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0. Introduction

A well-known conjecture of E. Artin [1] states that for any integers ¢ # +1 and
a IS not a perfect square, there are infinitely many prime integers p for which a
is aprimitive root (mod p). An analogue of this conjecture for function fields was
attacked successfully by Bilharz [2] in 1937 using the Riemann hypothesis for
curvesover finite fields (subsequently proved by A. Weil). The original conjecture
of Artin remains open, though it was shown to be true if one assumes the Gener-
alized Riemann hypothesis by Hooley [7]. In recent years, this conjecture of Artin
has also been formulated and studied for elliptic curves over global fields instead
of just G,,, (the original case) (see[11]).

Let C be a projective smooth algebraic curve defined over afinite field F, (g,
some power of afixed prime number), and take afixed place oo of C. The Dedekind
domain consisting of al functionson the curveC regular away from oo isdenoted by
A. From the view point of classfield theory, the Drinfeld A-modules are the more
interesting arithmetic objects over function fields. Their division points always
generate very nice extension fields. In particular, the rank one Drinfeld A-modules
play arole entirely analogous to the important role played by G,,, over number
fields. Thisleads naturally to Artin’s conjecture for Drinfeld A-modules. The aim
of this paper isto prove Artin’s conjecture for the Carlitz module, i.e., the rank one
Drinfeld F, [¢]-module over the rational function field F, (¢).

In the following we aways let C = P, and A = F,[t]. Let C = (G, ¢)
be a given Drinfeld A-module defined over A where ¢ means an injective ring
homomorphism from A to Enda (G, ). Let 3 be aprime ideal of A. The reduction
of C' mod B makesA /3 afinite A-module denoted by C (A /). Given0 # a € A,
weareinterestedintheset C, consisting of primeideals3 of A forwhicha = o+
isagenerator of C'(A /). Analogueof Artin’s conjecturefor C' saysthat C,, aways
has a Dirichlet density 6(C,) to be given by an infinite (Euler) product. Moreover
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d(C,) should be positive in general, hence there are usualy infinitely many prime
ideals 3 for which a is agenerator of C'(A/B).

In this paper we deal with the Carlitz case. Hence ¢ is given by ¢(t)(X) =
tX + X. In Section 4 Theorem 4.6, we prove that the density of C,, except in the
caseq = 2isgiven by

1
‘ al monicl;[reduciblts N I(t)

1(t)inA

where Ny, isthedegree [ K : F, (t)] and K, isthe Galois extension over F, (t)
obtained by adjoining roots of ¢(I(t))(X) = 0 and roots of ¢(i(¢))(X) = a to
Fy (t). We also show that for givena # 0in A, 6(C,) > 0 except for the case that

g =2anda € {1} U p(t)(A) U p(1+ £)(A).

Thisisanalogousto the condition a isnot perfect squareanda # t+1intheclassical
Artin’'s conjecture.

Let £ = [, (¢),Q its algebraic closure, and a € A afixed nonzero polynomial
in A. Given monic irreducible m € A, we let k,, = k(A,,) be the cyclotomic
function fields over k£ (A,, consists of the roots of ¢(m)(X) = 0in Q). We are
interested in the field extensions K,,, = k,,,(«), where . is aroot of the equation
d(m)(X) —a = 0in Q. These extensions K, / k,,, will be called Kummer—Carlitz
extensions. They have very nice properties. Moreover, a isagenerator of C'(A /)
if and only if ¢ does not split completely in any Ky, [(t) runsthrough all monic
irreducibles of A (Theorem 1.3).

In Section 2, we shall estimate the growth of the discriminants A(K,,,/k) by
applying Newton Polygon method. In particular, we show that (Theorem 2.4)

deg (A (K /k))
(K K]

In Section 3, we work out a generalized Artin problem for function fields by using
an effective version of the Prime Number Theorem for function fields together
with combinatorical techniques. Putting all these results together enables us to
solve Artin’'s conjecture for Carlitz module in Section 4.

= O(degm).

1. On Kummer—Carlitz extensions

Let C = (Gq, ¢) be the Carlitz A-module given by ¢(t)(X) = tX + X9. We
shall use the notation X™ instead of ¢(m)(X), hence for a € §2, and nonzero
m € A, o/™ means the value ¢(m)(a). We always consider €2 as A-module under
the Carlitz ¢-action. For nonzerom € A, them-torsionin Q2 isdenoted by A,, (i.e.,
A, isthe subset consisting of « € 2 such that ¢(m)(a) = 0). Let &y, = k(Ay,).
We shall also fix anonzero polynomial a € A inthissectionandlet K,,, = k,,,(«),
where o € Q isaroot of X —a = 0.
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A prime idea ¢ of A aways has a monic irreducible polynomia in A as
generator which will be denoted by p(t). Given b € A, the canonical image of b in
A/ is denoted by b. We are particularly interested in the reduction of C' modulo
B. Thisistheaction givenby ¢y (¢)(X) = tX + X7 0nA /P (asA-algebra). Under
this action, A/ acquires another A-module structure which will be denoted by
C(A/P). Itisnot difficult to show that C'(A/$) isisomorphicto A/(p(t) — 1), a
cyclicfinite A-module (see [8]). We have

PROPOSITION 1.1. Given g C A a prime ideal and nonzero m € A. Then
splits completely in &, if and only if p(t) = 1 (mod m) and ¢y (222)(a) = 0

m
p(t)—1

(i,e,a m =0 (modp(t))).

Proof. If p(t) =1 (mod m), by [6, Theorem 7.1], B splits completely in k.
Let o € Q be any root of X™ — ¢ (i.e., ¢(m)(a) — a = 0). Since XP) is an
Eisenstein polynomial,

Ga® o b (p(t) — 1)(@) = ¢‘B(p(t7)n_ 1)(&) =0.

