
Ergod. Th. & Dynam. Sys., (2023), 43, 2915–2937 © The Author(s), 2022. Published by Cambridge
University Press.
doi:10.1017/etds.2022.62

2915

On conjugacy of natural extensions
of one-dimensional maps
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Abstract. We prove that for any non-degenerate dendrite D, there exist topologically
mixing maps F : D→ D and f : [0, 1]→ [0, 1] such that the natural extensions (as
known as shift homeomorphisms) σF and σf are conjugate, and consequently the
corresponding inverse limits are homeomorphic. Moreover, the map f does not depend on
the dendrite D and can be selected so that the inverse limit lim←−(D, F) is homeomorphic to
the pseudo-arc. The result extends to any finite number of dendrites. Our work is motivated
by, but independent of, the recent result of the first and third author on conjugation of Lozi
and Hénon maps to natural extensions of dendrite maps.
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1. Introduction
The present paper pertains to the notion of the natural extension of a map, intro-
duced by Rohlin in [38]. Given a map f : X→ X on a compact metric space X,
the natural extension of f is the homeomorphism σf defined on the inverse limit
space lim←−(X, f ) by σf (x0, x1, x2, . . .) = (f (x0), x0, x1, x2, . . .). (In the mathematical
literature, this homeomorphism is also called the shift on the inverse limit lim←−(X, f )

and was used prior to Rohlin’s work, for instance, in an example considered by Williams
[42]. In our context, however, we want to emphasize the relation between non-invertible
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maps and their particular invertible extensions, and not merely consider a homeomorphism
on the inverse limit space, and hence the use of the term natural extension seems more
appropriate.) It gives the unique invertible map semi-conjugate to f, such that any other
invertible map semi-conjugate to f is also semi-conjugate to σf . There exists a bijection
between the set of invariant probability measures of f and σf , and the topological entropies
of f and σf coincide [38]; see also [30]. Natural extensions of non-invertible maps of
branched 1-manifolds appear in the mathematical literature in the context of studying
dynamics on surfaces, e.g. in hyperbolic attractors [43], Hénon attractors [3–5], C0

dynamics [12, 14, 15], holomorphic dynamics [31], complex dynamics [37], and rotation
theory [9, 13, 29].

Our paper is motivated by a recent result of the first and last author [10], in which it has
been shown that for a class of mildly dissipative plane homeomorphisms that contains
positive Lebesgue measure subsets of Lozi and Hénon maps, the dynamics on their
attractors is conjugate to natural extensions of densely branching dendrite maps. In that
context, the question arose whether these homeomorphisms could be also conjugate to
natural extensions of maps on some simpler one-dimensional spaces, such as the interval
[0, 1]. The homeomorphisms in question are transitive on their attractors, and sometimes
even topologically mixing, and such properties are inherited by the respective dendrite
maps. Therefore, it would seem as if the existence of dense orbits, together with density
of the set of branch points in the dendrites, would force the corresponding inverse limit
spaces to have a much richer topological structure than those of inverse limits of some
simpler spaces, such as the interval, which has no branch points at all. This, in turn,
would suggest that the above-mentioned simplification is not possible. In the present
paper, however, we show that such an intuition is deceitful. In §4, we introduce the notion
of a small folds property for interval maps (Definition 4.4), and then show that every
map with that property can be factored through an arbitrary dendrite. More precisely, if
f : [0, 1]→ [0, 1] is a continuous surjection with the small folds property and D is an
arbitrary non-degenerate dendrite, then there are continuous surjections g : [0, 1]→ D

and h : D→ [0, 1] such that h ◦ g = f ; see Lemma 4.5. It follows that if F = g ◦ h,
then the natural extensions σF and σf are conjugate. In particular, F is transitive on
D and lim←−(D, F) is homeomorphic to the pseudo-arc if f has the same properties on
[0, 1]. W.R.R. Transue and the second author of the present paper constructed a transitive
map f of [0, 1] onto itself such that lim←−([0, 1], f ) is homeomorphic to the pseudo-arc
[33] (see also [19, 26, 27] for related constructions). It is possible that this map has
the small folds property, but it is not apparent how to prove it. However, in §5, we
tweak the original construction from [33] to get a modified map f that does have the
small folds property in addition to the properties promised by [33], see Theorem 5.7.
This modified map f can be factored through any non-degenerate dendrite D creating
interesting dynamics on D, see Theorem 5.8. The following theorem is a restatement of
Theorem 5.8.

THEOREM 1.1. For any non-degenerate dendrite D, there exist topologically mixing maps
F : D→ D and f : [0, 1]→ [0, 1] such that the natural extensions σF : lim←−(D, F)→
lim←−(D, F) and σf : lim←−([0, 1], f )→ lim←−([0, 1], f ) are conjugate. Moreover, the map
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f does not depend on a dendrite D and can be constructed so that lim←−(D, F) is
homeomorphic to the pseudo-arc.

Note that the interval maps f such that lim←−([0, 1], f ) is the pseudo-arc are generic
in the closure of the subset of maps of the interval that have a dense set of periodic
points [18]. Moreover, all such maps have infinite topological entropy by [35] (see also
[11] for a stronger result). Consequently, the same is true for the maps F , σF and σf .
This is noteworthy since, although any transitive interval map has positive entropy [8],
there do exist transitive zero entropy maps on dendrites [16] (see also [1, 2, 23, 32] for
related results). Note also that the class of dendrites is very rich. Every dendrite is locally
connected, but there is a number of other properties with respect to which various elements
of the class differ from each other, such as the properties of the subsets of end points and
branch points. The set of end points in a dendrite can be finite, countably infinite, or even
uncountable, and either be closed or not. The set of branch points do not need to be finite,
but can be countably infinite and even dense in the dendrite. In addition, a branch point
may separate the dendrite into infinitely many components. There exists a universal object
in the class of all dendrites, the Ważewski dendrite Dω [40]; that is, any dendrite D embeds
as a closed subset of Dω. In that context, below we formulate a stronger version of our main
result Theorem 5.9.

THEOREM 1.2. For any k ∈ N and any dendrites D1, D2, . . . , Dk , there exist topologi-
cally mixing maps {Fi : Di → Di}ki=1 such that for any i, j ∈ {1, 2, . . . , k}, we have:
(1) Fi and Fj are semi-conjugate;
(2) the natural extensions σFi

and σFj
are conjugate; and

(3) the inverse limits lim←−(Di , Fi) and lim←−(Dj , Fj ) are homeomorphic.
In addition, F1 can be chosen so that lim←−(Di , Fi) is the pseudo-arc, for any i =
1, 2, . . . , k.

The above theorems produce, what seems to be, a very surprising family of examples
for the question of conjugacy between natural extensions of self-maps of distinct dendrites.
These examples, however, do not provide any new pieces of information for Hénon or Lozi
maps. Moreover, it seems rather implausible that, for parameter values considered in [10],
these maps would semi-conjugate to interval maps with a small folds property, should any
of them semi-conjugate to any interval map at all. In fact, it is known that for certain Hénon
maps, this is never true [3]. Furthermore, Hénon and Lozi attractors discussed in [10]
always contain non-degenerate arc components (such as branches of unstable manifolds),
whereas the pseudo-arc contains no non-degenerate arcs at all. Moreover, as we have
already mentioned, the interval maps f such that lim←−([0, 1], f ) is the pseudo-arc, and their
natural extensions σf have infinite topological entropy, but the Hénon and Lozi maps have
finite entropy, bounded above by log 2.

The paper is organized as follows. In §2, we give definitions and introduce notation
that we need throughout the paper. In §3, we give some preliminary results on dendrites
and prove a slightly stronger version of Whyburn’s theorem, see Theorem 3.10, that we
need later on. In §4, we introduce the notion of a small folds property for interval maps
(Definition 4.4), and then show that every map with that property can be factored through
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an arbitrary dendrite, see Lemma 4.5. In §5, we construct a transitive map f on [0, 1]
with the small folds property such that lim←−([0, 1], f ) is homeomorphic to the pseudo-arc
which, together with Lemma 4.5, implies our main results that this map f can be factored
through any non-degenerate dendrite D, see Theorems 5.8 and 5.9. In §6, we give some
remarks and further questions. Finally, for the reader’s convenience and to make this
paper self-contained, we include Appendix A, where we cite three results from [33]
needed in §5.

2. Preliminaries
In this paper, a map is a continuous function. Given a map f : X→ X on a compact metric
space X, we let

lim←−(X, f ) = {(x0, x1, . . . , ) ∈ XN0 : xi ∈ X, xi = f (xi+1) for any i ∈ N0}, (1)

and call lim←−(X, f ) the inverse limit of X with bonding map f, or inverse limit of f for short.

