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Abstract

Characterizing and quantifying the trajectories of variables of interest through time in their field
of study is of interest to a range of disciplines. The aim of this studywas to investigate the growth
speed in height of children and its determinants. A total of 3401 males and 3200 females from
four low- and middle-income countries with measured height on five occasions from 2002 to
2016 were included in the study. Data were analyzed using a latent growthmodel. The results of
the study reported that children in four low- andmiddle-income countries exhibited substantial
growth inequalities. There was a significant gender difference in change of growth with males
had a higher baseline, rate of change, and acceleration in height growth than females.
Comparing the component of slopes across countries, the growth change inequalities were
observed among children. These inequalities were statistically significant, with the highest rate
of change observed in Peru and Vietnam.

Introduction

Children growth and growth rate are the characteristics of physical, psychological, biological,
and sociological natural events.1 Growth changes are essential for keeping track of a child’s
health. Assessment of the anthropometric measurement of children is one of the best indi-
cations of children’s overall well-being and health. Abnormal growth could suggest the pres-
ence of an underlying health problem.2 According to several previous studies, children who
have normal trajectories have better health outcomes than those who have abnormal tra-
jectories of growth.1,2 Height growth is a relevant biological indicator of living standard that
reflects both existing and prospective health disparities in populations.3 As a result, com-
paring changes in height over time between countries may reveal important information
about differences in childhood living situations.4

Human physical height is a common anthropometric quantitative characteristic that has
been the subject of comprehensive study in several fields of science.5 Pediatricians, for
instance, study the anthropometric trajectories in children to understand the growth rate,
periods of deceleration and acceleration, and determinants of growth changes.6 Hence,
human physical growth can be used as an indicator of early life experiences and can provide
information about the standard of living in a country.7 While height is primarily determined
by genetics, it is also influenced by the environment in which children grow up.8 As a result,
research into differences in height growth over time and across countries can aid in iden-
tifying differences in childhood standards of living. Several studies examined differences in
children’s height growth as a function of socioeconomic status.9–12

Numerous factors influence body height, including nutrition, and genetic and environ-
mental factors during fetal life, childhood, and adolescence.13–16 Furthermore, it is widely
accepted that height growth differs between genders.17,18 Male and female height gains dif-
fered significantly in childhood18 and pubertal growth spurt.19,20 Age at height take-off and
at peak height velocity is later in males than in females.21 Apart from birth cohort dispar-
ities, socioeconomic inequalities in body height are significant; those in better socioeco-
nomic positions tend to be taller than those in lower socioeconomic positions.13,22,23

According to Marmot,24 the average male and female body height at the lowest position
was around 5 cm lower than in the highest position.

Furthermore, investigations of differences in height growth between countries and between
subgroups within one country may aid in finding differences in childhood living conditions.8 De
Groot et al.25 studied the heights of individuals born between 1913 and 1918 in 19 places across
Europe and reported that the tallest people were from northern Europe. And also the previous
study conducted in four low- and middle-income countries reported that there were consider-
able disparities in growth changes among children.26

The growth trajectory in height offer information on the growth change process. However,
the change process of physical growth is not observed directly, rather it is observed indirectly
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through repeated measures.6 In such cases, the mixed-effects
model is not flexible enough tomodel a growth process. As a result,
advanced statistical models capable of accounting for latent vari-
ables in latent growth are required. Hence, a latent growth model
is a common approach for analyzing latent variables within the
framework of structural equationmodeling.27 The aim of this study
was to investigate the growth speed in height of children and its
determinants.