We have @ € A/P. The derivative of ¢y (m)(X) — a is equal to 7z which is
nonzero in A/ (since p(t) = 1(modm)). Combining these, it follows that the
equation ¢q (m)(X) —a = 0 hasexactly ¢%9™ different rootsin A /3. According
to a principle of Dedekind, the prime ideal 8 must split completely in the field
k(«) over k. Hence B splits completely aso in K,,. Conversely, since g splits
completely in K,,, p(t) = 1(modm) ([6], Theorem 7.1) and « is equivalent to
some element f € A modulo $B. One has,

io P00 @) = g olt) — 1)(8) = g olt) ~ 1)(F) = 0

(since C(A/P) = A/(p(t) — 1)). This completes the proof.

PROPOSITION 1.2. The element a is a generator of C(A/9) if and only if
%(%)(a) # 0, for any monic irreducible I(¢) of A satisfying p(t) =
1(modI(t)).

Proof. (=) If a is not a generator of C'(A/9), then there exists a monic irre-
ducible {(t) dividing p(t) — 1, with degree less than deg3 such that ¢g ((p(t) —
1)/1(t))(a) = 0 (since C(A/B) = A/(p(t) — 1) as A-module). This contradicts
the assumption.

For («), if a isagenerator of C'(A /), thenclearly o ((p(t) —1)/1(t))(a) # 0
for any monic irreducible [(¢) € A suchthat p(t) = 1(modi(t)).

Combining Propositions 1.1 and 1.2, we have the following basic.

THOEREM 1.3. The element a is a generator of C'(A /) if and only if the prime
ideal 53 does not split completely in any of the field K ), where [(t) runsthrough
monic irreduciblesin A with degi(¢) > 1.
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EXAMPLE. Let A = F[t],a = 1. Since 1* = 1,1* = 1+ ¢,1" = 1 + ¢ for
any positive integer n, this impliesa/ = 0,1, or 1 +¢. Thusa = 1isnot a
generator of C'(A /) for al prime ideals 3 in F»[t] with degp(¢) > 3. It iseasy
to check that @ = 1isagenerator of C'(A /) for the remaining three primeideals
P =(t),(1+1t)or (L4t +t2).

LEMMA 1.4. Let m, n betwo nonzero monic relatively prime polynomialsin A. If
the equations X™ = q, Y™ = o have solutionsin A, then equation Z™" = ¢ also
has solutionsin A.

Proof. Suppose that X = « (resp. Y = f) is a solution of X" = a (resp.
Y®" =qa)inA,ande,g € Asuchthatme +ng =1.Lety = a9 + 3¢ € A. Then
A = (af + B = (™) + (B)™¢ = @™t = q. This completes the
proof. a

The Galois group of k,,/k is naturally isomorphic to (A/(m))* ([6, Theorem
2.3]). Thisisomorphismisgiven by f — o suchthat o7(¢) = ¢ foral € € Ay,.
If « € K,,, isafixedroot of X™ = a, thentheroots of X" = q are necessarily of
theforma+¢, for & € A,,,. Giveny € Gal(K,,/km), thenonehasy(a) = a+¢,
for some ¢ € A,,. We shall let 1) stand for this ). Thus we may view the Galois
group of K,,/k,, asasubgroup of A,,, denoted by H,,,. More precisely, we have
anisomorphism: H,,, — Gal(K,,/k.,) givenby 1¢ (o) = a4+ €.

Now Gal(k,,/k) canact on Gal (K, / k,,) by conjugation. Identifying the group
Gal (k,,,/k) with (A/(m))*, this action is explicitly given by the following.

PROPOSITION 1.5. 0 - 9¢ = 1y, for all f e (A/(m))*, & € Hy, and of €
Gal (k. /k) suchthat o ¢(£) = ¢l

Proof. Let o € Gal(K,,/k) suchthat 0~%(a) = a + ¢ (i.e, o = o(a + ¢')),
for some¢’ € A,, and the restriction of ¢ to &, isequal to o 5. Then we have

oF- Pe(a) = ogotheo ol ()

= + &
oo the(a+¢) L1)
=ola+¢&+¢
= a+ ff.
This completes the proof. i

The main point is to extend the action of (A/(m))* to an action of A/(m) on
Gal (K, /km). Inthecase ¢ # 2 or ¢ = 2 but t(t + 1) t m, thisis done in the
following way. Given f € A, write f asafinitesum f1 + f> + -+ - + f,, such that
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(fi,m) = 1for al i (Thisis possible by Chinese Remainder Theorem). Then we
define, for ¢ € H,,,,

f‘¢§zzaﬁ “tbe :Z¢§fi :¢Z§fi‘

Thisis independent of the decomposition of f as >_ f;. Hence our action is well-
defined. Composing with the canonical map from A to A /(m), we can thus asign
A-module structure to Gal(K,, /ky,). This alow us to view Gal(K,, /ky,) as
A-module from now on. We check these conditionsin Proposition 1.6 below.

PROPOSITION 1.6. Gal (K, /kn,) (or Hy,) isidentified as a finite A- submodule
of A,,, except for thecase: ¢ = 2and t(¢t + 1) | m.
Proof. To check that the action is independent of decomposition, suppose that

f e H, C Am,f e A If f = szl = ngj with (fz,m) =1, (gj,m) = 1for
all 1, j, then by Proposition 1.5

[ripe =2 fivbe =2 ther =Yy en =Yy en = D s = D95 Ve

To check that H,,, (or Gal (K, /k,)) isan A-module under this action

(1) H,,, isan abelian group.
(2) For 51752 € Hm C Am-

f ) (¢§1 + ¢52) = f ) ¢§1+§2
= PYlete) = Ve +¢gf = [ e + [ e

forall i, 5. Then

(f-9) e = (Zfi‘.%’) < e
i

- Zz/)gfi'gj (since(f; - gj,m) = 1).