It is equipped with metric induced from the product metric in XN0 . The map f is said to be
transitive if for any two non-empty open sets U , V ⊂ X, there exists an n ∈ N such that
f n(U) ∩ V �= ∅. The map f is said to be topologically mixing if for any two non-empty
open sets U , V ⊂ X, there exists an N ∈ N such that f n(U) ∩ V �= ∅ for all n > N . The
map f is said to be topologically exact, or locally eventually onto, if for every non-empty
open set U, there exists an n such that f n(U) = X. It is evident from the definitions
that topological exactness implies mixing, which implies transitivity. A map F : Y → Y

is said to be semi-conjugate to f if there exists a surjective map ϕ : Y → X such that
f ◦ ϕ = ϕ ◦ F . If in addition ϕ is a homeomorphism, then F is said to be conjugate to f.
A continuum is a compact and connected metric space that contains at least two points.
A dendrite is a locally connected continuum D such that for all x, y ∈ D, there exists a
unique (possibly degenerate) arc in D with endpoints x and y. We denote this arc by xy.
The arcs xy and yx are the same as sets. We assume that xy is oriented from x to y if this
is needed. So, x and y are the first and the last points, respectively, of xy. An end point of
D is a point e such that D \ {e} is connected. The set of all end points of D will by denoted
by ED . A branch point b ∈ D is a point such that D \ {b} has at least three components.
For an arbitrary x ∈ D and arbitrary positive number ε, by BD(x, ε) we will denote the
open ball in D with center at x and radius ε. In the present paper, a dendrite with finitely
many branch points will be called a tree. It is well known that a dendrite D is a tree if
and only if ED is finite; see [36, Exercise 10.48]. An arc is a dendrite with no branch
points.

If x and y are real numbers, by [x, y] we understand the closed interval between x and y,
regardless of whether x ≤ y or x ≥ y. Similarly as in the case of dendrites, we use the
order of endpoints to indicate the orientation of the interval. We do not use the notation
xy = [x, y] in the context of real numbers, even though [x, y] is a dendrite.

The pseudo-arc is a fractal-like object first constructed by Knaster in 1922. It was
rediscovered by Moise in 1948 [34], who constructed it as a hereditarily equivalent
continuum distinct from the arc, and in the same year by Bing who obtained it to
show that there exists a topologically homogeneous plane continuum, distinct from the
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circle [7]. (A space X is topologically homogeneous if for any y, z ∈ X there exists a
homeomorphism H : X→ X such that H(y) = z.) Since then, the pseudo-arc received
a lot of attention in the mathematical literature, mainly in topology, but it also appears
in other branches of mathematics, such as dynamical systems, including smooth and
even complex dynamics; see e.g. [17, 21, 22, 39]. Several topological characterizations
of the pseudo-arc are known. One of the most recent ones, by Hoehn and Oversteegen
[24] from 2016, states that the pseudo-arc is a unique topologically homogeneous plane
non-separating continuum (see also [25]).

3. Preliminary results on dendrites
G. T. Whyburn proved that every dendrite D can be expressed as D = ED ∪⋃∞

i=0 Ai ,
where (Ai) is a sequence of arcs such that limi→∞ diam(Ai) = 0; see [41, V,
Equation (1.3)(iii), p. 89] and [36, Corollary 10.28, p. 177]. Since we need a slightly
stronger version of Whyburn’s theorem, we prove it below, see Theorem 3.10. We start
with the following simple observation.

PROPOSITION 3.1. Let T be a tree. Let p0 ∈ ET and q0, q1, . . . , qk be an enumeration
of all points in ET \{p0}. Then there exists a unique sequence of points p1, . . . , pk ∈
T \ ET such that, if Ai = piqi for all i = 0, . . . , k, then Ai ∩⋃i−1

j=0 Aj = {pi} for each

i = 1, . . . , k. Moreover,
⋃k

j=0 Aj = T .

Proof. For each i = 1, . . . , k, let pi be the first point in the arc qip0 (oriented from qi

to p0) such that pi ∈⋃i−1
j=0 qjp0. Observe that p1, . . . , pk satisfy the proposition.

Note that in the above proposition, the points p1, . . . , pk do not need to be distinct.
Now let D be a dendrite which is not a tree and let S = (s1, s2, . . .) be a sequence of

points dense in D.

PROPOSITION 3.2. There exists an infinite sequence of non-degenerate arcs A0 =
p0q0, A1 = p1q1, A2 = p2q2, . . . contained in D such that p0, q0 ∈ ED , and for each
integer i ≥ 1, the following statements are true:
(1)i qi ∈ ED \ {p0, q0, . . . , qi−1};
(2)i Ai ∩⋃i−1

j=0 Aj = {pi} and pi /∈ ED;

(3)i
⋃i

j=0 Aj is a tree with endpoints p0, q0, . . . , qi; and

(4)i si ∈⋃i
j=0 Aj .

Proof. Let A0 = p0q0, where p0 �= q0 ∈ ED . Since an arc is a tree, item (3)0 is
satisfied. Let i be a positive integer. Suppose A0 = p0q0, . . . , Ai−1 = pi−1qi−1 have been
constructed so that items (1)j –(4)j are satisfied for all integers j such that 1 ≤ j ≤ i − 1.
We will now construct Ai = piqi so that items (1)i–(4)i are satisfied.

It is convenient to briefly outline this construction before actually choosing qi . So,
suppose some qi ∈ ED \ {p0, q0, . . . , qi−1} has been selected. Then it follows from
(3)i−1 that qi /∈⋃i−1

j=0 Aj and p0 ∈⋃i−1
j=0 Aj . Let pi be the first point in the arc qip0

(oriented from qi to p0) such that pi ∈⋃i−1
j=0 Aj . Observe that items (1)i–(3)i are

automatically satisfied. Thus, to complete the proof of the proposition, we need to
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strengthen the condition qi ∈ ED \ {p0, q0, . . . , qi−1} in such a way that item (4)i is
also satisfied (with the choice of pi as described above). We do that by considering the
following three cases separately.

Case si ∈⋃i−1
j=0 Aj . In this case, we may choose any qi ∈ ED \ {p0, q0, . . . , qi−1}.

(Notice that ED \ {p0, q0, . . . , qi−1} �= ∅ because D is no a tree.)

Case si /∈⋃i−1
j=0 Aj and si ∈ ED . In this case, setting qi = si clearly satisfies item (4)i .

Case si /∈⋃i−1
j=0 Aj and si ∈ D \ ED . In this case, D \ {si} is not connected by

[36, Theorem 10.7]. Since
⋃i−1

j=0 Aj is connected, it is contained in one component
of D \ {si}. Let D0 denote that component and let D1 be another component D \ {si}.
Clearly, cl(D0) = D0 ∪ {si} and cl(D1) = D1 ∪ {si} are dendrites such that cl(D0) ∩
cl(D1) = {si}. Since each non-degenerate metric continuum has at least two non-separating
points (see [28, Theorem 5, p. 177]), there exists qi ∈ D1 such that cl(D1) \ {qi}
is connected. It follows that qi ∈ ED \⋃i−1

j=0 Aj ⊂ ED \ {p0, q0, . . . , qi−1}. Finally,

observe that si ∈ Ai = piqi because pi ∈⋃i−1
j=0 Aj ⊂ D0 and qi ∈ D1.

Let A0 = p0q0, A1 = p1q1, A2 = p2q2, . . . be as in the above proposition.

COROLLARY 3.3. For every a, b ∈⋃∞
j=0 Aj , there is an integer n ≥ 0 such that

ab ⊂⋃n
j=0 Aj .

PROPOSITION 3.4. For every a, b ∈ D \ ED , there is an integer n ≥ 0 such that
ab ⊂⋃n

j=0 Aj .

Proof. Since a, b ∈ D \ ED , the arc ab can be extended from both ends to an arc a′b′ ⊂ D

so that a′a ∩ ab = {a} and ab ∩ bb′ = {b}. Let Da and Db be dendrites contained in
D \ ab such that a′ ∈ int(Da) and b′ ∈ int(Db). Observe that each point of ab separates
D between Da and Db. Since S is dense in D, there are positive integers na and nb

such that sna ∈ Da and snb
∈ Db. Clearly, ab ⊂ sna snb

. Set n = max(na , nb). Condition
Proposition 3.2(4) implies that both sna and snb

belong to
⋃n

j=0 Aj . So sna snb
⊂⋃n

j=0 Aj

since
⋃n

j=0 Aj is a tree. Consequently, ab ⊂⋃n
j=0 Aj .

COROLLARY 3.5. D \ ED ⊂⋃∞
j=0 Aj .

COROLLARY 3.6. For each non-empty open set U ⊂ D, there is a non-negative integer i
such that U ∩ Ai contains a non-degenerate arc.

For every arc L ⊂ D \ ED , let ν(L) denote the least non-negative integer such that
L ⊂⋃ν(L)

j=0 Aj .

PROPOSITION 3.7. Let di be the supremum of diameters of arcs contained in
D \⋃i

j=0 Aj . Then limi→∞ di = 0.