Method

Data source

The longitudinal height data were obtained from the Young Lives
prospective cohort study carried out in Ethiopia, India, Peru, and
Vietnam from 2002 to 2016. The Young Lives study is a 15 years
longitudinal cohort study that looked at how childhood poverty
changed over time in Ethiopia, India, Peru, andVietnam. It employed
multistage sampling techniques with the first stage involving a selec-
tion of sentinel locations from each country. Sentinel site monitoring
is a public health concept that entails a purposive sampling of a small
number of settings that are thought to reflect a specific population or
area, and then being studied uniformly at relatively wide ranges.
Following that, 20 sentinel sites were selected at nonrandom in each
country. Following the selection of 20 sentinel sites, households with
children in the appropriate age groups were chosen at random. Then,
2000 infants (ages 6 to 18 months) were selected at random and they
considered as a younger cohort.28Details regarding sampling and par-
ticipant recruitment in the Young Lives study have been discussed in
previously published works.18,26,28–35

The Young Lives prospective cohort study gathered data in five
rounds. The first survey round was carried out in 2002 when the
children were on average one year of age, the second survey was
carried out in 2006, the third was in 2009, the fourth was in
2013, and the fifth was carried out in 2016.36 Data were collected from
children (8 years and older) and their primary caregivers in each
round using interviewer-administered questionnaires. A child’s
height, on the other hand, was measured in centimeters from the
age of 1 to 15 years.35 A total of 3401 males and 3200 females with
measured height five times from ages 1 to 15 years were included
in this study. Data were analyzed using SAS version 9.4.

Statistical analysis

Latent growth curve model
A latent growth curve is a special case of longitudinal structural
equation model that examines growth change in longitudinal data.
It includes two types of variables: latent and observed variables.
Observed variables are measured variables, but latent variables are
not measured directly and are used to predict observed variables.6

The random intercept and slope(s) in a latent model permit, respec-
tively, individuals to have unique initial growth and unique growth of
change over time. The growth process is latent in which it is not
observed directly, but its existence will infer from the observed
repeated measures.37

A latent growth curve model under different functional forms is
modeled in different expressions. For instance, equations (1) and
(2) represents the standard polynomial and fractional polynomial
models, respectively.

yit ¼ αi þ
Xp

j¼1

βijLp
t þ "it (1)

yit ¼ αi þ
Xp

j¼1

βijLm
t þ "it (2)

The growth intercept αi represents the individual expected value of
height (yit) at baseline (when t equals 0), the path coefficients βij
represent the rate of change and the speed of change in growth
for i-th individual,Λt represents the factor loading that determines
the functional form of the growth trajectories, and ϵit is the disturb-
ance for i-th individual at time t. The individual trajectories are
expressed in terms of mean trajectory and variance around the
mean trajectory that provide insight into between-individual var-
iations. By allowing between-individual variation at intercept and
slopes, the latent factors can be expressed in terms of average and
variance as:
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where μα and μβp are the population mean intercept and slope,
respectively, and eα and eβp are, respectively, the intercept and slope
disturbances represent the extent to which the individual intercept
and slope values deviate from the mean intercept and slope. The
disturbances of eα and eβp are distributed with means of zero
and variances of ψαα and ψβpβp and covariance of ψαβp.

Conventional polynomial functions are restricted in modeling
nonlinear changes.38 Alternatively, a fractional polynomial which
is an extension of conventional polynomials provides a variety of
curve shapes for exploring characteristics of nonlinear trajectories.
In this model, the m power terms in equation(2) can be chosen
from m = (−2, −1, −0.5, 0, 0.5, 1, 2, 3), a combination function
with the lowest deviance will be the best fit function.38

A path diagram presented in Fig. 1 permits a latent growth
model to be expressed graphically. In this diagram, the rectangle
symbols denote the observed variables and the circle symbols
denote latent variables. The observed variables are the individual
measures of child height and α, β1, and β2 are the latent variables.
Each line in the path diagram stands for the trajectory of the indi-
vidual from which the latent variables are estimated. Paths with
single-headed arrows at the end connect unobserved and observed
variables. The causal relationship and the covariance between var-
iables are explained by single- and double-headed arrows, respec-
tively. The variable at the arrow tail is an exogenous variable and
the variable at the arrowhead is an endogenous variable. As shown
in Fig. 1, there is one latent intercept, α, with one-factor loadings
and two latent slopes, β1 and β2, with first-order polynomial (FP1)
and second-order polynomial (FP2) factor loadings, respectively.
The factor loadings on the latent slopes are used to determine
whether the trajectory is linear or nonlinear. The coding and loca-
tion of the baseline of time scores have a significant impact on the
estimation and interpretation of the growth parameter.39,40