Y]

- (g -2 (500
( J
= Z¢§fi'9j = (fg)¢§
2,J

(f+9) - e=D fi-the+ D g5 te=[ 1be+g- e
i J
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ThusH,, (or Gal(K,,/kn)) isan A-module under this action and we are done. O
We now have

THEOREM 1.7. In the following, if ¢ = 2, we assume ¢(¢ + 1) {m. Then we have

(1) The Galois group Gal (K, / k) (or Hy,,) isisomorphicto A/(z), for some
z € A suchthat z|m.

(2) Supposethat p(t) isamonicirreduciblein A. If X?(*) = ¢ has one solution
X =cin A, then Hp(t) = {O} and c|a. Otherwise, Hp(t) = Ap(t) = A/(p(t))

(3) Suppose that m, n are two monic square-free relatively prime polynomials
inA. Then K,,,., = K,,, - K,,, K,;, and K,, arelinearly disjoint over basefield &

(4) Suppose that m is monic and square-freein A. Let z be the largest divisor
of  such that the equation X* = a hassolution X = bin A. Then the polynomial
X™/% _pisirreducibleover A, and H,, = A/(m/z).

(5) Thefield of constants of K, isF,.

Proof. First, (1) follows directly from Proposition 1.6.

To prove (2), by (1) we have H,,y = {0} or H,) = Ay = A/(p(2)). If
XP() = ¢ has one solution X = ¢ in A, then all the roots of X?(!) = ¢ belong
to k(s Thisimplies H,;) = {0}. Also clearly c|a (by the expansion of X7(®)).
Otherwise, if equation X?(*) = ¢ has no solution in A, it suffices to show that
XP = g has no solution X in k, ;. Suppose that XP(!) = q has one solution
X = a,a € kyyy — k, then al solutions of XP() = a arein k. Let us take
p = =T, /k(@), then one has P = —(q%P® — 1)q = ¢ and 3 € A. This
contradi cts the assumption and we are done.

To prove (3), given nonzero polynomial d € A, let us denote all the roots of
X% = qain K4 by Ry. Supposethat o € R,,,, 3 € Ry, then o™ = a, 8" = a. Let
ustakee, f € A suchthat me + nf = 1,andlet 0 = of + ¢ € K,,, - K,,. Then
o™ = (™)™ 4-(B")™¢ = a. Thisimpliesthat§ € K,,.,,hence K,,-K,, O K.,
(since K., = kmn(0)). Conversely, suppose that 0 € R,,.,, then 6" € R,
0™ € R,,. Thisimpliesthat K,,, - K, C K;,.n.

To prove linearly digointness, we suppose that 0 € R, let a = 0" €
R..,0 = 0™ € R,. By (1), we have H,,.,, = A, for some z dividing m - n, and
write A, asadirect sum A, @ A,,, where z = z122, z1|m, z2|n. We contend that
Hy = A, andH, = A,,. Let 0 € Ga(Kp.pn/km) With o(0) = 0 + &1 + &2,
where ¢y € A,,& € A,,. Sincea = 0" € R, and &" = 0, we have o (o) =
o(0") = (0+&1+&)" = a+&1". Thisimpliesthat £, € H,,. Since (m,n) = 1,
it followsthat &1 € H,,,. Wehave A, C H,,. Conversely, suppose¢’ € H,,. Since
(m,n) = 1, by ramification theory of k,,,, weknow that K,,, and k,,,, arelinearly
digoint over k,,. Then there exists o’ € Gal( K,k / k) SUch that o’ = identity
on kp,, and o’ (o) = a + &'. We extend o’ to o € Gal(K i /kmn ). Then we also
haveo(a) = a4+ &'. Now if o(0) = 6 + &1 + &, where &y € A,,, & € A,,, then
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ola) =0() = (0+& +&)" = a+&" Thuswehave ' = £ € A,,; hence
H,, C A,,. Therefore, we have H,, = A,, and dso H,, = A,,. Since k,,, and
k, are linearly digoint over the base field £ ([6, Theorem 2.3]), this shows that
(K k] - [Ky: k] = [Kn - Ky k], hence the the conclusion of (3).

To prove (4), let z be the largest divisor of m such that equation X* = a has
solution X = bin A. By (3), we have

(Ko km] = ] [Kiy: ki) = deg(X™/* —b).
L(t)|m,ltz

Thus(4) followsfrom LemmaZ1.4 and (2) of thistheorem by degree considerations.

For the proof of (5), from [6], we know that the field of constants of &, ISTF,.
From (1) , we know that the field of constants of K, is either F, or F,» (since
H,, is an elementary p-group). Suppose that the field of constants of K, is Fy».
Then there are two Galois subextensions &/, /ky,, K., /km Of K, /kn, such that
kpy =2k ®r, Fgr, Ky O kyy = ki, and Hyy, =2 Gal(ky, /kn) x Gal(K, /Ey)-
Since k;, = ky, ®r, Fpr, the action of Gal(k,,/k) on Gal(k;, /ky,) is trivia. By
Proposition 1.5, this contradicts the action of Gal(k,,/k) on H,,. This completes
the proof. i

In the case ¢ = 2, the situation is more subtle.
EXAMPLE. Let A = R, [t], k = F2(t). Then

(1) 1t may happen K; = K,,1. For example,if ¢ = t? +t+ 1, then K; = K; .1 =
Fy4(t); if a = 3, then K; = Ky 1 # F4(t) and [Kt @ k] = 2.

