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the tools to overcome these difficulties, though these tools 
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1 Introduction

Why should we care about ecological complexity? This question can be under-

stood in two ways, depending on whether the emphasis is placed on the word

‘ecological’ or the word ‘complexity’. We could be asking why we should care

about complexity as it manifests in ecology, rather than how it manifests in other

disciplines. Alternatively, we could be asking why, of all the issues in ecology,

we should focus on complexity. It turns out that these two questions are closely

connected; what makes complexity in ecology interesting is also what makes

complexity in ecology interesting. The short answer is causal heterogeneity: the

variability of causal factors over space or time. In what follows, I will argue that

causal heterogeneity is an important but hitherto undervalued dimension of

complexity. It is important because it explains some of the most pressing

difficulties faced by practicing ecologists, namely generalisation, prediction

and intervention in ecological systems. A re-conceptualisation of complexity

that includes causal heterogeneity can give us a better understanding of these

problems.

The idea that complexity creates difficulties for scientific practice is neither

new nor limited to ecology. It features prominently in the debate about laws in

biology, as it explains why most generalisations in biology fall short of the

standards of ‘lawhood’ (Mitchell 2003). Biological systems are complex in the

sense that they contain numerous causes whose interactions lead to configur-

ations that are contingent on historical factors. As a result, any generalisations

that describe them are neither universal nor exceptionless (Mitchell 2003). This

has been a conspicuous thorn in the side of many biologists and philosophers of

biology, as historically, laws were considered to be the hallmarks of true

science. Any discipline that did not have laws of nature was at best immature

and at worst not truly scientific.

While some biologists and philosophers gave up on the idea of biological

laws completely (e.g. Lawton 1999, Shrader-Frechette &McCoy 1993)1, others

argued that if laws in biology do not conform to our pre-existing conception of

lawhood, then the fault lies with this conception; the answer is to revise our

notion of lawhood so that it captures biological laws (Mitchell 2003,Woodward

2001). In the words of Sandra Mitchell, the plurality of causes in evolutionary

biology is ‘not an embarrassment of an immature science, but the mark of

a science of complexity’ (2003, p. 115). Here, Mitchell succinctly highlights the

twomain issues of biological complexity: that complexity is a key way in which

1 Not everyone interpreted the absence of laws in biology as equally problematic. For instance,
Shrader-Frechette and McCoy (1993) argued that the absence of laws did diminish the scientific
status of biology.

1Ecological Complexity
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biology differs from other sciences and that this does not mean that biology is

deficient or inadequate when compared to these other sciences.

Ecological systems are biological systems and thus share most of the features

of biological complexity along with the difficulties it generates. However, eco-

logical systems are special in the sense they are also characterised by pervasive

causal heterogeneity. Causal heterogeneity exacerbates and compounds the diffi-

culties generated by biological complexity: not only do ecological systems

contain numerous causes, but these causes are also diverse and variable. This

means that even the generalisations that are present in evolutionary biologymight

be elusive in ecology. Thus, a thorough investigation of ecological complexity,

with causal heterogeneity as one of its key features, is important for gaining

a deeper understanding of some of the most important problems faced by

practicing ecologists. In addition, it can help us gain a more comprehensive

understanding of scientific practice, as understanding ecological complexity can

serve as a blueprint for a better understanding of complexity in other disciplines

where causal heterogeneity also features prominently.

But how important is ecological complexity really? Is rarity or absence of

laws merely a philosophical problem or does it also affect the practice of

ecology? The effects of complexity are far reaching for ecological practice

and for the theoretical foundations of the discipline. I will illustrate the practical

effects of complexity in the next section, by showing that complexity can lead to

surprises in ecological research. I will then show that frequent surprises have

dangerous theoretical implications, as they are used by some scientists and

philosophers to cast doubt on the overall quality of ecological research and the

scientific status of the discipline itself.

1.1 Surprise!

While investigating the effects of bird guano runoff on intertidal ecosystems in

southwestern South Africa, a group of scientists observed that two neighbouring

islands (4 kilometres apart) had very different benthic communities: one was

teeming with lobsters while the other was covered in mussels and whelks.

According to the local fishermen, lobsters were present in both locations till

the early 1970s, but then mysteriously disappeared from the second island.

After a series of horror-inducing experiments, where lobsters were re-

introduced to the second island, the scientists realised that the whelks had

turned the tables on their erstwhile predators and now preyed on the lobsters

(Barkai &McQuaid, 1988).2 Another example of surprise comes from a species

2 The horrifying aspect was the speed with which the whelks consumed their erstwhile predators:
about 1,000 lobsters were completely annihilated within 45 minutes (Wilcox, 2018).

2 Philosophy of Biology
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of butterfly that lays its eggs in a particular host plant (Singer & Parmesan, 2018).

An invasive plant outcompeted the butterfly’s native host, but the butterfly

adapted to the invader. Around twenty years later, the invader was eradicated,

but the butterfly could not switch back to its original host and went locally extinct.

A third example comes from interactions between plants and soil microbes,

which have been known to reverse, changing from positive to negative feedback

(Casper & Castelli, 2007; Klironomos, 2002; see also Section 2.2). Finally,

Benincà et al. (2008) observed unexpected and significant changes in species

abundances and community structure in an experiment on a plankton community

isolated from the Baltic Sea, even though the experiment was conducted in

a controlled laboratory setting with most conditions kept constant.

The frequency of surprises like these in ecology has been documented. Doak

and colleagues (2008) conducted a survey and found that surprises are far from

rare. They outlined at least sixteen cases of famous surprises just within the

subfields of population and community dynamics and reported that 98 per cent

of established field ecologists affirmed that they had encountered surprise

events akin to the sixteen cases. Moreover, many of the respondents revealed

that the majority of surprising results had not been subsequently sent for

publication, ‘the implication being that these observations were uninteresting,

bothersome, embarrassing, or not sufficiently well chronicled and understood

through proper application of the scientific method, and thus were underre-

ported in the scientific literature’ (p. 956, my emphasis).

But what does the existence and frequency of surprises mean for ecological

research? In the philosophical literature, a few surprises are viewed as a positive

and integral aspect of scientific practice. Scientists learn from surprises, as

understanding why they occur leads to scientific progress (Morgan, 2005;

Parke, 2014). However, too many surprises are problematic. In the above

examples, the scientists had identified patterns in nature (or the laboratory)

and formulated expectations based on those patterns. Yet these patterns were

ephemeral: they existed for a while, but at some point, they ceased, resulting in

surprise. This explains why surprises are problematic: scientists rely on identi-

fying patterns to generate generalisations, on which they base explanations,

predictions and interventions. A surprise indicates that the explanation, predic-

tion or intervention has failed or is likely to fail.

Ecological complexity (which includes the notion of causal heterogeneity)

explains both the frequency and magnitude of surprises in ecology. Ecological

phenomena have numerous, diverse and variable causes, so the behaviour of

ecological systems does not always go as expected. This diversity and variability

is the reason why the patterns that scientists detect are likely to be ephemeral,

resulting in surprise. Nonetheless, as we shall see in the next section, there is

3Ecological Complexity
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a view which states that frequent surprises only occur in disciplines that are

immature or whose theories or methods are somehow flawed (Doak et al., 2008;

Hitchcock & Sober, 2004).

1.2 The Scientific Status of Ecology

Some ecologists believe that the frequency of surprises in their discipline should

be taken as an indication that there are gaps in our knowledge of ecological

systems. In some sense, worrying about the quality of a discipline’s research is

something that all scientists (ought to) do, as it helps to maintain standards and

improve methods in scientific practice (Hitchcock & Sober 2004).3 However,

there are ecologists who go much further, questioning whether ecology should

be considered a science at all, or lamenting that it is at best a ‘soft’ science.

Ecologists are often said to suffer from ‘physics envy’, wishing that their

theories, methods and results would more closely emulate those in physics

(Egler, 1986; Kingsland, 1995 p. 234; McIntosh, 1987; Shrader-Frechette &

McCoy, 1993 p. 34). Another phrase sometimes invoked is that of ‘stamp

collecting’, which is the lot of scientific endeavours that are merely descriptive,

lacking general theories, predictive power and the ability to be expressed

mathematically (Johnson, 2007; Kingsland, 1995 p. 200). As historian Sharon

Kingsland points out, the introduction of mathematical models into ecology was

viewed by ecologists themselves as an important step towards the discipline

becoming a real science, and that this trend is ongoing, as ‘ecologists continue

to look towards mathematics and the physical sciences for ideas, techniques and

models of what science should be’ (1995, p. 234).

Despite these ‘advances’, there is a small but persistent and vocal group of

ecologists who continue to worry. Every few years publications appear, often in

monographs or the opinion section of major journals, expressing misgivings

about the scientific status of ecology or one of its sub-disciplines. Perhaps the

most famous of these critiques is Peters’s aptly titled Critique for Ecology

(1991), which criticised ecologists for not providing testable hypotheses in

the form of precise predictions. Moreover, Peters argued that theory did not

play a significant enough role in ecological research as it did little more than

provide the conceptual inspiration for a scientific investigation. It seems that

many ecologists took this criticism to heart, as ‘across the western world there

were professors who removed the book from library shelves to prevent their

students from reading it, lest they became demotivated’ (Grace, 2019). A more

recent version of this view appears in Marquet et al. (2014), who argue that

ecology does not have enough ‘efficient theories’, by which they mean theories

3 I thank Jack Justus for pointing this out.

4 Philosophy of Biology
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that ‘are grounded in first principles, are usually expressed in the language of

mathematics, make few assumptions and generate a large number of predic-

tions’ (p. 701). On a similar note, Houlahan et al. (2017), argue that ecology has

‘abandoned prediction [and] therefore the ability to demonstrate understanding’

(p. 1). Moreover, it is still an ‘immature discipline . . . [that] must move beyond

such qualitative coarse predictions to riskier, more quantitative, precise predic-

tions, sensu Popper’(p. 5).

There are also critiques of sub-disciplines or types of research, which are in

some sense more alarming, as they could be used by universities or funding

bodies to limit the amounts allocated to those disciplines or methods. For

example, Valéry et al. (2013) argued that their inability to find a process or

mechanism specific to invasion biology ‘eliminates any justification for the

autonomy of invasion biology’ (p. 1145). Courchamp et al. (2015) state that

‘one of the central objectives and achievements of fundamental ecology is to

develop and test general theory in ecology’ (p. 9). Here, fundamental, or ‘pure’

ecology is contrasted to ‘applied’ ecology, which is aimed at solving particular

problems and/or intervening on the world. The authors worry that applied

ecology has seen an increase in support (economic and otherwise) in recent

years, at the expense of fundamental ecology, which should be reversed

(Courchamp et al., 2015).

Though it is primarily ecologists who worry about the scientific status of their

field, these ideas are rooted in philosophy of science. As stated above, the ability

to generate laws and the ability to make precise and accurate predictions used to

be seen as the hallmarks of true scientific disciplines (Hempel & Oppenheim,

1948; W. C. Salmon, 2006). A discipline that could not provide either, would

traditionally be considered at best ‘immature’ and at worst ‘soft’ or ‘unscien-

tific’ (Rosenberg, 1989; see discussion in Winther, 2011). The more extreme

versions of the positions are nowadays viewed as outdated in philosophical

circles, yet aspects of them are still deemed important. Many philosophers

arguing for a revised notion of laws, do so partly in order to show that sciences

like biology are on a par with other sciences. For example, Linquist et al. (2016)

argue that as ecology has resilient generalisations which ought to count as laws,

this ‘should help to establish community ecology as a generality-seeking

science as opposed to a science of case studies’ (p. 119).

Thus, there seems to be a general worry that ecology is far from an ideal

science. The suggestions for how to improve the quality of ecological research

vary: some argue that the answer is to find more or better laws, others argue for

more focus on explanations or predictions, others still argue for more integra-

tion between sub-disciplines, and so on. My view is different, as I do not believe

that there is anything, in principle, wrong with ecological research, merely that

5Ecological Complexity
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ecological research is particularly difficult in certain ways. These difficulties

stem from the particular way in which ecological systems are complex.

1.3 Outline

My aims, in this Element, are to show that (i) our current views about complex-

ity do not capture how complexity works in ecological systems (ii) we should

reconceptualise complexity to include causal heterogeneity (iii) this reconcep-

tualisation explains some of the important difficulties that ecologists face and

(iv) this reconceptualisation can point to some ways of mitigating these diffi-

culties. The argument will proceed as follows. In Section 2, I examine the

concept of ‘complexity’ in ecology. I start by providing a brief sketch of the

main characteristics associated with complexity and then move to an in-depth

account of some of these characteristics, that is, those that affect the study of

ecological systems. I then turn to Levins’s (1966) account of complexity and

trade-offs between model desiderata, which I subsequently extend and refine. In

Section 3, I examine some of these trade-offs in more detail, showing how

causal heterogeneity creates difficulties for generalisations, predictions and

interventions. In Section 4, I argue that this explains but does not justify the

worry that ecology is not a true or sufficiently mature science. I show that even

if we give up on extensive generalisation in ecology, ecologists are capable of

making successful predictions and interventions. Rather than being embar-

rassed by the modesty of ecological generalisations, ecologists and philo-

sophers should recognise the scientific and practical value of ecology’s

methodological toolkit. In Section 5, I outline some concluding remarks on

generalisation and prediction in science more broadly.

This Element is not just meant for a philosophical audience. I hope that any

ecologists looking for an alternative philosophical view of science, that

accounts for the peculiarities and idiosyncrasies of their discipline, will find

the arguments I present helpful. Moreover, I hope that this philosophical

approach can be used by practicing scientists to support the alternative, under-

valued research strategies examined in Section 4. Finally, this discussion of

ecological complexity could also be helpful for scientists in other disciplines

whose systems are also causally heterogeneous, such as Economics or Climate

Science.

2 What Is Ecological Complexity?

The claim that ecological systems are complex is uncontroversial. Simon

Levin’s declaration that ecosystems are ‘prototypical examples of complex

adaptive systems’ (Levin, 1998) is frequently taken as the starting point for

6 Philosophy of Biology
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discussions of complexity in ecology (Parrott, 2010; Proctor & Larson, 2005;

Storch & Gaston, 2004). Nonetheless, there is no simple answer to the question,

‘what is ecological complexity?’ as there is no single, universally accepted

definition of ecological complexity. Instead, there are a number of diverse and

not always overlapping characterisations originating in various disciplines,

including biology, physics and social science (Bascompte & Solé, 1995;

Donohue et al., 2016; Levin, 2005; Shrader-Frechette & McCoy, 1993;

Storch & Gaston, 2004).

As there is no short answer to the complexity question and no comprehensive

definition of the term, the aim of this section is to provide a guide for thinking

about the question ‘what makes an ecological system complex?’ I will start with

some background on the concept of complexity, as it was discussed within and

outside ecology (Section 2.1). In Section 2.2, I will outline the most important

characteristics of ecological complexity. In Section 2.3. I will examine the

epistemic4 implications of complexity, namely difficulties in generalising, pre-

dicting and intervening on ecological systems. In Sections 2.4 and 2.5, I will

connect the discussions of the previous sections, arguing that in the context of

epistemic difficulties, ecological complexity should be understood as the com-

bination of ‘having multiple parts’, ‘interaction’ and ‘causal heterogeneity’.

2.1 Ecological Complexity in Context

Though aspects of complexity have been studied in various disciplines for more

than 150 years, interest in complex systems began in earnest in the 1960s and

1970s, and gained momentum in the 1980s (Hooker, 2011; Miller & Page, 2009;

Simon, 1962; Wimsatt, 1972). The subsequent explosion of research on com-

plexity and its effects on a variety of phenomena, had important and long-lasting

implications for scientific practice, as it contributed to the establishment of

a framework for anti-reductionist philosophy of science (Hooker, 2011;

Mitchell, 2009), along with the recognition that the emergence and manifestation

of complexity, especially in biological systems, is an worthwhile and fruitful

research topic (McShea & Brandon, 2010; Mitchell, 2009; Wimsatt, 1972).

Despite – some might say because of – the level of interest and research in

complex systems, a single, unified definition of complexity has yet to be agreed

on (Hooker, 2011; Ladyman et al. 2013; Miller & Page, 2009). In lieu of a precise

or formal definition of complexity, scientists and philosophers usually list some

characteristics that tend to appear in complex systems. It is worth noting that there

4 For readers without a background in philosophy, the term ‘epistemic’ here means related to
knowledge. I am interested in the effects of ecological complexity on what ecologists know about
the systems they investigate, how they know it and what difficulties arise in the acquisition of this
knowledge.
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is quite a bit of overlap, as some characteristics appear frequently. One such

characteristic is having ‘multiple interacting parts’, which seems to be a basic

requirement of complexity. The idea is that a high number of parts and (dynamic)

interactions between them increase the likelihood of complex behaviours. Table 1

contains a representative selection of characterisations of complexity, from com-

plex systems science and (philosophy of) biology5. As we can see, multiple

interacting parts (highlighted in bold), features prominently.

