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Abstract. Assuming the generalized Riemann hypothesis (GRH) and Artin conjecture for

Artin L-functions, we prove that there exists a totally real number field of any fixed degree
(>1) with an arbitrarily large discriminant whose normal closure has the full symmetric group
as Galois group and whose class number is essentially as large as possible. One ingredient is an

unconditional construction of totally real fields with small regulators. Another is the existence
of Artin L-functions with large special values. Assuming the GRH and Artin conjecture it is
shown that there exist an Artin L-functions with arbitrarily large conductor whose value at

s ¼ 1 is extremal and whose associated Galois representation has a fixed image, which is an
arbitrary nontrivial finite irreducible subgroup of GLðn;CÞ with property GalT.
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1. Class Numbers of Number Fields

Let K be a number field whose group of ideal classes has size h, called the class num-

ber of K. As K ranges over some natural family, it is interesting to investigate the

behavior of h. Unless K is imaginary quadratic, the involvement of an infinite unit

group makes certain problems here extremely difficult, even assuming conjectures

like the generalized Riemann hypothesis (GRH). An obvious example is Gauss’ con-

jecture that there are infinitely many real quadratic fields with h ¼ 1. On the other

hand, some rather precise information can be obtained about number fields with

large class number.

Consider, for example, the family Kn where K 2 Kn if K is a totally real number

field of degree n whose normal closure has the full symmetric group Sn as its Galois

group. By the class number formula for such K

h ¼
d1=2

2n�1R
Lð1; wÞ; ð1Þ

where d ¼ discðK Þ is the discriminant, R is the regulator and Lðs; wÞ ¼ zKðsÞ=zðsÞ is an

Artin L-function, zKðsÞ being the Dedekind zeta function of K. If we assume that
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Lðs; wÞ is entire and satisfies the generalized Riemann hypothesis (GRH), that is all of

its nontrivial zeros have real part 1
2, then a method introduced by Littlewood [9]

shows that Lð1; wÞ � ðlog log d Þn�1 with an implied constant depending only on n.

Remak [16] showed that if K contains no nontrivial subfields (which is true for

K 2 Kn) then

R � ðlog d Þn�1: ð2Þ

Thus, under GRH, we have the upper bound

h � d
1
2ðlog log d= log d Þn�1: ð3Þ

In this paper I will show, still assuming the GRH, that (3) is best possible, up to the

constant.

THEOREM 1. Fix n5 2 and assume that each Lðs; wÞ is entire and satisfies the GRH.

Then there is a constant c > 0 depending only on n such that there exist K 2 Kn with

arbitrarily large discriminant d for which h > cd
1
2ðlog log d= log d Þn�1:

For n ¼ 2 this result, which follows easily from Littlewood’s paper [9], was made

unconditional by Montgomery and Weinberger [12]. The problem of proving Theo-

rem 1 unconditionally for any n > 2 remains open.

One issue to be dealt with in the proof is the production of totally real number fields

with small regulators. This problem seems to have been first considered successfully

by Ankeny, Chowla and Brauer [1]. For n ¼ 2 one may take d ¼ 4t2 þ 1 square-free,

for instance, since then a unit is 2t þ d
1
2 and so R4 log d. After generalizing this

construction for any n5 2 they show, using Brauer’s generalization of Siegel’s

theorem that, for any E > 0, there exist an infinite number of such fields where

h > d
1
2�E ð4Þ

holds. This is unconditional and they also obtained such a result for fields with any

given signature.

In this paper we give a modification of their construction, and ultimately take for

K a field obtained by adjoining to Q a root of

f ðx; tÞ ¼ ðx � tÞðx � 22tÞðx � 32tÞ . . . ðx � n2tÞ � t ð5Þ

for a suitable integral value of t. We show in Proposition 1 of Section 3 that, for suf-

ficiently large square-free t, these fields are totally real of degree n and satisfy

R � ðlog d Þn�1: This is done by explicitly computing a set of n � 1 multiplicatively

independent units. This actually gives a simplification of the construction of [1],

where one of the main difficulties is to show that discriminants of the constructed

fields are not too small, which is a well known difficulty in explicit Galois theory.