Proof. Clearly, di ≤ dj for all integers i and j such that 0 ≤ j ≤ i.
Suppose the proposition is false. Then there is a positive number ε such that di > ε for

all i = 0, 1, . . .. It follows that for each i, there is an arc J contained in D \⋃i
j=0 Aj such
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that diam(J ) > ε. Let L be a subarc of J such that L is contained in the interior of J, but
diam(L) is still greater than ε. Obviously, L ⊂ J \ ED . So the following statement is true.

Claim. For each integer i ≥ 0, there is an arc L ⊂ D \ (ED ∪⋃i
j=0 Aj) such that

diam(L) > ε.

Let L0 ⊂ D \ ED be an arc with diam(L0) > ε. Use the claim with i = ν(L0) to
get L1 contained in D \ (ED ∪⋃ν(L0)

j=0 Aj) such that diam(L1) > ε. Continue using
the claim repeatedly to obtain a sequence of arcs L1, L2, L3, . . . such that for each
positive integer k, Lk ⊂ D \ (ED ∪⋃ν(Lk−1)

j=0 Aj) and diam(Lk) > ε. Observe that the
arcs L0, L1, L2, L3, . . . are mutually disjoint and each of them has diameter greater
than ε, which is impossible in a dendrite. This contradiction completes the proof of the
proposition.

For each positive integer i, let l(i) be the least non-negative integer such that pi ∈ Al(i).
Clearly, i > l(i).

For each non-negative integer n and each positive integer i, let μ(n, i) denote the
set of those integers j such that 1 ≤ j ≤ i and l(j) = n. Clearly, μ(n, i) = ∅ if i ≤ n.
Additionally, set μ(n, 0) = ∅.

We say that a non-negative integer n precedes i and write n ≺ i if lk(i) = n for some
positive integer k. If n does not precede i, we write n �≺ i.

Observe that 0 ≺ i for all positive integers i.
The following two propositions easily follow from the construction and their proofs are

left to the reader.

PROPOSITION 3.8. There are no positive integers i and j such that l(j) ≺ i ≺ j . In
particular, if l(i) = l(j), then neither i precedes j nor j precedes i.

For each non-negative integer i, let Ci denote the component of D \ {pi} containing
Ai \ {pi}.

PROPOSITION 3.9. The following statements are true for each positive integer i.
(1) Ci is an open path connected set.
(2) cl(Ci) = Ci ∪ {pi}.
(3) Ci ∩⋃i−1

j=0 Aj = ∅.
(4) Let j be an integer greater than i. Then the following three statements are

equivalent:
• Aj ∩ Ci �= ∅;
• Aj ⊂ Ci;
• i ≺ j .

THEOREM 3.10. (Whyburn) D = ED ∪⋃∞
i=0 Ai and limi→∞ diam(Ci) = 0.

Proof. The theorem follows from Propositions 3.7 and 3.9.
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PROPOSITION 3.11. Let h0 :
⋃∞

j=0 Aj → [0, 1] such that diam(h0(Ai)) ≤ 2−i and h0 is

continuous on
⋃i

j=0 Aj for all non-negative integer i. Then there is a unique extension of
h0 to a continuous mapping h : D→ [0, 1].

Proof.
CLAIM. For each x ∈ D and each non-negative integer i, there is a continuum Ki(x) ⊂
BD(x, 2−i ) containing x in its interior such that |h0(a)− h0(b)| ≤ 2−i for all a, b ∈
Ki(x) ∩⋃∞

j=0 Aj .

Proof of the claim. If x /∈⋃i+1
j=0 Aj , set T = ∅. Otherwise, let T ⊂⋃i+1

j=0 Aj be a

tree containing x in its interior with respect to
⋃i+1

j=0 Aj , and such that diam(h0(T )) ≤
2−(i+1). Clearly, Z = cl(

⋃i+1
j=0 Aj \ T ) is a compact set not containing x. Let Ki(x) ⊂

BD(x, 2−i ) \ Z be a continuum such that x ∈ int(Ki(x)). Take any two points a, b ∈
Ki(x) ∩⋃∞

j=0 Aj . To prove the claim, it remains to prove that |h0(a)− h0(b)| ≤ 2−i .

There is an integer k > i + 1 such that ab ⊂⋃k
j=0 Aj , see Corollary 3.3. Since ab ⊂

Ki(x) ⊂ D \ Z, we get the result that ab ⊂ T ∪⋃k
j=i+2 Aj . Set Li+1 = ab ∩ T , Li+2 =

ab ∩ Ai+2, Li+3 = ab ∩ Ai+3, . . ., Lk = ab ∩ Ak . Observe that diam(h0(Lj )) ≤ 2−j for
all j = i + 1, . . . , k. Thus,

k∑
j=i+1

diam(h0(Lj )) ≤
k∑

j=i+1

2−j <

∞∑
j=i+1

2−j = 2−i . (∗)

Clearly,
⋃k

j=i+1 Lj = ab. Let M be a subset of {i + 1, i + 2, . . . , k} minimal with
respect to the property

⋃
j∈M Lj = ab. Let m denote the number of elements of M. Since

the intersection of an arc with a continuum, both contained in a dendrite, is either the
empty set, or a point, or a non-degenerate arc, we infer that Lj is a non-degenerate
arc for each j ∈ M . Since

⋃k
j=j+1 Lj = ab is connected, there is a one-to-one

function of {1, . . . , m} onto M such that a ∈ Lσ(1) and Lσ(n) ∩ (
⋃n−1

j=1 Lσ(j)) �= ∅
for all n = 2, . . . , m. It follows from the minimality of M that b ∈ Lσ(m) and
Lσ(j) ∩ Lσ(n) �= ∅ if and only if |n− j | ≤ 1 for all j , n = 1, . . . , m. Consequently,
|h0(a)− h0(b)| ≤∑m

j=1 diam(h0(Lσ(j))) ≤∑k
j=i+1 diam(h0(Lj )). Thus, it follows

from equation (∗) that |h0(a)− h0(b)| < 2−i and the claim is true.

For an arbitrary point x ∈ D and an arbitrary non-negative integer i, let Ki(x) be
the continuum defined in the claim. Observe that K ′i (x) =⋂i

j=0 Kj(x) is a continuum
containing x in its interior. So, we may replace Ki(x) in the claim by K ′i (x) and have the
additional property that Ki+1(x) ⊂ Ki(x) for each non-negative integer i.

Ki(x) ∩⋃∞
j=0 Aj �= ∅ because Ki(x) has non-empty interior and

⋃∞
j=0 Aj is dense

in D. So, Hi(x) = h0(Ki(x) ∩⋃∞
j=0 Aj) is not empty. It follows from the choice of

Ki(x) that Hi+1(x) ⊂ Hi(x) and diam(Hi(x)) ≤ 2−i. Consequently, cl(Hi(x)) ⊂ [0, 1]
is a closed non-empty set, cl(Hi+1(x)) ⊂ cl(Hi(x)) and diam(cl(Hi(x))) ≤ 2−i for all
non-negative i. It follows that

⋂∞
j=0 cl(Hj (x)) is a single point. We denote this point by

h(x). Clearly, h(x) ∈ cl(Hj (x)) for all non-negative integers j.
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We will show that h is continuous. Take an arbitrary point x ∈ D and a positive
number ε. We will show that there is an open neighborhood U of x in D such that |h(z)−
h(x)| < ε for each z ∈ U . Let i be a non-negative integer such that 2−i < ε. Set U =
int(Ki(x)) and take an arbitrary point z ∈ U . There is an integer n such that BD(z, 2−n) ⊂
U = int(Ki(x)) ⊂ Ki(x). Hence, Kn(z) ⊂ Ki(x). It follows that Hn(z) = h0(Kn(z) ∩⋃∞

j=0 Aj) ⊂ h0(Ki(x) ∩⋃∞
j=0 Aj) = Hi(x). So, h(z) ∈ cl(Hn(z)) ⊂ cl(Hi(x)). Since

diam(cl(Hi(x))) ≤ 2−i and both h(z) and h(x) belong to cl(Hi(x)), we have the result
|h(z)− h(x)| ≤ 2−i < ε. Hence, h is continuous.

Finally, we must observe that h is an extension of h0. Suppose that x ∈⋃∞
j=0 Aj .

Then x ∈ Ki(x) ∩⋃∞
j=0 Aj for each non-negative integer i. It follows that h0(x) ∈ Hi(x)

for all i ≥ 0. Consequently,
⋂∞

i=0 cl(Hi(x)) = {h0(x)} and, therefore, h(x) = h0(x). The
extension is unique since it is continuous and

⋃∞
j=0 Aj is dense in D.

4. Factorization lemma and the small folds property
In this section, we introduce the notion of a small folds property for interval maps
(Definition 4.4), and then show that every map with that property can be factored through
an arbitrary dendrite, see Lemma 4.5.

