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Colon cancer is the most commonmalignant tumor of the gastrointestinal tract, and approximately 80%–90% of colon cancers are
colon adenocarcinomas (COADs). Tis study aimed to screen key microRNAs (miRNAs) associated with COAD. Diferentially
expressed (DE) miRNAs were screened between COAD and adjacent cancer samples based on the Gene Expression Omnibus
(GEO) and the Cancer Genome Atlas obtained from datasets. Te miRNAs of interest were validated using quantitative real-time
polymerase chain reaction. Moreover, the efects of hsa-miR-135b-5p on the biological behavior of COAD cells were observed. To
obtain the target genes of hsa-miR-135b-5p, transcriptome sequencing of the SW480 cells was performed, followed by protein-
protein interaction (PPI) network and hsa-miR-135b-5p-target gene regulatory network construction and prognostic analysis.
Downregulation of hsa-miR-135b-5p signifcantly inhibited SW480 cell proliferation, migration, and invasion and signifcantly
facilitated apoptosis (P< 0.05). A total of 3384 DEmRNAs were screened, and enrichment analysis showed that the upregulated
mRNAs were enriched in 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 326 Gene Ontology Biological
Processes (GO-BPs) while the downregulated mRNAs were enriched in 20 KEGG pathways and 276 GO-BPs. A PPI network was
then constructed, and H2BC14, H2BC3, and H4C11 had a higher degree. In addition, a total of 352 hsa-miR-135b-5p-gene
regulatory relationships were identifed. Prognostic analysis showed that FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B
had prognostic signifcance (P< 0.05). In addition, the validation analysis results showed that FOXN2, NSA2, and DESI1 were
signifcantly expressed between the miR-135b-5p-inhibitor and negative control groups (P< 0.05). Terefore, downregulation of
hsa-miR-135b-5p inhibits cell proliferation, migration, and invasion in COAD, and carcinogenesis may function by targeting
FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B.

1. Introduction

Colon cancer is the most common malignant tumor in the
gastrointestinal tract and ranks third and second in terms of
morbidity and mortality, respectively, among all solid
cancers [1–3]. Approximately 80–90% of colon cancers are
colon adenocarcinomas (COADs) based on pathologic
classifcation [4, 5]. In China, due to the increase in poor
living and dietary habits, the incidence rate of COAD has
also been increasing [6]. More than 83% of patients with
COAD are at an advanced stage upon diagnosis, and nearly
half of them are accompanied by metastasis from other sites
and have a poor prognosis [7]. Surgical treatment is the most
efective treatment for COAD; however, the efect of surgical

resection is closely related to the preoperative staging of
patients [8, 9]. Tus, further studies on the molecular
mechanism of COAD occurrence and development and
exploration of new key molecules may provide novel ideas
for the treatment of COAD.

MicroRNAs (miRNAs) are non-coding RNAs 20–24 nt
long and regulate target gene expression by binding to the 3′
untranslated region of the target gene, which afects a series
of physiological processes [10]. Studies have revealed that
miRNAs are involved in almost all signaling pathway reg-
ulations in cancer and that there are diferences in tumor
diagnosis, staging, progression, prognosis, and chemother-
apy [11–13]. Uncontrolled proliferation is a major feature of
cancer and is the basis of its development [14]. As regulators,
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miRNAs afect tumor growth by targeting key members of
the COAD-related proliferation signaling pathway [15]. Te
expression of many miRNAs is diferent between normal
and COAD tissues. For instance, Mi et al. revealed that high
miR-31-5p expression facilitated COAD progression by
targeting TNS1 [16]. Zhao and Qin found that miRNA-708,
which targets ZNF549, regulates COAD development
through the PI3K/AKt pathway [17]. Liu and Di Wang
revealed that miR-150-5p inhibits TP53 to facilitate the
proliferation of COAD [18]. Terefore, screening for novel
miRNAs in COAD is important.