With our choice of polynomials this problem disappears since for square-free t all

primes dividing t turn out to be completely ramified and hence the discriminant satis-

fies log d � log t:
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Our main goal here is to show that the bound (3) is sharp, at the expense of assum-

ing GRH. The idea is to consider (5) as defining an algebraic function field over QðtÞ.

Following a classical method of Jordan, in Proposition 2 of Section 4 we compute

the Galois group of the polynomial f ðx; tÞ over QðtÞ and find that it is Sn. Then,

in Proposition 4 of Section 5 we show that there are infinitely many square-free inte-

gral values t so that the splitting field of this polynomial over Q has Galois group Sn.

This follows from a quantitative form of a result of Hilbert due to S.D. Cohen,

which relies on a generalization of the large sieve inequality first applied in this man-

ner by Gallagher [6]. In order to force extreme behavior of the Artin L-values Lð1; wÞ,
it is enough to restrict the t to certain arithmetic progressions. This is seen by con-

sidering the function field defined by f ðx; tÞ over Fp and applying the Riemann

hypothesis for curves to its normal closure. We obtain in Proposition 4 in Section 5

a range of about log d primes that split completely in K and hence for which

wðpÞ ¼ n � 1. Fortunately, the large size of the modulus required to do this is allowed

by the mild restriction that t be square-free. The GRH is needed to approximate

log Lð1; wÞ by a sum essentially limited to such primes and hence force it to be large.

In order to make this result unconditional for n > 2 one could try to show, as was

done in [12] when n ¼ 2, that the number of L-functions with zeros violating GRH is

small enough. We intend to address this problem in some special cases in another

paper. At this point, such a result is available only for zeros very close to s ¼ 1

and the best we can get unconditionally in general is that there exist infinitely many

K 2 Kn with

h � d
1
2ðlog d Þ�n; ð6Þ

where the implied constant depends only on n (see (30) below).

2. Families of Artin L-Functions

Since the extremal behavior of arbitrary Artin L-functions at s ¼ 1 is of independent

interest, especially in view of Stark’s conjectures (see [20]), we treat this aspect more

generally. Let Lðs; wÞ be the Artin L-function associated to a continuous Galois

representation r: Galð �QQ=QÞ ! GLðn;CÞ, where �QQ is a fixed algebraic closure of Q

and w ¼ traceðrÞ: Lðs; wÞ is known to be meromorphic, satisfy a standard functional

equation, and is conjectured to be entire (Artin Conjecture) unless r contains trivial

components, in which case it should only have a pole at s ¼ 1. If N is the conductor

of r and we assume that Lðs; wÞ is entire and satisfies GRH then again a generaliza-

tion of Littlewood’s proof gives

Lð1; wÞ � ðlog log NÞ
n; ð7Þ

where the implied constant depends only on n (see (28) below).

A natural family of L-functions are those associated to all the Galois representa-

tions with the same (finite) image G 
 GLðn;CÞ: It is not known that every such G is

the image of a Galois representation over Q, as this includes the inverse Galois
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problem. In view of the factorization property of L-functions, for or purposes it is

enough to assume that G is nontrivial and irreducible.

As is the case above when G ¼ Sn, we shall assume that G is isomorphic to the

Galois group of a regular extension E of the rational function field QðtÞ, where reg-

ular means that �QQ \ E ¼ Q: Such G are said to have property GalT and include

many classes of groups such as Abelian, symmetric, and alternating group. In fact,

Serre has conjectured (p. 35. of [18]) that every finite group G has property GalT.

Given a G with property GalT we show that (7) is sharp within this family, still

under GRH.

THEOREM 2. Suppose that G 
 GLðn;CÞ is nontrivial, irreducible and has property

GalT. Assume that every Artin L-function Lðs; wÞ whose Galois representation has

image G is entire and satisfies GRH. Then there is a constant c > 0, depending only on

G, so that there exist such L-functions with arbitrarily large conductor N, which satisfy

Lð1; wÞ > cðlog log NÞ
n:

Although we have restricted our attention to large values of Lð1; wÞ, the same meth-

ods apply to small values. One ingredient in the proof of this is an analogue of a

result of Bohr and Landau, as refined by Littlewood in [8], which is used to find small

values of zð1 þ itÞ. Roughly speaking, the Bohr–Landau result states that if y is suf-

ficiently large then there is a positive integer t with log t � y so that pit is uniformly

close to �1 for each prime p4 y, the implied constants depending on how good the

approximation is required to be.