Different fit indexes were assessed to evaluate the models' good-
ness of fit. These include the comparative fit index (CFI), the
Tucker-Lewis index (TLI), the root mean square error of approxi-
mation (RMSEA), and the standardized root mean square (SRMS).
The higher values closed to 1 for CFI and TLI reflecting a better fit,
while the lower values closed to zero for RMSEA and SRMS reflect-
ing a better fit.37,41
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Results

Sample description

The study considered a total of 6601 children: 3401 (51.5%)
males and 3200 (48.5%) females. The distribution characteris-
tics and mean height of children in four study countries are dis-
played in Table 1. The average height increased and varied with
age in both genders. This indicates that a linear model may not
be applicable to model the growth trajectories. Thus, we com-
pared different latent growth models to identify the model that

best represents the growth trajectory. The results are presented
in Tables 2 and 3.

Results of linear latent growth model

To investigate variations in height growth at each measurement
occasion, linear latent growth models with different origins of time
were performed. For instance, to estimate mean height at age 1, we
set the origin of time at age 1 by coding time = (age–1). Following
that, we are also interested in examining growth variability at each

Fig. 1. Path diagram of a five-wave polynomial
latent growth curve model.

Table 1. Distribution characteristics and mean height of children in four study countries from 2002 to 2016

Ethiopia India Peru Vietnam

Male Female Male Female Male Female Male Female

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

818 (51.7) 764 (48.3) 877 (53.2) 771 (46.8) 819 (50.3) 808 (49.7) 887 (50.9) 857 (49.1)

Year
Mean height

(SD)
Mean height

(SD)
Mean height

(SD)
Mean height

(SD)
Mean height

(SD)
Mean height

(SD)
Mean height

(SD)
Mean height

(SD)

2002 72.03 (5.19) 70.67 (5.40) 72.86 (4.75) 71.36 (4.74) 72.57 (4.34) 71.36 (4.74) 73.31 (4.17) 71.49 (4.02)

2006 104.96 (4.86) 103.94 (5.27) 104.86 (4.46) 104.41 (4.64) 105.53 (5.76) 104.26 (5.82) 105.91 (5.12) 104.71 (4.55)

2009 121.75 (5.55) 120.92 (5.92) 119.77 (5.29) 119.17 (5.69) 121.19 (5.49) 120.37 (5.59) 121.87 (5.88) 121.20 (5.56)

2013 141.02 (5.91) 142.61 (7.13) 140.17 (6.55) 142.36 (6.8) 142.71 (7.29) 144.61 (6.65) 144.04 (8.16) 145.69 (7.24)

2016 157.44 (7.99) 156.22 (5.98) 158.94 (7.56) 152.52 (5.35) 161.65 (6.48) 153.47 (4.96) 162.98 (6.47) 155.16 (5.31)
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measurement occasion by placing the origin of time scores at ages
5, 8, 12, and 15 by coding time = (age–5), time = (age–8), time =
(age–12), and time = (age–15), respectively. These would provide
the following loading matrices, L :

L1 ¼

1 0
1 4
1 7
1 11
1 14

2
66664

3
77775
; L5 ¼

1 �4
1 0
1 3
1 7
1 10

2
66664

3
77775
L8 ¼

1 �7
1 �3
1 0
1 4
1 7

2
66664

3
77775
;

L12 ¼

1 �11
1 �7
1 �4
1 0
1 3

2
66664

3
77775
; L15 ¼

1 �14
1 �10
1 �7
1 �3
1 0

2
66664

3
77775

The first and the second column of the L matrices represent the
intercept and the linear components, respectively. The fit statistics
of this model showed that linear models are inconsistent with the
height data, provided TLI = 0.141, CFI= 0.141, RMSEA= 0.482,
and AIC = 15392.023. As shown in Fig. 2, the trajectory is not lin-
ear. Additionally, Fig. 3 exhibited that there appears to be a varia-
tion in growth trajectories of height between males and females.
Under such conditions, nonlinear growth models are appropriate
to analyze the trajectories.