Within the discipline of ecology, the context of complexity has its own

history. Here, discussions of complexity were originally related to a question

that was considered fundamental, namely, ‘how are ecological systems pos-

sible?’ Early influential ecologists, such as Odum, Elton and MacArthur, found

the ability of populations, communities and ecosystems to persist, in spite of

internal and external disturbances, quite remarkable, hypothesising that this

apparent stability was caused by the diversity and connectivity of ecological

communities (Kingsland, 2005; McCann, 2000 Odenbaugh, 2011). The general

idea is that complex communities are more able to adapt to changes, such as

disturbances or perturbations (fires, new competitors/predators, sudden climatic

changes), without falling apart. This view was famously disputed by Robert

May (1973), who used mathematical models to show that we should expect

complex communities to be less stable. Subsequent generations of ecologists

have refined the concepts of diversity, complexity and stability in order to

bolster their favoured side of the debate, while philosophers of ecology have

provided their own clarifications and categorisations of the various views

(McCann, 2000; Odenbaugh, 2011). A current consensus seems to be that

complexity is indeed an inherent feature of healthy and mature ecological

systems, even though such systems may be susceptible to particular disturb-

ances (Hooper et al., 2005; Loreau et al., 2001; McCann, 2000; Parrott, 2010).

The brief outline of the context of ecological complexity highlights two

important points for our discussion. First, it is uncontroversial, indeed quite

common to consider multiple interacting parts as key features of complex

systems, including biological systems. Thus, there is also no difficulty in

recognising that it is also a key feature of complex ecological systems.

Second, whether or not ecologists agree that complexity leads to stability,

they seem to agree that complexity is an inherent feature of (at least healthy)

ecosystems. This is an important theme that will appear throughout the

Element: the complexity of ecological systems is an inherent feature of the

systems themselves. In other words, it is inescapable.

5 The first five quotes on the table have been taken from a list in Ladyman et al (2013), who
collected quotations from a 1999 special issue in Science on complex systems.
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Table 1 Characterisations of complexity

Reference Characterisation

(Whitesides and
Ismagilov 1999, p. 89)

a complex system is one whose evolution is very
sensitive to initial conditions or to small
perturbations, one in which the number of
independent interacting components is large,
or one in which there are multiple pathways by
which the system can evolve. Analytical
descriptions of such systems typically require
non-linear differential equations.

(Weng et al. 1999, p. 92) the adjective ‘complex’ describes a system or
component that by design or function or both is
difficult to understand and verify. [. . .]
complexity is determined by such factors as the
number of components and the intricacy of
the interfaces between them, the number and
intricacy of conditional branches, the degree of
nesting, and the types of data structures.

(Parrish and Edelstein-
Keshet 1999, p. 99)

Complexity theory indicates that large populations
of units can self-organize into aggregations that
generate pattern, store information, and engage
in collective decision-making.

(Rind 1999, p. 105) A complex system is literally one in which there
are multiple interactions between many
different components.

(Brian Arthur 1999,
p. 107)

Common to all studies on complexity are systems
with multiple elements adapting or reacting to
the pattern these elements create.

(Simon 1962, p. 468) I shall not undertake a formal definition of
‘complex systems’. Roughly, by a complex
system I mean one made up of a large number
of parts that interact in a nonsimple way. In
such systems the whole is more than the sum of
the parts, not in an ultimate, metaphysical sense
but in the important pragmatic sense that, given
the properties of the parts and the laws of their
interaction, it is not a trivial matter to infer the
properties of the whole.

(Tëmkin 2021, p. 299) The complexity of biological dynamics stems
from the synergetic effect of idiosyncratic
processes at different organisational levels and
the dynamics of interlevel interactions

9Ecological Complexity
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2.2 Key Features of Ecological Complexity

Now that we have a rough idea of how scientists and philosophers characterise

complexity, we can take a closer look at the most important characteristics or

features that are usually associated with complexity. This is not meant to be an

exhaustive list of all the features ever to be associated with complexity, but

a summary of the characteristics that are relevant for the context of ecological

research, namely, multiple parts, diversity, interaction, emergence, non-linearity

and historicity.

Multiple Parts. Complex systems tend to be composed of many parts.

Increasing the number of parts allows for more and varied interactions between

them, which facilitates complexity. Even though this characteristic is frequently

included in characterisations of complexity, it is usually not discussed in great

detail (especially outside biology), perhaps because it seems conceptually

straightforward. An example of this characteristic ‘in action’ can be seen in

McShea and Brandon’s (2010) account of complexity in evolutionary biology.

Here, a high or increasing number of parts is taken as a marker of increase in

complexity, which in turn is associated with evolutionary progress. The basic

idea is that, in the absence of other constraints, evolution creates organisms of

increasing complexity. Even if some species are less complex than their ances-

tors, the claim is that complexity increases over evolutionary time.

Diversity (aka heterogeneity). There are various notions of diversity in ecology, the

most famous of these being biodiversity (Justus, 2021; Levin, 2002; Maclaurin &

Sterelny, 2008; Parrott, 2010; Santana, 2014). Biodiversity is a notoriously difficult

concept to define and measure (Maclaurin & Sterelny 2008) so much so that some

have questioned the usefulness of the concept for ecological research (Santana 2014,

see also discussion in Justus 2021, section 5). I will not delve into the debates

surrounding thedefinition,measurement andvalueof biodiversity.Toavoid entering

the territory of these debates, I will follow Levins (1966) andMatthewson (2011) in

focusing on heterogeneity: the diversity between parts of a system or between

systems. For example, a population can be heterogeneous because its individuals

are diverse in terms of genetic and behavioural traits, a community can be heteroge-

neous when it is composed of populations of different species, while an ecosystem

can be heterogeneous when it is composed of multiple communities. How exactly

heterogeneity should be understood and how it relates to other characteristics of

complexity is a central theme in this Element. I worry that when heterogeneity is

subsumed under the notion of multiple parts (see for example Levin, 2002;

McShea & Brandon, 2010; Odenbaugh, 2011; Parrott, 2010; Potochnik, 2017;

10 Philosophy of Biology
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Wimsatt, 1972), it is too easily overlooked. In Sections 2.2 and 2.3 I examine my

view of heterogeneity and its relationship to the characteristic of ‘multiple parts’.

Interaction.Another important characteristic of complex systems is that the parts

of the system interactwith each other. That is, the parts of a system stand in cause-

and-effect relationships. These effects are often (but need not be) non-linear or

non-additive. Outside ecology interaction is not always treated as an independent

characteristic, but often subsumed under one of the others, such as multiple parts,

feedback, non-linearity or emergence (Hooker, 2011 but see Ladyman et al.,

2013). Within ecology, interaction of parts features more prominently as

a characteristic in its own right. For example, Stuart Pimm’s influential account

of complexity included interaction as part of its definition, which he further

categorised into connectance, that is, the number of interspecific interactions

out of those possible, and interaction strength, that is the average value of the

interspecific interactions in the community (Odenbaugh, 2011).

Emergence. This refers to the phenomenon of lower-level parts within a system

giving rise to higher-level behaviours. For example, density dependence is the

effect that the size of a population has on its members. Individual members of the

population cannot display density; it is a property of the population as a whole.

Discussions of emergence often have ideological connotations, in the sense that

they imply a deeply anti-reductionist basis for complex systems research (Mitchell,

2009). The idea is that even though systems are made up of parts, it is (sometimes,

often or always – depending on the strength of the view) better to investigate the

behaviour of the system at the higher level – the level of the emergent property,

rather than at the level of the constituent parts. What exactly is meant by ‘better’

here also depends on the view of emergence, but usually refers to some aspect of

explicability: it is easier, more understandable, or more comprehensive to provide

an explanation that includes the higher-level property, rather than one that occurs

just at the lower level. Some emergent properties are considered to be representative

characteristics of complex systems. For example, complex systems are organised

hierarchically, that is, their components are grouped at different levels, and higher-

level groups constrain the behaviour of lower groups. This contributes to self-

organisation and causal autonomy that is, the ability of the system to regulate its

own states and/or behaviour, creating andmaintaining the processes that enable it to

function (Levin, 2002, 2005). An example of a biological hierarchical, self-

organised and autonomous system is an organism’s metabolism, which creates

and maintains the processes enabling the organism to live (Hooker, 2011).

Non-linearity.A system is linear if ‘one can add any two solutions to the equations

that describe it and obtain another, and multiply any solution by any factor and

11Ecological Complexity
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obtain another’ (Ladyman et al., 2013, p. 36). Complex systems do not possess this

quality hence they are non-linear. In linear systems, a change in one factor will

result in a similar or at least proportional change in the behaviour of the system. In

non-linear systems, a change in one factor can result in a disproportional change in

the behaviour of the system. For example, the growth rate of populations is

positive when these populations are small and resources are abundant, yet as the

population grows it does not do so proportionally. If resources continue to be

abundant, the growth rate itself increases, yet if they become scarce, the growth

rate becomes negative (i.e. the population decreases).

Non-linearity is sometimes linked with other characteristics of complexity,

most notably chaos or sensitivity to initial conditions (Anand & Orlóci, 1996;

Benincà et al., 2008; Ladyman et al., 2013). It is often difficult to distinguish

between these concepts and their definitions: sometimes they are used inter-

changeably, sometimes one is considered to be a characteristic of another. For

example, Bishop (2011) defines sensitivity to initial conditions as ‘the property

of a dynamical system to show possibly extremely different behavior with only

the slightest of changes in initial conditions’ (p. 108), and characterises the

property as a feature of both chaos and complexity.

Another characteristic that is sometimes linked to non-linearity is feedback.

Feedback can greatly magnify an initial (small) effect, contributing to the non-

linearity of the system. For example, removing a keystone species from an ecosys-

tem can result fundamental changes in the ecosystem, including a cascade of local

extinctions and the eventual collapse of the entire ecosystem (Levin, 1998).

Path dependence (aka historicity). Put simply, systems display this characteristic

when their later states depend on their previous states. Sometimes, development

along a certain path becomes increasingly entrenched. For example, an initial

mutation that provides a competitive advantage then spreads through the population

(Hooker 2011, p. 33). An important ecological version of path dependence is that of

Simon Levin. Here, path dependence is an effect of non-linearity, as it occurs when

‘the local rules of interaction change as the system evolves and develops’ (Levin

1998, p. 433).A typically ecological example of path dependence is the colonisation

of new areas, such as islands or forest patches. The final composition of the system

(i.e. which species persist and in what proportion) will depend on which species are

the original colonisers and how they interacted with each other.

2.3 The Effects of Complexity

So far, I have given a brief outline of what complexity is, in terms of some key

characteristics. The aim of this Element is to examine the characteristics that are

relevant for a particular context: what difficulties complexity creates for

12 Philosophy of Biology
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ecological research. The starting point for this discussion is the work of Richard

Levins, specifically his (1966) paper ‘The structure of model building in

population biology’, which, as we shall see, explicitly focuses on the effects

of complexity for biological research. Levins’s argument was subsequently

refined (Levins 1993), and his ideas have received attention in philosophy of

science, especially in the literature on modelling (Godfrey-Smith, 2006; Justus,

2005, 2006; Matthewson, 2011; Odenbaugh, 2003; Orzack, 2005; Orzack &

Sober, 1993; Weisberg, 2006). This body of philosophical literature forms the

conceptual background for many of the ideas in this Element and I will be

drawing from it heavily, especially for the remainder of this section.

Levins starts by pointing out that population biologists must deal with systems

that are incredibly complex in the sense that: (i) they are made up of many different

species, (ii) there is genetic, physiological and age diversitywithin each population,

(iii) there are demographic interactions within and between populations and (iv) all

this is happening in heterogeneous environments (p. 421). He recognises that

dealingwith such a complex system is problematic, as capturing all this complexity

in a mathematical model is highly impractical. Even if it were feasible, it would

yield results that made little sense to us (Levins, 1966). Thus, scientistsmust decide

how much complexity to include in each model. The issue is that there is no

universal optimal level of model complexity, as scientists use models for multiple

distinct purposes (i.e. understanding, predicting and modifying nature) (p. 422).

The optimal level of model complexity can thus differ, depending on the model’s

intended purpose and the system it is applied to.

Much of the complexity of ecological systems is represented within models

by what Levins calls realism: how accurately a model captures the causal

structure of the world. In practice, this is achieved by models containing

many variables. That is, models are realistic when they are not overly simplified

or idealised, for example, when they include many variables that correspond to

real world factors, represent (dynamical) links between these variables and

relax simplifying assumptions such as symmetry (Levins 1993, pp. 548–52).

In contrast, examples of highly unrealistic models in biology include those that

‘omit time-lags, physiological states, and the effect of a species’ population

density on its own rate of increase’ and contain assumptions analogous to

‘frictionless systems or perfect gasses’ (1966, p. 422). I should note that

Levins’s notion of realism is relevant in current ecological literature, as the

term ‘model complexity’ is still used to refer to the number of variables

represented in a model (Clark et al., 2019; Ward et al., 2014).

Capturing system complexity is not the only requirement of a model. Levins

identifies two other ‘desiderata’ that scientists aim for in their models. The second

desideratum is generality. Put simply, a model is general when it applies to many

13Ecological Complexity
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systems in the world, that is, when amodeller can use themodel to gain information

about many systems (I explain model applicability in the next two paragraphs). The

third desideratum is precision, that is, how finely specified amodel’s predictions are

(see footnote 5, Box 1 C and Sections 3.2.1 and 4.3 for a full explanation of

precision). On Levins’s view (1966, 1993), modellers aim to increase all three

desiderata as much as possible within each model. However, after a certain point,

only two out of the three desiderata can be increased further. This gives rise to three

strategies for building models and three corresponding types of models (Figure 1).

Before I move on to the three types of models, a note on ‘model applicability’. In

the previous paragraph, I pointed out that models are general when they apply to

many systems, which means that they provide information about those systems.

This is an intentionally weak constraint, as Levins wants to distinguish between

a model merely applying to a system and applying well to a system. In principle,

anything can be a model for any phenomenon or system. For example, my coffee

cup andwater bottle could be amodel of the earth and the sun. This viewmay seem

controversial, at first glance, but it is espoused by many philosophers of science,

who believe that amodel’s use is partly determined by the intentions of themodeller

(see for example Giere 2004; Knuuttila & Loettgers, 2016a; Weisberg, 2013). The

weakness of the constraint has an additional benefit, namely that it gives scientists

the freedom to use models in novel and creative ways. For example, it allows

scientists to use models developed for quite different systems, such as using

Figure 1 Levins’s 3-way trade-off
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physical or chemical models in biology or biological models in economics

(Knuuttila & Loettgers, 2016b; Weisberg, 2007).

Of course, just because a model could be applied to a system, does not mean that

it should be applied to that system. This depends on the model, the system and the

phenomenon we want to investigate. For example, if I want to use my beverage

holder model to explain rudimentary planetary motion to my five-year-old nephew,

then the model will probably apply quite well to the system. If, on the other hand,

I want to use the beverage holder model to predict the next lunar eclipse, then it will

be woefully inadequate. There are many accounts in the philosophical literature

detailing what it means for a model to apply well to a system (Frigg, 2009;

Morgan & Morisson, 1999; van Fraassen, 2008; Weisberg, 2013) but adjudicating

between these views is not relevant for this discussion. For now, it is more

important to be able to identify when a model has been applied well to a system.

A common view in the scientific literature, shared by Levins, is that we can test that

amodel applies well to a system, bywhether it yields accurate predictions about the

system’s behaviour (Beckage et al., 2011; Dambacher et al., 2003; Kulmatiski et al.,

2011; Stillman et al., 2015; Stockwell, 1999; Tompkins & Veltman, 2006).6

Back to the three types of models. Type I models (perhaps the most common

models in population ecology) maximise generality and precision at the expense

of realism. The main advantage of these models is their ability to apply widely.

By omitting all the causal factors specific to particular systems, these models

can identify factors that are common across many systems. For example, the

logistic model of population growth shows how populations growwhen they are

limited by the carrying capacity of the environment (see Box 1A). This dynamic

is thought to be the core factor of population growth, present in all populations,

even when other factors are also present. Thus, the model that describes the

process common to all populations is general. Moreover, these models allow

scientists to make precise predictions about the future size of a population given

a set of initial conditions. The main disadvantage of type I models is that they

cannot capture many of the relevant factors and dynamics that are idiosyncratic

(i.e. unique to particular systems), so their predictions are often inaccurate

(Justus, 2005; Novak et al., 2011). In other words, even though they apply to

many systems, they frequently do not apply well to these systems.

Type II models (e.g. ecosystem network models) maximise precision and

realism at the expense of generality (Box 1B). They are constructed with

a particular system in mind, and contain many factors present in the real-

world system. The main advantage of these models is that they can capture

6 For a more extensive discussion on the relationship between generality and model applicability,
see Elliott-Graves (2022).
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manymore factors and dynamics and thus have the potential to provide muchmore

accurate predictions (Fischer et al., 2018; Phillips et al., 2016; Travis et al., 2014).

The flip side of the coin is that by including many system-specific factors and

dynamics, these models only applywell to the systems they are created for; they do

BOX 1. TYPE I, II, III MODELS

5

2

43

1

Food web representation

of the northern Benguela

ecosystem with size of

groups related to the

size of the nodes and

flow scaled by weight

between blue and red.

Each of these models is

built from scratch for a

particular system. It

shows the flow of energy

from one population

to all the others in the

ecosystem.