Let G be a finite subgroup of GLðn;CÞ with property GalT and choose aðpÞ to be,

for each prime p, the trace of an arbitrary element of G. The analogue, given in

Proposition 3 of Section 5, states that if y is sufficiently large then there is a Galois

representation whose image is G with log N � y so that wðspÞ ¼ aðpÞ for 1 � p4 y,

where sp is any Frobenius element over p.

The other main ingredient is a formula that approximates log Lðs; wÞ by a very

short sum over primes: log Lð1; wÞ �
P

p4ðlog NÞ
1
2
wð pÞp�1: This is done in Proposition 5

of Section 6, assuming the GRH, along the lines of Littlewood’s paper [9].

3. Totally Real Fields with Small Regulators

In this section we will produce a convenient family of polynomials that generate

totally real number fields whose regulators are as small as the bound (2) allows.

Fix n5 2 and let a1 < a2 
 
 
 < an be integers. Define the degree n polynomial

ftðxÞ ¼ ðx � a1tÞðx � a2tÞ . . . ðx � antÞ � t: ð8Þ

PROPOSITION 1. Let t 2 Zþ be a square-free integer. Then ftðxÞ is irreducible. Let

K be a number field obtained by adjoining to Q a root of ftðxÞ. If t is sufficiently large,

then K is totally real of degree n and the regulator R of K satisfies R �f ðlog d Þn�1

where d is the discriminant of K.
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Proof. For a square-free t > 1, ftðxÞ is an Eisenstein polynomial, hence irre-

ducible, while if t ¼ 1 the irreducibility is standard (see p. 133 of [14]). Let K be the

number field obtained by adjoining to Q a root a of ftðxÞ. If pjt then p ramifies

completely in K and does not divide the index of a (see p. 60 and p. 181 of [13]).

Since discftðxÞ ¼ tn�1pðtÞ, where pðtÞ is an integral polynomial of degree ðn � 1Þ2, we

see that

tn�1jd; ð9Þ

where d is the discriminant of K.

Since they vary continuously with t, we may label the roots að1Þ; . . . ; aðnÞ of ftðxÞ ¼ 0

so that aðiÞ=t ! ai as t ! 1 for each i ¼ 1; . . . ; n: Since nonreal roots come in

conjugate pairs, if t is sufficiently large, all of the aðiÞ will be real.

For t 2 Zþ and i; j ¼ 1; . . . ; n let eðiÞj ¼ tðaðiÞ � ajtÞ
�n: Then, for each i

Yn

j¼1

eðiÞj ¼ tn
Yn

j¼1

ðaðiÞ � ajtÞ
�n

¼ tnð ftðaðiÞÞ þ tÞ�n
¼ 1: ð10Þ

Also ðeðiÞj Þ
�1 is an algebraic integer since

ðaðiÞ � ajtÞ
n
�

Yn

j¼1

ðaðiÞ � ajtÞ ðmod tÞ

for any i and

Yn

j¼1

ðaðiÞ � ajtÞ ¼ ftðaðiÞÞ þ t � 0 ðmod tÞ:

Thus, for each 14 j4 n, we have that eðiÞj runs over the conjugates of a unit in the

ring of integers OK as i ¼ 1; . . . ; n: Furthermore, using that aðiÞ=t ! ai as t ! 1 we

easily derive that

jeðiÞj j �
ci;it

ðn�1Þ2 ; if i ¼ j;
ci; jt

1�n; otherwise;

�
ð11Þ

as t ! 1, where

ci;j ¼

Q
k6¼i jai � akj

n 5 1; if i ¼ j;
jai � ajj

�n > 0; otherwise:

�

By (10) each row sum of the n � n matrix

log jeð1Þ1 j 
 
 
 log jeð1Þn j

g . .
.

g

log jeðnÞ1 j 
 
 
 log jeðnÞn j

0
BB@

1
CCA ð12Þ

is zero. For t sufficiently large, by (11) each diagonal entry is positive and each off-

diagonal entry is negative. By Minkowski’s lemma [11], any ðn � 1Þ � ðn � 1Þ princi-

pal minor is positive. Since each eðiÞj is a unit in OK for some fixed i, for t sufficiently
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large any n � 1 of them are multiplicatively independent. Thus it follows from (11)

and (9) that

R4A �f ðlog tÞn�1
� ðlog d Þn�1;

where A is such a minor, finishing the proof of Proposition 1. &

4. Classical Monodromy

We now apply the classical theory of monodromy to prove the following result

needed in the proof of Theorem 1.

