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MOISHEZON MANIFOLDS WITH NO NEF AND BIG CLASSES
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Abstract We show that a compact complex manifold X has no non-trivial nef (1, 1)-classes if there is
a non-biholomorphic bimeromorphic map f : X 99K Y , which is an isomorphism in codimension 1 to a
compact Kähler manifold Y with h1,1 = 1. In particular, there exist infinitely many isomorphic classes
of smooth compact Moishezon threefolds with no nef and big (1, 1)-classes. This contradicts a recent
paper (Strongly Jordan property and free actions of non-abelian free groups, Proc. Edinb. Math. Soc.,
65(3) (2022), 736–746).
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1. Introduction

Let X be a compact complex manifold with a fixed positive Hermitian form ω. Let α be
a closed (1, 1)-form. We use [α] to represent its class in the Bott–Chern H1,1

BC(X). Recall
the following positivity notions (independent of the choice of ω).

• [α] is Kähler if it contains a Kähler form, i.e., if there is a smooth function ϕ such
that α+

√
−1∂∂ϕ ≥ εω on X for some ε> 0.

• [α] is nef if, for every ε> 0, there is a smooth function ϕε such that α+
√
−1∂∂ϕε ≥

−εω on X.
• [α] is big if it contains a Kähler current, i.e., if there exists a quasi-
plurisubharmonic function (quasi-psh) ϕ : X −→ R ∪ {−∞} such that α +√
−1∂∂ϕ ≥ εω holds weakly as currents on X for some ε> 0.
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We say X is in Fujiki’s class C (respectively Moishezon) if it is the meromorphic
image of a compact Kähler manifold (respectively projective variety), or equivalently it
is bimeromorphic to a compact Kähler manifold (respectively projective variety). It is also
equivalent to X admitting a big (1, 1)-class (respectively big Cartier divisor). We refer
to [3, Definition 1.1 and Lemma 1.1], [22, Chapter IV, Theorem 5] and [2, Theorem 0.7]
for equivalent definitions and some properties of Fujiki’s class C.
Throughout this article, we work in Fujiki’s class C where ∂∂-lemma holds. So we are

free to use the equivalent Bott–Chern and de Rham cohomologies.
We start with the following main theorem.

Theorem 1.1 Let f : X 99K Y be a bimeromorphic map of compact complex manifolds,
which is isomorphic in codimension 1. Suppose X is Kähler with h1,1(X,R) = 1 and f
is not biholomorphic. Then any nef (1, 1)-class on Y is trivial. In particular, Y is a
non-Kähler manifold in Fujiki’s class C with no nef and big (1, 1)-classes.

One way to construct f : X 99K Y in Theorem 1.1 is by considering an elementary
transformation or a (non-projective) flop.

Example 1.2. Let X ⊂ P4 be a generic smooth quintic threefold. By a classical
result of Clemens and Katz (cf. [1, 14]), X contains a smooth rational curve Cd of
degree d with normal bundle NCd/X

∼= OCd
(−1)⊕2. This result was later generalised

to a complete intersection of degree (2, 4) in P5 by Oguiso (cf. [19, Theorem 2]). Let
p : Zd → X be the blow-up along Cd. Then the exceptional divisor E ∼= Cd × C ′

d
∼=

P1 ×P1. By the contraction theorem of Nakano–Fujiki (cf. [5]), there is a bimeromorphic
morphism q : Zd → Yd to a smooth compact complex manifold Yd, which contracts E to
C ′

d along Cd. Then we can construct f := q ◦ p−1 : X 99K Yd, which is an isomorphism in
codimension 1. By the Lefschetz hyperplane theorem, we see that h2(X,R) = 1 and hence
h1,1(X,R) = 1. Applying Theorem 1.1, we obtain infinitely many isomorphic classes of
smooth Calabi–Yau Moishezon threefolds {Yd}d>0 satisfying the following theorem:

Theorem 1.3 There exist infinitely many isomorphic classes of smooth compact
Moishezon threefolds with no nef and big (1, 1)-classes.

Nakamura (cf. [17, (3.3) Remark]) provides another example for the above theorem.

Example 1.4. There is a bimeromorphic map f : P3 99K X to a smooth Moishezon
threefold X of h1,1(X,R) = 1 with no nef and big (1, 1)-class. The map f is constructed
by first blowing up a non-singular curve of bidegree (3, k) with k ≥ 7 in a smooth quadric
surface S ∼= P1 × P1 and then contracting the proper transform of S. Then H1,1(X,R) is
generated by a big divisor L with L3 < 0. So X admits no nef and big class. Note that,
in this case, f is not isomorphic in codimension 1.