Energy flow through the main pelagic

fish compartments during three time

periods: 1956–1973; 1974–1983 and

1984–2003. Blue arrows indicate

feeding, black arrows flows to predators

and red arrows fishing pressure, plotted

with th main environmental driver (sea

surface temperature SST)

The figure shows a regime shift in the

system: the energy from the

phytoplankton goes to (i.e. phytoplankton

is eaten by) sardines & anchovies

till the 1970s (left) but then shifts

to gobies & jellyfish (middle & right).

from (Heymans & Tomczak2016)
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not allow scientists to generalize their results beyond the system under investigation

(Wenger & Olden, 2012). Another worry for type II models is that they do not

always fulfil their potential in terms of predictive accuracy (Schindler & Hilborn,

2015; Ward et al., 2014). This is a version of the problem of ‘overfitting’, where

a complex model includes or accommodates noisy data resulting in inaccurate

predictions (Hitchcock& Sober, 2004). The quality of available data is often low in

ecology, as it can be partial, gappy or even false – this is referred to as noise (see

Section 3.3 paucity of data). Type II models, which can incorporate many variables

and data points can be ‘led astray’ by low quality data. They can end up beingmore

susceptible to low quality data than type I models, simply because they can

incorporate more of it. Thus, type II models can end up yielding predictions that

are highly inaccurate (but see discussion in 4.2.1).

Type III models (e.g. loop analysis) maximise realism and generality but

sacrifice precision (Box 1 C). The outputs of these models (their predictions) are

not finely specified. They can be imprecise probabilities (e.g. the population

will rise by more than 2 per cent), ranges of values (e.g. the time to extinction is

47–60 years) or qualitative trends (e.g. the effect of population A on population

B is negative). Their main advantage is that they can maximise both realism and

generality simultaneously. They can capture all the relevant variables and

dynamics in a system and can also apply to many diverse systems. A second

advantage is that they are less susceptible to errors (Justus, 2006). Unlike type

I models, they can include many more parameters, thus capturing all relevant

dynamics. At the same time, unlike type II models, they are better at avoiding or

at least minimising the effect of errors in parameter estimation (because their

parameters and outputs are imprecise). However, this way of minimising errors

(by widening what can be accepted as accurate) is often seen as a major

disadvantage of type III models (Orzack & Sober 1993). The worry is that the

imprecise predictions could be masking systematic errors in the models, so that

even if the predictions are accurate, they cannot be relied on as tests of howwell

the model applies to a system, nor can the models be relied on to determine how

best to intervene on the systems under investigation (Orzack & Sober, 1993; but

see Section 4.3, Elliott-Graves 2020a and Justus 2005, 2006).7

Levins’s trade-off framework can be understood both as a diagnosis of the

effects of complexity for scientific practice and as a suggestion for how best to

7 Note that precision is not the same as accuracy. Precision refers to how finely specified a result is.
Thus, the statement ‘the population is > 200 individuals’ is less precise than ‘the population is 247
individuals’. Both these results could be accurate or inaccurate depending on what the actual size
of the population is. In fact, the more precise a result, the likelier it is to be inaccurate. A more
extensive discussion of the relationship between precision and accuracy can be found in
Section 3.2.1.
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deal with these effects. The diagnosis is that complexity creates difficulties for

scientific practice: it imposes limits on how scientists can investigate natural

systems. An important assumption of this diagnosis is that complexity is not an

artefact of our scientific methods, but a feature of biological systems. This

means that scientists have no control over complexity itself (e.g. they cannot

reduce the complexity of the systems they study, no matter how much science

progresses). They can only get better at dealing with its effects. But this leads to

another question: Are the trade-offs also caused by complexity or are they

artefacts of our methods and/or our epistemic limitations (Matthewson,

2011)? If the trade-offs are mere artefacts, then there is no reason to adopt

Levins’s suggestions for how to deal with complexity.

Levins stated (and subsequent commentators have explicated) that this is

a false dichotomy (Levins, 1966; Matthewson, 2011; Weisberg, 2006). Trade-

offs exist because of the combination of biological complexity and our epistemic

limitations. Complexity ensures that each system has hundreds of parameters, and

multiple dynamic interactions between them. Our epistemic and technological

limitations mean that the collection of data is difficult and prone to introduction of

error. Even if all this data was collected and put in a model, the model would

probably be analytically insoluble. Even if we managed to create a model that

provided analytical solutions, these solutions would be meaningless to us (Levins

1966, p. 421).8 In other words, even if part of the problem is that we are limited

beings and cannot adequately capture complexity in our models, these limitations

are not temporary (Matthewson 2011; Weisberg 2006). Technological advances

are likely tomake data collection easier or less biased or even result inmodels that

are better at capturing complexity. Yet there are limits to these advances so we

will never be able to fully capture the complexity of natural systems. It therefore

behoves us to adopt scientific strategies that best deal with the effects of com-

plexity. I address this in Section 4. In the meantime, I return to the discussion of

how we should understand ecological complexity.

2.4 Which Characteristics of Complexity Give Rise to Trade-offs?

In the previous section, I outlined the contextual backdrop which frames our

discussion of complexity, namely the effects of complexity on model construc-

tion. We can now fine-tune our characterisation of ecological complexity in

light of this contextual backdrop. From Section 2.1, we have the following

characterisation of complexity (à la Levins): ‘Population biology must deal

simultaneously with genetic, physiological and age heterogeneity within

8 Weisberg (2006) goes through the implications of each of these points for Levins’s framework in
detail (pp. 627–33).
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species of multispecies systems changing demographically and evolving under

the fluctuating influences of other species in a heterogeneous environment. The

problem is how to deal with such a complex system’ (1966, p. 421). I identified

the following characteristics from this description: complex systems in biology

are (i) made up of many different species, (ii) there is genetic, physiological and

age diversity within each population, (iii) there are demographic interactions

within and between populations and (iv) all this is happening in heterogeneous

environments (p. 421). If we cross-reference this description with our list from

Section 2.1, we can detect three features that together give rise to complexity:

multiple parts, interaction and heterogeneity.

Levins, like many other scientists and philosophers, believes that complex

systems are made up of many parts. But what counts as a system and what as

a part? Levins identifies individuals, populations and species and bits or aspects of

environments as possible ‘parts’. This is intentional: a scientist can categorise the

world into different sorts of systems, depending on the type of phenomenon they

are investigating (Elliott-Graves, 2020b). So, for example, ecological systems can

be populations, meta-populations, communities, ecosystems and so on. Parts of

populations typically are individuals, parts of ecosystems can be populations or

species, abiotic factors (e.g. nitrogen) and so on. Notice that for each system the

parts need not occur at the same hierarchical level but can cut across levels (so one

part of an ecosystem can be a population, another part can be an element and

another can be a species). The second characteristic is interaction: the multiple

parts of the system interact with each other. Here, Levins mentions demographic

interactions, which occur within and between populations, but given his inclusion

of environments as a characteristic, I think we can safely assume that he would

also count interactions between individuals (or populations) with parts of the

environment as relevant. The third characteristic is heterogeneity, which Levins

mentions in relation to species (i.e. many different species), individuals within

a population (genetic, physiological and age diversity) and types of environment.

The next question to ask is what is the relationship between these three

characteristics? This is where things really start getting interesting. On the

face of it, it seems that for Levins, all these characteristics are aspects of

complexity. So, all these three characteristics together make up the notion of

complexity. All these aspects together cause the trade-offs. However, John

Matthewson argues that complexity and heterogeneity are distinct concepts.

In his 2011 paper, which critiques but also builds on Levins’s trade-off account,

Matthewson points out that ‘complexity’ can be defined in many different ways,

including the ‘technical definition’: ‘it has many interacting parts and perhaps

exhibits some kind of emergent behaviour’ (2011, p. 331). He then seems to

adopt this technical definition, which centres on the ‘many interacting parts’
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characteristic (2011). Moreover, he argues that complexity alone cannot

account for the trade-offs that biologists routinely face. After all, scientists in

other fields that study complex systems, such as physics and chemistry, do not

seem to face such extensive trade-offs (see also Justus 2005, 2021, section 2).

Matthewson asks us to consider a group of Airbus A330s. They are clearly

complex systems, in the sense of being made up of many interacting parts. Yet

we can construct successful models that simultaneously capture all the relevant

variables, apply to all Airbus A330s, and provide precise predictions about their

flight trajectories. In other words, they are maximally general, realistic and

precise. There must be some characteristic other than complexity, that causes

the trade-offs between desiderata in biological systems.

This is where heterogeneity comes in. Biological systems (e.g. ecosystems),

like aeroplanes, are made up of many interacting parts, but unlike aeroplanes,

each ecosystem is unique. Amarine ecosystem and a forest ecosystemmight have

similar trophic levels, but the species in each level are very different (in the

aeroplane analogy, this would be akin to a situation where the engines of various

A330swere actually different). Thus, the knowledgewe gain from examining one

ecosystem does not transfer to others, even if they seem similar. For example,

a model of the marine ecosystem might not generalise to a forest ecosystem and

vice versa. In short, heterogeneity magnifies the trade-offs between desiderata, by

restricting a model’s ability to generalise (a similar view of heterogeneity as

magnifying certain trade-offs can be found in (Weisberg, 2004)).9

I propose two refinements to Matthewson’s account of heterogeneity. The

first is a shift in focus from ontological to causal heterogeneity. Matthewson’s

conception of heterogeneity is ontological, in the sense that it refers to differ-

ences in the nature of systems’ parts. Thus, Airbus A330 parts (e.g. the engine,

the wings) are the same type of thing across different individual Airbus A330s,

9 I should note that these are not the only options regarding the concepts of complexity and
heterogeneity. Another view is one where complexity (understood as multiple interacting parts)
is not merely distinct from but antithetical to heterogeneity. The claim is that despite the diversity
within the parts of a complex system, there must be sufficient homogeneity between the parts, so
that they obey the same physical laws and so that complex behaviours can emerge. This view is
proposed by Ladyman et al. (2013) and was clearly conceived in a non-biological context, though
its proponents believe it also applies to biological and social systems. Just as in physical systems,
particles must be ‘comparable in size and weight’ so that complex behaviours can emerge, so in
biology, cells ‘before they form multi-cellular organisms are indistinguishable’ and in social
systems, social structures ‘have to be similar in character, behavior or rules obeyed’ (p. 57). From
an ecological perspective, this view is rather odd. A strong reading of this view is clearly false, as
it is incompatible with biological reality. On such a reading, ecosystems could not exist: as the
parts of an ecosystem are highly diverse (multitudes of different species and abiotic factors) their
component parts should not be able to interact. Thus, instead of being ‘prototypical’ examples of
complex systems, ecosystems would be reduced to figments of ecologists’ imaginations. A more
charitable interpretation of the view could be that Ladyman et al. are not denying that diversity of
parts exists, but that it is not as important as the underlying similarities between parts of systems.
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whereas the components of ecosystems (e.g. plants and animals) are different

types of things: each ecosystem has a unique collection of species. The problem

is that ontological differences between systems are neither necessary nor suffi-

cient for heterogeneity. For example, the phenomenon of niche overlap occurs

when different species such as sardines and anchovies fulfil very similar

functions within an ecosystem, so the populations can be substituted without

affecting the functioning of the marine ecosystem (Ricklefs and Miller 2000).

Here, ontological differences are not sufficient for heterogeneity, as ontologic-

ally diverse species are causally homogeneous.

Even more interesting, for our purposes, are the cases where ontological

heterogeneity is not necessary for causal heterogeneity, that is, when ontologic-

ally similar or even identical species are causally heterogeneous. Consider the

case of plant-soil feedback (PSF) (Figure 2). Plants interact with microbes in the

soil, for example, arbuscular mycorrhizal fungi and nitrogen fixing bacteria.

These interactions can be beneficial to the plant’s growth (positive feedback),

for example, displacing plant pathogens or detrimental (negative feedback), for

example, less access to nitrogen (Figure 2A). PSF can affect the outcome of

competition between species, as positive feedback can confer a competitive

advantage to a plant, while negative feedback can significantly reduce a plant’s

ability to compete (Figure 2B). The interesting thing about PSF is that the type

of feedback (positive, neutral or negative) can vary even when these systems are

made up of the same species of plants and soil microbes (Klironomos, 2002; van

der Putten et al., 2013). For example, in field experiments, the sign of the PSF

has been known to reverse in a single community, changing from positive to

negative feedback (Casper and Castelli 2007; Klironomos 2002). That is, the

same soil biota that were boosting plant growth begin to hinder the growth of

those same plants. The opposite switch has been observed in plant invasions,

where plant species experience negative feedback with soil microbes when they

first move to a new area, but then begin to experience positive feedback in the

same system (van der Putten et al., 2013).

In short, it is the behaviour of systems and their parts that is relevant, rather

than themakeup or nature of these systems. Of course, there will be many cases

where the ontological differences between systems or their parts is the reason

why they behave differently. In other words, ontological heterogeneity often

contributes to or even entails causal heterogeneity. Still, even in these cases, it is

the causal heterogeneity that is most relevant for studying the behaviour of

ecological systems. Moreover, causal heterogeneity is the more useful of the

two concepts: it encompasses all the instances where ontological heterogeneity

leads to causal heterogeneity but excludes all those where ontological hetero-

geneity leads to causal homogeneity.
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Figure 2 Plant-soil feedback. (A) Plants interact with microbes in the soil, leading to positive, neutral or negative feedback; (B) PSF can

affect the outcome of competition between species, as positive feedback can confer a competitive advantage to a plant, while negative

feedback can significantly reduce a plant’s ability to compete

https://doi.org/10.1017/9781108900010 Published online by Cambridge University Press
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The second refinement concerns the units of heterogeneity. Matthewson

focuses on ‘inter-system heterogeneity’, that is, heterogeneity between different

systems. Each Airbus A330 or ecosystem is a complex system, and heterogeneity

occurs between these systems. Thus, two Airbus A330s are homogeneous with

respect to each other whereas two ecosystems are heterogeneous. However,

causal heterogeneity can alsomanifestwithin each system, as differences between

the parts of a system can have different effects. I call this intra-system heterogen-

eity (Elliott-Graves, 2018). Both types of heterogeneity are important because

each causes a different type of problem for ecological research. Inter-system

heterogeneity hinders generalisation across different systems and intra-system

heterogeneity hinders generalisation within a system. This usually occurs when

the future behaviour of a system is different to its past behaviour, which predom-

inantly affects our ability to make predictions. I will examine the effects of inter-

and intra-system heterogeneity in the next section (3.1 and 3.2).

So much for multiple parts, interaction and heterogeneity. What about the

other characteristics? I believe that they are not as important for this context,

that is, identifying the epistemic effects of ecological complexity, such as trade-

offs. Let me clarify. The trio of multiple parts, interaction and (causal) hetero-

geneity can capture the main aspects of the other characteristics, in this context.

In other words, the other characteristics can be seen as special cases of one, two

or all three of the trio. For example, aspects of non-linearity, such as sensitivity

to initial conditions and feedback can be seen as instances or aspects of causal

heterogeneity. Changes in initial conditions cause systems to behave differently,

while feedback does the same because of magnification of an effect. Both are

captured by causal heterogeneity (see discussion on PSF above and example 2 –

Emerald Ash Borer). I should note that my claim is not that the other character-

istics are superfluous or irrelevant generally, merely that we do not need to

discuss them separately in the context of their epistemic effects – we can

account for these effects by focusing on the trio.

2.5 Ecological Complexity

To recap the main points of the discussion so far, Levins believed that complex-

ity should be understood as a combination of three characteristics, multiple

parts, interaction between the parts and heterogeneity of the parts themselves.

Matthewson argued that despite Levins’s inclusion of heterogeneity in the

notion of complexity, what people usually mean when they use the term

‘complexity’ is multiple interacting parts. This is a problem, because leaving

heterogeneity out of the picture means that our notion of complexity does not

account for the differences between biology and other sciences in terms of the
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extent and magnitude of trade-offs. However, Matthewson goes a bit too far in

the other direction, as he claims that heterogeneity alone explains the trade-offs.

My view is that heterogeneity generates new trade-offs and magnifies existing

ones, so it should be viewed as an important characteristic of complexity, but not

as a concept entirely independent of complexity. I further refined Matthewson’s

notion, arguing that causal rather than ontological heterogeneity accounts for

the magnification of trade-offs.

Thus, finally, we have our answer: ecological systems are complex in the

sense that they are made up of multiple causally heterogeneous interacting

parts. I should quickly point out, once again, that I am restricting my analysis to

this particular context: understanding the epistemic difficulties in ecological

research. It iswithin this context that this definition is meant to apply. There may

well be other contexts in which other notions of ecological complexity turn out

to be more useful. But if we are trying to understand why ecological systems are

difficult to investigate, it is because they are made up of many causally

heterogeneous interacting parts.

3 What Are the Effects of Ecological Complexity?

Now that we have a characterisation of ecological complexity, we can move on

to the next issue at hand, namely what difficulties ecological complexity creates

for ecological research and how or why it creates them. The discussion in the

previous two sections implied that the primary difficulty is for the creation of

generalisations. Here, I will examine this difficulty in more detail and also

explain why generalisations are sometimes possible (Section 3.1). I will then

examine how the failure to generalise affects ecologists’ ability to make precise

and accurate predictions (3.2). In Section 3.3, I will show that these problems

are not merely theoretical but flow into the domain of applied ecology, as they

decrease the likelihood of successful interventions.

3.1 Generalisation

3.1.1 Why Generalise?

Why do scientists and philosophers value generalisations? Generalisation is

a key dimension of scientific theorising, for scientists as well as philosophers.