PROPOSITION 2. For n5 1 the splitting field of

f ðx; tÞ ¼ ðx � tÞðx � 22tÞðx � 32tÞ . . . ðx � n2tÞ � t ð13Þ

over QðtÞ is a regular extension with Galois group Sn:

Generally, let E be the splitting field over QðtÞ of a polynomial fðx; tÞ degree n with

coefficients in Q½t� that is monic in x. Assume that E is regular or, equivalently, that

fðx; tÞ is irreducible over C. Let G be the Galois group of E over QðtÞ. The mono-

dromy group is classically defined in the following way. First, compute the zeros

(finite ramification points) t1; . . . ; tr 2 C of the discriminant DðtÞ of fðx; tÞ, which is

a polynomial in t and fix an unramified point t0: Thus fðx; t0Þ has n distinct roots.

Letting t start at t0 and run over a simple loop enclosing ti induces, by continuity

of the roots in t, a permutation si of these roots. The subgroup M of Sn generated

by si for i ¼ 1; . . . ; n is the monodromy group. The point at 1 is unramified exactly

when
Qn

i¼1 si ¼ 1. The basic fact, observed already by Jordan and Hermite, is that M

is a transitive subgroup of Sn, which is isomorphic to a normal subgroup of G.

The following result was applied by Hilbert [7] in case fðx; tÞ ¼ gðxÞ � t to produce

infinitely many number fields with Galois group Sn.

LEMMA 1. Suppose that gðxÞ is a monic integral polynomial of degree n5 1 such

that the zeros x1; . . . ; xn�1 of the derivative g0 are simple and that gðxiÞ 6¼ gðxjÞ for

i 6¼ j: Suppose also that m is any positive integer except that m 6¼ 2 if g is a square.

Then f ðx; tÞ ¼ gðxÞ � tm is irreducible over C and G ¼ Sn:

Proof. The irreducibility of f ðx; tÞ is an immediate consequence of Capelli’s

theorem (see p. 91 of [17]), which implies that for any g 2 CðxÞ, tm � gðxÞ is reducible

over CðxÞ if and only if either for some prime divisor p of m we have g ¼ hp or 4jm

and g ¼ �4h4 for some h 2 CðxÞ. Of these possibilities, the only one consistent with

the condition that the zeros of g0 are simple is that m ¼ 2 and g ¼ h2.

One computes that the finite ramification points are solutions t of tm ¼ gðxiÞ.

Under our assumptions the associated permutations are all transpositions. The proof

now follows since a transitive subgroup of Sn generated by transpositions must be Sn

(see e.g. p. 40 of [18]). &
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Proof of Proposition 2. First note that the splitting field over QðtÞ of f ðx; tÞ ¼
Qn

i¼1ðx � aitÞ � t, for any ai 2 Q is the same as that of

tnfðt�1x; t�1Þ ¼
Yn

i¼1

ðx � aiÞ � tn�1: ð14Þ

The proof is now reduced after (14) to showing that gðxÞ ¼
Qn

k¼1ðx � k2Þ satisfies the

conditions of Lemma 1. This is straightforward since there are clearly n � 1 distinct

real zeros xi of g0ðxÞ and the values of jgðxiÞj are strictly increasing. &

5. Bohr–Landau for Galois Representations

We now give a general analogue of a classical theorem of Bohr and Landau [3] for

Galois representations whose image G has property GalT. Recall that this means that

G is isomorphic to the Galois group of a regular extension E of the rational function

field QðtÞ. Then we prove a more specific version needed for the proof of Theorem 1.

PROPOSITION 3. Let G be a finite subgroup of GLðn;CÞ for some n5 1 that has

property GalT. For each prime p, let að pÞ be the trace of an arbitrary element of G.