Terefore, this study was conducted to explore the key
miRNAs correlated with the development of COAD as well
as the molecular mechanisms involved. First, the common
diferentially expressed (DE) miRNAs were screened be-
tween COAD and adjacent cancer samples based on the
Gene Expression Omnibus (GEO) and the Cancer Genome
Atlas (TCGA) datasets. In addition, miRNAs of interest were
verifed using quantitative reverse transcription polymerase
chain reaction (qRT-PCR), and hsa-miR-135b-5p was
screened. Moreover, the efects of hsa-miR-135b-5p on the
biological behavior of COAD cells were observed, and
transcriptome sequencing was performed to identify target
genes of hsa-miR-135b-5p.Tis study provides new clues for
the treatment of COAD. A fowchart of the study is pre-
sented in Figure 1.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. Te processed
miRNA expression profle data of the GSE125961 dataset
(six COAD tissues and six adjacent cancer tissues) were
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/), after which the miRNA data were normalized.
TCGA-COAD miRNA data (450 COAD samples and eight
adjacent cancer samples) were also obtained from the
University of California, Santa Cruz, database (https://
xenabrowser.net/datapages/), and the miRNAID was con-
verted to the mature miRNA ID of the V21 version.

2.2. Identifcation of DEmiRNAs. After data preprocessing,
DEmiRNAs were identifed between COAD and adjacent
cancer samples using the “limma” package (version 3.10.3)
[19], with the threshold set at P< 0.05 and |log fold change
(FC)|> 2. Moreover, overlapping DEmiRNAs screened from
the GEO and TCGA datasets were obtained.

2.3. miRNA-Target Gene Regulatory Network Construction.
miRWalk3.0 [20] was used to predict the target genes of the
overlapping DEmiRNAs in the miRTarBase, TargetScan, and
miRDB databases. Te target genes in all three databases
were then obtained to build a miRNA-target gene regulatory
network using Cytoscape (version 3.2.0) [21].

2.4. Sample Collection. Te 20 COAD and corresponding
paracancerous tissues (including seven females and 13 males
aged 46–78 years) were obtained from the China-Japan

Union Hospital of Jilin University. Tis study was approved
by the ethics committee of the China-Japan Union Hospital
of Jilin University (N:2021081011). Informed consent was
obtained from all subjects.

2.5. Cell Culture and Transfection. Human COAD cell lines
(SW480, HT29, and HCT116) and a human colon epithelial
cell line (NCM460) were purchased from Procell Life Science
& Technology Co. NCM460 cells were cultured in 90%
Dulbecco’s Modifed Eagle Medium: F12; SW480 cells were
cultured in 90% L-15 base medium; and HT29 and HCT116
cells were cultured in 90%McCOY’s 5A base medium. Te
cells were supplemented with 10% fetal bovine serum and
1% penicillin-streptomycin solution at 37°C in 95% air and
5% CO2, which was then replaced with a complete medium,
and the cells were cultured for 24–48 h. Te cells were then
transfected with hsa-miR-135b-5p inhibitors or a negative
control using Lipofectamine 2000 following the manufac-
turer’s instructions (incubation at room temperature for
20min).

2.6. qRT-PCR. Total RNA was extracted using TRIzol, and
RNA concentration and quality were determined using a
microplate reader (Infnite M100 PRO; TECAN, Switzer-
land). Total RNA was reverse-transcribed using a reverse
transcription kit (MR101-01; Vazyme Biotech Co., Ltd.,
China), and the cDNA was used for qRT-PCR. snRNA U6
was used as an internal reference. Te primer sequences are
listed in Table 1.

2.7.CellCountingKit-8 (CCK8)Assay. After 0, 24, 48, or 72 h
of incubation, cell viability was analyzed using CCK8
(C0037; Beyotime, China). Te cells were frst cultured in an
incubator at 37°C and with 5% CO2 for 0, 24, 48, or 72 h,
followed by treatment with CCK8 (20 μL per well) at 37°C for
2 h. OD450 was measured using a microplate reader (Infnite
M100 PRO; TECAN). Each experiment was performed in
triplicate.

2.8. Flow Cytometry. After transfection with hsa-miR-135b-
5p inhibitors or the negative control, the cells were collected
in a fow tube, washed with phosphate-bufered saline (PBS),
and then centrifuged. Cell apoptosis was assessed using an
Annexin V/fuorescein isothiocyanate (FITC) and propi-
dium iodide (PI) apoptosis detection kit (C1062L; Beyotime)
according to the manufacturer’s instructions. Annexin
V-FITC, PI, and 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid bufer were mixed at a ratio of 1 : 2 :
5 to make a dye liquor, of which 100 μL was used to
resuspend 1× 106 cells. Cell apoptosis was analyzed using
FlowJo software. Each experiment was performed in
triplicate.