For example, Richard Feynman (1995, in Mitchell 2000, p. 245) stated that

‘science is only useful if it tells you about some experiment that has not been

done; it is no good if it only tells you what just went on. It is necessary to extend

the ideas beyond where they have been tested’. In other words, generalisations

can help scientists gain insights that go beyond their current investigation. More

specifically, generalisations are valuable in three related ways: (i) they reveal
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information about the world (ii) they underwrite explanations and (iii) they form

the basis of predictions.10

Generalisations reveal information about the world because of the process by

which they are formed, that is, abstraction (Cartwright, 1989; Elliott-Graves,

2020b; Jones, 2005; Weisberg, 2013).11 The process usually starts by identify-

ing which factors are idiosyncratic to particular systems and which are common

to many systems. The idiosyncratic factors are then omitted and what remains,

constitutes the generalisation (Cartwright, 1989). The idiosyncratic factors of

a system are thought to be ‘mere details’, or noise, in the sense that they do not

contribute significantly to the dynamics or behaviour of the system. In contrast,

the common factors are thought to be the ‘real causal factors’ of the system that

actually give rise to its behaviour and dynamics. Thus, successful generalisa-

tions provide scientists with knowledge about how the world really is (Strevens,

2004).

This allows scientists to ‘virtually reduce’ the complexity of a system, which

makes the system easier to study. If we go back to Levins’s framework

(Figure 1), this is a motivation for adopting type I models, which sacrifice

realism for the sake of generality and precision. Omitting the noisy details from

a system means that there are fewer factors that scientists need to take into

account, hence they can study the systems as though they have fewer parts and

properties. Thus, there are fewer variables and parameters to measure or calcu-

late and fewer dynamics to identify. Moreover, there are fewer possibilities of

introducing errors to the models, as is the case with type II models.

These ideas were incorporated in many influential accounts of scientific

explanation: to provide a scientific explanation used to be synonymous with

demonstrating how a particular phenomenon is an instance of a more general

pattern, while scientific theories were those that subsumed many disparate

phenomena under one framework (Hempel & Oppenheim, 1948; Kitcher,

1981, see also discussion in Douglas, 2009 and Strevens, 2004). Here, the

simpler the theoretical framework and the greater the number of phenomena it

10 All three attributes are present in most philosophical accounts of laws and explanations, though
philosophers differ with respect to how closely they believe these three attributes are connected
and whether or not one takes precedence. For Hempel & Oppenheim (1948), for example, these
three attributes are all sides of the same coin: laws are generalisations that are true and not
accidental. Explanations and predictions are directly deduced from these laws. On causal
accounts of explanation, generalisations are valuable because they form the basis of explan-
ations, and it is through explanations that we gain knowledge about the world. Little is written
about predictions in these accounts, though it is usually understood or implied that generalisa-
tions also form the basis of predictions (Douglas, 2009).

11 On some views, e.g. Levy (2018), abstraction and generalisation are the same. I believe that they
are distinct. Abstraction is a necessary prerequisite for generalisation, but abstraction does not
necessitate generalisation (Elliott-Graves, 2020b; 2022).
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could explain, the more explanatorily powerful it was. More recently, for

example, in causal accounts of explanation such as Woodward’s, generalising

does not constitute an explanation, but generalisations form the basis for

explanations, as they describe causal regularities between variables. Here, to

explain an event or phenomenon is to show that it is caused by another event or

phenomenon and that this relationship is invariant or stable within certain

parameters (see also Section 3.1.2).

Finally, generalisations are valuable because they form the basis for predic-

tions. I will turn to prediction in Section 3.2, after discussing how ecological

complexity affects generalisations.

3.1.2 Complexity, Laws & Generalisation

In order to understand how complexity affects generalisation, it is useful to

examine the debate about laws in (evolutionary) biology. On the traditional

philosophical account, laws of nature have three main characteristics: (i) uni-

versality, that is, they cover all of space and time, (ii) truth, that is, they are

exceptionless and (iii) natural necessity, that is, they are not accidental (Mitchell

2003, p. 130).12 The first and second characteristics concern the scope of

generalisations. Universal generalisations exist throughout all space and time.

They are true (i.e. exceptionless) if they hold in all instances within their defined

scope. Thus, even if a generalisation is not universal, it can still be exceptionless

within a specified domain. For example, it is likely that in the first few minutes

after the Big Bang, only helium, deuterium and lithium were formed. All other

elements were formed later, as stars developed (Mitchell, 2003 p. 137). Thus,

a law stating that no uranium-235 sphere is more massive than 55 kg is only

applicable to the time where uranium-235 actually exists.

The third characteristic aims to distinguish between generalisations that are

necessary and those that are merely accidental. A favourite example of an

accidental generalisation for philosophers is ‘all the coins in Goodman’s

pocket are made of copper’ (Mitchell 2003, p. 136). There is nothing about

Goodman’s pocket or the nature of coins or copper that affects whether or not

the statement is, in fact, true. If it turns out to be true, then it is true

accidentally. This has important pragmatic effects for scientific practice.

A scientist could not explain why all the coins in Goodman’s pocket are

copper, nor could she predict whether a new coin placed in Goodman’s pocket

12 Mitchell also identifies logical contingency as a characteristic of laws. This means that laws have
empirical content, i.e. they are not merely definitional. There is general consensus in philosophy
of science that laws in biology satisfy this criterion, so I will not discuss it any further (but see
Sober (2011).
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would also be copper. In contrast, the statement in the previous paragraph

about the maximum mass of uranium is not accidental: a uranium sphere

above a certain mass would cease to be stable and would therefore cease to

be a uranium sphere. This also constitutes an explanation for the law and could

yield predictions about uranium spheres.

Most candidate laws in biology fail on all three counts (Mitchell 2003). The

typical example of a biological law is Mendel’s ‘segregation law of gametes’. It

states that for each pair of an organism’s genes, 50 per cent of an organism’s

gametes will carry one representative of that pair, and 50 per cent will carry the

other representative of the pair (Mitchell 2003, p. 139). This law is far from

universal. It only applies to sexually reproducing organisms, which are

a relatively small subset of or all organisms that exist in a small corner of the

universe for a small amount of time, in the grand scheme of things. Yet even

within these parameters, it is not exceptionless. In cases of meiotic drive, one

gene doubles or triples its gamete representation so that it has a higher likeli-

hood than its pair to represented in the offspring (Mitchell 2003, p. 149). Thus,

Mendel’s law is contingent on the absence of meiotic drive. Finally, Mendel’s

law is also contingent in a different sense. All evolutionary biology is contin-

gent on its own history. That is, if we ‘rewound the history of life’ and ‘played

the tape again’, species, phenotypes and body plans would be quite different

(Gould 1989, in Mitchell 2003, p. 148). There is nothing necessary about the

way the biotic world has evolved. In Mitchell’s words ‘The causal structures

that occupy the domain of biology are historical accidents, not necessary truths’

(2003, p. 148).

Rather than concede that biology has no or very few laws, some philosophers

proposed that we change our conception of law to accommodate biological

complexity (Mitchell 2003; Woodward 2001, 2010). They argued that these

dichotomies (necessary/accidental, universal/contingent) are not useful. The

point of generalisations is that they help scientists achieve various goals, such

as explaining and predicting natural phenomena or intervening on the world.

Thus, the relevant characteristic for generalisations is stability (Mitchell,

2003)13 or invariance (Woodward, 2001, 2010). Stability is a measure of the

range of conditions that are required for the generalisation to hold. Invariance is

a subset of stability that focuses on direct causes14: ‘a generalization is invariant

13 On Mitchell’s account, stability is one of three dimensions of scientific law, the others being
strength and abstraction (Mitchell 2003, p. 146). I focus on stability, as this is the dimension
where ecological laws fall short, due to causal heterogeneity.

14 There is some disagreement between Woodward and Mitchell concerning the extent to which
these concepts are similar (Mitchell 2003, Woodward 2001, Raerinne 2011). The differences
between the two views are not relevant here. Causal heterogeneity in ecology renders general-
isations unstable and invariable.
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if and only if it would continue to hold under some range of physical changes

involving interventions’ (Woodward 2001 p. 4). For Woodward, an interven-

tion is a hypothetical manipulation of a variable in an ideal experimental

setup, which would allow us to determine whether that variable caused

another (for example, turning a knob on the radio causes the volume to

increase or decrease).

An example of a generalisation that is invariant/stable, but only contin-

gently so, is Hooke’s law (H) when applied to a spring (Woodward 2001,

pp. 10–11). The generalisation (H) is expressed as F = −kX, where X is the

extension of the spring, F the restoring force it exerts and k a constant

characteristic of springs of sort S. H correctly describes what the restoring

force of the spring would be under a series of experimental manipulations of

the extension of the spring, but only within a certain interval. Put simply, if

we pull too hard, the spring might break and the generalisation H will break

down. Even though H is not invariant under all interventions, it is still

invariant under some range of interventions. Thus, the generalisation is

useful, even though it is not universally invariant: it explains why the spring

returns to its original position when it does, and also why it does not (the

force was too great).

Ecology had its own parallel debate about laws, which mirrored the develop-

ments of the complexity/laws debate in biology. Early ecologists were at pains

to uncover general laws akin to those of physics, so as to convince the scientific

community that ecology was a true scientific discipline, even adapting simple,

general models from physics for this purpose (Kingsland, 1995). Various

candidates for lawhood have been proposed, including exponential/logistic

growth, allometric metabolic/body weight relationships and species/area rela-

tionships (Colyvan & Ginzburg, 2003; Lange, 2005; Turchin, 2001). However,

none of these potential laws have been proven to be universal or exceptionless

(Beck, 1997; Shrader-Frechette & McCoy 1993). Just as in the case of evolu-

tionary biology, the absence of such laws was taken by some as an indication

that ecology is not a truly scientific discipline (Lawton, 1999; Peters, 1991). Just

like evolutionary biology, however, others believed that the problem lay in the

conceptions of laws. Thus, the conception of laws was weakened to account for

complexity (Colyvan & Ginzburg, 2003; Cooper, 1998; Lange, 2005; Linquist

et al. 2016).

For example, Linquist et al. (2016) have formulated an account inspired by

Mitchell’s and Woodward’s accounts of invariance and stability. They identify

three dimensions of resilience. A generalisation is taxonomically resilient if it is

stable across a different number of species or higher-level taxa. Habitat resili-

ence occurs when a generalisation is invariant across a broad set of regions or
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biological contexts, while spatial resilience occurs when a generalisation

remains invariant at the scale of whole organisms, molecular systems, and

genomic communities. They use meta-analyses to investigate the extent to

which various generalisations are resilient across these three dimensions. For

example, they found that the generalisation ‘Habitat fragmentation negatively

impacts pollination and reproduction in plants’ is resilient across ‘five distinct

habitats and across 89 species from 49 families’ (p. 129).15 They believe that

these types of generalisations qualify as laws.

The aim of this discussion in this section was to reiterate and highlight an

issue that has already been established by philosophers of science, that is,

that complexity affects generalisability – in the sense that generalisations in

biology, ecology included, do not have the same scope as generalisations in

other disciplines. I also broadly agree with those philosophers who argue for

a revised notion of laws that better reflects biological complexity. There may

even be cases in ecology where generalisations could qualify as laws in the

revised sense. However, I also believe that ecology is rife with cases where

generalisations do not fulfil even those revised requirements, that is, where

they are not invariant, stable or resilient. What happens in those cases? Here

I will move away from the debate about laws, as I am not interested in

whether we should adjust our notion of laws even further so that these

generalisations could qualify, but in why they do not satisfy the revised

notion of laws in biology. I address these issues in the remainder of

Section 3.

3.1.3 Causal Heterogeneity and Generalisations

Generalising involves comparing and contrasting various systems and distin-

guishing between the common factors and the idiosyncrasies. Ordinarily, gen-

eralisations are possible because the factors that are common between systems

are also the factors that are causally relevant. The idiosyncratic factors are

irrelevant – mere noise. General models or theories can thus include only

those factors that are relevant and omit all the idiosyncratic factors. The

problem is that in causally heterogeneous systems, idiosyncratic factors are

not mere noise, but causally relevant for the functioning of the system. This is

what creates difficulties for making generalisations. The factors that give rise to

a phenomenon in one system might not be the same as those in another system,

even if the two systems seem very similar (e.g. have similar sized populations of

15 I should note that not everyone agrees. Leonore Fahrig (Fahrig, 2017) argues that the data only
shows that habitat loss affects resident populations (and hence biodiversity), whereas habitat
fragmentation without loss often does not have the same negative effects.
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the same species). Thus, the knowledge we gain from studying one system is not

always adequate for understanding the behaviour of other systems, or even of

the same system at a different time.

But is this not already covered by the traditional notion of complexity? In the

previous section, we saw how recognising that biological systems are complex

led to a revision of our conceptions of laws, to generalisations that are contin-

gent and allow for exceptions. I agree with Mitchell, Woodward and so on, but

I also believe they do not go far enough. Invariant generalisations are common

when systems are merely complex, whereas causal heterogeneity makes gener-

alisations unstable. Recall Matthewson’s example of the aeroplanes: each

aeroplane is a complex system, yet the factors that affect how one Airbus

A330 gets into the air are the same as those that affect how the other Airbus

A330s get into the air. Differences between them, for example, the logos of each

airline are irrelevant for the purpose of getting into the air and can thus be safely

ignored.

When heterogeneity is added to the mix, even this level of invariance

ceases to hold. To illustrate, I will adapt Woodward’s spring example to an

ecological context. Insects (like most organisms) have a certain range of

temperatures that they can tolerate. In cold climates, the lower end of the

threshold is especially important because it affects insects’ overwintering

strategy (e.g. freeze tolerance or freeze avoidance) (Sinclair & Jako Klok,

2003; Sinclair & Vernon, 2003). This, in turn, can be used to predict an insect

population’s abundance and spread, which can form the basis of interven-

tions

(e.g. if the insect in question is a pest). The lower lethal temperature (LLT)

for an insect can be measured in the laboratory.

Such an experiment could yield the generalisation (T):W can tolerate temper-

atures between -30 and +40 C°, where W is a spatially defined population of

a particular species of insect. In Woodward’s terminology, generalisation T is

invariant within the domain −30 to +40 C°. However, it turns out that the very act
of lowering the temperature (i.e. intervening on the system) can change the range

of temperature that the insect can tolerate (Kaunisto et al., 2016; Marshall &

Sinclair, 2012; Sinclair et al., 2003). For example, if the temperature is lowered to

−30 C° at time t1 the insect can survive, but then it will only survive down to

−25 C° at another intervention, at time t2. In fact, it is possible that repeated

exposures to low temperatures change the LLT. For example, at the interventions

at time t1, t2, t3 and t4 (where the temperature reaches −30 C°) there is no change
in the LLT, but there is at t5. To make matters worse, there is no set number of

exposures after whichWs lose their ability to tolerate −30 C°. It could be after the
fifth intervention, but it could also be after the third, the sixth, the ninth, and so on.
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How should we think of generalisation T? At first glance it seems very similar

to Hooke’s law, as it holds within a certain range. We can intervene on the

system and determine the range at which the generalisation is invariant.

However, at some point the pattern ceases to exist. This is not accidental,

random or even external to the system, but because of the very interventions

that are used to establish the range of invariance. It is not equivalent to a fire

starting in the laboratory and melting the spring so that there is nothing that the

restoring force could act on. It is the equivalent of a non-defective spring

suddenly breaking after being pulled a few times with a force well within the

range that it can withstand.

One option is to say that T is not, in fact, a generalisation, as it turns out

that it is not invariant across the range −30 to +40 C°. But this seems a bit

odd. The generalisation was invariant for a while, then it stopped being

invariant. It is only after a number of repeated exposures to −30 C° that

Ws cease to tolerate that temperature. In fact, it is because they can survive

to −30 C°, that they cannot do so in the future. Another option would be to

constrain the range of T to −25 to +40 C°. Then, the generalisation would be
invariant even after repeated exposures to −30 C°. But this is also rather odd.
Ws regularly survive to −30 C°. An explanation or prediction based on the

constrained generalisation would probably be inaccurate. Consider, for

example a situation where Ws are pests and we wanted to know if

a particular agricultural crop would be at risk from Ws. A farmer will use

a certain pesticide after the winter thaw, but only if the temperature does not

drop below a certain point. If we constrain the range of T to −25 to +40 C°,

then the farmer will not spray if the lowest winter temperature was −26 C°.

But this will result in a catastrophe for the crops, because Ws can survive

to −26 C°, if that is the lowest winter temperature.

The point of this example is to show that generalisations in ecology are

special when compared to generalisations in other parts of biology. They are

special in the sense that they are extremely contingent. Contingent general-

isations in other parts of biology may nevertheless display stability or invari-

ance, whereas the contingency in many ecological generalisations is so

extensive that it precludes even this. There are three points to reiterate and

clarify. First, complexity in the sense of having multiple parts cannot account

for the extreme levels of contingency found in many ecological systems,

whereas the revised notion, which includes causal heterogeneity can account

for it. Second, the difference in contingency is a matter of degree not

a difference in kind. That is, generalisations in ecology are just much more

contingent than they are elsewhere. Nevertheless, this extra contingency has

far-reaching epistemic implications, because it affects our ability to
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generalise, and consequently to predict and intervene on ecological systems.