There is a constant c > 0 depending only on G such that for any y > c there is a Galois

representation of Galð �QQ=QÞ whose image is G, whose conductor N satisfies log N4 cy

and whose character w is unramified and satisfies

wðspÞ ¼ aðpÞ ð15Þ

for c4 p4 y, where sp is any Frobenius element over p.

Proof. Let f ðx; tÞ be an integral polynomial whose splitting field over QðtÞ is

regular and has Galois group isomorphic to G. Let Kt be one of the fields obtained

by adjoining to Q a root of fðx; tÞ for a specialization t 2 Q of T and let K̂Kt be the

splitting field of fðx; tÞ: Let C be any conjugacy class of G. As observed by Serre

(p. 45 in [18]) it follows from Weil’s bound that there is a constant k > 0 so that for a

prime p5k there is a tC 2 Z so that for any t � tCðmod pÞ, p is unramified in K̂Kt and

the Frobenius class of p in GalðK̂Kt=QÞ,!G intersects C. For y > k let

q ¼
Y

k4p4y

p ð16Þ

and choose Cp so that any element in Cp has trace aðpÞ: Let tq 2 Zþ be such that

tq � tCp
ðmod pÞ for all p with k4 p4 y: Consider the set

TðyÞ ¼ ft 2 Zþ
j t4 q3; t � tqðmod qÞ;GalðK̂Kt=QÞ ¼ Gg: ð17Þ

Clearly if t 2 Tð yÞ then GalðK̂Kt=QÞ has a faithful Galois representation with image G

whose character w satisfies (15). It follows from a comparison of the polynomial dis-

criminant with the field discriminant that for t 2 TðyÞ we have

log jdiscðK̂KtÞj � log q � y; ð18Þ

where in the last inequality we are using (16) and the prime number theorem. It is

standard (see p. 79 of [10]) that if N is the conductor of w and if w is irreducible then
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Nn divides discðK̂KtÞ. Thus we deduce from (18) that in general for t 2 TðyÞ we have

log N � y.

In order to finish the proof it is enough to show that TðyÞ is nonempty for y5 c for

some sufficiently large c. This follows immediately from Theorem 2.1 of S.D. Cohen

[5], which is a quantitative version of a result of Hilbert, and implies that

#ft 2 Zþ
jt4 q3 and GalðK̂Kt=QÞ 6¼ Gg � q3=2 log q: & ð19Þ

For Theorem 1 we need a more specialized version of this result for the family Kn of

totally real number fields of degree n, each of whose normal closure has the full sym-

metric group Sn as its Galois group.

PROPOSITION 4. Fix n5 2. There is a constant c > 0 depending only on n so that

there are fields K 2 Kn with arbitrarily large discriminant d for which every prime p

with c4 p4 log d splits completely in K and such that R4 cðlog d Þn�1; where R is the

regulator of K.

Proof. In view of Proposition 2 we apply the same proof as above to the case

where G ¼ Sn, where aðpÞ ¼ n for all p and where the polynomial fðx; tÞ is defined in

(13), except that now we restrict our attention to square-free t. In place of Tð yÞ in

(17) we consider

T �ðyÞ ¼ ft square-free j dq3 4 t4 2dq3; t � tqðmod qÞ;GalðK̂Kt=QÞ ¼ Gg; ð20Þ

where d is a constant chosen so that if t 2 T �ðyÞ, then log d ¼ log jdiscðKtÞj4 y: Since

we know from (9) that the primes dividing t are ramified in Kt we have that

ðtq; qÞ ¼ 1 and so by [15] that

#ft 2 Zþsquare-free j dq3 4 t4 2dq3; t � tqðmod qÞg � q2: ð21Þ

Comparison with (19) shows that T �ðyÞ is not empty for y sufficiently large. It now

follows by Proposition 1 that for t 2 T �ðyÞ we have that Kt 2 Kn with the property

that all primes with c4 p4 log d split completely in Kt and such that R �

ðlog d Þn�1: Finally, d ! 1 as y ! 1 since (9) implies that log d � log t �

log q � y for t 2 T �ðyÞ; again using (16) and the prime number theorem. &

6. Short Sums of Group Characters

Let Lðs; wÞ be an Artin L-function associated to a Galois representation whose char-