2.9. Transwell Assay. After transfection with hsa-miR-
135b-5p inhibitors or the negative control, the cells were
collected and centrifuged. A transwell assay was
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Table 1: Te sequences of primers.

Name Sequences (5′-3′)
hsa-miR-135b-5p(RT) GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAT
hsa-miR-135b-5p(F) CGCGTATGGCTTTTCATTCCT
hsa-miR-135b-5p(R) AGTGCAGGGTCCGAGGTATT
hsa-miR-19a-3p(RT) GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGTT
hsa-miR-19a-3p(F) GCGTGTGCAAATCTATGCAA
hsa-miR-19a-3p(R) AGTGCAGGGTCCGAGGTATT
hsa-miR-33a-5p(RT) GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGCAAT
hsa-miR-33a-5p(F) CGCGGTGCATTGTAGTTGC
hsa-miR-33a-5p(R) AGTGCAGGGTCCGAGGTATT
hsa-miR-328-3p(RT) GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGGAA
hsa-miR-328-3p(F) GCTGGCCCTCTCTGCCC
hsa-miR-328-3p(R) AGTGCAGGGTCCGAGGTATT
hsa-miR-139-5p(RT) GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTGGA
hsa-miR-139-5p(F) CGCGTCTACAGTGCACGTGTC
hsa-miR-139-5p(R) AGTGCAGGGTCCGAGGTATT
hsa-miR-490-3p(RT) GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAGCAT
hsa-miR-490-3p(F) CGCAACCTGGAGGACTCC
hsa-miR-490-3p(R) AGTGCAGGGTCCGAGGTATT
snRNA U6(R) AACGCTTCACGAATTTGCGT
snRNA U6(F) CTCGCTTCGGCAGCACA
FOXN2(R) GCTGACTCACTGTCCACTAGAG
FOXN2(F) AGAGAGCTGAAACCCCAGGAG
RAB33B(R) GTTCTCGGAAATCCACCCCTA
RAB33B(F) TGATCGGCGACTCCAATGTG
NSA2(R) GCTTAGCCTTCAGACCAATCATT
NSA2(F) CACCGTAAACGCTATGGATACC
DIRAS2(R) CTCTCCACGTCCCCTTTGA
DIRAS2(F) TTACCAGCCGACAGTCCTTG
DESI1(R) GCCGAAGAAGAACTCATCCTTGT
DESI1(F) CCGAATCTCTATCCGGTGAAGC

GSE125961 dataset TCGA-COAD dataset

common DEmiRNAs miRNA-target gene regulatory network 

validated based on cell and tissue samples

hsa-miR-135b-5p cell biological behavior

transcriptome sequencing

DEmRNAs

PPI network hsa-miR-135b-5p-target gene regulatory network

prognostic analysis validation analysis

validation analysis

Figure 1: Flowchart of this study.
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performed to detect cell migration and invasion, as de-
scribed previously [22]. After incubation at 37°C for 16 h,
the transwell chamber was washed with PBS and fxed in
95% ethanol for 5 min. Te cells were stained with crystal
violet for 10min, washed with PBS, and analyzed under
an optical microscope (IX73; Olympus, Japan) using
ImageJ software. Each experiment was performed in
triplicate.

2.10. Transcriptome Sequencing. Total RNA was obtained
from hsa-miR-135b-5p inhibitor or negative control-
transfected SW480 cells using TRIzol reagent. RNA in-
tegrity, purity, and concentration were determined using
NanoDrop2000. Sequencing libraries were generated us-
ing NEBNext® Ultra™ RNA Library Prep Kit for
Illumina® (E7530S; New England Biolabs, USA) according
to the manufacturer’s instructions, and index codes were
added to attribute sequences to each sample. Sequencing
was performed on an Illumina sequencing platform with
the PE300 bp sequencing mode. After cluster generation,
the library preparations were sequenced on an Illumina
HiSeq platform, and paired-end reads were generated.
Quality control of the reads was conducted using in-house
written scripts. Raw reads in FASTQ format were pro-
cessed using in-house Perl scripts. Transcriptome se-
quencing data were uploaded to the National Center for
Biotechnology Information database using the BioProject
ID PRJNA870261.