Third, it is not the case that generalisations are completely absent, or merely

instances of ecologists being mistaken in their identification of patterns. Of

course, there will instances of mistakes in ecology, just as in other sciences.

But these are not such cases. These are cases where there is a pattern, and

ecologists identify it correctly. The problem is that the pattern only holds in

a very small range of space and/or time. This is what I mean by the claim that

patterns are ephemeral.

When faced with this level of contingency and ephemeral patterns, scientists

can (i) restrict the scope of the generalisation, (ii) bite the bullet and retain the

generalisation even though it only applies well to some systems or (iii) weaken

the generalisation to accommodate the peculiarities of each system. Ecologists

are increasingly beginning to favour option (i), which I will discuss in Section 4.

Historically, however, ecologists have opted for options (ii) and (iii), because of

the importance placed on generalisation in ecology and the associated worries

that a discipline without generalisations is not truly scientific (Section 1.2). The

problem with option (ii) is that it is strictly speaking false: the generalisation

only holds within a subset of the cases that it purports to. The problem with

option (iii) is that it reduces the value and usefulness of the generalisation

because it renders it incapable of yielding explanations. I will illustrate the

pitfalls of adopting these two options, by outlining the rise and fall of the

keystone species theory.

• Example 1. Keystone Species:

The keystone species concept was coined by Robert Paine in 1969, to

describe the importance of some species for the overall functioning of an

ecological community. It was based on two experiments of intertidal

communities (one on the Pacific Coast of Washington and one on the

Great Barrier reef), where the removal of predators led to local extinc-

tions of other species in the community and the deterioration of the

community’s structure (Cottee-Jones & Whittaker, 2012). The important

innovation was that species higher up on the food web, with compara-

tively little biomass when compared to those on lower trophic levels,

determined and maintained the structure and composition of the commu-

nity. The concept quickly became entrenched in the literature and was

used to explain a number of events and phenomena in ecological com-

munities (Beck, 1997; Mills & Doak, 1993). It has since become

a standard entry in textbooks (Cottee-Jones & Whittaker, 2012). This,

together with its use in framing and gathering support for conservation
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policy, increased its popularity outside academia, ascribing it the dubious

honour of ‘buzzword’ status (Barua, 2011; Valls et al., 2015).

However, subsequent investigations cast doubts as to the generality of

the keystone species concept. Experiments have shown that various

‘keystone’ species demonstrate wildly different behaviours. In quite

a few cases, their presumed effects were much smaller or even entirely

absent from many systems (Beck, 1997). Incidentally, keystone effects

were also absent in communities similar to those that Paine had studied

(i.e. intertidal communities in Oregon containing the starfish Pisaster

ochraceus, the same predator removed in Paine’s original experiment)

(Cottee-Jones & Whittaker, 2012).

The predominant response bymany ecologists was option (iii), that is,

to adapt the concept and make it more inclusive, so that it could apply to

many diverse systems and accommodate the various peculiarities of

potential ‘keystone’ species. Thus, a keystone species became any spe-

cies that had a disproportionate effect on the community given their

biomass, irrespective of their trophic level. Other definitions included

any species that has a disproportionate effect given their abundance, any

species that has a strong influence on the community. In the 1980s, the

concept was expanded even further to include plant species that had

functioned as prey or mutualists (Cottee-Jones & Whittaker, 2012).

Relaxing the stringency of the definition allowed scientists to encom-

pass more particular cases under the keystone concept, but at a price. The

concept of keystone became increasingly watered down. As Mills et al.

(1993) pointed out, the concept was applied to so many diverse species,

that it was no longer useful for explaining community interactions. If all

these diverse behaviours of species within their communities could count

as ‘keystone’ behaviours, then what does the keystone concept actually

pick out? What is special about a keystone species? Thus, merely classi-

fying a species as a keystone provided no real information about how it

will affect a community. This was especially problematic because it

affected the efficacy of conservation efforts (Cottee-Jones & Whittaker,

2012;Mills &Doak, 1993). In addition, the watering down of the concept

led to the concept becoming popular outside academia, which, in turn, led

to even more broad and vague uses of the term (Barua, 2011).

This led to a backlash within the scientific community. One sugges-

tion was to adopt a single but broad definition (e.g. ‘a species that has

demonstrable influence on ecosystem function’), yet this also suffered

from the same lack of explanatory power (Barua, 2011). Some ecologists
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have decided to accept this and now view the keystone species concept as

a metaphor or heuristic, whose value is mainly pedagogical (Barua, 2011;

Valls et al., 2015). The remainder seem to have seriously embraced

option (ii), that is, restricting the definition of a keystone species in the

hope of salvaging its explanatory power (Cottee-Jones & Whittaker,

2012). The idea is to go back to the drawing board and start from the

beginning, using experimental and comparative methods to determine if

there is a viable definition of keystone species, and which (admittedly

fewer) species truly exemplify the relevant keystone characteristics

(Cottee-Jones & Whittaker, 2012).

This example illustrates a theme that is far from unique in ecology.

A phenomenon is observed in one or more systems, experiments and models

are carried out and the results seem promising. A theory is constructed, which

identifies the general, underlying mechanisms that give rise to the phenomenon.

The scope of the theory is expanded to encompass a number of similar phenom-

ena and/or phenomena that are consequences of the original phenomenon. Then

the counterexamples start cropping up and gaining in numbers, so the theory is

either tweaked to the levels of being trivial or slowly fades away (Beck, 1997).

Of course, causal heterogeneity does not preclude all generalisations. If there

really were no generalisations in ecology, scientific ecological knowledge

would not involve any theories, just long lists of particular observations,

while experiments would identify unique causal relations that disappeared

after the conclusion of the experiment. The question is, what generalisations

are possible and why do they persist despite extensive causal heterogeneity?

3.1.4 When and Why Do Some Ecological Generalisations Hold?

There are two types of cases where generalisations in ecology hold (see also

Raerinne 2011). The first is when the generalisations are exceedingly modest.

Scientists are sometimes able to identify common causal factors across a few

systems or for a limited amount of time. When scientists apply their generalisa-

tions within these strict limits, their generalisations hold. I will examine

examples of such generalisations in Section 4.2.

The second type of case where ecological generalisations hold comes down

to sheer luck.16 It just so happens that among these complex heterogeneous

16 I should note that when I refer to luck, I do not mean that the generalisation is accidental. Recall
that being accidental is a characteristic of non-law-like generalisations, such as ‘all the coins in
Goodman’s pocket are made of copper’, as opposed to ‘no uranium-235 sphere is larger than
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systems, sometimes the relevant causal factors for a particular system, state or

behaviour, are just those factors that are common across systems. Delving

deeper into this point is helpful because it elucidates the effect of causal

heterogeneity on generalisation. Ecological systems are governed by many

causal factors. Some of these are common across systems. A good example of

this is density dependence, the effect that the size of a population has on its

members (see also Box 1A and Section 4.1). All ecological populations live in

finite geographical regions, with finite resources. At some point in their

growth, growing further will be limited by the diminishing availability of

these resources. This is a factor that affects all ecological populations.

However, it is not always relevant for the particular phenomenon under

investigation. In some cases, this may be because the population has not yet

reached the size where resources are starting to dwindle. The causal mechan-

ism is there, but it has not yet come into effect. More often, a factor becomes

irrelevant because its effect is reversed or overshadowed by another more

powerful causal factor. Thus, for example, habitat loss or poaching might be

the relevant causal factor that explains the size of a particular population A. It

is not that density effects have ceased to operate, but that they are over-

shadowed by a much stronger effect, in this particular context (i.e. explaining

the size of population A at time t1).

How does this relate to generalisations? Sometimes, scientists are lucky in

that the dominant causal factor is common to two or more systems.

Unfortunately, this happens most frequently in cases of human action (such as

poaching or habitat loss), whose strength trumps the effect of most non-human

causal factors. Thus, scientists can expect that effects of habitat loss will

generalise to many diverse systems (across different ecosystems, communities,

species, etc.). Somewhat less frequently, there are common causal factors across

systems because of the absence of stronger heterogeneous causal factors. Thus,

for example, density dependence effects are strong for rare tropical trees

(Comita et al., 2010), voles and lemmings (Stenseth, 1999), juvenile survival

of large herbivores (Bonenfant et al., 2009) and magpies (when food hoarding)

(Clarkson et al., 1986) (see also Section 4.1).

To sum up, causal heterogeneity explains the difficulties of generalising, and

its occasional absence explains why generalisations are sometimes possible.

55 kg’. When I claim that scientists are lucky, I mean that the generalisations are invariant and
continue to hold. In this sense, they are more law-like than accidental. Nonetheless, I believe that
in causally heterogeneous systems, it is rare, or at least not commonplace for generalisations to
be invariant in this way. As this makes the scientists’ job easier, scientists who do find invariant
generalisations can legitimately be termed ‘lucky’.
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But the problems do not stop here. Failed generalisations lead to difficulties in

making predictions, the subject of the next section.

3.2 Prediction

3.2.1 The Traditional Account of Scientific Prediction

Scientific predictions are statements about events, phenomena or behaviours of

a system, whose truth value is not known at the time they are made. Predictions

are useful for two reasons, because they can help us test and confirm scientific

theories, and because they guide interventions on phenomena in the world

(Barrett & Stanford, 2006; Lipton, 2005). Philosophers of science have pre-

dominantly focused on confirmatory predictions, because of their role in testing

and comparing scientific theories (Barnes, 2018).17 An example often used in

textbooks is Mendeleev’s predictions of new elements. When he classified the

elements into the periodic table according to atomic weight, there were some

gaps. Mendeleev predicted that these gaps would be filled by hitherto unknown

elements, with specific physical and chemical properties (e.g. atomic weights,

acidity, specific gravity). Eventually the elements scandium, gallium and ger-

manium were discovered, and their physical and chemical properties matched

Mendeleev’s predictions. This discovery is said to have ‘vindicated’

Mendeleev, in the sense that it showed that his classification of the elements

was better than various alternatives (Scerri, 2006). Thus, the new elements were

said to confirm Mendeleev’s background theory.18

In order to be successful, confirmatory predictions must possess certain

characteristics. The most obvious of these is accuracy, that is, the predictions

should turn out to be true. However, accuracy alone is not sufficient for theory

confirmation, as accurate predictions are sometimes too easy to come by.

A prediction could come out true because of pure chance; for example

Mendeleev could have just guessed that new elements would be discovered

without reference to the periodic table. Alternatively, a prediction could be

obviously true, for example ifMendeleev predicted that there may or may not be

other elements. Finally, accurate predictions can come about due to more

nefarious reasons, such as predicting an event that is already known to be

17 I will focus on confirmatory predictions in this section and address the other role of prediction
(which I call applied prediction) in Section 3.3.

18 I should note that this potted history of the periodic table is greatly oversimplified. In reality, the
acceptance of Mendeleev’s theory was much more complicated; scholars have even questioned
the role of the predictions for its acceptance (Scerri &Worrall, 2001). Still, the ‘standard story’ is
worth mentioning even though it may be strictly speaking false, because it shows just how deeply
entrenched the traditional notion of prediction is in the literature.
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true, for example, if Mendeleev had already discovered the new elements before

predicting their existence.

Therefore, a confirmatory prediction should also be risky, that is, it should be

possible that it turns out to be false. There are two ways of increasing the

riskiness of a prediction. The first is to ensure that it is novel. Novel predictions

are those that are made without knowledge of the facts being predicted

(Douglas & Magnus, 2013; Hitchcock & Sober, 2004).19 The idea is that

novel predictions cannot be faked or tweaked to fit existing data, hence they

provide the best way to test and confirm scientific theories. Not everyone agrees

with this view (which is called strong predictivism in the literature). On the

other side of the debate are those who believe that accommodating existing data

provides sufficient empirical support for scientific theories (Hitchcock & Sober,

2004).20 A third view is weak predictivism, which states that novel predictions

are valuable because they correlate with other epistemic virtues such as

explanatory power or simplicity (Hitchcock & Sober, 2004).

The second way to increase the riskiness of a prediction is to increase its

precision. Precision means how finely specified a prediction is. For example, the

prediction ‘the temperature at noon tomorrow will be high’ is less precise than

‘the temperature tomorrow at noon will be between 25 and 35°C’, which is less

precise than ‘the temperature tomorrow at noon will be 31°C’. Precision trades

off with accuracy: the more precise a prediction is, the likelier it is to be

inaccurate. This explains how precision increases riskiness: the smaller the

range of values predicted, the larger the range of actual values that will render

the prediction inaccurate and vice versa. For example, if the temperature at noon

tomorrow turns out to be 26°C, the first two predictions (‘temperature will be

high’ and ‘temperature will be between 25 and 35°C’) are accurate, because the

ranges they specify include the actual temperature, whereas the most precise

prediction is inaccurate. If the actual temperature turned out to be 24°C, only the

least precise prediction would be accurate.

To sum up this section, the traditional account of scientific predictions views

predictions as means to test and confirm scientific theories. These confirmatory

predictions are valued in terms of accuracy and riskiness, which are achieved

through novelty and precision. As we shall see, causal heterogeneity throws

a spanner in the works, because it causes predictions to fail.

19 In early accounts, novelty was understood temporally, so a novel prediction was one that was
made before the evidence for it was gathered (Barnes, 2018; Brush, 1994). However, temporal
novelty has been criticised as being too narrow. More recent accounts view all predictions of
facts that are unknown as novel, irrespective of the time in which they are made.

20 An accommodation is an empirical consequence of a theory that has been verified at the time the
theory is constructed.
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3.2.2 Causal Heterogeneity and Prediction

How does causal heterogeneity affect predictions? The main effect of causal

heterogeneity is on their accuracy. This is because predictions are based on

generalisations, which, as we saw in the previous sections, are based on

patterns. Scientists make predictions of the behaviour of a system based

on the past behaviour of that system or the current behaviour of a similar system.

If the system behaves differently with respect to its past behaviour or in

comparison to similar systems, then the pattern breaks and the prediction

fails. The more causal heterogeneity a system exhibits, the less likely it is that

predictions will turn out to be true. To illustrate, I will examine the use of

Species Distribution Models (SDMs) for predicting biological invasions.

• Example 2. Distribution of the Emerald Ash Borer

The Emerald Ash Borer (EAB) is a beautiful beetle (see Figure 3D) native

to East Asia, that lays its eggs under the bark of ash trees (Cuddington et al.,

2018). The larvae hatch under the bark and feed on the ash tree until they

become adults. Asian ash trees have a certain level of resistance to the

EAB, so EAB populations in Asia are relatively small. However, EABs are

highly destructive to ashes in Europe and North America. The USDA

Forest Service estimates that EAB has killed hundreds of millions of ash

A B

D C

Figure 3 A, B & C GARP for Emerald Ash Borer (adapted from Sobek-

Swant et al. (2012)). D Photo by U.S. Department of Agriculture, on

Wikimedia Commons
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trees in North America and cost hundreds of millions of dollars (USDA

Forest Service, 2020).

Scientists can use SDMs, such as GARP andMAXENT, to predict the

distribution of a potential invasive species in a new area (Sobek-Swant

et al., 2012; Wang & Jackson, 2014). The first step is to describe the

species’ niche, which (in this context) refers to the environmental condi-

tions under which the species can maintain a population. Based on the

values of each parameter within the species’ native distribution, the

model calculates the ranges where the species can survive. The model

then predicts where the species will be able to maintain populations in the

new area. Figure 3 shows the native and projected distribution of the EAB

using an SDM (GARP).

On the left (A) we see the model projection of the native range of the

EAB. This model projection is used as a test of the accuracy of the

model. If the modelled distribution corresponds to the known actual

distribution of the EAB in the native range, then the scientists move on

to the next step, projecting the EAB distribution in the invaded range.

The top right projection (B) is the prediction of the EAB’s range given

the data from the native range. The bottom right projection (C) is the

projection given known occurrences of EAB in North America. The

overall prediction is that the EABwill likely increase its range from C to

B, that is, northwards and westwards. Importantly, the scientists pre-

dicted that there would be a limit to the northern spread of EAB because

of harsh winter conditions.

The underlying assumption in using SDMs for prediction is that there

is a certain level of causal homogeneity across different systems. At first

glance, this assumption makes a lot of sense as there are niche parameters

that are shared between different areas. For instance, there are ash trees in

East Asia and North America, while both areas have similar precipitation

and temperature patterns.

Unfortunately, however, recent research has revealed that this prediction

(the northern limit of EAB distribution) was inaccurate (Cuddington et al.,

2018). The primary reason for this is climate change. Both the native and

predicted ranges are based on actual temperature data (in this case, going

back 50 years). These data sets reflected ‘extreme cold events’ that happened

with some regularity, that is, about every six years. These events help to keep

the EABpopulations below certain levels. The problem is that these extreme

cold events are happening less and less frequently, so the EAB populations

are not being kept in check, thus allowing them to spread beyond the
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originally predicted range. This is an example of causal heterogeneity, as

some of the causal factors that are relevant to the behaviour of the system

(the frequency of extremely low temperatures) have changed.

The lesson to learn from this example is that causal heterogeneity is not just

rampant, but it can be unexpected. Despite their best intentions, scientists are

not always able to predict all the factors that might change so as to accommo-

date this change in their predictions. Surprises lead to more surprises. This

points to an interesting implication of causal heterogeneity, namely that scien-

tists are often unable to make accurate predictions, even though they are able to

provide explanations of the same phenomena.