(2) K; = Fa(t) (resp. Kip1 = Fa(t)) if and only if a = t2(f2 + f + 1) (resp.
a=(t+1)%(f>+ f + 1)) for some f € k.

2. Estimating discriminants

Let oo be the place at infinity of our rational function field & = F,(¢), with %
as its uniformizer. Let o be a nonzero element in A fixed throughout as before.
We consider monic square-free nonzero polynomial m in A. Given m, we let
z = z(m, a) bethelargest divisor of m such that the equation X* = ¢ hassolution
X =binA (notethat b # 0 because a # 0), and set r = m/z. The degree of the
extension K,,, over k will be denoted by N,,,. In this section, our purposeisto get
an upper bound for the totall degreed,,, of the discriminant divisor A(K,,/k).

PROPOSITION 2.1. Given monic square-free nonzero polynomial m in A. Then
we have

(1) Al k)| (00 - ) omiH],
(2) Thefinite part of the discriminant A(K,,, /&) divides (m - )Nm.

Proof. To prove (1), let 3 be aprime divisor of k, and let e (£, /k) denote the
ramification index at B of k,,/k. We know that every prime divisor of &k except
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oo and the prime divisors g dividing (m) is unramified in k,,,. By [6, Thm 3.2],
ramificationindex e (km / k) isequal toTly(,,,) (¢—1); by thediscriminant formula
inthecasethat (char.k, ex (ki /k))=1, wehavethe oo-part of A(k,, /k) isprecisely
equal to oot, where

eoo(km/k) —1
oo (km k)

For prime divisors$ dividing (m), the-factor of A(k,, /k) isequal to 3%, where

d1 = . [kmik].

degp _ 2
dy = (9% —2) - [k 1 K] = L

(0 - q¥e® — 1’ [ * K]

(by [6], Theorem 4.1). Combining these, we obtain that the discriminant A (&, / k)
divides (0o - m) ¥kl (note that m is square-free).
To prove (2), let f(X) = X" — b, and let « be a root of equation f(X) =

0in K. Since f'(a) = r, Normg, . (f'(a)) | (r)? ¢" | the finite part of
discriminant A (K, /ky,) divides (r)? ¢ . By transitivity of discriminants and (1)
of this theorem, we obtain the finite part of the discriminant A(K,,/k) divides
((m)lemkl)a it - Normy, /. ((r )‘1deg ), whichis equal to (m - r)Nm . This completes
the proof. O

PROPOSITION 2.2. Let ord. (-) denote the normalized discrete valuation of £ at
oo (i.e, ordoo(%) = 1), and extended to K,,, in the usual way. e have
(1) Supposethat coq isaprimedivisor of k,, Sitting over co. Then theramification
iNdeX eoo, (K /km) < max{q - dega, 1} < ¢-dega + 1.
(2) f « € K, isaroot of X" — b = 0 (note b # 0 here), then
|ords ()| < degr + degb < degm + dega.
(3) If0#¢ € A, then — < ords (€) < degr; hence |ordy (€)| < degm.

Proof. To prove (1), let f( )=X"—b=—-b+ (Z_”deg’" X)) 4 X0
f(a) = 0, where ¢; € A with dege; = (—i + degr) - ¢* and ¢ = r. To
draw Newton polygon, we consider the following sequence of points in the
red plane: O = (0,0), Bo = (1, ord,o (% )) B = (¢% 0rds(2)),...,B; =
(¢",0rdso (%)), - - -, Bdegr = (¢%97, ordy, ( )), and computing these as (O, 0)
(17 degb—degr), (qladegb_ (degr—l)ql)), IERR] (qludegb (degr—z)q ))
(¢%97, degb). We have slopes: s(O, Bo) = degb — degr, s(Bo, B1) = 1+
degl’n (Bl 1aB) - 7/+ q_ll - degT (Bdegr 1aqu]T) = ﬁa d

s(0, Bo) —degb degr, s(O, By) = deg”+1 degr ,5(0,B;) = 99 4 —
degr,...,s(O, Biegr) = ;mb Thustheslopessequences(Bo, B1),s(B1,B2), ...,
s(Bji-1,B;),. .., 5(Bdegr—1, Baegr) increases. Therefore if degb = 0, then we
obtain that co1 isunramified in K, (by [6, Theorem 3.2], s(O, Bp) = —degr and
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the fact that the denominators of these sopes are ¢ — 1). Otherwise suppose that
¢! < degb < ¢? for some integer d, and let s(O, B;) = dz%b + i — degr be
the minimum slope of the convex hull of the Newton polygon of f(X), then we
havei < d. By considering the denominators of slopes of the convex hull, we have
ooy (Km/km) < ¢° < q - degb. Since b* = a, by the expansion of X* we must
have b|a. Combine these with degb < dega, we obtain the inequality of (1).

To prove (2), if degr # 0, because these slopes s(Bo, B1), s(B1, B2), ...,
$(Bi-1, Bi), ..., s(Bdegr-1, Baegr) ad s(0,Bo), s(0,Ba),...,s(0,B;),
...,8(0, Byegr) are all between —(degr + degb) and (degr + degb), then
lords ()| < degr + degb. Otherwise, if degr =0 (i.e., r = 1 € F,), then

|ords ()| = |ords (b)| = degb < degr + deghb.