Results of quadratic latent growth model

Nonlinear latent growth models permit for the flexibility of time
scores being related with the slope of linear latent factor.
Accordingly, for a quadratic model, equation(1) can be written as:

yit ¼ αi þ β1iLt þ β2iL2
t þ "it (4)

The latent intercept and linear components are a child’s height
and the instantaneous rate of growth when time equals 0, respec-
tively. Likewise, the quadratic component represents acceleration
in height growth. To estimate the growth parameters that define
means and variability in height growth at each measurement occa-
sion, we originate the time scores at ages 1, 5, 8, 12, and 15 years as
previous. Consequently, the quadratic latent models’ loading
matrices Λ are as follows:

L1 ¼

1 0 0
1 4 16
1 7 49
1 11 121
1 14 196

2
66664

3
77775
; L5 ¼

1 �4 16
1 0 0
1 3 9
1 7 49
1 10 100

2
66664

3
77775
;

L8 ¼

1 �7 49
1 �3 9
1 0 0
1 4 16
1 7 49

2
66664

3
77775
; L12 ¼

1 �11 121
1 �7 49
1 �4 16
1 0 0
1 3 9

2
66664

3
77775
;

L15 ¼

1 �14 196
1 �10 100
1 �7 49
1 �3 9
1 0 0

2
66664

3
77775

The fits statistics for these quadratic latent models are presented in
Table 2. These models improved the fit statistics over the linear
one, provided TLI = 0.522, CFI = 0.713, RMSEA = 0.360, and
AIC= 5166.37. However, these models are also inconsistent with
the height data. Subsequently, we should extend conventional pol-
ynomials to fractional polynomials using Equation (2).

Results of fractional polynomial latent growth model

Wake and colleagues31 identified that the growth trajectory of chil-
dren from aged 1 to 15 years was nonlinear. Thus, for the current
study, we used nonlinear transformation of the loading matrix to
extend conventional polynomial function to fractional polynomial
functions, which are more flexible and useful in modeling nonlin-
ear trajectories.42 A fractional polynomial was formulated by intro-
ducing single and combinations of various forms of time scores
function to models. Accordingly, a second-order fractional poly-
nomial function with p=−1 and q= 1 power terms was found
to be the best-fitting model.

The time coding was chosen asΛt = 1, 5, 8, 12, 15 with its linear
inverse transformation, Λ−1

t= 1, 0.2, 0.125, 0.083, 0.067. The rea-
son why the first time coding begins with 1 is that the linear inverse
of 0 is undefined. Thus, by scaling (Λt−1) and (Λ−1

t−1), we placed
the origin of time at age 1, estimating a child’s mean height at age 1.
Similarly, to demonstrate the growth variability at ages 5, 8, 12, and
15, models with varying centering points were fitted to the data. As
shown in Table 3, these models substantially improved the fit sta-
tistics over the linear and quadratic models (TLI = 0.942,
CFI= 0.977, RMSEA = 0.125, AIC = 451.064). Therefore, frac-
tional polynomial models were chosen as the best-fitting models
to analyze nonlinear trajectories in height growth.