3.2.3 Explanation without Prediction?

Explanation and prediction are both important facets of scientific practice, but

this has not always been so. The status of explanation and prediction and the

relationship between them has changed significantly since the beginning of the

twentieth century. At first, philosophers venerated prediction as the hallmark of

‘true’ science, because of its ability to test scientific theories. In contrast,

explanation could not be characterized in precise terms, hence it was thought

to be of little scientific value. At the time, there were no in-depth accounts of the

nature, function and testability of scientific explanations, so it was not easily

distinguishable from ordinary, every-day (and hence inherently suspect)

explanations of phenomena. Many philosophers, especially those with connec-

tions to logical positivism, categorized explanation as a notion that lay beyond

the realm of science, more akin to metaphysics and theology (M. H. Salmon

et al., 1992). So, prediction was used to ‘cleanse’ explanations from mysticism,

as an accurate prediction meant that the explanation of the phenomenon was

scientific.

This close connection between explanation and prediction was crystalized in

1948, when Hempel and Oppenheim (1948), argued that explanation and

prediction had symmetrical structure: events were logically derived from laws

and various conditions, if this derivation occurred before the event took place,

then it was a prediction, whereas if it took place after the event occurred, it was

an explanation. In fact, according to Hempel and Oppenheim, an explanation

was not fully adequate unless it could have served as the basis of a prediction of

the phenomenon in question, while a failed prediction necessitated that the

corresponding explanation was also a failure (Hempel & Oppenheim, 1948). In

subsequent years, the ‘symmetry thesis’, as it became known, was slowly

40 Philosophy of Biology

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

00
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108900010


abandoned, as philosophers began to emphasise the value of explanation at the

expense of prediction (Douglas, 2009). Nonetheless, accounts of scientific

practice (espoused by philosophers and scientists) retain vestiges of this sym-

metry. As shown in Section 3.2.1, prediction is still used as a test of theory

confirmation. At the same time, it is often assumed that if a theory can provide

good scientific explanations, then accurate predictions ought to follow

(Douglas, 2009; Strevens, 2004).

Unfortunately, this is often not the case in causally heterogeneous systems,

with ephemeral patterns. Even when explanations of phenomena are perfectly

adequate, predictions might still not follow. Scientists might accurately identify

all the causal mechanisms that give rise to a particular phenomenon at

a particular time, yet aspects of those causal mechanisms or their dynamics

might change at a later date. Thus, an explanation of a particular phenomenon

may be correct, in the sense that the scientists have successfully identified the

causal factors that gave rise to the phenomenon. However, a prediction based on

those same factors can turn out to be false, because the causal factors have

changed. This is a common problem in invasion biology, where past invasions

are routinely and successfully explained, yet the outcome of any particular

invasion is very difficult to predict (Elliott-Graves, 2016). Consider

a hypothetical but plausible example (Klironomos, 2002; Suding et al., 2013).

Scientists might determine that a particular plant invasion (in area 1) occurred

because of factors x, y, and z, where x is negative feedback between the native

plants and the soil, which the invader is immune to, y is a particular temperature

range and z is the invader’s propagule pressure (the number of invasive individ-

uals released into the invaded region (Lockwood et al., 2005)). Based on these

results, scientists might predict that the same species will not succeed in

invading a new area (area 2), because it is outside the optimal temperature

range (in other words, y is different). However, in the next year, the temperature

of the new area increases, so that it matches y, and the invasion actually

succeeds. Thus, the change in the causal factors rendered the prediction inaccur-

ate. Another way the causal factors can change is by the addition of a new causal

factor that was not present in the original phenomenon and its explanation. For

example, scientists might expect an invasion to succeed in another area (area 3)

because all three factors (x, y and z) hold in that area. However, in addition to

the negative feedback x, the invaders here are not immune to it, because of the

slightly different composition of the microbiotic community of the soil. Thus,

contrary to expectations, the invasion actually fails.

The upshot is that scientists investigating heterogeneous systems can make

inaccurate predictions even when their explanations of the same phenomena are

accurate. The next question to ask is how important is this predictive failure? In
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the next section, I will show that predictive failure has far-reaching implica-

tions, as it results in failed interventions. Before that, however, I will flag a small

silver lining, which I will return to in Section 4. Recall that in traditional

confirmatory predictions, accuracy is often too easy to achieve, hence the

importance of riskiness. However, if accuracy is much less easy to achieve,

then riskiness becomes less important. In other words, it is less pressing to show

how predictions could turn out to be false when many predictions actually do

turn out to be false. As we shall see, the high level of riskiness opens the door for

a slightly less stringent requirement regarding precision. Reducing precision

will turn out to be quite useful, as it can greatly increase the accuracy of

ecological predictions and the effectiveness of interventions on ecological

systems.

3.3 Effective Interventions

A substantial part of ecological research is ‘applied’, in the sense that it is aimed

at solving real-world problems in real time, by intervening on ecological

systems. Typical examples include pest control, saving a species from extinc-

tion and preventing or halting biological invasions. These interventions are

based on what I call ‘applied predictions’: predictions of where/when an

intervention will be needed and predictions of an intervention’s effect on the

system. Inaccurate applied predictions result in less effective or even failed

interventions. A rather tragic example is the introduction of a predatory snail

Euglandina rosea to the Pacific islands, based on the prediction that it would

prey on and thus control the population of the invasive Achatina fulica.

Unfortunately, this prediction turned out to be false, as the introduced predatory

snail (E. rosea) preferred the native snail species to the one it was brought in to

control (A. fulica). In fact, E. rosea subsequently became an invader in its own

right, probably causing much more devastation on the native ecosystem than

A. fulica (Thiengo et al., 2007). Overall, the intervention was a resounding and

dramatic failure.

Ecological complexity also affects the effectiveness of interventions indirectly.

Themain indirect effect is paucity of data. Gathering data in ecology is often quite

difficult. Even state-of-the-art methods are prone to patchiness and bias. Consider

the task of estimating the size of a population. This is an essential step in a lot of

ecological research, including most conservation efforts, yet it is exceedingly

difficult and costly (Akamatsu et al., 2001; Kaschner et al., 2012; Tyne et al.,

2016). The most widely used sampling method is the capture-release-recapture

method, which does not work equally well for all species/populations and suffers

from a number of biases (Boakes et al., 2016). For example, it is not very useful in
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cases with sparse data, because each capture is difficult. For species with large

distribution ranges, such as marine mammals or migratory birds, the available

data is often patchy, so there are gaps in the information scientists have about the

population’s seasonal distribution, behaviour and population dynamics (Tang

et al., 2019). It can also be biased in terms of the internal structure of the

population. For example, in some fish populations, the method is biased towards

larger individuals, which can skew the demographic information on age-

structured populations, essential in most models of population growth (Pine

et al., 2003).

Sometimes ecologists rely on or supplement their own data with data col-

lected by others. This can include historical data sets (whose quality cannot be

checked) and data collected by non-experts. In some cases, such as various

citizen science initiatives, these data sets prove to be extremely valuable, and of

very high quality. However, in other cases, the people providing the data have

incentives to distort it. This problem is especially pertinent for species that are

part of commercial fisheries (e.g. cod) or species whose conservation is at odds

with the interests of the fishery (e.g. dolphins), as ecologists rely on data

provided by those very people with the opposing interests.

The difficulties created by ecological complexity for interventions are very

important, because they have real-world consequences. In other words, they

usually have high stakes. For example, failing to halt an invasion can incur huge

economic costs in addition to the negative effects on the native ecosystem.

A failure of conservation targets can lead to the extinction of a species, which is

mostly irreversible. In addition, interventions are usually time-sensitive.

Finding a solution to a problem is often not sufficient; the solution must be

discovered and implemented within a particular timeframe. The scientists

tasked with solving the problem must determine the extent of the danger,

identify the causes of the danger, find ways to mitigate the threat and determine

the best ways to implement the mitigation. All this must be achieved before the

population drops below a certain level.

Why are these characteristics worse for applied rather than confirmatory

predictions? After all, scientists making predictions for confirmation purposes

don’t always have optimal data sets, unlimited time or low stakes. Still, these

effects tend to be much larger in the case of applied predictions. There is quite

a big difference between failing to confirm a theory and failing to save a species

from extinction. Similarly, time-constraints may exist in confirmatory contexts,

but they are usually not as small. Poor data sets are problematic because they

limit the accuracy of our best available models. For example, it is very difficult

to predict the future population size after an intervention, when you cannot even

determine the current population size with the accuracy required by the best
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available models. Moreover, in applied contexts, these three characteristics tend

to exist simultaneously and even magnify each other. For instance, when

paucity of data causes an inaccurate prediction, there is usually insufficient

time to adopt an alternative method, even if such a method exists.

In order to fully appreciate how ecological complexity directly and indirectly

affects predictions aimed at interventions, let us examine the case of the Yangtze

River porpoise.

• Example 3. The Yangtze River finless porpoise

The finless porpoise (Neophocaena asiaeorientalis asiaeorientalis),

endemic to the Yangtze river, is the world’s only surviving freshwater

porpoise (S.-L. Huang et al., 2017) (Figure 4). Its population has been

steadily declining, and despite the existing conservation measures, in

2016 it became critically endangered. In light of this, additional, more

extensive conservation measures were adopted to protect it. An essential

piece of information for determining a conservation intervention is the ‘time

to extinction’ (TE), because it affects which species are prioritised and

which policies are adopted. An important paper was published in 2016,

which predicted that the TEwas significantly lower than previously thought

(37–43 years, instead of 63 years from 2012) (Huang et al., 2017).21

This case bears all the hallmarks of the difficulties associated with

applied predictions. The prediction here is the TE, which is used to

determine the type and extent of the intervention. Typically, this prediction

21 The paper was available online from 2016.

(a) (b)

Figure 4 Yangtze finless porpoise. (A) Yangtze finless porpoise in the

Institute of Hydrobiology, Chinese Academy of Sciences on Wikimedia

Commons; (B) Yangtze finless porpoise in Poyang Lake, Jiangxi, China,

on Wikimedia Commons
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involved high stakes. An inaccurate prediction would incur huge costs, as

the porpoise population was already critically endangered, and there was

little room for error. Local extinction, in this case, would mean global

extinction, as the porpoise is endemic, and individuals tend not to survive

in captivity. Moreover, the whole situation was extremely time-sensitive;

the scientists were literally racing against the clock to determine what

policies needed to be implemented or adapted before the porpoises dropped

below a certain threshold.

Paucity of data was also an issue. The porpoises are extremely

difficult to locate and the scientists had important gaps in their infor-

mation concerning the porpoises’ behavioural patterns, population

dynamics and seasonal distribution (Tang et al., 2019). The scientists

have to rely on sightings of dead porpoises by fishermen, though as the

porpoises are most likely to die from illegal fishing methods, this data

is usually biased. This patchiness or bias in the data introduces

uncertainty into the models used to estimate population size, which

reduces the likely accuracy of their predictions. After all, only four

years before the study, the same group of scientists had predicted

a significantly higher TE.22

Luckily, the scientists’ warnings seem to have been heeded and

additional conservation measures were put in place (including increased

protection level of the species, increase in the size and number of

protected areas, fishing bans and closer monitoring of fisheries) (J.

Huang et al., 2020). These measures are considered successful, as even

though the population is still decreasing, it is doing so at a much slower

rate. There is now hope that the new decreased rate of decline gives us

enough time to save the species from extinction, provided that the exist-

ing conservation measures are extended to increase migration between

the three sub-populations (J. Huang et al., 2020; Tang et al., 2019).

This has been an admittedly pessimistic discussion of the difficulties caused

by causal heterogeneity. Luckily, I believe that there are a number of options

open to ecologists for conducting research that is undeniably useful and of

high quality. In the next section I will examine some of these research methods

and argue that they have more value for ecology than they are currently given

credit for.

22 There is significant overlap between the authors of the two papers. In addition, most of the
authors from both papers come from the same two institutions.
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4 Dealing with Ecological Complexity

It would be understandable if the discussion so far filled the reader with

a degree of pessimism. I have catalogued models and theories that have failed

to yield sustained generalisations and accurate predictions of ecological

phenomena. I have also highlighted the implications of these failures in

terms of the consequences of failed interventions. Still, I believe that this

pessimism is not warranted. There are options open to ecologists, which

provide a solid toolkit for dealing with ecological complexity. These are

modest bottom-up generalisations, that include system-specific models and

statistical tools for synthesis (such as systematic reviews and meta-analysis)

and the use of models that yield imprecise predictions. Indeed, these tools are

already in use by ecologists; I have not invented them. They also correspond to

two of the strategies outlined in Levins’s (1966) framework (type II and type

III models). Yet I believe that the value of these approaches is not fully

recognised as they are often deemed inadequate for the task at hand or

insufficient for true progress. In this section, I will review the traditional

approach (4.1) and outline two alternative approaches (4.2, 4.3) for studying

complex systems, along with the main criticisms that can be levelled against

them and an evaluation of these criticisms.

4.1 Reducing Complexity: The Traditional Approach

The traditional approach to dealing with complexity is to reduce it, by simpli-

fying aspects of the phenomenon or system (Levins, 1966; Mitchell, 2003;

Weisberg, 2007). In experiments, this can be achieved by omitting or control-

ling causal factors, whereas in models it can be achieved through abstraction

(the omission of factors) and idealisation (the distortion of factors) (Elliott-

Graves & Weisberg, 2014). This traditional approach works well in causally

homogeneous systems, because it allows scientists to distinguish between real

causal factors and noise – the real causal factors are present in many systems,

whereas the noise is idiosyncratic. Thus, reducing complexity provides the

additional benefit of identifying generalisations across systems. As we saw

earlier, this approach is much less likely to be useful in causally heterogeneous

systems, as the idiosyncratic factors of each system are often real (not mere

noise) and relevant, so omitting or distorting them leads to inaccurate explan-

ations and predictions.

Nonetheless, there are some contexts where reducing complexity can be

beneficial even in causally heterogeneous systems. The first is when scientists

want to identify all the instances where a particular factor is present, even when

this factor is not relevant to the functioning of a particular phenomenon. This
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can enhance the scientists’ understanding of the natural world, as it shows them

which factors are common across different phenomena. This type of generalisa-

tion is often useful for pedagogical purposes as it shows how disparate phe-

nomena might have some factors in common. For example, most populations

seem to have the potential to grow exponentially, if there are no other factors

curbing their growth (limited resources, competitors, predators, etc.). Of course,

almost no populations grow exponentially in real-life because there are almost

always multiple other factors curbing their growth. Thus, it would not be

particularly useful to use an exponential growth model to predict the growth

of any particular real-world population. The existence of these other factors that

affect real-world populations will render the predictions of an exponential

growth model inaccurate. Still, it is useful to know that most populations

would grow exponentially if they could, that is, in the absence of other factors.

In other words, it can be useful to know that a particular causal factor is general,

even though other factors overpower it, and it does not actually manifest in real-

world phenomena.

The second type of situation, where reducing complexity and applying

large-scale generalisations is useful, occurs when the common causal fac-

tors are relevant for the phenomenon and its idiosyncratic factors are (i)

either not relevant, (ii) are overshadowed by other factors or (iii) give rise to

factors that are shared across other systems. It just so happens that in some

cases scientists are lucky, so that simple, general (type I) models do capture

the relevant causal factors of the phenomenon and actually yield accurate

explanations, predictions and interventions. An example of an exceedingly

simple model being used successfully can be found in the case of the

Vancouver Island Marmots.

• Example 4. Allee effect in the Vancouver Island Marmots

The marmots of Vancouver Island (Marmota vancouverensis) (Figure 5)

are classified as critically endangered. It was estimated that their popula-

tion had dropped 80 per cent –90 per cent since the 1980s and by the mid-

2000s consisted of roughly 200 individuals (Brashares et al., 2010). The

cause of this rapid decline was a mystery. The marmots were not hunted,

their sources of food were unaltered, there were no new predators or

competitors and the small disturbances to their habitat (small-scale log-

ging) seemed to have a positive effect on the population, as the absence of

thick tree roots in clearings made the building of burrows much easier.

Nonetheless, the marmot population began to decline in the 1980s and

kept on declining despite some early conservation efforts (such as the
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expansion of Strathcona Provincial Park in 1995). Something had to be

done quickly to preserve the species from extinction.

Brashares et al. (2010), who took on the marmot case, decided to use

a simple, general (type I) model to try and determine the cause of the

decline. They reasoned that, as there was no recent change in predators,

competitors, disturbance to their habitat, food sources or hunting,

a simple demographic model of population growth could shed light on

the situation. Thus, they applied the logistic model of population growth

to the Vancouver Island (V.I.) marmots (see Box 1A and Figure 6A solid

line). This model describes how a population grows, given (i) its intrinsic

growth rate r (which is the maximum possible growth rate of the popula-

tion and approximately corresponds to the number of births minus the

number of deaths), (ii) the density of the population and (iii) K the

maximum size of the population that the environment can support. At

first glance, the choice of model seems wrong as the growth of the

V.I. marmots diverges from the model predictions (Figure 6A red line

vs. Figure 6B). That is, the V.I. marmot population growth rate seems to

be dropping even at low densities, in contrast to standard logistic growth.

