisoriels d'un anneau de polynômes, Journal of Algebra 64 (1980), 270-284.

DEPT. OF MATHEMATICS
U. OF NC AT CHARLOTTE
CHARLOTTE, NC 28223

D/80 Malviyanagar New Delhi (110017) India

DEPT. OF MATHEMATICS FLORIDA ST. UNIV. TALLAHASSEE, FL 32306