X X X X X

Y Y Y Y Y

g

h◦g
g

h◦g
g

h◦g
g

h◦g
g

h

g◦h

h

g◦h

h

g◦h

h

g◦h

PROPOSITION 4.1. Let X and Y be two compact spaces, and let g : X→ Y and
h : Y → X be two continuous mappings. Then lim←−(X, h ◦ g) and lim←−(Y , g ◦ h) are
homeomorphic. Moreover, the following statements are true.
(1) Suppose g is a surjection and h ◦ g is transitive on X. Then g ◦ h is transitive on Y.
(2) Suppose g is a surjection and h ◦ g is topologically mixing on X. Then g ◦ h is

topologically mixing on Y.
(3) Suppose g is a surjection and h ◦ g is topologically exact on X. Then g ◦ h is

topologically exact on Y.

Proof. Consider the sequence (Zi)
∞
i=1 where Zi = X for even i and Zi = Y odd i. Let

fi : Zi+1 → Zi be h if i is even and g if i is odd. Observe that restricting all threads
(zi)
∞
i=0 ∈ lim←−(Zi , fi) to even terms results in all threads belonging to lim←−(X, h ◦ g). Such

a restriction is a homeomorphism between the corresponding inverse limits. This follows
from a more general result [20, Corollary 2.5.11], but it can also be easily seen as follows.
Suppose for (zi)

∞
i=0 and (z′i )∞i=0, we have that z2i = z′2i for all i ∈ N. Then z2i−1 =

g(z2i ) = g(z′2i ) = z′2i−1 for all i, and consequently zi = z′i for all i ∈ N. It follows that the
restriction is one-to-one, and since it is also clearly a surjection onto a compact space, it is a
homeomorphism. Therefore, lim←−(X, h ◦ g) and lim←−(Zi , fi) are homeomorphic. Similarly,
lim←−(Y , g ◦ h) and lim←−(Zi , fi) are homeomorphic, since restricting (zi)

∞
i=0 to odd terms

results in all threads belonging to lim←−(Y , g ◦ h). Hence, lim←−(X, h ◦ g) and lim←−(Y , g ◦ h)

are homeomorphic.

https://doi.org/10.1017/etds.2022.62 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.62


2924 J. Boroński et al

Suppose that assumptions of the statement (1) are satisfied. Then there is x ∈ X such
that ((h ◦ g)i(x))∞i=1 is dense in X. Observe that g((h ◦ g)i(x)) = (g ◦ h)i(g(x)) for each
positive integer i. Since g is a surjection, the image of a dense set in X is dense in Y.
Consequently, (g((h ◦ g)i(x)))∞i=1 = ((g ◦ h)i(g(x)))∞i=1 is dense in Y. So, the orbit of
g(x) under g ◦ h is dense in Y. Thus, g ◦ h is transitive on Y and the statement (1) is true.

Now, suppose that assumptions of the statement (2) are satisfied. Let U and V be
arbitrary open non-empty subsets of Y. Clearly, g−1(U) and g−1(V ) are open non-empty
subsets of X. Also, g(g−1(U)) = U and g(g−1(V )) = V . Since h ◦ g is topologically mix-
ing, there exists a number N such that (h ◦ g)i(g−1(U)) ∩ g−1(V ) �= ∅ for all i > N . So,

g((h ◦ g)i(g−1(U)) ∩ g−1(V )) �= ∅ for all i > N .

Since g(A ∩ B) ⊂ g(A) ∩ g(B) for all A, B ⊂ X, we infer that

g((h ◦ g)i(g−1(U))) ∩ g(g−1(V )) �= ∅ for all i > N .

Since g((h ◦ g)i(g−1(U))) = (g ◦ h)i(g(g−1(U))) = (g ◦ h)i(U) and g(g−1(V )) = V ,
we get the result that (g ◦ h)i(U) ∩ V �= ∅ for all i > N . Hence, the statement (2) is true.

Finally, suppose that assumptions of the statement (3) are satisfied. Let U be an arbitrary
non-empty open subset of Y. Then V = g−1(U) is a non-empty open subset of X such
that g(V ) = U . Since h ◦ g is topologically exact on X, there is a positive integer i such
that (h ◦ g)i(V ) = X. It follows that g ◦ (h ◦ g)i(V ) = g(X) = Y since g is a surjection.
Since g ◦ (h ◦ g)i(V ) = (g ◦ h)i ◦ g(V ) and g(V ) = U , we infer that (g ◦ h)i(U) = Y .
Consequently, g ◦ h is topologically exact on Y.

Note that σg◦h and σh◦g are conjugate via H : lim←−(Y , g ◦ h)→ lim←−(X, h ◦ g)

given by H((y0, y1, . . . , yk , yk+1, . . .)) = (h(y1), . . . , h(yk), h(yk+1), . . .), (yi)
∞
i=0 ∈

lim←−(Y , g ◦ h).

PROPOSITION 4.2. Let f be a continuous real function defined on an interval I. Suppose
a, b ∈ f (I) and a �= b. Then there are points c, d ∈ I such that f (c) = a, f (d) = b and
f (t) ∈ (a, b) for each t ∈ (c, d).

Proof. Let co, d0 ∈ I be such that f (c0) = a and f (d0) = b. Let d be the first point in the
oriented interval [c0, d0] such that f (d) = b. Finally, let c be the last point in the oriented
interval [c0, d] such that f (c) = a.

Definition 4.3. (See [33, p. 1166]) Let f : [0, 1]→ [0, 1] be a continuous function. Let
a and b be two points of the interval [0, 1], and let δ be a positive number. We say that f
is δ-crooked between a and b if for every two points c, d ∈ [0, 1] such that f (c) = a and
f (d) = b, there is a point c′ between c and d and there is a point d ′ between c′ and d
such that |b − f (c′)| ≤ δ and |a − f (d ′)| ≤ δ. We say that f is δ-crooked if it is δ-crooked
between every pair of points.

Definition 4.4. Let f : [0, 1]→ [0, 1] be a continuous function. We say that f has the
small folds property if for every positive number λ < 1, there exist positive numbers β < λ

and ξ < β/4 satisfying the following condition:

for every a and b such that |a − b| < β, f is ξ -crooked between a and b.
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LEMMA 4.5. (Factorization lemma) Let f : [0, 1]→ [0, 1] be a continuous surjection
with the small folds property and let D be a dendrite. Then there are continuous surjections
g : [0, 1]→ D and h : D→ [0, 1] such that h ◦ g = f and int[0,1](h(U)) �= ∅ for each
non-empty open set U ⊂ D.

Proof. We will assume here that D is not a tree. The proof in the case where D is a tree is
similar, but much simpler. We include a short sketch of the proof in this case at the end of
our argument.

Let A0 = p0q0, A1 = p1q1, A2 = p2q2, . . ., l(i), μ(n, i), and ≺ be as in §3.
Let r0 = 0, s0 = 1, and let τ0 be a homeomorphism of [r0, s0] onto A0 such that

τ0(r0) = p0 and τ0(s0) = q0. Additionally, let u0, v0 ∈ [0, 1] be such that u0 < v0 and the
interval [u0, v0] is minimal with respect to the property f ([u0, v0]) = [0, 1] = [r0, s0].

We will construct sequences (ri)
∞
i=1, (si)∞i=1, (τi)

∞
i=1, (ui)

∞
i=1, and (vi)

∞
i=1 satisfying the

following conditions for all positive integers i.
(1)i 0 ≤ ri < si ≤ ri + 2−i .
(2)i τi is a homeomorphism of [ri , si] onto Ai such that τi(ri) = pi and τi(si) = qi .
(3)i ri = τl(i)

−1(pi).
(4)i ui < vi .
(5)i f (ui) = f (vi) = ri .
(5)i f (t) > ri for t ∈ (ui , vi).
(7)i si = max(f [ui , vi]).
(8)i diam(τl(i)(f ([ui , vi]))) < 2−i , where diam(∗) is the diameter in D.
(9)i Suppose n is integer such that 0 ≤ n < i. Then the following three statements are

equivalent:
• [ui , vi] ∩ [un, vn] �= ∅;
• [ui , vi] ⊂ (un, vn);
• n ≺ i.

(10)i Suppose n is an integer such that 0 ≤ n ≤ i. Suppose also x ∈ (rn, sn). Then there
is an interval I ⊂ (un, vn) \⋃

j∈μ(n,i)[uj , vj ] such that x ∈ int(f (I )).
Observe that (10)0 is satisfied.

Let i be a positive integer. Suppose (rj )
i−1
j=0, (sj )

i−1
j=0, (τj )

i−1
j=0, (uj )

i−1
j=1, and (vj )

i−1
j=1

satisfying the above conditions have been constructed. We will now construct ri , si , τi , ui ,
and vi .