2.11. Identifcation of DEmRNAs. Raw counts were nor-
malized using the median ratio method in the “DESeq2”
package (version 1.18.1) [23], and diferential expression
analysis was performed to identify DEmRNAs between the
hsa-miR-135b-5p inhibitor and negative control groups
using the Wald test with cutof values of P< 0.05 and |log2
FC|≥ 1. In addition, enrichment analysis was performed on
the identifed up and downregulated mRNAs using the
“clusterProfler” package (version 3.2.11) [24] in R (version
3.4.4) with a threshold of P.adjust <0.05, and count≥ 2. Te
Benjamini and Hochberg method was used to adjust the P

value.

2.12. Protein-Protein Interaction (PPI) Network. A PPI
network of the top 50 upregulated and downregulated
mRNAs was built using the STRING database (version 11)
[25], and the parameters were set as follows: species, Homo
sapiens; and PPI score > 0.4..

2.13. hsa-miR-135b-5p-Target Gene Regulatory Network
Construction. miRWalk3.0 [20] was used to identify the
target genes of hsa-miR-135b-5p in miRWalk, miRtarbase,
TargetScan, and miRDB databases. Target genes with a
score≥ 0.9 in more than two databases were acquired and
intersected with the DEmRNAs, after which overlapping
mRNAs were obtained. A regulatory network was then
constructed using Cytoscape (version 3.6.1) [21].

2.14. Prognostic Analysis. Te gene expression of RNA se-
quencing (log2(fpkm− uq+1)) and clinical data (TCGA Colon
and Rectal Adenocarcinoma (COADREAD) Phenotype) of
Genomic Data Commons (GDC) TCGA (cohort: GDC Pan-
Cancer) were obtained from the TCGA database [26].Ten, the
matrix data of TCGA COADREAD mRNA and the clinical
information of overall survival time in miRNA-target were
acquired. Te “survival” package (version 2.42–6) [27] in R
(version 3.4.4) was used to perform prognostic analysis with a
threshold of P<0.05.

2.15. Statistical Analysis. SPSS 22.0 software was used for
statistical analysis. One-way analysis of variance and
Newman–Keuls multiple comparison tests were used to
compare the diferences between groups. Statistical signif-
cance was set at P< 0.05.

3. Results and Discussion

3.1.DEmiRNAsandmiRNA-TargetGeneRegulatoryNetwork.
According to the cutof value of P< 0.05 and |log FC|> 2,
223 DEmiRNAs (170 upregulated and 53 downregulated)
and 134 DEmiRNAs (60 upregulated and 74 downregulated)
were identifed from the GEO and TCGA datasets, re-
spectively (Figures 2(a) and 2(b)). A total of 26 overlapping
DEmiRNAs were obtained, including 17 upregulated and
nine downregulated miRNAs (Figure 2(c)). In addition, a
total of 194 miRNA-target gene regulatory relationships
were acquired, including 17 miRNAs and 188 genes
(Figure 3).

3.2. High hsa-miR-135b-5p Expression in COAD. Of the 26
overlapping DEmiRNAs, six miRNAs that were not reported
in COAD were selected, namely, hsa-miR-135b-5p, hsa-
miR-19a-3p, hsa-miR-33a-5p, hsa-miR-328-3p, hsa-miR-
139-5p, and hsa-miR-490-3p. qRT-PCR was performed on
tissue and SW480 cells, and the results showed that only hsa-
miR-135b-5p expression was signifcantly higher in the
tumor groups (both in cell and tissue samples) than in the
control groups (P< 0.05; Figure 4(a)).