To prove(3), consider the Newton polygon of polynomial X"/ X.SinceX" /X =
co+ (X597 ¢; X0 -1) 4 X" ~1 wherec; € Awithdege; = (—i+degr)- ¢
and ¢o = r. Weconsider thefollowing points sequence: B1 = (¢—1, ords (¢1/co))
= (¢—1,degr — (degr — 1) - q), B2 = (¢° — 1,0rds (c2/c0)) = (¢* — 1, degr —
(degr—2)-¢?), ..., B; = (¢" —1,0rdy(c;/co)) = (¢* —1,degr — (degr —i)-¢'),
.+ Baegr = (¢%®87 —1, ordy, (“2r)) = (q%97™ —1, degr), and computethe slopes:
s(0,B1) =1—degr+ qul,s(Bl,Bz) = 2—degr+q—fl, ooy 8(Bij—1,B;) =i—
degr+ 27, - -, 5(Bdegr 1, Boegr) = 727 Sincesequences(O, B1), s(B1, Ba), - .,
s(Bi-1, B;), ..., s(Bdegr—1, Baegr) increases and they are between —degr and
qul, so we get the inequality of (3). O

Let O C k bethelocal ring at the place oo, and et usdenote theintegral closure
of Oin K,, (resp. k,,) by O, (resp. O,,,). Then we have

THEOREM 2.3. The co-part of the discriminant A(K,,,/k) divides

00 [1+2deg m+deg a+q-deg a-(deg a+2deg m)]-Ny,, .

Proof. Let co1 be aprime divisor of Oy, lying over co. Let K, be the subex-
tension of K, /ky, such that K, /ky, is the maximal subextension of K,,/k,,
unramified at prime divisor co1. By Proposition 2.2 (1), we have Gal (K, / K »,) =
(Z/pz)? with p? < ¢ -dega + 1. Let « € K, be aroot of X" —a = 0,
and denote its monic minimal polynomial over K., by f(X). We may assume
Ga (K km) = Ay, GA(Kp/Kxo,) = R, asubgroup of A, with #(R) = p?.
Then we have

FX) =X —a+9).
gER
Since R is ad-dimensional vector space over F,, so we obtain that

d )
FX) = (X =) +3 (X — )™
=1
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d _ d )
pd + (Z CiXpdz> . (apd + Z Ciapdz> :
=1

=1

wherec; € Koo, and¢g = Hecr—{0)é-

According to Proposition 2.2 (2), ord,, ((1/t)%9m+d8e . o) > 0; thisimplies
that (1/t)d69M+dega a € O,. Let Oy, be the integral closure of O in K.,.
Let g(X) = (1/t)p"(degm-+dega) . ¢ydegm+dega . X) Then ¢(X) is the mon-
ic minimal polynomial of (1/¢)de9m+dega . o Over Koo, and g(X) € Oy, [X].
Since ¢/ ((1/t)%9m+deda . ) isequal to (1/¢)P"-(dgm+dega) . ¢, 50 the cor-part of
A(O,/O,,) divides (by transitivity of discriminants)

NOmeool/km(Norme/Koo ((1/¢)p" (degm-dega) . . ))

— NormKool/km ((1/t) ?.(degm-+dega) | Cd)pﬂl7

whichisequal to (1/¢)r" (degm-+dega)-[Kmkm] . (¢ ,)[Kmikm] By Proposition 2.2 (3),
the coq-part of A(O,/O,,) divides

(1/7f) d.(degm-+dega)-[Kmkm] | (:L/t)pd-degm-[Km:km]7

which is equal to (1/¢)P"-(2degm-+dega)-[Komikm] Changlng al places ooy of O, sit-
ting over oo, we obtain A(0,/O,,) divides (1/t)P" (2degm-+dega)-[Km:kn] (hecause
O isthelocal ring at place co). Using the transitivity of discriminants and Propo-
sition 2.1 (1), we obtain that the oco-part of the discriminant A (K, /k) divides

Normk /k((l/t) ¢-(2degm-+dega)- [Km:km}) . ((1/t)[kmk])[Kmkm}7

which is equal to co(1+p*-(2degm+dega)) N Sincep? < ¢ - dega + 1, we complete
the proof.
Our main theorem in this section is

THEOREM 2.4. The discriminant A(K,,,/k) divides

(m)ZNm . OO[l+2degm+deg a+q-deg a-(deg a+2deg m)]-Ny,

Moreover, we have—ﬂL = O(degm), asdegm — oc.
Proof. It foIIowsfrom Proposition 2.1 (2), Theorem 2.3 and r|m.

3. A generalized Artin’s problem for function fields

In this section we work out a generalized Artin’s problem for function fields. We
will make use of an effective version of the Prime Number Theorem, see [10].
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Let L, K be two fixed function fields over k, and the field of constants of K
isF,. Let Sy, be aset of prime divisors of L. For each prime divisor £ € Sy,
let Ko be afixed finite Galois extension of K. Our generalized Artin’'s problem
is to determine the density of the set of prime divisorsin K which do not split
completely inany K¢ for £ € Sy.

Let S; be the set of all square free divisors (including 1) composed from all
the prime divisorsin Sy, (i.e, b € S; if and only if b = 1 or b can be written
as a finite product of distinct prime divisors in S;). On S;, we have a natural
partial order ‘<’ defined asfollows: bq,by € S}, b1 < bo if and only if b1 |po. Under
this partial ordering we view S; as a (Boolean) lattice. Given divisor b € Sj, let
Kb = HS\bKﬁ (Set K= K), Nb = [Kb : K], and db = degA(Kb/lc) Let fb be
the degree of the field of constants of K, over F,. Theseideas follow [12] in their
context and construction.