acter w has degree n over Q and has conductor N. This is given for ReðsÞ > 1 by the

formula

log Lðs; wÞ ¼
X

p

X1
m¼1

1

m
wðpmÞp�ms; ð22Þ

where
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wðpmÞ ¼
1

jIpj

X
i2Ip

wðsm
p iÞ; ð23Þ

where Ip is the inertia group of any of the primes over p. This converges absolutely

since we have from (23) the bound

jwðpmÞj4 n: ð24Þ

Thus Lðs; wÞ is holomorphic for ReðsÞ > 1 and has the uniform bound

Lðs; wÞ �n;d 1 ð25Þ

for ReðsÞ > d5 1. Now Lðs; wÞ is known to be meromorphic [4] and to satisfy the

functional equation [2]

Lð1 � s; �wwÞ ¼ ewNs�1
2Lðs; wÞ; ð26Þ

where jewj ¼ 1 and

Lðs; wÞ ¼ p
ns
2Gðs=2Þ

nþ‘
2 Gððs þ 1Þ=2Þ

n�‘
2 Lðs; wÞ;

where ‘ is the value of w on complex conjugation.

The following result allows us to approximate log Lð1; wÞ with a very short sum,

assuming GRH. For n ¼ 2 this was done by Littlewood, who gave a more precise

version that yields good constants.

PROPOSITION 5. Let Lðs; wÞ be an entire Artin L-function that satisfies GRH, where

w has degree n and conductor N. Then

log Lð1; wÞ ¼
X

p4ðlog NÞ
1
2

wð pÞp�1 þ Oð1Þ;

where the constant depends only on n.

Although this result is somewhat standard, we will give details. The next Lemma is

classical and proven as Lemma 4 in [9].

LEMMA 2. Suppose that fðsÞ is holomorphic in js � s0j < r and satisfies there

Reð f ðsÞ � f ðs0ÞÞ4U: Then there is an absolute constant A > 0 so that for

js � s0j ¼ r0 < r we have

j f 0ðsÞj <
AUr

ðr � r0Þ
2
:

Next we give an estimate for L0ðs; wÞ=Lðs; wÞ in the critical strip.

LEMMA 3. Let E > 0 and let Lðs; wÞ be an entire Artin L-function that satisfies GRH,

where w has degree n and conductor N. Then for s ¼ sþ it we have
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L0ðs; wÞ
Lðs; wÞ

����
���� �E logðjtj þ 2Þ þ log N

for 1
2 þ E < s4 2:

Proof. First, under our assumptions, the entire function Lðs; wÞ is of finite order

since it inherits a canonical product of genus 1 from those of the Hecke L-functions

in its Brauer [4] decomposition, which are well known to be of order 1. By the

functional Equation (26), the bound (25) and the Phragmén–Lindelöf Theorem we

derive that jLðs; wÞj �n Nðjtj þ 2Þn for 1
2 < s4 2: It follows easily that for some

constant B depending only on n we have the bound

Reðlog Lðs1; wÞÞ4B logðNðjtj þ 2ÞÞ ð27Þ

for js1 � ð2 þ itÞj4 3
2 :

Suppose E < 1; since under GRH fðsÞ ¼ log Lðs; wÞ is holomorphic for s > 1
2 we

have from (27) and Lemma 2 with s0 ¼ 2 þ it; r ¼ 3
2 and r0 ¼ 3

2 � E that

L0ðs1; wÞ
Lðs1; wÞ

����
���� � logðjtj þ 2Þ þ log N

E2

for js1 � s0j4 3
2 � E: Now we take s1 ¼ sþ it for 1

2 þ E4s4 7
2 � E to finish the proof

of Lemma 3. &

LEMMA 4. Let Lðs; wÞ be an entire Artin L-function that satisfies GRH, where w has

degree n and conductor N. Then, for E > 0; 04 u4 3
2 and x > 1, we have

X
p

log p wð pÞ p�ue�p=x þ du;E
L0ðu; wÞ
Lðu; wÞ

�E;n x
1
2�uþE log N þ 1

where du;E ¼ 1 if u � E > 1=2 and is du;E ¼ 0 otherwise.