3.3. Experimental Observation of the Efect of hsa-miR-135b-
5p. Experiments were performed to determine whether hsa-
miR-135b-5p infuences the biological behavior of COAD
cells. Te expression of hsa-miR-135b-5p was signifcantly
reduced in the hsa-miR-135b-5p inhibitor group compared
with the inhibitor negative control and control groups (P
< 0.05; Figure 4(b)). In addition, the CCK8 assay results
showed that after reducing hsa-miR-135b-5p expression, cell
growth was signifcantly reduced (P< 0.05; Figure 4(c)).
Transwell assays showed that migration and invasion of
COAD cells were signifcantly inhibited after reducing hsa-
miR-135b-5p expression (P< 0.05; Figure 4(d)). Meanwhile,
fow cytometric analysis revealed that cell apoptosis was
markedly increased after reducing hsa-miR-135b-5p ex-
pression (P< 0.05; Figure 4(e)).
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Figure 2: Continued.
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Figure 2: Continued.
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3.4. Identifcation of DEmRNAs. A total of 3384 DEmRNAs
(2012 upregulated and 1372 downregulated) were identifed
between the hsa-miR-135b-5p inhibitor and negative con-
trol groups (Figure 5(a)). Enrichment analysis showed that
the upregulated mRNAs were enriched in 25 Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways (e.g.,
ribosome, oxidative phosphorylation, and systemic lupus
erythematosus) and 326 Gene Ontology Biological Processes
(GO-BPs; e.g., signal recognition particle-dependent
cotranslational protein targeting to membrane, cotransla-
tional protein targeting to membrane, and protein targeting
to endoplasmic reticulum) as shown in Figures 5(b) and 5(c),
while the downregulated mRNAs were enriched in 20 KEGG
pathways (e.g., extracellular matrix (ECM)-receptor inter-
action, protein digestion and absorption, and hematopoietic
cell lineage) and 276 GO-BPs (e.g., cell-substrate adhesion,
extracellular matrix organization, and extracellular structure
organization) as shown in Figures 5(d) and 5(e).

3.5. PPI Network. A PPI network containing 45 nodes and
65 interaction pairs (Figure 6(a)) was constructed based on
the identifed DEmRNAs. H2BC14 (degree� 9), H2BC3

(degree� 9), and H4C11 (degree� 9) had higher degrees in
the PPI network (Table 2).

3.6. hsa-miR-135b-5p-Target Gene Regulatory Network
Construction. A total of 352 regulatory relationships were
identifed, and 10 overlapping genes were obtained
(Figure 6(b)), namely, NSA2, FOXN2, DIRAS2, DESI1,
SV2C, RAB33B, MCTS1, CNIH4, SLCO5A1, and MYCBP
(Figure 6(c)).

3.7. Prognostic Analysis. Prognostic analysis was con-
ducted on the 10 overlapping genes, and the results
showed that FOXN2 (P � 0.0085), NSA2 (P � 0.044),
MYCBP (P � 0.0047), DIRAS2 (P � 0.0015), DESI1 (P
� 0.022), and RAB33B (P � 0.037) had prognostic sig-
nifcance (P< 0.05; Figure 7). Of them, DIRAS2 was re-
lated to poor prognosis, while the other genes were related
to better prognosis. Moreover, the six prognosis-related
genes were validated, and the results showed that FOXN2
expression was signifcantly reduced while NSA2 and
DESI1 expression was signifcantly increased in the miR-
135b-5p-inhibitor group than in the negative control

153
(71.8%)

GSE125961-UP TCGA-UP

17
(8%)

43
(20.2%)

44
(37.3%)

GSE125961-DOWN TCGA-DOWN

9
(7.6%)

65
(55.1%)

(c)

Figure 2: DEmiRNA screening and miRNA-target gene regulatory network. Heatmap of DEmiRNAs in the GEO (a) and TCGA datasets
(b). Te orange bar represents the normal group, and the yellow bar represents the tumor group. (c) Te overlapped up and downregulated
miRNAs screened from the GEO and TCGA datasets. DEmiRNA, diferentially expressed microRNA; GEO, Gene Expression Omnibus;
TCGA, the Cancer Genome Atlas.
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group (Figure 8). In contrast, MYCBP was not expressed
in either group (P< 0.05).