Given positive integer z, let f(z, K) be the number of prime divisors g of K
such that deg3 = z, and B3 does not split completely inany K¢ for al £ € S;.
Also set

Z M

beS],
where 1 isthe modbius function defined by p(p) = (—1)", if b = [[;=1 £;. Thenwe
have

THEOREM 3.1. Suppose that ,cs- (1/N,) < oo, and for each prime divisor
of K, the number of £ € S, such that B splits completely in K¢ is finite. Also
suppose that the following three conditions are true

(@ f,=1forallb e S}

(b) Asdegb — oo, (d,/N, = O(degh), and N, = O(q*9®9") for some constant
e>0.

(c) There exists a real number v(v > (1/Inq)) such that: The number of prime
divisors ¢ of K with degp = z, and 3 splits completely in some K&,
deg€ > z/2 —vinziso(¢”/x).

Then we have

fw k) =bs, - Lo (L)

X

Proof. For each prime divisor ¢ in K, we let ¢y be the product of all prime
divisors £ € Sy, such that 53 splits completely in K.

Given positiveinteger z andb € Sj . We denote the number of prime divisors B
of K suchthat degp = = and ¢z = b by f(z,?), and denote the number of prime
divisors P of K such that deg = x and b|cy by 71(z, »). Then we have

7T1$|7 fob

beS; b
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Applying Mobiusinversion formula([12], Corollaries of Proposition 5), we obtain
that

flab)y= > ulb/p)m(,b).

beS; b |»

If b’ = 1, then we get that

f(z,K) = f(z,1) = Z p(d)ma(w,b).

beS;

Given positive integer d, let Sy, ; betheset of £ € S;, with deg £ < d, and let
n(z, d) denote the number of prime divisors  of K with deg® = x and 3 does
not split completely inany K¢, £ € Sy, 4. By inclusion-exclusion principle, we
have

n(z,d) = Z p(b)ma(z,b), (3.1)

¥E€S] 4
where S; , is defined in the sameway as Sj . By definition, we also have
f (@, K) < n(z,d). (3.2)

Given positive integers di, da, let m(x, d1, d2) be the number of prime divisors
B in K with degp = z and B splits completely in some K¢, £ € Sp,d1 <
deg £ < da. Let g(z) be the largest number n such that there exists prime divisor
P in K with degP = =z, P splits completely in some K, (» € S} ) with degh = n.

Thisimplies
flz,K) > n(z,d) —m(z,d,g(x)). (3.3
We write
m(z,d,g(z)) < Z mi(z, £) p+m(z, (1/2)z—vinz, g(x)).(3.4)

cesy,
d<degeg(1/2)z—vinz

Let 7 () denote the number of prime divisors B, in K|, with degg, = z. One
has(z,b) < «°(x)/N,. By [10, p. 55], we have |7’ (z) — ¢* /x| < 6.5- ¢*/? - d,.
Hence

1 4¢°

d
— .1 T
m1(z,b) < N, = +65-¢ N, (3.5)
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Z m1(x, L)

LESy,
d<deg £<(1/2)z—vInz
1 ¢ de
< — .1 6.5I/2-—}. 3.6
by (o Crese (36)

d<degeg(1/2)z—vine

By condition (b) and the hypothesis» > 1., we have

d x
L x/2 PL x/2 q
E 6.5-¢ N8<<q E deg£—0<$>.(3.7)

cesy, cesy,
d<deg £<(1/2)z—viInz d<deg £<(1/2)z—vinz

We may assume that d (depends on ) goesto infinity (asx — oo). Using the
assumption that Shes: 1/N, < oo, we obtain

T T

3 R Y S (3.8)
sl Ne =« T

d<dege<(1/2)z—vinz
Combine equations (3.6), (3.7) and (3.8), we obtain that

Z m1(z, L) =o <%> . (3.9

cEeSy,
d<dege(1/2)z—vina

Combine equations (3.2), (3.3), (3.4), (3.9) and condition (c), we obtain that

f(o,K) = n(z,d) + o (q—> . (3.10)

T

Again by [10, p. 55], f, = 1 (condition (&)) and consider the Galois field
extension K,/K, we have |r1(z,b) — (1/N,) - (¢°/z)| < 6.5-N, - ¢*/2 - d,.
Applying this and equation (3.1), we obtain that

n(z,d) = Y pb)mi(z,b)
beS’;ﬁd
= % q_+0 qa:/2_ Z sz.degb
beszﬁd b L besz,d

(by condition (b)).
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Since#(S ) < ¢ - ¢/d for somec > 0, #(S} ;) < 20"/ and degh < ¢ - ¢? for
b € S} 4. Thuswe obtain that

T

n(z,d) = Z %t) 4

" x
beS] 4

+O(q¥/? . 20"/ d) . g2ecd” . o 4d) (by condition (b))

X
- Z p0) | ¢ +O(¢"/?. q”O'qd), for someng > 0.
N, x
beS] 4

If weteked = (Inz—In3ng)/Ing, thend — oo (@ — o0), and ¢*/2-q"4" =
¢ @A+ @/3) = o(¢® /x). Thuswe have

n(z,d) = ds, - %4—0(%).

Combine thiswith (3.10) gives what we want. O

4. Artin’sconjecturefor the Carlitz module

In this Section, let function fields K, L in Section 3 be the rational function field
Fy(t), let S = S, be the set of al the prime ideals £ in A = F,[t]. As before
we use [(t) to denote the monic irreducible generator of theidea £ € Sy. We let
k=T(t), ke = kygy = k(Ayp), Ke = ke(c), where o € Q stisfies /) = a,a
is afixed nonzero polynomial in A and let Ng = Ny = [Ke¢: k]

LEMMA 4.1. Suppose that Z = {r € F,[t]|r™ = O for some 0 # m € F,[t]}.
Then

,_ (10 if g # 2
_{{O,l,t,l—{—t} |fq:2 '

Moreover, suppose that a # Oin A anda # 0,1,¢,1+ ¢ if A = Fy[t]. Then we
havea™ # Ofor 0 £ m € A.