Fractional polynomial latent growth models with time-
invariant covariates

Gender and country effects on children’s physical growth were
assessed. The inclusion of these covariates improved the models’
fit. For the sake of simplicity only Λ1 model was considered in this
analysis. As given in Table 4, the estimated mean intercept of 72.14
reflects themean height of children at the initial measurement. The
estimated values for the linear and its reciprocal were 5.19 and
−15.07, respectively. The growth speed is the first derivative of

Table 2. The fit statistics of quadratic models under different time coding
schemes for height growth

Model

Index of
fit Λ1 Λ5 Λ8 Λ12 Λ15

TLI 0.522 0.522 0.522 0.522 0.522

CFI 0.713 0.713 0.713 0.713 0.713

RMSEA 0.36 0.36 0.36 0.36 0.36

AIC 5166.37 5166.37 5166.37 5166.37 5166.37

Journal of Developmental Origins of Health and Disease 297

https://doi.org/10.1017/S2040174422000617 Published online by Cambridge University Press

https://doi.org/10.1017/S2040174422000617


the latent growth curve equation. The latent growth curve equation
is therefore expressed as 72.14þ 5.19time− 15.07time−1. The lin-
ear coefficient (5.19, p< 0.001) represents the instantaneous rate of
change when time is zero. The significant and negative value of

time inverse coefficient (−15.07, p< 0.001) suggests that the
growth speed of children decreased with age.

There was a significant negative gender difference in height
growth at all components of latent factors. This implies that

Table 3. Estimates of an unconditional fractional polynomial model under different time coding schemes for height growth

Model

Λ1 Λ5 Λ8 Λ12 Λ15

Parameter Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Mean

Intercept 71.956 0.058*** 104.647 0.061*** 121.13 0.063*** 142.214 0.072*** 157.803 0.085***

Linear 5.112 0.007*** 5.112 0.007*** 5.112 0.007*** 5.112 0.007*** 5.112 0.007***

Linear inverse −15.306 0.087*** −15.306 0.087*** −15.306 0.087*** −15.306 0.087*** −15.306 0.087***

Variance

Intercept 14.575 4.364*** 20.706 0.463*** 23.859 0.467*** 27.922 0.62*** 31.211 0.904***

Linear 0.021 0.011** 0.021 0.011** 0.021 0.011** 0.21 0.011** 0.021 0.011**

Linear inverse 9.868 7.53** 9.868 7.53** 9.868 7.53** 9.868 7.53** 9.868 7.53**

Covariance

Intercept-Linear 0.03 0.086** 0.283 0.05*** 0.363 0.042*** 0.457 0.057*** 0.524 0.082***

Intercept-Linear inverse 1.318 5.763** −7.416 0.604*** −8.787 0.519*** −10.038 0.579*** −10.832 0.772***

Linear-Linear inverse −0.21 0.14** −0.21 0.14** −0.21 0.14** −0.21 0.14** −0.21 0.14**

Index of fit

TLI 0.942 0.942 0.942 0.942 0.942

CFI 0.977 0.977 0.977 0.977 0.977

RMSEA 0.125 0.125 0.125 0.125 0.125

AIC 451.064 451.064 451.064 451.064 451.064

***p< 0.0001, **p> 0.05.

Fig. 2. Path diagram of a five-wave linear
growth curve model.
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females had lower mean intercept, linear slope, and linear inverse
slope (α=− 1.65, β1=− 0.37, β2=− 3.06) than males. When
compared to Ethiopian children, children in India (α= 0.836,
p< 0.001), Peru (α= 0.478, p= 0.004), and Vietnam (α= 1.102,
p< 0.001) had positive and significant baseline measurements.
Likewise, the linear slope for children in Peru (β1= 0.110,
p< 0.001) and Vietnam (β1= 0.231, p< 0.001) were significantly
positive, indicate that children in these two countries had a higher
instantaneous rate of change than that of children in Ethiopia.
However, a negative and significant linear slope was observed
for children in India (β1=−0.067, p= 0.001). This implies that
Indian children had a lower instantaneous rate of change than
Ethiopian children. The growth acceleration for children in India
(β2= 1.189, p < 0.001), Peru (β2= 1.088, p < 0.001), and Vietnam
(β2= 1.945, p< 0.001) was significantly positive. This suggests that
children in India, Peru, and Vietnam grew at lower decrement with
age when compared to children in Ethiopia.