Nonetheless, the V.I. growth rate conforms to a recognized variation

of logistic growth, termed the ‘Allee Effect’ (Figure 6A dotted line),

which describes populations that behave normally (i.e. according to

logistic growth) at high densities, but have a positive correlation between

Figure 5 Vancouver Island Marmot. Photo by Alina Fisher on Wikimedia

Commons
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the density of the population and its growth rate at low population

densities (Courchamp et al., 1999). In other words, the Allee effect
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Figure 6 Logistic growth and Allee effect. (A) Per capita logistic

growth (red line) and per capita logistic growth with Allee effect

(dotted line). K is the carrying capacity (the maximum population

that the environment can support). In standard logistic growth (red line)

the growth rate drops as the population size increases. With an Allee

effect, the population falls at low densities, despite an abundance in

resources; (B) Allee effect in the V.I. marmots. The graph shows annual

counts of free-living V. I. marmots 1970 to 2007. There is a clear Allee

effect, a strong inverse density dependence in per capita growth rate

(y axis) with respect to population size (x axis). Trend line represents

least-squares quadratic fit (R2 = 0.55). Data exclude animals introduced

from captivity (Figure 6B and its explanation is adapted from

Brashares et al., 2010).

49Ecological Complexity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

00
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108900010


describes cases where once the population drops below a certain level, it

cannot bounce back, even though there are plenty of resources to go

around. This is exactly what was happening with the V.I. marmot popu-

lation: the data (from 1970 to 2000) show that at low population sizes the

V.I. marmots cannot bounce back (Figure 6B).

The next question to ask iswhy theV.I. marmots exhibit anAllee effect.

As it turns out, these rodents are quite special, because they are highly

social. They live in groups of 5–15 individuals, have an intricate pattern of

social interactions and a variety of alarm calls. In fact, they normally spend

most of their time socialising, as they forage communally, taking it in turns

to look out for predators and share in the upkeep of their burrows. When

amarmot out foraging encounters anothermarmot, they greet each other by

touching their noses together, while the youngsters, who stay on with the

family until they are around two years old, spend most of their time play-

fighting. The problem is that when the population falls below a certain

density, these marmots find it hard to locate potential mates. The smaller

populations mean that there is less division of labour (caring for young,

guarding against predators) so each marmot spends more time and effort

foraging and can afford to devote less time to searching for mates. In

addition, as the population decreases, the potential mates are spread more

thinly across the territory, so they become even harder to locate. All this

results in lower instances of mating, which leads to further decrease in the

population, despite the abundance of resources.

The case of the V.I. marmots is an example of an extremely simple and

general model being used to successfully explain a particular phenom-

enon, predict the future of behaviour of the system and form the basis of

a successful intervention.23 It is a case where the complexity of the

system was significantly reduced, as the study focused only on a few

demographic properties of the V.I. marmots, excluding many other fac-

tors (competitors, predators, pathogens, habitat loss, disturbance, etc.).

Moreover, this model worked despite the fact that the V.I. marmots had

a particular idiosyncratic characteristic that is not shared by other species

of marmot, that is, sociality. Therefore, one may ask why I have included

this example which seemingly undermines my claims that causal hetero-

geneity decreases generalizability.

23 The sociality-induced Allee effect from this study has since been incorporated into the highly
successful V.I. marmot recovery programme, which focuses predominantly on increasing the
V.I. marmot population through captive breeding (as opposed to the most common alternative
strategy: culling of predators) (Vancouver Island Marmot Recovery Team, 2008).
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The answer is that this is a very special case – and one of the few cases

where type I models are genuinely useful. It is special for two reasons. First,

the complexity could be reduced: the factors normally operating on

a population, that is, competitors, predators, pathogens, habitat loss and so

on, were not relevant causal factors in this case. In fact, the scientists already

knew that these factorswere not relevant because they had remained constant

before, during and after the drop in the V.I. marmot population. Second, the

apparent heterogeneity of the system, that is, the uncommon sociality of the

V.I. marmots, actuallymade this system homogeneous to other systems, such

as plankton, plants and sessile invertebrates, because it led tomate limitation,

which is a common cause ofAllee effects in these other systems (Berec et al.,

2007). In other words, this is a rare example of apparent heterogeneity

resulting in causal homogeneity across different systems. As stated at the

end of Section 3.1.3, the absence of causal homogeneity explains when and

why some generalisations are actually possible.

Nonetheless, it is important to reiterate that this confluence of reducible

complexity and effective homogeneity is far from common in ecological

systems. Thus, while we should be happy when such situations occur, we

should not expect them to occur frequently. More importantly, we should

not criticise scientific investigations of systems that do not allow this type

of generalisation. What should ecologists do then? I turn to this issue next.

4.2 Retaining Complexity: Modest Generalisations

4.2.1 Type II Models

A different approach to complexity and generalisation is employed by scientists

who use type II models. Recall that type II models are those that sacrifice

generality for the sake of realism and precision. Each model is built for

a particular system and yields explanations and predictions for that system.

The approach is different in the sense that the scientists employing these models

and experiments value explanatory and predictive accuracy for a particular

system over generalisability. Thus, the most important aspect of a type II

model is to capture and represent the complexity of ecological systems. If this

means that the model only applies to one system, then so be it.

Despite its potential, this approach is sometimes maligned in the literature.

While authors praise the strength of the causal connections uncovered by this

type of research, they lament the fact that the models do not generalise or

transfer to other systems (Houlahan et al., 2017; see also discussion in
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Wenger & Olden, 2012). These approaches are portrayed as too complex; the

models they generate are considered too unwieldy and unable to promote

understanding of the systems they investigate (Houlahan et al., 2017; Marquet

et al., 2014). The Nobel Laureate Sydney Brenner went as far as claiming that

biological research was in a state of crisis because we are ‘drowning in a sea of

data’, and ‘[A]lthough many believe that more is better, history tells us that

least is best’ (Brenner 2012, in Marquet et al. 2014). Even though Brenner was

complaining about biology in general, Marquet et al. (2014) believe that this

sentiment is particularly pertinent to ecology because of the prevalence of

small-scale (i.e. localised) research in the field.

I disagree. It is simply not true that scientists employing this approach are

unable or unwilling to look for generalisations. For example, type II modellers

might modify an existing model and investigate whether it can be transferred to

a new species or area. Still, the expectations regarding generality are different.

These scientists look for patterns, but do not always expect to find them.

Moreover, even when they do find patterns, they expect them to break. In

other words, the level of generality expected from this approach is usually

quite constrained, as its scope is limited to variation within particular types of

phenomena, such as disturbance (Peters et al., 2006), plant-soil feedback

(Casper and Castelli 2007) or migration (Kelly and Horton, 2016).

The value of these modest generalisations can be seen in the following

example of how plants cope with drought.

• Example 5. Drought Sensitivity

Drought is an increasingly important factor that affects all plant communi-

ties (D’Orangeville et al., 2018). As droughts are increasing in duration and

frequency, it is imperative to understand and predict the strategies that

plants employ to deal with drought and the likelihood of success of these

strategies (Phillips et al., 2016). Strategies differ across geographical areas

and taxa and depend on a number of factors such as climatic conditions

(repeated short-term vs. long term water stress), plant demographic traits

(age, height) and below-ground traits and interactions (root shape and size,

PSF interactions) (Phillips et al., 2016). These are especially heteroge-

neous, so much so that most models either exclude them completely or

represent them in a highly abstract way, omitting the idiosyncrasies of each

case and generalises over many different cases (Phillips et al., 2016).

According to Phillips et al., this reduction in complexity has resulted in

models with a ‘surface-bias’, and a corresponding reduction in predictive

accuracy.
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In their paper, Phillips et al. argued for including more below-ground

factors in drought sensitivity models. They pointed out that this can be

achieved quite easily, as some of these models already have the capacity to

include many different variables and can distinguish between fifteen differ-

ent plant functional types. Moreover, the data necessary for these parameters

is already available or relatively easy to collect. They argued that by adding

these below-ground parameters, scientists can identify combinations of plant

traits and soil types that confer greater sensitivity to drought. Specifically,

they advocated for adding parameters for soil type and texture together with

hydrology sub-models, so as to be able to predict the availability of water for

a plant given a particular soil texture. In other words, with these additions to

the model, scientists can determine the amount and frequency of water each

type of plant needs, given the type of soil surrounding it.

Adding below-ground factors and hydrology sub-models constitutes an

increase in the realism of the drought sensitivity models, which, as Phillips

et al. showed, increases the models’ predictive accuracy. This increase in

realism comes at the expense of generality: there is no single combination

of plant and soil types that confers drought tolerance to all plants. Each

combination only works in some contexts (of soil type and availability of

water). In other words, these models are flexible rather than extensively

general; each time a model is applied to a particular system it includes only

certain below-ground factors or dynamics –those relevant for each case.

Even though these models are not extensively general, they can

identify some modest generalisations. For a start, they are only meant

to apply to a subset of climatic conditions (drought) and to forests (rather

than other ecosystems) –a far cry from searching for a single theory to

encompass all ecological interactions. In addition, the generalisations

that they generate are even more modest: they apply to particular com-

binations of plant and soil traits in particular contexts. Still, these

extremely modest generalisations can be sufficient for scientific progress.

For example, if a particular combination is useful for plants in systems

with highly variable temperatures, this may provide information for how

plants in a different system (with the same plant-soil trait combination)

could deal with increasing temperature variability due to climate change.

The upshot is that as long as the limited scope of these generalisations is

recognized, that is, their application is highly selective and carefully considered,

they can be a fruitful tool for ecological research.
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4.2.2 Meta-analysis

Meta-analysis is a statistical tool for analysing and synthesising the results of

large numbers of individual studies (Gurevitch et al., 2018). Its primary aim is to

identify causal relationships from different types of evidence (Stegenga, 2011).

In some disciplines (such as ecology and evolutionary biology), meta-analyses

are also used as a means for generating generalisations (Gurevitch et al., 2018).

The aim of the meta-analysis, in this context, is to determine whether the same

effect holds across different geographical locations or taxa. If causal factors are

common across various different systems, then generalisation is possible.

Furthermore, a meta-analysis can also reveal the limits to the scope of general-

isations, by identifying the factors that cause the generalisation not to hold in

particular cases.

The process of meta-analysis, in a nutshell, is the following: as with most

scientific endeavours, a meta-analysis starts with the formulation of

a question, for example, do alien plant species succeed in invading new

areas because they lack coevolved enemies in their new ranges? (J. Parker

et al., 2006). Then, the meta-analyst conducts a search of the literature to

find all the papers that could be relevant. Next, she determines what

actually is relevant for the discussion. Discarded papers usually include

those that are not primary research (e.g. other meta-analyses), those that

answer different questions or are beyond the scope of the meta-analysis

(e.g. insect rather than plant invaders). The papers that remain are then

assigned a certain weight, given their quality (such as sample size, trans-

parency and depth of reported data). This data is used to calculate the effect

size, ‘a statistical parameter that can be used to compare, on the same scale,

the results of different studies in which a common effect of interest has

been measured’ (Koricheva et al. 2013, p. 61). For example, the effect of

herbivores on plant invasions can be measured in terms of the difference in

total biomass of plants with and without herbivores. The larger the differ-

ence, the larger the effect size. Finally, the meta-analyst conducts a series

of tests for biases (and some other statistical errors) and qualifies the effect

size by an index of precision, such as variance, standard error or confidence

interval.

How do meta-analyses contribute to generalisation in ecology? They can

compare and contrast primary studies and identify where causal relationships

hold and where they do not, thus revealing the limits of a generalisation’s

scope. Sometimes, this process can even yield new insights about ecological

phenomena. I will illustrate with the case of the Enemy Release Hypothesis in

invasion biology.
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• Example 6. The Enemy Release Hypothesis:

Invasive species around the globe pose an important threat to native

natural and agricultural communities and incur huge costs for their

prevention and management. Despite their importance, scientists have

yet to uncover a general theory of invasion (Elliott-Graves, 2016). Part of

the problem seems to be that there are numerous theories for why certain

invasions succeed and others fail, and each theory has both empirical data

that support and also that contradict it. (Jeschke et al., 2012). One of these

hypotheses is the ‘enemy release hypothesis’ (ERH) (Heger & Jeschke,

2014). The basic idea is quite simple: alien species can thrive in new

territories because they do not encounter their traditional enemies. In the

case of plant invasions (where the hypothesis has gained the most

traction), the ERH predicts that native herbivores are less likely or able

to consume alien plants, thus giving alien plants a competitive advantage

over native plants.

There are observational and experimental results that confirm the

ERH. For example, there are documented cases where alien plants or

their seeds are not consumed by native predators (J. Parker et al.,

2006). However, there are also experimental and observational results

that contradict the ERH. For example, there are a number of cases

where alien plants actually attract native herbivores and this effect is

significant enough to reduce the alien plants’ seed production and

survival (J. Parker et al., 2006). Studies conducted at different scales

also seem to produce different results: large-scale biogeographical

analyses tend to show a reduction in the diversity of enemies in the

introduced range compared with the native range, whereas medium to

small scale community studies tend to find that alien species are no

less affected by enemies than native species in the invaded community

(Colautti & MacIsaac, 2004).

Parker et al. (2006) decided to review the existing literature on the

ERH and conducted a meta-analysis to see if they could settle the

matter. What could account for the contradictory findings? They

found two interesting results. First, there were some cases where native

herbivores decreased the abundance of alien plants. Second, there were

cases where alien herbivores increased the abundance of alien plants.

Both of these results contradict the ERH, as they show that alien plants

are subject to predation in new areas (i.e. they acquire new enemies) and

their old enemies actually help them increase in abundance, rather than

hindering them.
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Parker et al. continued analysing the data to see if there were any other

similarities and differences between the primary studies. They noticed

three things: first, the negative effect of native herbivores on the alien

plants was weaker than the positive effect of alien herbivores on them

(28 per cent reduction in the former vs 65 per cent increase in the latter).

Second, some studies focused on invertebrate herbivores while others

focused on vertebrates. These two categories also had consistent differ-

ences in effects: native vertebrate herbivores had a three to five-fold larger

negative impact on alien plant survival than native invertebrate herbivores.

Third, all the alien herbivores in these studies were generalists (they prey

indiscriminately on many species of plant). This is important because we

know that vertebrate herbivores tend to be generalists, while invertebrate

herbivores tend to be specialists (i.e. they prey on specific plant species).

If we put all these points together, a clearer picture of the scope of ERH

emerges. When the native herbivores are specialists and there are no alien

herbivores, the ERH works as expected: the alien plants are released from

their old enemies and the native specialists do not bother them, as they

continue to focus on their preferred native plants. But the ERH does not

work as expected in the following cases: (i) when the native herbivores are

generalists, they prey on native and alien plants, so there is no significant

enemy release effect. (ii) when alien generalist herbivores are also present,

things becomemore complicated. The alien plants might still have an ERH

effect with respect to their native specialist herbivores. However, this effect

is overshadowed by the effect of alien generalist herbivores (their old

enemies). These generalists might actually prefer the native plants, so

that they consume more of the natives than the alien plants, giving the

alien plants a competitive advantage over the native plants.

Interestingly, enemy release is also part of the explanation of points (i)

and (ii), though from an entirely different perspective. So far, we have been

thinking of predators as the enemies of plants, but plants can also have

negative effects on predators, through co-evolution. Plants from the same

regions as herbivores often evolve mechanisms to deter these herbivores.

However, these mechanisms are not very effective; the herbivores will still

consume them, and deal with the consequences (e.g. by spending signifi-

cant amounts of time and energy digesting their food and neutralising

toxins). Still, the same generalists will preferentially consume plants that

have not evolved these defence mechanisms if they are given the chance.

This is exactly the chance given to them in the new regions, where they
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preferentially consume the native plants. Indeed, the meta-analysis found

strong support for this hypothesis, as 88 per cent of alien plant species in

the studies shared the same native ranges as the alien generalist herbivores.

In fact, these insights were also able to explain another perplexing

phenomenon, namely why it is muchmore common for European plants to

invade areas outside Europe, rather than vice versa. The answer is that

generalist herbivores fromEurope, such as pigs, horses and cattle, are more

widespread than generalist herbivores from other continents and contribute

more often to the success of exotic plants withwhich they have co-evolved.

To sum up, the meta-analysis teaches us two different things about the

scope of the ERH. First, the notion of ERH, as it stands, is too broad. We

need to specify different contexts for who is the enemy in each case, and

what type of enemy it is. An original suggestion for how to achieve this

further specification with respect to the ERH and to other theories can be

found in a series of papers by Tina Heger and colleagues (Bartram &

Jeschke, 2019; Heger et al., 2021; Heger & Jeschke, 2014). Second,

having to constrain the scope of the ERH did not incur huge costs, nor

was it detrimental to our understanding of invasion biology. Examining

when, where and why the ERH does not hold provided information about

the hypothesis and about invasions more generally. In fact, this whole

process of constraining the scope of the ERH was instrumental in provid-

ing an answer to a question that had long perplexed ecologists – the

differential frequency of plant invasions out of versus into Europe. In

short, if the ecological complexity of a phenomenon ‘forces’ scientists to

restrict the scope of a generalisation, this should not be seen as a failure in

ecological research, but as an opportunity to acquire knowledge about the

systems and phenomena under investigation.

Before I turn to the next tool at ecologists’ disposal, there is a general lesson to

be learned from this approach to generalising in ecology. The types of generalisa-

tions I have discussed have an important point in common: they probe, explore

and test whether a generalisation is possible, rather than assuming it is possible.