4. Discussion

Dysregulated miRNAs play crucial roles in tumorigenesis of
human cancers [28, 29]. In this study, we found that
downregulation of hsa-miR-135b-5p signifcantly inhibited
SW480 cell proliferation, migration, and invasion and sig-
nifcantly facilitated apoptosis. In addition, a total of 3384

DEmRNAs were identifed, and enrichment analysis showed
that the upregulated mRNAs were enriched in 25 KEGG
pathways and 326 GO-BPs and the downregulated mRNAs
were enriched in 20 KEGG pathways and 276 GO-BPs. A
PPI network was then constructed wherein H2BC14,
H2BC3, and H4C11 had a higher degree. Furthermore, a
total of 352 hsa-miR-135b-5p-gene regulatory relationships
were identifed. Prognostic analysis showed that FOXN2,
NSA2, MYCBP, DIRAS2, DESI1, and RAB33B have prog-
nostic signifcance.
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We frst used miRNA expression profle data to screen
the DEmiRNAs in COAD and adjacent cancer samples, and
a total of 26 overlapping DEmiRNAs were obtained from the
GEO and TCGA datasets. Six miRNAs of interest were
selected among the 26 overlapping DEmiRNAs for valida-
tion via qRT-PCR, and the results showed that only hsa-
miR-135b-5p was expressed at signifcantly higher levels in
the tumor groups than in the control groups. Numerous
studies have reported that hsa-miR-135b-5p is dysregulated
in many human cancers and plays a crucial role in cancer
progression. Naorem et al. demonstrated that hsa-miR-
135b-5p is dysregulated in triple-negative breast cancer [30].

Lazzarini et al. showed that hsa-miR-135b-5p is diferentially
expressed in normal myometrium and leiomyomas [31].
Magalhães et al. found that in both difuse and intestinal
gastric cancer subtypes, APC is modulated by hsa-miR-
135b-5p [32]. However, hsa-miR-135b-5p in COAD has not
yet been reported. In this study, our in vitro experiments
revealed that changes in hsa-miR-135b-5p expression
infuenced the biological behavior of COAD cells. Down-
regulation of hsa-miR-135b-5p resulted in signifcantly re-
duced growth, migration, and invasion and markedly
increased apoptosis of COAD cells, which may provide
novel insights into the treatment of COAD.
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Table 2: Degree of nodes in the protein-protein interaction network.

Name Degree Betweenness Closeness Type
H2BC14 9 8.2 0.030178 Down
H2BC3 9 8.2 0.030178 Down
H4C11 9 55.2 0.03022 Down
H2AC21 8 1.2 0.030158 Down
H3C4 8 1.2 0.030158 Down
H1-5 7 0 0.030137 Down
H2AC4 7 0 0.030137 Down
H2AC13 7 0 0.030137 Down
H2AC7 6 4 0.030116 Down
PSG1 4 7 0.02439 Down
LYZ 3 6 0.02381 Down
DPP4 3 4 0.02381 Down
FLI1 3 0 0.029993 Down
PSG4 3 1 0.024377 Down
ANPEP 2 0 0.023797 Down
CEACAM6 2 0 0.023797 Down
CYP26A1 2 0 0.023256 Up
UGT1A4 2 0 0.023256 Up
CYP3A7 2 0 0.023256 Up
SNORD10 2 22 0.029891 Down
HSPA6 2 40 0.030075 Down
IL1R1 2 0 0.023256 Down
IL1R2 2 0 0.023256 Up
IL2RA 2 0 0.023256 Up
PLXNA4 2 2 0.023256 Up
PSG6 2 0 0.024363 Up
PSG8 2 0 0.024363 Up
A2M 1 0 0.023784 Up
ANKRD2 1 0 0.022727 Up
ASB16 1 0 0.022727 Up
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Table 2: Continued.

Name Degree Betweenness Closeness Type
BHLHA9 1 0 0.022727 Up
TRARG1 1 0 0.022727 Down
CA6 1 0 0.023784 Down
GLP1R 1 0 0.023784 Down
EDNRB 1 0 0.022727 Down
RET 1 0 0.022727 Down
SNORA63 1 0 0.02967 Down
FER1L5 1 0 0.022727 Down
SYT15 1 0 0.022727 Down
RNASE6 1 0 0.023784 Down
PLA2G2F 1 0 0.022727 Down
PLA2G5 1 0 0.022727 Down
SEMA3G 1 0 0.023244 Down
SEMA5A 1 0 0.023244 Down
PSG9 1 0 0.02435 Down