The variance-covariance of the model components examined
the variation in growth between individuals. The significant var-
iances indicate that individuals begin their growth progression
at distinct values and growing at different rates. The significant
negative covariance of ψαβ1 indicates that children who were taller
at baseline tended to grow at a lower rate. The significant positive
covariance of ψβ1β2 suggests that children who had a higher rate of
growth tended to be growing at a faster acceleration.

Discussion

The growth trajectories of children aged 1 to 15 years were studied
using linear and nonlinear latent growth models. The study
revealed that the functional relationship between physical height
growth and a child’s age is nonlinear. Similar data were examined
using a latent basis model, and it was shown that the functional
changes in children’s height are not linear.31 As a result, a nonlinear
latent growth model was chosen to depict the growth trajectories.
Thereafter, among the families of nonlinear polynomial functions,

the quadratic and fractional polynomials were examined for the
trajectories. Lastly, a second-order fractional polynomial was
found to be the best-fitting model.

The analysis of the data and application of the model indicates
that gender was significantly associated with the growth parame-
ters. In contrast to our study, Faye et al.43 found gender differences
in linear growth, with females growing at a higher rate than
males.43 The study also identified that the growth acceleration of
children in four low- and middle-income counties decreased with
age. This is consistent with the previous study of Haymond et al.2

noted that the maximum rate of growth occurs at birth and gradu-
ally slows until the pubertal growth spurt.2 Regarding the country’s
effect on child growth, there were significant differences in growth
change and individuals showed substantial variation in their par-
ticular latent components. In addition, the findings of the study
show that inequalities of height growth were observed in all four
countries, with high values for children in Peru and Vietnam.
This could be due to socioeconomic differences among countries.
Children of higher socioeconomic status were taller than those of
lower socioeconomic status.9,44 The well-living condition may lead
to improvements in childhood health, social conditions, and a
reduction in negative environmental effects.10,23

Furthermore, it was found out that all the path coefficients of
latent components were positive and significant except for chil-
dren in India was negative and significant at linear component.
This indicates that children in India showed a lower change in
growth compared to children in Ethiopia. The intercept and lin-
ear component of the model had variability between children,
while the linear inverse component had no variability between
children, suggesting that the curvature of the linear inverse was
identical for all children. This finding is consistent with the find-
ings of a previous study comparing height across geographic
regions, which found that environmental effect was highest during
the first years of life and decreased throughout childhood and ado-
lescence.5 Socioeconomic variations in height growth were present
at birth and widened through infancy and early childhood.12

Fig. 3. Growth trajectory differences in four countries.
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The key strength of this study is the long-term follow-up
of children’s height measures that give insight into the longitudinal
variations in height trends in four low and middle-income coun-
tries. The study has also its own limitations. It was restricted to
four low- and middle-income countries, which may not be repre-
sentative of all low- and middle-income countries. Furthermore,
potential factors which can influence the height growth are not
considered in this study. As a result, further study is needed to
address these limitations.

Conclusion

Understanding and enhancing the health of children require not
only their perspective but also understanding the ecological nature
of their health and the interdependence of the biological, physical,
and socioeconomic background is also important. Therefore,
studying the growth of children plays a significant role in deter-
mining and eventually improving their health status. The results
of this studymay help to inform better policy for children to ensure
that every child has the best possible start in life and that those who

are at risk of being left behind have access to interventions and sup-
port to maximize their opportunities and well-being.

A clear understanding of these country growth variations is
important for finding key possibilities to promote healthy growth
in early life of children. We believe that our findings point to an
underlying relationship between children’s physical growth and
their biological and socioeconomic backgrounds. In addition, fur-
ther study is needed to identify age-specific growth variations and
the direct and indirect effects of potential covariates on children’s
growth trajectories.
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