The aim of the present note is to show a peculiarity of compact complex manifolds in
Fujiki’s class C, which also confutes a key theorem in the recent paper [15] as explained
in the following remark:
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Remark 1.5. In [15, Theorem 4.2(1)], the author asserts that a compact complex man-
ifold X in Fujiki’s class C always admits a nef and big class. However, as we just discussed,
Examples 1.2 and 1.4 or Theorem 1.3 confute this claim. Note that [15, Theorem 4.2(1)]
plays a crucial role in the proof of [15, Corollary 4.3] that Autτ (X)/Aut0(X) is finite
where Autτ (X) is the group of automorphisms (pullback) acting trivially on H2(X,R)
and Aut0(X) is the neutral component. So the proof there does not work. Nevertheless,
the statement [15, Corollary 4.3] still holds and was previously proved by showing the
existence of equivariant Kähler model; see [13, Theorem 1.1, Corollary 1.3].

It is known that a smooth compact surface in Fujiki’s class C is Kähler, and hence, a
smooth Moishezon surface is projective. So Theorem 1.3 is optimal in terms of minimal
dimension, and it is easy to construct examples, like those in Theorem 1.3, of arbitrary
higher dimensions by further taking the product with a smooth projective variety of suit-
able dimensions. In the singular surface case, we summarize several examples constructed
by Schröer (cf. [21]) and Mondal (cf. [16]) in the following remark:

Remark 1.6. The examples in [21] are constructed in a similar way by different
elementary transformations of P1 ×C, where the genus g(C) > 0. However, they behave
quite differently on Cartier divisors. The example in [16, § 2] is a supplement to (1) on
the rational case. It seems that we do not know any rational example for point (3).

(1) (cf. [21, § 3]) There is a non-projective normal compact Moishezon surface S such
that the Picard number of S is 0. In particular, S admits no non-trivial nef Cartier
divisor.

(2) (cf. [16, § 2]) There is a non-projective normal compact Moishezon rational surface
S such that the Picard number of S is 0. The surface is Y ′

2 in [16, § 2]. We give
some explanation on the Picard number. Note that the Weil-Picard number of S
is 1 (cf. [18, Definition 2.7 and Lemma 2.10]). Since S is not projective (cf. [16,
Theorem 4.1 and Example 3.19]), the Picard number of S has to be 0 (cf. [18,
Definition 2.11–Remark 2.13, Remark on the top of page 303]).

(3) (cf. [21, § 4]) There is a non-projective normal compact Moishezon surface Z, which
allows a non-projective birational morphism Z →S to a projective surface S. In
particular, Z admits a nef and big Cartier divisor, which is the pullback of an ample
Cartier divisor on S.

2. Proof of Theorem 1.1

We first reprove [6, Theorem 4.5] by the following Proposition 2.1. The first version of
this proposition was formulated in [4, Corollary 3.3] where Fujiki works in the smooth
setting and f∗[α] is assumed to be semi-positive. Later, it was generalized by Huybrechts
(cf. [12, Proposition 2.1]) to the situation when canonical bundles KX and KY are nef
and [α] and f∗[α] are only assumed to have positive intersections with all rational curves.
When dealing with the singular setting in Proposition 2.1, we refer to [9] for the

basic definitions involved. For example, a Kähler form ω on a Kähler space X is a pos-
itive closed real (1, 1)-form such that for every singular point x ∈ XSing, there exists
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an open neighbourhood x ∈ U ⊂ X and a closed embedding iU : U ↪→ V into an
open set V ⊂ CN , as well as a strictly plurisubharmonic C∞-function f : V → C with
ω|U∩Xsm = (ddcf)|U∩Xsm , where Xsm is the smooth locus of X. Note that for a normal
compact complex space X with rational singularities, H1,1(X,R) embeds into H2(X,R)
naturally, and the intersection product on H1,1(X,R) can be defined via the cup-product
for H2(X,R) (cf. [9, Remark 3.7]). Of course, for the purpose of this note, one can focus
on the smooth setting for simplicity.

Proposition 2.1. (cf. Theorem 4.5 in [6] and Remark 2.3) Let f : X 99K Y
be a bimeromorphic map of normal compact complex spaces with rational singularities.
Suppose f does not contract divisors, and there exists a Kähler class [α] ∈ H1,1(X,R)
such that f∗[α] is nef. Then f−1 is holomorphic.