Set ri = τl(i)
−1(pi). Using (10)i−1 with n = l(i) and x = ri , we get an interval I ⊂

(ul(i), vl(i)) \⋃
j∈μ(l(i),i−1)[uj , vj ] such that ri ∈ int(f (I )). Let λ be a positive number

satisfying the following conditions:
(λ-1) λ < 2−i ;
(λ-2) diam(τl(i)([ri − λ, ri + λ])) < 2−i ; and
(λ-3) [ri − λ, ri + λ] ⊂ f (I).
Let β < λ and ξ < β/4 be positive numbers as in Definition 4.4. Set a = ri − 2ξ and
b = ri + 2ξ . Clearly, [a, b] ⊂ (ri − λ, ri + λ) ⊂ f (I). Using Proposition 4.2, we get
points c, d ∈ I such that f (c) = a, f (d) = b, and f (t) ∈ (a, b) for each t between c
and d. Since b − a = 4ξ < β and f is ξ -crooked between a and b, there is a point c′
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between c and d, and there is a point d ′ between c′ and d such that |b − f (c′)| ≤ ξ and
|a − f (d ′)| ≤ ξ . It follows that

ri + ξ ≤ f (c′) < ri + 2ξ = b and a = ri − 2ξ < f (d ′) ≤ ri − ξ .

We will now consider the cases c < d and d < c to define ui , vi , and an interval
J ⊂ (ul(i), vl(i)) \⋃

j∈μ(l(i),i)[uj , vj ] such that

f ([ui , vi]) ⊂ int(f (J )). (∗)
Case c < d. In this case, c < c′ < d ′ < d. Let ui be the greatest number in the interval

[c, c′] such that f (ui) = ri , and let vi be the least number in the interval [c′, d ′] such that
f (vi) = ri . Also, set J = [d ′, d].

Case d < c. In this case, d < d ′ < c′ < c. Let ui be the greatest number in the interval
[d ′, c′] such that f (ui) = ri , and let vi be the least number in the interval [c′, c] such that
f (vi) = ri . Also, set J = [d , d ′].

Observe that (∗) is satisfied in both cases. To conclude the construction, we set
si = max(f [ui , vi]) as required in condition (7)i . It is easy to check that conditions
(1)i–(9)i are true.

Proof of (10)i . If n = i, then μ(n, i) = ∅. So, (un, vn) \⋃
j∈μ(n,i)[uj , vj ] = (un, vn)

and (10)i follows from (5)i and (7)i . So we may assume that n < i. Using (10)i−1 for
x ∈ (un, vn), we infer that there is an interval Ii−1 ⊂ (un, vn) \⋃

j∈μ(n,i−1)[uj , vj ] such
that x ∈ int(f (Ii−1)). If n �= l(i), then i /∈ μ(n, i), μ(n, i) = μ(n, i − 1), and (10)i is
satisfied by letting I = Ii−1. So, we may assume that n = l(i). To finish the proof of (10)i ,
we will consider the following two cases x /∈ f ([ui , vi]) and x ∈ f ([ui , vi]).

Case x /∈ f ([ui , vi]). In this case, there is an interval L ⊂ f (Ii−1) such that x ∈ int(L)

and L ∩ f ([ui , vi]) = ∅. It follows from Proposition 4.2 that there is an interval I ⊂ Ii−1

such that f (I) = L. Observe that this choice of I satisfies condition (10)i .
Case x ∈ f ([ui , vi]). In this case, set I = J and observe that (10)i follows from (∗).
The construction of (ri)

∞
i=1, (si)

∞
i=1, (τi)

∞
i=1, (ui)

∞
i=1, and (vi)

∞
i=1 satisfying (1)i–(10)i

is now complete.
Let h0 be a real function of

⋃∞
j=0 Aj defined by h0(x) = τi

−1(x) for x ∈ Ai for every
non-negative integer i. Observe that conditions (1)i–(7)i guarantee that h0 is a well-defined
function onto [0, 1] satisfying the assumptions of Proposition 3.11. Thus, there is a unique
extension of h0 to a continuous mapping h : D→ [0, 1].

Since τi
−1 is an embedding of Ai into [0, 1] for each non-negative integer i, it follows

from Corollary 3.6 that int[0,1](h(U)) �= ∅ for each non-empty open set U ⊂ D.
For each non-negative integer i, we will define a function gi : [0, 1]→⋃i

j=0 Aj by a
recursive formula. Set g0 = τ0 ◦ f and, for each positive integer i, let gi be defined by

gi(t) =
{

gi−1(t) if t ∈ [0, 1] \ (ui , vi),

τi ◦ f (t) if t ∈ (ui , vi).

The following claim is an easy consequence of the above definition.

CLAIM 4.5.1. Suppose n and i are integers such that 0 ≤ n < i. Then, gi(t) = gn(t) for
each t ∈ [0, 1] \⋃i

j=n+1(uj , vj ).
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CLAIM 4.5.2. Let i be a non-negative integer. Then the following properties are true.
(P-1)i gi is a continuous surjection onto

⋃i
j=0 Aj .

(P-2)i h ◦ gi = f .
(P-3)i Suppose n is an integer such that 0 ≤ n ≤ i, then:

(i)n gi(t) = gn(t) = τn ◦ f (t) for t ∈ [un, vn] \⋃
j∈μ(n,i)(uj , vj );

(ii)n gi([un, vn] \⋃
j∈μ(n,i)(uj , vj )) = An; and

(iii)n gi((un, vn)) ⊂ Cn.

Proof of Claim 4.5.2. We will prove the claim by induction with respect to i.
Observe that (P− 1)0–(P− 3)0 are true. Suppose that i is a positive integer such that
(P− 1)i−1–(P− 3)i−1 are satisfied. We will prove (P− 1)i–(P− 3)i.

Clearly, l(i) < i. If j ∈ μ(l(i), i − 1), then j �≺ i by Proposition 3.8. So, it follows from
(9)i used with n = j that [ui , vi] ∩⋃

j∈μ(l(i),i−1)[uj , vj ] = ∅. Using (9)i again, this time
with n = l(i), we get the result that [ui , vi] ⊂ (ul(i), vl(i)). It follows from (2)l(i), (3)i ,
(5)i , and (P− 3)i−1 (i)l(i) that gi−1(ui) = gi−1(vi) = pi . So, gi−1 restricted to [0, 1] \
(ui , vi) and τi ◦ f defined on [ui , vi] are two continuous functions agreeing on the inter-
section of their (compact) domains. Consequently, gi , which is the union of these two func-
tions, is continuous on the interval [0, 1]. Also, observe that this definition of gi guarantees
(P− 3)i (i)i. If 0 ≤ n < i, then (P− 3)i (i)n follows automatically from (P− 3)i−1 (i)n

because μ(n, i − 1) ⊂ μ(n, i). So, (P− 3)i (i)n is true for all integers n such that
0 ≤ n ≤ i. The property (P− 3)i (ii)n follows from continuity of gi , (P− 3)i (i)n

and (10)i .
Proof of (P− 3)i (iii)n. Observe that (P− 3)i (iii)i is true since gi((ui , vi)) ⊂ Ai \

{pi} ⊂ Ci . Hence, it is enough to prove (P− 3)i (iii)n for each non-negative integer n < i.
In this case, we may use (P−3)i−1 (iii)n to infer that gi−1((un, vn)) ⊂ Cn. Suppose n �≺ i.
Then [ui , vi] ∩ [un, vn] = ∅ by (9)i , and gi | [un, vn] = gi−1 | [un, vn]. So gi((un, vn)) =
gi−1((un, vn)) ⊂ Cn. Hence, we may assume that n ≺ i. In such a case, [ui , vi] ⊂
(un, vn) by (9)i . Consequently, gi(ui) = gi−1(ui) = τn ◦ f (ui) = pi belongs to Ci .
Thus, Ai ⊂ Ci since pn /∈ Ai . This implies that gi([ui , vi]) ⊂ Ai ⊂ Cn. It follows that
gi([un, vn]) ⊂ Cn since gi([un, vn] \ (ui , vi)) = gi−1([un, vn] \ (ui , vi)). This completes
the proof of (P− 3)i (iii)n and the proof of (P−3)i in general.

It follows from (P− 3)i (ii)n that gi([0, 1]) =⋃i
j=0 Aj . So, (P− 1)i is true since we

have already proven that gi is continuous.
To show (P− 2)i, recall that h |⋃∞j=0 Aj = h0 and h0(x) = τi

−1(x) for all x ∈ Ai .
It follows from the definition of gi that gi(t) = τi ◦ f (t) ∈ Ai for all t ∈ (ui , vi).
So, h ◦ gi(t) = τi

−1 ◦ τi ◦ f (t) = f (t) for all t ∈ (ui , vi). Now, (P− 2)i follows from
(P− 2)i−1. Hence, the claim is true.

CLAIM 4.5.3. (gi) is a Cauchy sequence.

Proof of Claim 4.5.3. Let ε be an arbitrary positive number. It follows from Theorem 3.10
that there is an integer m such that 2−m < ε and diam(Cj ) < ε/2 for each j ≥ m. Let i be
an arbitrary integer greater than m and let t be an arbitrary element of [0, 1]. To complete
the proof of the claim, we will show that

d(gi(t), gm(t)) < ε. (∗0)
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If t /∈⋃i
j=m+1(uj , vj ), then gi(t) = gm(t) by Claim 4.5.1, and the equation (∗0) is

true. So, we may assume that t ∈⋃i
j=m+1(uj , vj ). Let n be the least integer such

that m < n ≤ i and t ∈ (un, vn). It follows from (P− 3)i (iii)n that gi(t) ∈ Cn. Since
pn ∈ cl(Cn) by Proposition 3.9(2), we infer that

d(gi(t), pn) ≤ diam(Cn) < ε/2. (∗1)

Clearly, l(n) < n ≤ i. Since t ∈ (un, vn) ⊂ (ul(n), vl(n)) by (9)n, the choice of n implies
that l(n) ≤ m.