Proof. We use Mellin’s classical formula

e�y ¼
1

2pi

Z 2þi1

2�i1

y�sGðsÞ ds

for y > 0. By (22) we get for 04 u4 3
2 and x > 0 the formula

X
p

log p
X1
m¼1

wðpmÞp�mue�pm=x ¼
�1

2pi

Z 2þi1

2�i1

L0ðs þ u; wÞ
Lðs þ u; wÞ

xsGðsÞ ds:

By Lemma 3 and Stirling’s formula we can shift the contour to ReðsÞ ¼ 1=2 þ E� u

picking up the residue at s ¼ 0 to get

X
p

log p
X1
m¼1

wðpmÞp�mue�pm=x þ du;E
L0ðu; wÞ
Lðu; wÞ

�E;n x
1
2�uþE log N:

Using (24) the sum of the terms with m > 1 is �n 1 and this finishes the proof of

Lemma 4. &
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Proof of Proposition 5. Integrating over u from 1 to 3
2 and taking E ¼ 1

8 in Lemma 4

gives for x > 1

log Lð1; wÞ �
X

p

wðpÞp�1e�p=x �n x�3
8 log N þ 1:

Hence, letting x ¼ ðlog NÞ
3 and y ¼ x

1
6 we get

log Lð1; wÞ �
X
p4 y

wðpÞp�1

�n

X
p4y

p�1ð1 � e�p=xÞ þ
X

y<p4x2

p�1e�p=x þ
X
x2<p

p�1e�p=x þ 1 � 1;

finishing the proof of Proposition 5. &

7. Extreme L-values at s ¼ 1

We now use Propositions 3 and 5 to prove Theorem 2 and Propositions 4 and 5 to

prove Theorem 1 as well as justify the upper bound (7) and the unconditional result (6).

The upper bound ð7Þ. Observe first that the upper bound (7) mentioned before

Theorem 2 follows from Proposition 5, giving (under GRH)

log jLð1; wÞj4 n
X

p4 ðlog NÞ
1
2

p�1 þ Oð1Þ4 n log log log N þ Oð1Þ; ð28Þ

and hence (7).

Proof of Theorem 2. Taking aðpÞ ¼ n for all primes p4 y in Proposition 3, where

y is a sufficiently large parameter, we have that there exists a Galois representation

whose image is G, conductor N satisfies

log N4 cy ð29Þ

and whose character w is unramified and satisfies wðspÞ ¼ að pÞ for c4 p4 y, where

sp is any Frobenius element over p. Thus by Proposition 5 we have that the associ-

ated L-function Lðs; wÞ satisfies

log Lð1; wÞ5
X

p4ðlog NÞ
1
2

wð pÞp�1 þ Oð1Þ5 n
X

c4p4ðlog NÞ
1
2

p�1 þ Oð1Þ

for y sufficiently large, since then ðlog NÞ
1
2 4 y follows from (29). Thus for these

Lðs; wÞ we have

log Lð1; wÞ5 n log log log N þ Oð1Þ:

The fact that such Lðs; wÞ have arbitrarily large N follows from Lemma 4 with

u ¼ 0 and E ¼ 1=4, since otherwise N would be bounded yet taking x ¼ y
1
2 would

give, for x sufficiently large,
P

p4 x log p � x
3
4; which contradicts the prime number
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theorem. This can also be seen by applying a uniform version of the Chebotarev

theorem. &

Proof of Theorem 1. For K 2 Kn we have that zKðsÞ ¼ Lðs; wÞzðsÞ, where w has

degree n � 1, conductor d and is irreducible. Also, for p �j d, we have that wðspÞ þ 1 is

the number of primes of K over p of degree 1, so wðspÞ ¼ n � 1, for primes p that split

completely in K. Thus by Proposition 4 and Proposition 5 we get, as above, that

there exist K 2 Kn with arbitrarily large discriminant d for which both

log Lð1; wÞ5 ðn � 1Þ log log log d þ Oð1Þ

and R �n ðlog d Þn�1: Theorem 1 now follows from (1). &

The Unconditional Result ð6Þ. The result that there are infinitely many K 2 Kn with

h � d
1
2ðlog d Þ�n is a consequence of Proposition 4 and the estimate

Lð1; wÞ � ðlog d Þ�1; ð30Þ

which follows from Theorem 1 of [19], since K contains no quadratic subfields in case

n > 2.