Proof. It is clear that Z = A,,, for some 0 # m € A. Since k(A,,) = k, SO
#((A/(m))*) =L If ¢ # 2, thenm € F;;i.e, Z = A, = {0}. If ¢ = 2, then
m = 1,t,1+¢, or t(1+¢); thisimpliesthat Z = Ay, = {0,1,¢,1 4 ¢}. This
compl etes the proof.
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LEMMA 4.2. Suppose that a is a honzero polynomial in A anda # 1,¢,1+ ¢ if
A = F»]t]. Let SC, be the number of prime ideals 3 in A such that degp = =z,
and P splits completelyinsome K¢ (£ € S), 5 +Inz < deg £ < z. Then

T

SCx:o<q—>, aszr — oo.
x

Proof. Suppose 3 is a prime divisor in A with deg® = z such that g splits
completely in some K¢(L € S),5 + Inz < dege < z. By Proposition 1.1,

p(t)—
p(t) = 1(mod 1(1)), p(H)]a T and 0 < deg 20=2 < & — Inz. Hence
p(t)] 11 a™.

m monic in A
0gdegm (z/2)—Inz
If degm = 4, thendega™ < ¢' - (dega + 1) ([6], Prop. 1.1). By the assumptionin
a and Lemma4.1, a™ # 0for 0 £ m € A. Thuswe have

deg <H m monic in A CI/m)

0gdegm(z/2)—Inz

SCy

IN

T

ST i i (dega + 1)

x

0 (Zgi/(f)lnw q2.i>

IN

T

X

:0<q—>, asz — 00.
z

This completes the proof. i

THEOREM 4.3. Suppose v > 0. Let SC,,, be the number of prime ideals 3 in
A such that degp = =, and B splits completely in some K¢(£ € S),degg >
5 —v-Inz. Then

T

SCI7V:0<q—>, asx — 00.
T

Proof. Let m(z, d1, d2) bethe number of primedivisors< in A with degp = =
and B splits completely insome K¢, £ € S,d1 < deg £ < dp. By Proposition 1.1,
we have

SC., = m(z, %:r —v-Inz,x)

X

= m(z, iz — v Inz, % +Inz) + o <q—> (by Lemma4.2). (4.1)
T
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L et us denote the number of prime divisors B in A such that degp = z and B
splits completely in K¢ by m(z, £). We have

m(z, 37 —v-Inz, 3z + Inz) < Z m1(z, £). (4.2
(w/Z)—l/-Inw<§e(€g§Lg(w/2)+lnw

Given integer N > 0, nonzero polynomialsa,b € A with (a,b) = 1. Let us
denote by II(V; a, b) the number of monic irreducibles f € A such that deg f =
N, f congruent to b(moda). In [9, Theorem 4.3], we have worked out an analogue

of the Brun—Titchmarsh Theorem for Arithmetic Progressionsin A asfollows
For any positive integer N > dega, we have

qN

#(a) - (N —dega + 1)’

where ¢(a) = #((A/(a))™).
Now let us go back to 71 (x, £). By Proposition 1.1, we have

II(N;a,b) <2-

m1(x, L) < m(x;l(t),1).

If (z/2)—v-Inz < degl(t) < (x/2)+Inz, then by the Brun—Titchmarsh Theorem
for arithmetic progressionsin A, there exists a constant ¢ > 0 such that

T

: q T T
H(m,l(t),l)gc-m, forz—u-lna;<deg£<§+lnx.
Thus we obtain that
1 q”° T T
Wl(x,ﬂ)gc-qdegs-;, forz—u-lnx<deg£<§+lna;.
Hence we obtain that
I 1
Z mi(z, L) <K L. Z G
£€eS Zr £€eS q
(z/2)—v-Inz<deggL<(z/2)+Inz (z/2)—v-Inz<dege < (z/2)+Inz
by Prime Number Theorem for polynomials
T 1 X
<ZL. S S =0 (q—> .
x N 2 xr
(z/2)—vInz<ig(z/2)+Inx
Combining this with equations (4.1) and (4.2) gives the proof. O

PROPOSITION 4.4. Given 0 # a € A, and £ € Swithdeg £ = d. Then
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(1) If g # 2,and d > 1+ (In(dega + 1)/Ing), then the equation X!® = ¢ has
no solution X inA(i.e, Gal(K¢/ke) = A/, and Ng = (¢% — 1) - ¢%).

(2) Inthecaseq = 2and a # 1,t, or 1 + ¢, there exists a positive integer d,
(dependson a) suchthat if > d,, thenthe equation X () = ¢ hasno solution

(3) We have

1

Z — <00,

monic square—free " 17?
meA

except in the special casethat A = Fp[t] anda = 1,¢ or 1 + ¢.
Proof. Consider the polynomial f(X) = X' = X' 4+ %, ¢; X4 where
c; € Awithdege; = i-¢% . 1f 0 # b € A, then we have degh?’ = degb - ¢,

dege; - b = (i + degb) - ¢
To prove (1), if degb # 0, we have

degb?’ > deger - b7 > .- > dege; - b9 > - > degey - b.
Otherwise (degb = 0)
degcl-qu*1 > > degci-qufi > ... >degcy - b.

Thusif f(X) = a hasasolution X = bin A, then we must have dega = degb -
q%(degb # 0),dega = ¢?(degb = 0). Henceif d > 1+ (In(1 + dega)/Ing),
then the equation X'(Y) = ¢ hasno solutionin A and by Theorem 1.7 (2), we have
Gal(Ke/ke) = A/S.