Suppose there exists an integer j such that l(n) ≤ m and t ∈ (uj , vj ). Then, since m < n

and t ∈ (un, vn) ∩ (uj , vj ) ∩ (ul(n), vl(n)), (9)j and (9)n imply that l(n) ≺ j ≺ n, which
contradicts Proposition 3.8. So, t /∈⋃m

j=l(n)+1(uj , vj ) and Claim 4.5.1 implies

gl(n)(t) = gm(t). (∗2)

Using (2)n, (3)n, and (5)n, we infer that τl(n)(f (un)) = pn. It follows from
(P−3)l(n) (i)l(n) that gl(n)(un) = τl(n)(f (un)) = pn and gl(n)(t) = τl(n)(f (t)). We now
apply (8)n to estimate the distance between gl(n)(t) and pn in the following way:
d(pn, gl(n)(t)) = d(τl(n)(f (un)), τl(n)(f (t))) ≤ diam(τl(n)(f [un, vn])) < 2−n. Since
2−n ≤ 2−m−1 < ε, we get the result

d(pn, gl(n)(t)) < ε/2. (∗3)

Combining equations (∗1), (∗3), and (∗2), we infer that

d(gi(t), gm(t)) ≤ d(gi(t), pn)+ d(pn, gl(n)(t))+ d(gl(n)(t), gm(t)) < ε/2+ ε/2+ 0.

Hence, Claim 4.5.3 is true and the proof of the claim is complete.

Let g = limi→∞ gi . Clearly, g is continuous as the limit of a uniformly convergent
sequence of continuous functions into a compact space D. Observe that g([0, 1]) = D

since
⋃∞

j=0 Aj is dense in D and gi is a surjection onto
⋃i

j=0 Aj by (P−1)i. Finally,
observe that the sequence (h ◦ gi) converges uniformly to h ◦ g since the sequence (gi)

converges uniformly to g and h is continuous. However, h ◦ gi = f for all i. Consequently,
h ◦ g = f . This completes the proof of the lemma in the case for when D is not a tree.

Sketch of Proof in the case when D is a tree. In this case, D may be represented as
a finite union

⋃k
i=0 Ai , see Proposition 3.1. Set r0, s0, τ0, u0, and v0 the same way

as before and then construct (ri)
k
i=1, (si)

k
i=1, (τi)

k
i=1, (ui)

k
i=1, and (vi)

k
i=1 satisfying

conditions (1)i–(10)i for all positive integers i ≤ k. Note that (8)i and other estimates of
distance by 2−i are irrelevant in this finite case and may be omitted. After the kth step of the
construction, define h : D→ [0, 1] by h(x) = τi

−1(x) for x ∈ Ai for every non-negative
integer i ≤ k. Then construct g0, g1, . . . , gk using the same recursive formula as above.
Finally, set g = gk and observe that h and g defined this way satisfy the lemma.

5. A transitive map on [0, 1] with the small folds property
W. R. R. Transue and the second author of the present paper constructed, in [33], a
transitive map f of [0, 1] onto itself such that lim←−([0, 1], f ) is homeomorphic to the
pseudo-arc. It is possible, but not entirely clear, that the map on [0, 1] constructed in
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[33] has the small folds property. In this section, we will tweak the original construction
very slightly to be able to show that the small folds property is satisfied. For the reader’s
convenience, and to make this paper self-contained, we include Appendix A, where we cite
three results from [33] needed in this section, Proposition 5 on p. 1166, Lemma on p. 1167,
and Theorem on p. 1169.

5.1. Summary of the original construction in [33]. The two key elements of that
construction are [33, Proposition 5, p. 1166] and [33, Lemma, p. 1167], which are stated in
this paper as Proposition A.1 and Lemma A.2, respectively. The lemma is used repeatedly
by the inductive construction in the proof of the main result in [33] (Theorem on p. 1169),
stated in this paper as Theorem A.3. In turn, the lemma uses Proposition 5 in each pass.
We will summarize the proposition by briefly describing arguments passed to the routines
and the output produced by them.
• [33, Proposition 5, p. 1166]. Input: positive numbers ε < 1 and γ < ε/4. Output:

A piecewise linear continuous function g mapping [0, 1] onto itself such that the
distance between g and the identity is estimated by ε, and g is γ -crooked between
all a, b ∈ [0, 1] such that |a − b| < ε. (See the original statement of the proposition
in [33] for more essential properties of g.)

A continuous and piecewise linear function f of [0, 1] onto itself is called
admissible if |f ′(t)| ≥ 4 for every t such that f ′(t) exists and for every 0 ≤ a < b ≤ 1,
there is a positive integer m such that f m([a, b]) = [0, 1]. For example, the second
iteration of the full tent map is admissible.

• [33, Lemma, p. 1167]. Input: an admissible map f and positive numbers η and δ.
Output: A positive integer n and an admissible map F such that f and F are η close, Fn

is δ-crooked. Moreover, if 0 ≤ a < b ≤ 1 and b − a ≥ η, then f ([a, b]) ⊂ F([a, b])
and Fn([a, b]) = [0, 1].

In the proof of the lemma, properties of the input are used to select a positive
number ε, a positive integer n, and a positive number γ . (The order of this choice
is important. The choice of n depends on that of ε. The choice of γ depends on εn.)
Then [33, Proposition 5, p. 1166] is used to obtain g. The function F = f ◦ g satisfies
the lemma.

Since f is piecewise linear, there is a positive number α such that if 0 ≤ a < b ≤ 1 and
b − a < α, then between a and b, there is a point c such that f is linear on both intervals
[a, c] and [c, b]. Since |f ′(t)| ≥ 4 for t ∈ (a, c) ∪ (c, b), it follows that

diam(f ([a, b])) ≥ 2(b − a) for every a, b with 0 ≤ a < b ≤ 1, b − a < α. (∗∗)
Also, there is a number s such that |f ′(t)| < s for every t such that f ′(t) exists. In the proof
of [33, Lemma, p. 1167], ε is selected to be exactly η/s. Since f is admissible, there is a
positive integer n such that if 0 ≤ a < b ≤ 1 and b − a > ε/4, then f n([a, b]) = [0, 1].
Again, in the proof of [33, Lemma, p. 1167], γ is selected to be a positive real number less
than min(α, s−n, ε/4, δs−n/5).

Observation 5.1. We may set ε to be any positive number ≤ η/s and apply the same
proof as it is written in [33] without any need for an additional change. Another degree of
freedom in the proof of the lemma is the choice of γ . After ε and n are selected, γ may be
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chosen to be any positive number less than min(α, s−n, ε/4, δs−n/5). This will allow us
to strengthen the lemma by imposing an additional condition on γ .

In the proof of the main result in [33] (Theorem on p. 1169), a sequence of admissible
functions f1, f2, . . . and a sequence of positive integers n(1), n(2), . . . are constructed by
induction to satisfy the following three conditions:

(i) |fi+1(t)− fi(t)| < 2−i for each t ∈ [0, 1];
(ii) f

n(k)
i is (2−k − 2−k−i )-crooked for each positive integer k ≤ i; and

(iii) if 0 ≤ a < b ≤ 1 and b − a ≥ 2−k , then f
n(k)
i ([a, b]) = [0, 1] for each positive

integer k ≤ i.
For each integer i ≥ 2, [33, Lemma, p. 1167] is used with f = fi−1 and with a certain

choice of η and δ. Then n(i) and fi are defined by setting n(i) = n and fi = F , where n
and F are output by the lemma.

The first condition in the construction guarantees that the sequence (fi) converges
uniformly. The second condition implies that the inverse limit of copies of [0, 1] with
limi→∞ fi , as the bonding map is the pseudo-arc. Finally, limi→∞ fi is transitive by
condition (iii) and Theorem 6 of [6].

5.2. Adjustments to the construction. We will use Observation 5.1 to obtain the
following lemma.

LEMMA 5.2. (Replacement for [33, Lemma, p. 1167]) Let f : [0, 1]→ [0, 1] be an
admissible map. Let η, δ, and λ be three positive numbers. Then there is an integer n and
there are continuous maps g and F of [0, 1] onto itself satisfying the following conditions:
(1) F = f ◦ g;
(2) |F(t)− f (t)| < η and |g(t)− t | < η for each t ∈ [0, 1];
(3) Fn is δ-crooked;
(4) if 0 ≤ a < b ≤ 1 and b − a ≥ η, then f j ([a, b]) ⊂ Fj ([a, b]) for each positive

integer j;
(5) if 0 ≤ a < b ≤ 1 and b − a ≥ η, then Fn([a, b]) = [0, 1];
(6) F is admissible; and
(7) there exist positive numbers β < λ and ξ < β/4 satisfying the following condition:

for every a and b such that |a − b| < β, F is ξ -crooked between a and b.