Observing a pattern, for these scientists, means that it could result in a useful

generalisation, not that it automatically entails a generalisation. This may seem

like a small point, but it is actually very important. Changing our attitude and

expectations towards generalisations, is a key step in recognising the potential of

generalisations in ecology. We should not be dismissive or embarrassed when

generalisations turn out to be limited in scope or break down completely. We

should not even expect many generalisations to actually exist in complex,
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heterogeneous systems. This does not mean that we should stop trying to identify

them. It means that we should value them for what they are when we do find

them, and that we should also value the research that does not aim for generality

or achieves generality at the expense of precision – this is the research I turn to

next.

4.3 Incorporating Uncertainty: Imprecise Predictions

The most controversial strategy for ecological research is to incorporate uncer-

tainty in models by sacrificing the precision of their predictions. In general terms,

imprecise predictions are those that refer to the existence of a phenomenon or

effect, without specifying its extent or magnitude. For example, a model could

predict a trend, such as ‘population x will increase’, without specifying by how

much it will increase. Some predictions are imprecise because they predict

a range of values for a particular variable. For example, the temperature in

2030 will increase by 1.5–3.5 degrees. Other predictions are imprecise because

they include imprecise probabilities; for example, there is 0.6–0.8 probability that

organism y will be extinct in twenty years.

It should be clear from these examples and from the discussion in Section 3.2,

that precision is not a binary characteristic, but comes in degrees. In fact,

imprecision is a way of representing uncertainty (Elliott-Graves, 2020a;

W. Parker, 2010; W. Parker & Risbey, 2015; Smith & Stern, 2011). That is,

scientists can use imprecision to convey that they are not certain about a model’s

predictions. The more uncertain the result, the less precise the prediction.

Table 2 shows predictions for variable x in decreasing levels of precision

(adapted from Parker & Risbey 2015).

In ecology, imprecision usually appears as the output (predictions) of models.

The imprecision in these models usually corresponds to levels (c)–(e) in

Figure 6. The models themselves correspond to Levins’s type III strategy

(Section 2.2.1). The main attribute of these models is that they can achieve

generality without sacrificing realism. By representing each factor imprecisely,

they can include many more factors than a type I model. They are thus said to

contain idealisations of specificity rather than idealisations of veracity (Justus

2006, p. 659). That is, imprecise models represent systems veridically (without

omitting or distorting most of their variables). In contrast, maximally precise

models employ different methods of simplification, that is, making unrealistic

assumptions and/or omitting causal factors altogether, which decreases the

‘veracity’ of the model. This type of idealisation often mischaracterizes salient

features of systems, resulting in inaccurate explanations and/or predictions

(Justus, 2005, 2006).
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Table 2 Prediction and uncertainty

Prediction of x Interpretation of the associated uncertainty

(a) x will increase by 3 units (0.95
probability)

This prediction is virtually certain. The scientist has provided a precise point probability for the
value of x.

(b) x will increase by 3 units (0.6−0.8
probability)

This prediction is imprecise because it involves imprecise probabilities, i.e. a range. It is also
possible to express this level of uncertainty with a qualitative confidence level, such as
‘medium’

(c) x will increase by 2−5 units (0.95
probability)

This prediction is even more imprecise. Even though the scientist has provided a precise
probability estimate, the value for the increase of x is a range.

(d) x will increase by 2−5 units (0.6
−0.8 probability)

Here precision decreases even more, as both the value of x and the probability of the prediction
are expressed as ranges.

(e) x will increase by more than 2
units

Here the precision has decreased further, as the value of x is expressed as an order of magnitude
estimate.

(f) x will increase The levels of uncertainty are so high, that the value of x can only be expressed as a trend.
(g) the future value of x is entirely

unknown
There is so much uncertainty with respect to x than no prediction is possible.

https://doi.org/10.1017/9781108900010 Published online by Cambridge University Press
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Despite these advantages, imprecise predictions have traditionally been

viewed with suspicion in philosophy of science, for two main reasons.24 First,

they are thought to be insufficiently risky to provide strong enough tests for

theory confirmation (Orzack & Sober, 1993; Rosenberg, 1989, see also

Section 3.2). If predictions are the primary method by which we test and choose

between theories, then they must not be too easy to obtain. The worry is that as

precision trades off with accuracy, the less precise the prediction, the more

likely it is to be accurate. Thus, if we sacrifice too much precision, the predic-

tions will not be able to discriminate between higher and lower quality theories.

The second criticism of imprecise predictions is that they could lead to ineffect-

ive, insufficient or inappropriate interventions (Houlahan et al., 2017; Orzack &

Sober, 1993; Rosenberg, 1989). For example, if scientists are trying to save

a particular population x from extinction, they might use a model that predicts

that population’s qualitative trend after an intervention: a drop in the predator

population y will cause the population of the prey x to rise. The scientists will

then intervene to reduce population y. The worry is that if the scientists do not

know by how much the predator population is expected to fall with the inter-

vention, their intervention could be ineffective. They could reduce the predator

population y, but not reduce it enough, which would not save species x from

extinction. Alternatively, they might reduce the predator population too much,

spending scarce resources that could be put to better use. Thus, the story goes, it

is better to have specific information about how much the population of x will

rise given a specific intervention on population y.

These criticisms might seem plausible, but they are not warranted. First, it

should be noted that imprecise model predictions are not exceedingly impre-

cise; that is, they do not correspond to levels (f) and (g) in Table 2. Rather, they

correspond to levels (c) and (d), and occasionally level (e). That is, there are

many values that they could take which would render them false, so they are not

altogether without risk. Second, in causally heterogeneous systems, predictive

accuracy is much more difficult to achieve than the critics presuppose. It is not

the case that most predictions turn out to be true, so that we need stronger tests

for our theories. Rather, as explained above and in the previous section,

predictions in ecology tend to come out false quite often. In these cases, even

an imprecise but accurate prediction is better than a number of precise but

wildly inaccurate predictions.

Third, imprecise (type III) models are often better than both type I and type II

models at dealing with biased, patchy or low-quality data (see Section 3.3). This

24 Some critiques of imprecise predictions claim that they are opaque, mathematically unsound or
untrustworthy (Gonzalez, 2015). However, this criticism does not apply to imprecise predictions
in ecology, because they are the outputs of mathematical models.
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is because poor data sets lead to errors in the estimation of parameters, which

result in errors in the model’s output. Often (especially when the models have

large numbers of parameters), these errors can persist despite statistical methods

used to reduce or correct them (Dambacher et al., 2003; Novak et al., 2011). In

contrast, type III models are built for imprecise parameter estimates, so even

though their predictions are imprecise, the entire range that the prediction spans,

tends to be more accurate. In other words, the predictions of precise models are

often further away from the actual value than the entire range of the imprecise

model prediction. For example, Novak et al. (2011) found that even if there is

observational and experimental data on each particular species within an eco-

system but insufficient data on the indirect effects of each population on other

populations within the ecosystem, the predictive accuracy of highly precise

models dwindles rapidly (e.g. to about the level of flipping a coin).

In order to fully appreciate the value and potential of imprecise models, one

only has to look into the case of the kōkako. The scientists here used two

imprecise models to bring back the kōkako from the brink of extinction.

Importantly, these models yielded predictions that were sufficient in terms of

both riskiness and for formulating and implementing a successful intervention.

• Example 6 – Saving the kōkako from extinction

The North Island kōkako is a bird endemic to New Zealand (see Figure 7).

In 1999 the species was reduced to 400 pairs, because of predation from the

‘unholy trinity of pestilence’: possums, stoats and rats (Hansford, 2016)

(Figure 7). The scientists tasked with saving the kōkako from extinction

faced three difficulties (Ramsey & Veltman, 2005):

(i) Limited resources. Ideally, the scientists would have simply eradi-

cated all three predator populations, but this was not feasible.

Resources only allowed for a reduction of predator populations.

(ii) Limited time. As the kōkako population was already so low, the

conservation strategy needed to be conceptualised and implemented

quickly – before the kōkako population fell to a level from which it

could not be restored.

(iii) Poor/patchy data. It was practically impossible to determine the exact

size of each population and consequently the precise rates of competi-

tion and predation within the community.

The conservation strategy was based on a combination of two impre-

cise models (Ramsey & Veltman 2005). The first, loop analysis

(Box 1 C I), was used to identify all the dynamic relationships between
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populations in the community, alongwith theirquality (positive (1), neutral

(0), negative (−1)). Scientists can use the conjunction of qualitative effects
to determine which predator population should be the focus of an interven-

tion so that the prey population is saved from extinction. In this case, loop

analysis predicted that an increase in all predator populations would have

a negative effect on the kōkako population, but that an increase in the rat

population would have a stronger effect than the other two predators

because it would result in a net total of two negative feedback cycles

(one from predation and one from competition) (Box 1 C II).

The second model was a ‘fuzzy interaction web’ (FIW). FIWs take

imprecise information on the size of populations within an ecological

community, such as population abundance data that is incomplete, and

create ‘fuzzy sets’. Recall that precise and accurate data on population

sizes is impossible to attain. With FIWs, however, scientists have a way

to get around this problem. They can conduct the entire investigation

without knowing the exact size of any population in the community. They

do this by measuring ‘tracking rates’, that is, the percentage of traps that

are full on any given night. These are used to determine what counts as

low, medium or high abundance for this community. Thus, for example,

high abundance could occur when 20 per cent or above of the traps each

night are full and low abundance could occur when less than 10 per cent

of traps are full. Values between 10 per cent and 20 per cent could mean

‘quite high’, ‘moderately high’, ‘quite low’ and so on (Figure 8).

The ‘fuzziness’ is a way of representing this uncertainty about popu-

lation sizes. The concept comes from ‘fuzzy logic’, an approach where

a variable can take multiple values. In classical logic, conclusions are

either true or false, and each variable either is or is not a member of a set.

(a) (b)

Figure 7 North Island kōkako and predators. (A) Photo by Doug Mak on

Wikimedia Commons; (B) Photo from Hansford (2016) Radio New Zealand
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For example, a monochromatic marble is either blue or it is not blue; it

cannot belong and not belong to the set of blue things. However, in fuzzy

logic, the boundaries between sets are not ‘crisp’, so membership of a set

is partial. This does not mean that the marble is and is not blue at the same

time, but that we are not certain about whether the marble is or is not blue.

In the case of the kōkako, the fuzziness represents the fact that the

scientists are not 100 per cent certain about where the boundaries

between the categories of low, medium and high are. Figure 8 shows

the fuzzy set membership for each of the species in the community.

The scientists can use these fuzzy sets to make predictions about the

effect of each population on the other populations in the community.

Figure 9 summarises the predictions yielded by the FIW. It shows that

controlling all three populations would have a high effect on the kōkako
population, whereas controlling rats and possums would have a moderate

effect on the kōkako population. As a moderate effect is sufficient for

bringing back the kōkako population to acceptable levels, the most effi-

cient intervention should focus on the rats and possums, and not worry

about the stoats. More specifically, the FIW predicted that the rats need to

be kept at a tracking rate of ‘about 11 per cent or lower’ and possums at

a tracking rate ‘below about 10 per cent’, so that the kōkako population is
maintained at ‘moderate levels’ (Ramsey & Veltman 2005, p. 914).

How does this example hold up to the criticisms of imprecise models?

Recall that the first criticism was that imprecise models are not sufficiently

risky. A non-risky prediction, in this context, would be that all predator

populations should be controlled. The prediction is not risky because it

would be satisfied if the desired effect was achieved by culling any one,

two or all three predator populations. However, neither loop analysis nor the

FIWs made that sole prediction. While both models yielded the prediction

that culling all three predators would have a positive effect on the kōkako
population, they also made the much riskier prediction that this extensive

intervention was unnecessary, and that the intervention could focus on just

the rat population (loop analysis) or the rat and possum population (FIW).

The second criticism was that interventions based on imprecise

models are ineffective. Yet the kōkako case is a perfect example of an

effective intervention. The populations have indeed increased, and

additional populations have been established. Their range has expanded

to twenty-two different sites. In fact, the kōkako is now the poster child

of successful conservation in New Zealand. But how do we know that

these models were influential in the actual intervention? As it turns out,
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Figure 8 Fuzzy set membership for kōkako community. (A) Fuzzy set membership functions for linguistic descriptions of species

abundances (‘low’, ‘(mod)erate’, ‘high’) for each of the animal species in the kōkako Fuzzy Interaction Web (reprinted from Ramsey

& Veltman 2005, supplementary materials)

https://doi.org/10.1017/9781108900010 Published online by Cambridge University Press
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one of the paper’s authors (Veltman), was based at the Science and Research

Unit of the New Zealand Department of Conservation, which was in charge

of the kōkako conservation project. In addition, other papers she (co)authored
include research on direct and indirect effects of pest (rat, stoat and possum)

control on ecological communities (Tompkins & Veltman, 2006). This work

was part of a larger project within the Department of Conservation, contrib-

uting to a paper on imprecise models for deer control (also a pest in New

Zealand) (Ramsey et al., 2012). Finally, subsequent publications of the

Department of Conservation incorporate the research and recom-

mendations from papers by these scientists (see for example, Brown

et al., 2015). So, it is extremely likely that these model predictions

were actually used in the intervention on the kōkako and were instru-

mental in saving the population from extinction.

I hope that the discussion in this section has dispelled any pessimism

regarding the ability of scientists to deal with ecological complexity in the

systems they investigate. I have outlined examples from three distinct types of

investigation, all of which allow ecologists to conduct high quality research

and can form the basis of successful interventions. These types of research are

(i) type II models (that yield modest generalisations), (ii) statistical tools such

as meta-analysis (that give scientists the means to test and probe the scope of

Figure 9 Kōkako fuzzy interaction web predictions. Imprecise predictions of

the magnitude of the effect on the equilibrium kōkako fledgling rate resulting

from sustained single and multispecies control of nest predators from the FIW

`trained' model (reprinted from Ramsey &Veltman 2005)
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existing generalisations), and (iii) imprecise (type III) models that do not suffer

from the limitations of the other models in cases involving poor and patchy data.

I should note that my claim is not that these are the only tools that ecologists

should use. I do not think that ecologists should drop all other types of inquiry and

focus exclusively on these three types of research. I am also not arguing for the

complete elimination of the traditional approach (exemplified by simple, general,

type I models). There will undoubtedly be cases, such as the case of the

V.I. marmots, where type I models are likely to be successful and should therefore

be preferred. The point is that these cases are not the norm, but quite special. Their

frequency is much lower than the advocates of the traditional approach seem to

expect. In contrast, the situations where the other approaches outlined in this

section will be useful are going to be much more frequent in complex, heteroge-

neous systems. Therefore, we should not be surprised, much less embarrassed,

when an ecological investigation calls for type II or type III models, or when the

only generalisations that can be made are quite modest.

5 Concluding Remarks

Causal heterogeneity is an underappreciated aspect of complexity. both in terms

of how interesting it is and in terms of the extent of its effect on scientific practice.

Failing to include causal heterogeneity in the concept of complexity obscures

what makes ecological systems interesting but also so difficult to study. The aim

of this Element was to put causal heterogeneity on themap as an integral aspect of

ecological complexity. I showed that complexity sans heterogeneity cannot

account for the extent and frequency of the epistemic difficulties ecologists

face. I argued that causal heterogeneity magnifies the Levinsian trade-offs

between the desiderata of generality, realism and precision. I then examined the

epistemic difficulties in more detail, explaining how and why causal heterogen-

eity causes generalisations to fail, predictions to be inaccurate and interventions to

be ineffective, illustrating with examples from recent ecological research. In the

final section, I outlined three alternative strategies for dealing with ecological

complexity. These strategies are already in use but undervalued by ecologists and

philosophers. Instead of lamenting the need to use these strategies, we should

recognise their potential for providing insights into the workings of these inter-

esting, intricate and complicated systems.

A key motivation for my engaging with the topic of ecological complexity is

the periodic but persistent worry shared by numerous ecologists that their

discipline is somehow not up to scratch. In the introduction, I catalogued

a number of papers whose authors bemoan the lack of extensive generalisations

and predictions that are simultaneously accurate and highly precise. My worry,

66 Philosophy of Biology

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

00
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108900010


on the other hand, is that these ecologists are relying on outdated philosophy of

science.25 Just as Sandra Mitchell argued that the complexity of biological

systems should force us to update our notion of laws rather than question the

maturity of the discipline of biology, so I argued that the causal heterogeneity of

ecological systems should force us to update our notion of generalisability and

prediction. Ecology is not an immature science; it is a difficult science.

Ecological systems are surprising, irregular and mercurial. The scientists who

manage to get information about them should be commended in their endeav-

ours, even if they suffer setbacks and complications.

Of course, this does not mean that all ecological research is of equally high

quality, as in every discipline there can be cases of bad science. The point is how

we determine what counts as good or bad science. I have argued that when you

have complex and heterogeneous systems, the traditional tools for determining

what counts as successful research will not necessarily yield accurate results.

Modest generalisations and imprecise predictions are likely to be more accurate

than their more general and precise counterparts. Thus, an abundance of this

type of research should not be seen as a limitation of ecology, but as a feature.

These are legitimate ways in which ecologists can understand and deal with

ecological complexity.

25 If the term outdated is too strong for some readers, it can be replaced with ‘inapt for the purposes
of ecology’ – the argument remains unchanged.
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