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108.33 Some inequalities for a triangle

In a recent Article [1] an upper bound was derived for , the sum
of the (lengths of the) altitudes of a triangle. In this Note we find a different upper
bound in terms of , the radius of the circumcircle. We also derive several other
inequalities for a triangle which we have been unable to find in the literature,
despite the fact that they follow quickly from known results.

ha + hb + hc

R

Our notation is standard – for a triangle ,  and  are the side-
lengths,  and  is the radius of the incircle.  is the radius
of the circumcircle and ,  and  are the radii of the excircles, while ,
and  are the altitudes. The shorthand [WEIFFTTIE]. will indicate the
phrase, “With equality if and only if the triangle is equilateral”, throughout.

ABC a, b c
2s = a + b + c r R

ra rb rc ha hb
hc

We need these known preliminary results, all easily proved and widely
available in [2] and [3], for example.

Lemma 1: We have . [WEIFFTTIE]. See
[3, p. 274].

ha + hb + hc ≤ 3
2 (a + b + c)

Lemma 2: We have ; ; . See [2,
p. 200].

a = 2R sin A b = 2R sin B c = 2R sin C

Lemma 3: We have . [WEIFFTTIE]. See [2,
p. 315}.

sin A + sin B + sin C ≤ 3
2 3

Lemma 4: We have . See [2, p. 207].ra + rb + rc − r = 4R

Lemma 5 (Euler 1767): We have . [WEIFFTTIE]. See [2, p. 216].R ≥ 2r
Euler's proof of this result was very beautiful. He showed that the

distance  between the incentre and the circumcentre is given by
 and since , we have .

d
d2 = R(R − 2r) d2 ≥ 0 R ≥ 2r
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Lemma 6: We have ,  and . See [2, p. 205].ra = s tan 1
2A rb = s tan 1

2B rc = s tan 1
2C

Lemma 7: We have . See [2, p. 207].a cotA + b cotB + c cotC = 2(R + r)

Lemma 8: We have .
See [2, p. 206].

ra + rb + rc = 1
2 [a cot 1

2A + b cot 1
2B + c cot 1

2C]

Lemma 9: We have . See [2, p. 207].
1
ra

+
1
rb

+
1
rc

=
1
r

Lemma 10: We have  and . See [2, p. 207].R =
abc
4�

r =
�
s

Lemma 11: We have . See [2, p. 207].rarbrc =
�2

r

Main results
Theorem 1: We have  [WEIFFTTIE].9

2R ≥ ha + hb + hc ≥ 9r

Proof: We already know that  [1]. Now, by Lemma 1,ha + hb + hc ≥ 9r

ha + hb + hc ≤
3

2
(a + b + c)

= 1
2 3 (2R sin A + 2R sin B + 2R sin C)  (by Lemma 2)

= 3 (R sin A + R sin B + R sin C)
≤ 1

2R ( 3 × 3 3)      (by Lemma 3)

= 9
2R.

Theorem 2: We have  [WEIFFTTIE].9
2R ≥ ra + rb + rc ≥ 9r

Proof: By Lemma 4, , by Lemma 5, so
. Also, by Lemma 5, , so
. [WEIFFTTIE] applies in both cases.

ra + rb + rc = 4R + r ≥ 8r + r
ra + rb + rc ≥ 9r ra + rb + rc = 4R + r ≤ 4R + 1

2R = 9
2R

9
2R ≥ ra + rb + rc

Corollary 1: In any triangle, at least one of ,  or  is less than or equal to
,

ra rb rc
3
2R

Corollary 2: In any triangle, at least one of ,  or  is greater than or
equal to .

ra rb rc
3r

Theorem 3: We have . [WEIFFTTIE].9
2R ≥ s [tan A

2 + tan B
2 + tan C

2 ] ≥ 9r

Proof: This follows at once from Lemma 6 and Theorem 2.
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Theorem 4: We have
[WEIFFTTIE]. This follows at once from Lemma 7.

3R ≥ a cot A + b cot B + c cot C ≥ 6r.

Theorem 5: We have  and
.

2(a cotA + b cotB + c cotC) − (ra + rb + rc) = 3r
2 (ra + rb + rc) − (a cot A + b cot B + c cot C) = 6R

This follows at once from solving the equations in Lemmas 4 and 7 for
 and .r R

Theorem 6:  [WEIFFTTIE].9R ≥ a cot 1
2A + b cot 1

2B + c cot 1
2C ≥ 18r

This follows at once from Theorem 2 and Lemma 8.

Theorem 7: We have  [WEIFFTTIE].3 3R ≥ a + b + c ≥ 6 3r
Proof: The left-hand-side inequality is known (see [3]) but for completeness
here is a quick proof:

By Lemma 2, ,
by Lemma 3. To show , we proceed as follows:

a + b + c = 2R(sin A + sinB + sinC) ≤ 2R · 3
2 3 = 3 3R

a + b + c ≥ 6 3r
Apply the AM-GM inequality to  to gets − a, s − b, s − c

(s − a) + (s − b) + (s − c) ≥ 3 3 (s − a) (s − b) (s − c)

or  3s − 2s = s ≥ 3 3 (s − a) (s − b) (s − c)

or  s3 ≥ 27 (s − a) (s − b) (s − c) .
Next,

s4 ≥ 27s (s − a) (s − b) (s − c) = 27�2,

so  and .s2 ≥ 3 3� s ≥ 3 3
�
s

= 3 3r

Finally, . [WEIFFTTIE].2s = a + b + c ≥ 6 3r
                                                                 

Theorem 8: Let  . Then .
[WEIFFTTIE].

t = 4 27 = 2.279507… (1
2t) R ≥ � ≥ tr

Proof: We have  (Lemma 4) and
(Lemma 11). Applying the AM-GM inequality, we get

ra + rb + rc = 4R + r rarbrc = 1
r �2

ra + rb + rc ≥ 3 3 rarbrc

or  4R + r ≥ 3 3
�2

r

or  r (4R + r)3 ≥ 27�2.
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Using  this becomes  or , as claimed. Also,

applying the AM-GM inequality to ,  and  we get

1
2R ≥ r 27R4 ≥ 16�2 1

2tR ≥ �
1
ra

1
rb

1
rc

1
ra

+
1
rb

+
1
rc

≥ 3 3
1
ra

 · 
1
rb

 · 
1
rc

which by Lemmas 9 and 11 gives  or . So .
[WEIFFTTIE].

�2 ≥ 27r4 � ≥ tr t
2R ≥ � ≥ tr

Theorem 9: We have . [WEIFFTTIE].4s3 ≥ 27�R

Proof: Since , the result follows at once by
Lemma 10.

2s = a + b + c ≥ 3 3 abc
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108.34 One sharpening of the Garfunkel-Bankoff inequality
and some applications

Garfunkel-Bankoff inequality
For a triangle  we use the notation  and  for the

cyclic sum and the cyclic product respectively. Then we have
ABC ∑ tan2 A

2 ∏ sin A
2

Theorem 1: In any triangle  holdsABC

∑ tan2 A
2 ≥ 2 − 8 ∏ sin A

2 + (1 − 8 ∏ sin A
2) ∏ tan2 A

2. (1)
Proof: By the well-known identities

∑ tan2 A
2

=
(4R + r)2

s2
− 2,   ∏ sin

A
2

=
r

4R
,   ∏ tan

A
2

=
r
s

where ,  and  are the circumradius, inradius and semiperimeter of the
triangle, inequality (1) is transformed to

R r s

(4R + r)2

s2
− 2 ≥ 4 −

2r
R

+
r2

s2 (1 −
2r
R )
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