Proof. Let α and s be defined as above Observation 5.1. Let ε be a positive number less
than min(η/s, α). From (∗∗), the following observation can be made.

Observation 5.2.1. Suppose that a, b, a′, b′ ∈ [0, 1] are such that |a − b| < 2ε and
[a′, b′] ⊂ f−1([a, b]). Then |a′ − b′| < ε.

Let n be defined in the same way as above Observation 5.1, that is, if 0 ≤ a < b ≤ 1 and
b − a > ε/4, then f n([a, b]) = [0, 1]. Let β be a positive number less than min(2ε, λ),
let ξ be a positive number less than β/4, and let γ be a positive number less than
min(α, s−n, ε/4, δs−n/5, ξ/s). As it was done in the original proof, we now use [33,
Proposition 5] to get the map g and define F = f ◦ g. (Notice that |g(t)− t | could be
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estimated in condition (2) by η/s instead of just by η, as it is stated in that condition.)
The proof of all conditions except for conditions (4) and (7) was given in [33] and will be
omitted here. We will only prove conditions (4) and (7).

Proof of condition (4). Recall that the number s was defined in [33] such that |f ′(t)| < s

for all t such that f ′(t) is defined. Observe that s > 4 because f is admissible. It was
observed in [33] that diam(f (C)) ≤ s diam(C) for every C ⊂ [0, 1]; see item (2) on
p. 1167 in [33].

Let a and b be such that 0 ≤ a < b ≤ 1 and b − a ≥ η. Since ε < η/s < η/4, b − a ≥
4ε > ε/4. It follows from the choice of n that f n([a, b]) = [0, 1]. Observe that

diam(f j ([a, b])) ≥ γ for each non-negative integer j . (∗)
Otherwise, diam(f j+n([a, b])) ≤ sn diam(f j ([a, b])) < snγ , which is a contradiction
because f j+n([a, b]) = [0, 1] and snγ < sns−n = 1.

[33, Proposition 5(v)] states that A ⊂ g(A) for each interval A ⊂ [0, 1] such that
diam(A) ≥ γ . Applying f to both sides of the inclusion A ⊂ g(A), we get f (A) ⊂
f ◦ g(A) = F(A). Hence,

f (A) ⊂ F(A) for each interval A ⊂ [0, 1] such that diam(A) ≥ γ . (∗∗)
We will prove the inclusion

f j ([a, b]) ⊂ Fj ([a, b]) (Ij)

by induction with respect to j. It follows from equation (∗) for j = 0 that b − a ≥ γ . So
we may use equation (∗∗) with A = [a, b] to get (I1). Now, suppose j ≥ 2 and (Ij−1) is
true. We need to show (Ij ). Applying f to both sides of the inequality (Ij−1), we infer
that f j ([a, b]) ⊂ f (F j−1([a, b])). Since it follows from equation (∗) for j − 1 and (Ij−1)
that diam(F j−1([a, b])) ≥ γ , we may use equation (∗∗) with A = Fj−1([a, b]) to get
f (F j−1([a, b])) ⊂ F(F j−1([a, b])) = Fj ([a, b]). Hence,

f j ([a, b]) ⊂ f (F j−1([a, b])) ⊂ Fj ([a, b]).

So, (Ij ) is true and the proof of condition (4) is complete.

Proof of (7). Take any a and b such that |a − b| < β. We need to show that F = f ◦ g is
ξ -crooked between a and b. Take c, d ∈ [0, 1] such that f ◦ g(c) = a and f ◦ g(d) = b.
Let c0 be the last point in [c, d] such that f ◦ g(c0) = a. Clearly, c0 ∈ [c, d). Let d0 be
the first point in [c0, d] such that f ◦ g(d0) = b. Clearly, f ◦ g([c0, d0]) = [a, b] and
f ◦ g((c0, d0)) = (a, b). Consequently, g([c0, d0]) = [g(c0), g(d0)] and g((c0, d0)) =
(g(c0), g(d0)). Since |a − b| < β < 2ε, it follows from Observation 5.2.1 that |g(c0)−
g(d0)| < ε. By [33, Proposition 5(ii)], g is γ -crooked between g(c0) and g(d0). So,
there exists c′ between c0 and d0, and there exists d ′ between c′ and d0 such that
|g(d0)− g(c′)| < γ and |g(c0)− g(d ′)| < γ . It follows from the choice of c0 and d0 that
c′ is between c and d, and d ′ is between c′ and d. Since diam(f (C)) < s diam(C) for
every non-empty set C ⊂ [0, 1] by [33, Equation (2), p. 1167], γ < ξ/s, f ◦ g(d0) = b,
and f ◦ g(c0) = a, we infer that |b − f ◦ g(c′)| < ξ and |a − f ◦ g(d ′)| < ξ . Thus, F =
f ◦ g is ξ -crooked between a and b.
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PROPOSITION 5.3. Let f and g be continuous functions of [0, 1] into [0, 1]. Suppose that f
is ξ -crooked between a and b for some a, b ∈ [0, 1] and a positive number ξ . Then f ◦ g

is also ξ -crooked between a and b.

Proof. Suppose there are c, d ∈ [0, 1] such that f ◦ g(c) = a and f ◦ g(d) = b. Since
f is ξ -crooked between a and b for some a, b ∈ [0, 1], there is a point c1 between g(c)

and g(d), and there is a point d1 between c1 and g(d) such that |b − f (c1)| ≤ ξ and
|a − f (d1)| ≤ ξ . Since g is continuous, there is a point c′ between c and d, and there is
a point d ′ between c′ and d such that g(c′) = c1 and g(d ′) = d1. Observe that |b − f ◦
g(c′)| = |b − f (c1)| ≤ ξ and |a − f ◦ g(d ′)| = |a − f (d1)| ≤ ξ .

PROPOSITION 5.4. Let (gi)
∞
j=1 be a sequence of continuous functions of [0, 1] into

[0, 1]. For all integers i and j such that 1 ≤ i < j , let gi,j denote the composition gi ◦
gi+1 ◦ . . . gj . Additionally, set gi,i = gi . Suppose that for each non-negative integer i, the
sequence (gi,j )

∞
j=i uniformly converges. Let gi,∞ = limj→∞ gi,j . Then gi,j ◦ gj+1,∞ =

gi,∞ for all positive integers i and j such that i ≤ j .

In the next proposition, we will use the same notation as in the previous one.

PROPOSITION 5.5. Let (gi)
∞
j=1 be a sequence with the same properties as in

Proposition 5.4. Suppose also that for each λ > 0, there is a positive integer j, and
there exist positive numbers β < λ and ξ < β/4 satisfying the following condition:

for every a and b such that |a − b| < β, g1,j is ξ -crooked between a and b. (∗1,j)

Then, g1,∞ has the small folds property.

Proof. To prove the proposition, it is enough to show (∗1,∞) that is equation (∗1,j)
with g1,j replaced by g1,∞. For that purpose, observe that g1,∞ = g1,j ◦ gj+1,∞ by
Proposition 5.4. Now, use Proposition 5.3 with f = g1,j and g = g1,∞.

The following proposition is well known. We state it here for convenience. Note that F
in this proposition does not have to be continuous. Also, a similar proposition with [0, 1]
replaced by an arbitrary compact metric space is true.

PROPOSITION 5.6. Suppose n is a positive integer and f : [0, 1]→ [0, 1] is a continuous
function. Then, for each ε > 0, there exists η > 0 with the property |f n(t)− Fn(t)| < ε

for all t ∈ [0, 1] and each function F : [0, 1]→ [0, 1] such that |f (t)− F(t)| < η for all
t ∈ [0, 1].

Proof. The proposition is trivial if n = 1. Suppose n > 1 and the proposition is true for
n− 1. We will prove that it is also true for n.

Take an arbitrary ε > 0. Since f is continuous, there is δ > 0 such that |f (a)− f (b)| <
ε/2 for all a, b ∈ [0, 1] such that |a − b| < δ. Using the proposition with n− 1 and
ε replaced by δ, we infer that there is a positive number η ≤ ε/2 with the property
|f n−1(t)− Fn−1(t)| < δ for all t ∈ [0, 1] and each function F : [0, 1]→ [0, 1] such that
|f (t)− F(t)| < η for all t ∈ [0, 1]. Suppose F is a specific function such that |f (t)−
F(t)| < η for all t ∈ [0, 1]. In particular, |f (Fn−1(t))− F(Fn−1(t))| < η ≤ ε/2 for all
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t ∈ [0, 1]. It follows from the choices of η and δ that |f (f n−1(t))− f (Fn−1(t))| < ε/2
for all t ∈ [0, 1]. Consequently, |f n(t)− Fn(t)| = |f n(t)− f (Fn−1(t))+ f (Fn−1(t))−
Fn(t)| ≤ |f (f n−1(t))− f (Fn−1(t))| + |f (Fn−1(t)) − F(Fn−1(t))| < ε/2 + ε/2 = ε

for all t ∈ [0, 1].