p = 0.022
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Figure 7: Continued.
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To understand the exact mechanism underlying the
efects of hsa-miR-135b-5p in COAD, transcriptome se-
quencing was performed. A total of 3384 DEmRNAs were
screened, and enrichment analysis showed that the upre-
gulated mRNAs were enriched in 25 KEGG pathways, and
the downregulated mRNAs were involved in 20 KEGG
pathways, including ribosome, oxidative phosphorylation,
and ECM-receptor interaction. Ribosomes are essential for

cellular growth, survival, and proliferation, and disruption of
ribosome biogenesis can promote cell cycle arrest; thus,
ribosome biogenesis is related to cancer [33]. Many studies
have shown that oxidative phosphorylation can be upre-
gulated in cancers and may be used as a target in cancer
therapy [34–36]. Te ECM is a non-cellular component of
tissue, and previous studies have reported that ECM-re-
ceptor interactions play an important role in the
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Figure 7: Kaplan–Meier survival curves of 10 overlapped genes. (a) DESI1. (b) DIRAS2. (c) FOXN2. (d) MYCBP. (e) NSA2. (f ) RAB33B.
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development and metastasis of colorectal cancer [37–39].
Tus, we hypothesized that hsa-miR-135b-5p promotes
COAD progression via the ribosome, oxidative phosphor-
ylation, and ECM-receptor interaction pathways. Addi-
tionally, a PPI network was constructed, and H2BC14
(degree� 9), H2BC3 (degree� 9), and H4C11 (degree� 9)
had a higher degree in the network. Valle et al. found that
H2BC3, also known asHIST1H2BB, has growth-suppressing
roles and can be used as a high-grade serous carcinoma
precision medicine biomarkers [40]. Meanwhile, only a few
studies on H2BC14 and H4C11 in cancer have been
reported.

Te target genes of hsa-miR-135b-5p were searched and
were intersected with the DEmRNAs, resulting in a total of 10
overlapping genes. Prognostic analysis showed that FOXN2,
NSA2, MYCBP, DIRAS2, DESI1, and RAB33B had prognostic
signifcance. In addition, the six prognosis-related genes were

validated, and FOXN2, NSA2, and DESI1 were found to be
signifcantly expressed between themiR-135b-5p-inhibitor and
negative control groups. Ye and Duan found that FOXN2 is
downregulated in breast cancer and modulates invasion, mi-
gration, and epithelial-mesenchymal transition via regulation
of SLUG [41]. Liu et al. reported that FOXN2 can inhibit the
invasion and proliferation of human hepatocellular carcinoma
cells [42]. Jeong et al. revealed that HOXC6-mediated miR-
188-5p expression induces cell migration by inhibiting the
tumor suppressor FOXN2 [43]. Dai et al. found that the
lncRNAWT1-AS inhibits cell aggressiveness via themiR-203a-
5p/FOXN2 axis and is associated with the prognosis of cervical
cancer [44]. NSA2, also known as TINP1, promotes tumor cell
proliferation and signifcantly reduces p53 and p21 expression
[45]. Wang et al. showed thatNSA2 plays an important role in
the development of ovarian cancer [46]. However, further in-
depth studies are required to confrm this.
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Figure 8: Validation analysis of the prognosis-related genes. ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001, and “ns” represents no signifcant diference.
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Despite the fndings, this study has some limitations.
First, additional relevant experiments should be con-
ducted to validate the six prognosis-related genes and
pathways identifed in this study. Second, further studies
are required to analyze the specifc mechanisms of hsa-
miR-135b-5p in the progression of COAD. Tird, the
function of hsa-miR-135b-5p should be explored in vivo,
and the clinical application of miR-135b-5p should be
further analyzed.

5. Conclusions

In summary, downregulation of hsa-miR-135b-5p may target
FOXN2,NSA2, andDESI1, thereby inhibiting cell proliferation,
migration, and invasion in COAD. Terefore, hsa-miR-135b-
5p can be used as a therapeutic target for COAD treatment.
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Additional Points

Highlights. (1) hsa-miR-135b-5p was highly expressed in
COAD. (2) Downregulation of hsa-miR-135b-5p inhibits
COAD cell proliferation, migration, and invasion. (3) hsa-
miR-135b-5p may promote COAD progression by targeting
FOXN2, NSA2, and DESI1.
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