References

1. Ankeny, N. C., Brauer, R. and Chowla, S.: A note on the class-numbers of algebraic num-
ber ¢elds, Amer. J. Math. 78 (1956), 51^61.

2. Artin, E.: Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Hamb. Abh. 8

(1930), 292^306 (¼Collected Papers, 165^179).
3. Bohr, H. and Landau, E.: 3ber das Verhalten von 1=zðsÞ auf der Geraden s ¼ 1, Göttinger

Nachrichten (1924), 168^172.
4. Brauer, R.: On Artin’s L-series with general group characters, Ann. of Math. (2) 48 (1947),

502^514.
5. Cohen, S. D.: The distribution of Galois groups and Hilbert’s irreducibility theorem, Proc.

London Math. Soc. (3) 43 (2) (1981), 227^250.
6. Gallagher, P. X.: The large sieve and probabilistic Galois theory, In: Analytic Number

Theory, Proc. Sympos. Pure Math. (St. Louis Univ., St. Louis, Mo., 1972), Amer. Math.
Soc., Providence, R.I., 1973, 24, pp. 91^101.

7. Hilbert, D.: 3ber die Irreduzibilit@t ganzer rationaler Funktionen mit ganzzahligen Koef-
¢cienten, J. Crelle 110 (1892), 104^129 (¼Ges. Abh. II, 264^286).

8. Littlewood, J. E.: On the function 1=zð1þ tiÞ, In:Collected Papers of J. E. Littlewood,Vol.
I, Clarendon, Oxford, 1982, pp. 911^919.

9. Littlewood, J. E.: On the class number of the corpus Pð
ffiffiffiffiffiffiffi
�k

p
Þ, In: Collected Papers of

J. E. Littlewood, Vol. I, Clarendon, Oxford, 1982.
10. Martinet, J.: Character theory and Artin L-functions. Algebraic Number Fields:

L-functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975),
Academic Press, London, 1977, pp. 1^87.

11. Minkowski, H.: Zur Theorie der Einheiten in den algrbraischen Zahlk˛rpern, Nachr. Akad.
Wiss. Göttingen. (1900), 90^93 (¼Ges. Abh. I, 316^319).

114 W. DUKE

https://doi.org/10.1023/A:1022695505997 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022695505997


12. Montgomery, H. L. and Weinberger, P. J.: Real quadratic ¢elds with large class numbers,
Math. Ann. 225 (2) (1977), 173^176.

13. Narkiewicz,W.:Elementary and Analytic Theory of Algebraic Numbers, 2nd edn, Springer-
Verlag, Berlin, PWN^Polish Scienti¢c Publishers, Warsaw, 1990.

14. Po¤ lya, G. and Szeg˛, G.:Problems and Theorems in Analysis. Vol. II. Theory of Functions,
Zeros, Polynomials, Determinants, Number Theory, Geometry, revised and enlarged trans-
lation by C. E. Billigheimer of the fourth German edition, Grundlehren Math. Wiss.
216, Springer-Verlag, New York, 1976.

15. Prachar, K.: 3ber die kleinste quadratfreie Zahl einer arithmetischen Reihe (German),
Monatsh. Math. 62 (1958), 173^176.

16. Remak, R.: 3ber Gr˛ssenbeziehungen zwischen Diskriminante und Regulator eines algeb-
raischen Zahlk˛rpers (German), Compositio Math. 10 (1952), 245^285.

17. Schinzel, A.: Selected Topics on Polynomials, Univ. Michigan Press, Ann Arbor, 1982.
18. Serre, J.-P.: Topics in Galois Theory. Lecture notes prepared by Henri Damon, Res. Notes

Math. 1, Jones and Bartlett, Boston, MA, 1992.
19. Stark, H. M.: Some e¡ective cases of the Brauer^Siegel theorem, Invent. Math. 23 (1974),

135^152.
20. Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s ¼ 0, Progr. Math. 47.

Birkh@user, Boston, 1984.

EXTREME VALUES OF ARTIN L-FUNCTIONS 115

https://doi.org/10.1023/A:1022695505997 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022695505997