THEOREM 5.7. There is a map f : [0, 1]→ [0, 1] such that:
(1) the inverse limit of copies of [0, 1] with f as the bonding map is a pseudo-arc;
(2) f is topologically exact; and
(3) f has the small folds property.

Proof. The proof of this theorem is very similar to that of [33, Theorem, p. 1169]. As it was
done in [33], we construct a sequence of positive integers n(1), n(2), . . . and a sequence
of admissible functions f1, f2, . . . of [0, 1] onto itself. In [33], the lemma was used with
f = fi−1 to define fi as F = f ◦ g for i ≥ 2. We will use here Lemma 5.2 instead and
remember g as gi for future use. So, we will also construct another sequence of continuous
functions g2, g3, . . . of [0, 1] onto itself. Additionally, we set g1 = f1. This allows us to
use the notation from Proposition 5.4. In particular, fi = g1,i for each integer i.

Our construction will have the following properties for each positive integer i:
(i) if i > 1, then |gk,i−1(t)− gk,i (t)| < 2−i for each t ∈ [0, 1] and each positive integer

k ≤ i − 1;
(ii) f

n(k)
i is (2−k − 2−k−i )-crooked for each positive integer k ≤ i;

(iii) if 0 ≤ a < b ≤ 1 and b − a ≥ 2−k , then f
n(k)
i ([a, b]) = [0, 1] for each positive

integer k ≤ i; and
(iv) there are positive numbers β < 2−i and ξ < β/4 satisfying the condition: for every

a and b such that |a − b| < β, gi
1 = fi is ξ -crooked between a and b.

To construct n(1) and f1, we use Lemma 5.2 with any admissible map f, η = 1/2,
δ = 1/4, and λ = 1/2. Then we set n(1) = n, f1 = F , and g1 = F , where n and F are
from the lemma. We assume that n(1), . . . , n(i − 1), f1, . . . , fi−1, and g1, . . . , gi−1

have already been constructed for some integer i ≥ 2. We will construct n(i), fi , and gi .
Since each of the functions g1, . . . , gi−1 is continuous, there is a positive number η′

with the property that if g : [0, 1]→ [0, 1] is a function such that |g(t)− t | < η′ for all
t ∈ [0, 1], then |gk,i−1(t)− gk,i−1 ◦ g(t)| < 2−i for each positive integer k ≤ i − 1 and all
t ∈ [0, 1].

For each positive integer k ≤ i − 1, use Proposition 5.6 with n = n(k), f = Fi−1, and
ε = 2−k−i−1 to get a positive number ηk with the property

|f n(k)
i−1 (t)− Fn(k)(t)| < 2−k−i−1 for all t ∈ [0, 1] (∗)

and each function F : [0, 1]→ [0, 1] such that |fi−1(t)− F(t)| < ηk for all t ∈ [0, 1].
Observe that it follows from condition (ii) for i − 1, equation (∗), and [33, Proposition 2]
that

Fn(k) is (2−k − 2−k−i )-crooked. (∗∗)
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Let η be a positive number less than min(2−i , η′, η1, η2, . . . , ηi−1). Now we use
Lemma 5.2 with η we defined, f = fi−1, δ = 2−i − 2−i−i , and λ = 2−i . Then we set
n(i) = n, fi = F , and gi = g, where n, F and g are obtained from the lemma. Clearly,
fi = fi−1 ◦ gi and fi = g1,i . Observe that condition (i) is satisfied since η < η′. Condition
(ii) follows from equation (∗∗) since η < ηk for each positive integer k ≤ i − 1. To
prove condition (iii), it is enough to observe that if b − a ≥ 2−i > η, then f

j

i−1([a, b]) ⊂
f

j
i ([a, b]) for each positive integer j, see Lemma 5.2(4). Finally, condition (iv) follows

from Lemma 5.2(7) since λ = 2−i .
By condition (i), the sequence (gi,j )

∞
j=i converges uniformly for each positive integer i.

In particular, (g1,j )
∞
j=1 = (fj )

∞
j=1 converges uniformly. Denote its limit by f. Our proof of

Theorems 5.7(1) and 5.7(2) exactly follows [33]. Applying Propositions 1 and 3 in [33], we
infer that f n(k) is (2−k)-crooked for each positive integer k. Applying Propositions 1 and
4 in [33], we get the result that the inverse limit of copies of [0, 1] with f as the bonding
map is a pseudo-arc. Condition (iii) of the construction implies that if 0 ≤ a < b ≤ 1 and
b − a ≥ 2−k , then f n(k)([a, b]) = [0, 1]. It follows that f is topologically exact. Since the
sequence (gi,j )

∞
j=i converges uniformly for each positive integer i, condition (iv) of the

construction allows us to use Proposition 5.5 and get the result that f has the small folds
property.

THEOREM 5.8. There exists a topologically mixing map f of [0, 1] onto itself such that the
inverse limit space lim←−([0, 1], f ) is the pseudo-arc, and for any non-degenerate dendrite D,
there exist onto maps g : [0, 1]→ D and h : D→ [0, 1] such that h ◦ g = f . Moreover,
the map F = g ◦ h of D onto itself is topologically mixing, the natural extensions of f and
F are conjugate, and the inverse limit space lim←−(D, F) is the pseudo-arc.

Proof. The theorem follows easily from Lemma 4.5, Theorem 5.7, and
Proposition 4.1.

Our construction gives, in fact, the following stronger result.

THEOREM 5.9. There exists a topologically mixing map f of [0, 1] onto itself such
that the inverse limit space lim←−([0, 1], f ) is the pseudo-arc, and for any k ∈ N and
any non-degenerate dendrites D1, . . . , Dk , there exist onto maps gi : [0, 1]→ Di

and hi : Di → [0, 1] for i = 1, . . . , k, such that hi ◦ gi = f . Moreover, the map
Fi = gi ◦ · · · ◦ hi of Di onto itself is topologically mixing, the natural extensions of
f and Fi are conjugate, and the inverse limit space lim←−(Di , Fi) is the pseudo-arc for
i = 1, . . . , k.

I I I I I

D1 D2 D1 D2 D1

g1

f=h2◦g2

g2

f=h1◦g1

g1

f=h2◦g2

g2

f=h1◦g1

g1
h2

g1◦h2

h1

g2◦h1

F1=g1◦h2◦g2◦h1

h2

g1◦h2

h1

g2◦h1

F1=g1◦h2◦g2◦h1
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6. Final remarks
After the initial submission of the present paper, the first and third named authors proved
that the inverse limit models in [10] are optimal indeed; that is, the Lozi and Hénon maps
considered therein are not conjugate to natural extensions of maps on dendrites whose sets
of branch points are not dense (see appendix in [10]).

The following questions appear naturally.

Question 6.1. Is there an analogue of Theorem 5.8 with interval map f such that:
(a) lim←−([0, 1], f ) is not a pseudo-arc?;
(b) f has finite topological entropy?;
(c) f has zero topological entropy?

Question 6.2. Suppose that M1 and M2 are two non-homeomorphic n-manifolds (or
branched n-manifolds) with n ≥ 2. Do there exist surjective maps {fi : Mi → Mi}i=1,2

whose natural extensions σf1 , and σf1 are conjugate?
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A. Appendix
For a positive number r and A ⊂ [0, 1], let B(A, r) = {x ∈ [0, 1] : there exists y ∈ A with
|x − y| ≤ r}.

PROPOSITION A.1. [33, Proposition 5, p. 1166] Let ε < 1 and γ < ε/4 be two positive
numbers. Then there is a piecewise linear and continuous map g : [0, 1]→ [0, 1] such
that
(i) |t − g(t)| < ε/2+ γ for each t ∈ [0, 1],

(ii) for every a and b such that |a − b| < ε, g is γ -crooked between a and b, and for
each subinterval A of [0, 1] we have

(iii) diam(g(A)) ≥ diam(A), and if, additionally, diam(A) ≥ γ , then
(iv) diam(g(A)) > ε/2,
(v) A ⊂ g(A), and

(vi) g(B) ⊂ B(g(A), r + γ ) for each real number r and each set B ⊂ B(A, r).

LEMMA A.2. [33, Lemma, p. 1167] Let f : [0, 1]→ [0, 1] be an admissible map. Let
η and δ be two positive numbers. Then there is an admissible map F : [0, 1]→ [0, 1]
and there is a positive integer n such that Fn is δ-crooked and |F(t)− f (t)| < η for
every t ∈ [0, 1]. Moreover, if 0 ≤ a < b ≤ 1 and b − a ≥ η, then f ([a, b]) ⊂ F([a, b])
and Fn([a, b]) = [0, 1].

THEOREM A.3. [33, Theorem, p. 1169] There is a transitive map f : [0, 1]→ [0, 1] such
that the inverse limit of copies of [0, 1] with f as the bonding map is a pseudoarc.
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