To prove (2), if X! = ¢ hasasolution X = b and degh > 2in A, then

degb?’ > deger - 6% > - >dege; - b2 > -+ > degey - b,

hencedegbzd = dega. Itfollowsthereexistsapositiveinteger d, suchthatif d > d,
then the equation z!() = ¢ hasno solution X = b in A with degb > 2. Otherwise
suppose the equation z/(Y) = ¢ has a solution X = b in A with degb < 1 (i.e,
b=1t0rl+t).Incaseb = 1,sincel! = 1, 1¢ = 1+¢, 1" = 1+t for any positive
integer n; thisimplies1/ = 0,1,tor1+ ¢ forany f € A. Thusa = 140 = 0,1, ¢
or 1 + ¢, this contradicts the assumption. In case b = ¢ (resp. b = 1+ ¢), since
=ttt =0" =0(@esp. L+ 1)t =1+t (1 + 1) =0, (14 )" = 0)
for any positive integer n; this impliest/ = 0 or ¢ (resp.(1 + )/ = 0 or 1 + )
forany f € A. Thusa = t) = Qor ¢ (resp.a = (14 ¢)") = 0or 1+ ¢), this
contradicts the assumption. Combine these and our assumptions give the proof.
To prove (3), since
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In <£1;[S<1+—>> %In <1+—>
1
< SGSN_Sa

By (3) of Theorem 1.7, thisimplies

> a-M(irg) <=

monic square—free 1710 £eS
mEA
This completes the proof of Proposition 4.4.
Let C, bethe set of primeidealsp in A for which a = a + B isagenerator of
C(A/B).
PROPOSITION 4.5. In the special case A = Fzt], 0 # a € F2[t]. Then we have

(1) Cr={(t), 1 +1),(1+t+17)}.
(2) Ifa = f! for some f € A, then

(@)} ifttf
Ca= {@ iff)f

(3) If a = f1* for some f € A, then

c _{{(1—|—t)} if(1+t)1f
) if (1+1t)|f

@) Cr ={(1+ 1)}, Crpe = {(D)}.

Proof. To prove (1), from the proof of Proposition 4.4 (2), wehave 1/ =0, 1, ¢,
or 1+t for f € A; thisimpliesCy = {(t), (1 + 1), (1 + ¢+ t2)}.

To prove (2), let 3 beaprimeideal inA. If degp(t) > 2, then p(t) = 1(modt)
and a(p(t) — 1)/t = 71 = O(mod) (since C(A/P) = A/(p(t) — 1)). By
Proposition 1.2, a is not agenerator of C'(A/P).

If p(t) = t,since C(A/(t)) = A/(t—1) (i.e. k!t = O(mod(t)) for all h € A),
thena? = f9 = f9 = 0or f(mod(t)) for al g € A. Thusif ¢|f, then a isnot a
generator of C'(A/(t)), otherwise (¢ t f), a isagenerator of C(A/(t)).

If p(t) = 1+t,sinceC(A/(1+¢t)) = A/(t), thenad = f9 = O(mod(1+t)).
Thisimpliesa is not agenerator of C(A/(1+t)).

The proof of (3) isthe same as the proof of (2).

To prove (4), this follows from ¢ = #3114+t = (1 + t)! and (2), (3) of this
theorem.

Let Cy(z) be the number of primeideals$ in A with deg® = z suchthat a is
agenerator of C'(A/3), and let
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P — p(m)
« = Vo
monic square—free m
polynomials m of A

=11 (1 — N_1£> , (by (3) of Theorem1.7),

£€Sy,

except for the special caseq = 2anda = 1,¢, or 1 + ¢. In the later cases we let
d, = 0.
Now the main theorem of this paper is

THEOREM 4.6. Given nonzero polynomial a € A. Thenif ¢ # 2, then
T X
Cy(z) :5a-q—+o<q—>.
x xr

Proof. We apply Theorem 3.1 with K = L = k and let S be the set of al
primes of A. By (3) of Proposition 4.4, it suffices to check the three conditions
in Theorem 3.1. Condition (a) follows from (5) of Theorem 1.7. Condition (b)
follows from Theorem 2.4 and Theorem 1.7 (1). Finally Condition (c) follows
from Theorem 4.3. The specia caseq = 2and a = 1,¢, or 1 + ¢ follows from
Proposition 4.5.

If1—1/Ng #0(.e,1/Ng # 1) foral £ € S, by the prime number theorem,
Proposition 4.4 (3) and N¢ > 2, we have

3
N6, > > N’ converges
ces

except for the special casethat ¢ = 2and e = 1,¢, or 1 4+ ¢. Thisimplies §, > O.
Otherwise, if 1/Ng = 1forsome g € S,then kg : k] = 1and [K¢ : ke] = 1. This
implies k = F»(t),l(t) =t (or 1+ t) and X* = a (or X = ) has a solution
X = finA.Inthesecasesthat 6, = 0. Our conclusion is therefore:

COROLLARY 4.7. Given nonzero polynomial € A =F,[t]. Ifg # 2,0rifg =2
and « is not of the form 1, f¢, or f1*¢ for some f € A, then the density of the set
of primeidealsp in A suchthat a isa generator of C(A/9) is > 0. In particular,
thereareinfinitely many primeidealsg in A suchthat a isa generator of C(A /).

Proof. Sincet = ¢t 1+t = (1+t)! andtheassumption,wehavea # 1,¢, 1+t
and a is not of the form f¢, or f1+ for some f € A inthe case ¢ = 2. The above
discussions and the last example of Section 1 gived, > 0.
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