Proof. Consider the log resolution of the indeterminacy of f :where p : Z → X

and q : Z → Y are the two projections. By Chow’s lemma (cf. [11, Corollary 2 and
Definition 4.1]), we may assume p is a projective morphism obtained by a finite sequence
of blow-ups along smooth centres: p = πn ◦ · · · ◦π1. Note that by [22, 1.3.1], Z is a Kähler
manifold. Denote by

⋃n
i=1 Ei the full union of exceptional prime divisors of p, and Fi the

exceptional prime divisor of πi. The divisor −Fi is πi-ample (cf. [10, II, Proposition 7.13]),
and hence π∗

2(−F1) + ε1(−F2) is p-ample for some ε1 > 0 (cf. [10, II. Proposition 7.10]).
For the same reason, one can find

E =
n∑

i=1

δiEi

with suitable δ1, . . . , δn > 0 such that −E is p-ample (cf. [2, Proof of Lemma 3.5]). Here,
if n =0, then p is an isomorphism and −E = 0 is automatically p-ample.
Note that p∗[α], being the pullback of a Kähler class, is represented by a smooth semi-

positive form and q-exceptional divisors are also p-exceptional divisors since f does not
contract divisors by the assumption. Applying [6, Lemma 4.4] (cf. [4, Lemma 2.4]) to
p∗[α], we have

q∗q∗p
∗[α]− p∗[α] =

n∑
i=1

ai[Ei]

with ai ≥ 0.

Claim 2.2. We claim that q∗q∗p
∗[α]− p∗[α] = 0.
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Proof. Suppose the contrary that a1 > 0 without loss of generality. Note that
q∗q∗p

∗[α] is nef and p∗[α] is p-trivial. Then the divisor

D :=
n∑

i=1

aiEi − εE =
n∑

i=1

(ai − εδi)Ei

= (q∗q∗p
∗[α]− p∗[α]) + ε(−E)

is p-ample and −D is not effective whenever 0 < ε < a1/δ1, noting that these Ei’s are
distinct p-exceptional divisors. We can further find rational coefficients bi sufficiently
closed to ai − εδi such that

D′ :=
n∑

i=1

biEi

is still p-ample and −D′ is not effective. Note that mD
′
is then a Cartier divisor for

a suitable integer m and p∗(−mD′) = 0. By the negativity lemma for Cartier divisors
(cf. [23, Lemma 1.3]), −mD′ is effective, a contradiction. So the claim is proved. �

Applying Chow’s lemma again, there is a bimeromorphic morphism σ : W → Z such
that q ◦ σ is a projective morphism. Note that (q ◦ σ)∗(p ◦ σ)∗[α] = q∗p

∗[α]. So we may
replace Z by W and assume q is already projective (without requiring p to be projective).
Let F be any fibre of q, which is projective. Let C be any curve in F. By the projection
formula and Claim 2.2,∫

α ∧ 〈p∗C〉 =
∫

p∗α ∧ 〈C〉 =
∫

q∗q∗p
∗α ∧ 〈C〉 =

∫
q∗p

∗α ∧ 〈q∗C〉 = 0,

where 〈−〉 represents the integration current. Since [α] is Kähler, p(C ) is a point and
hence p(F ) is a point. By the rigidity lemma (cf. [6, Lemma 4.1]), which is essentially
due to the Riemann extension theorem (cf. [8, Page 144]), f−1 : Y → X is a holomorphic
map. �

Remark 2.3. Claim 2.2 was treated in the proof of [6, Theorem 4.5, Equation (4.4)].
However, the proof there seems incomplete after Equation (4.2) where the author claims
‘the singular locus of the nef class is empty’. This is also mentioned after [6, Definition 4.3]
where the author seems to have misinterpreted a result of Boucksom. Note that a nef
class has an empty singular locus if and only if it is semi-positive. However, there are
situations where non-semi-positive nef classes exist. Nevertheless, we can overcome this
gap by applying the negativity lemma as in the proof of Claim 2.2.

Proof of Theorem 1.1. Note that h1,1(Y,R) = h1,1(X,R) = 1 because f is iso-
morphic in codimension 1 (cf. [20, Corollary 1.5]). Let [α] be a Kähler class on X. Then
H1,1(Y,R) is generated by the big class f∗[α], which is positive. Let [γ] ∈ H1,1(Y,R) be
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a nef class (and hence positive). Then [γ] = tf∗[α] for some t ≥ 0 (cf. [4, Lemma 2.1]).
So it suffices to show that f∗[α] is not nef.
Suppose the contrary that f∗[α] ∈ H1,1(Y,R) is nef. By Proposition 2.1, f −1 is holo-

morphic. By the purity (cf. [7, Satz 4]) and since f −1 is isomorphic in codimension 1, the
exceptional locus of f −1 is empty. In particular, f is isomorphic, a contradiction. �
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