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Abstract

Using the special value at u = 1 of Artin–Ihara L-functions, we associate to every Z-cover of a finite
connected graph a polynomial, which we call the Ihara polynomial. We show that the number of spanning
trees for the finite intermediate graphs of such a cover can be expressed in terms of the Pierce–Lehmer
sequence associated to a factor of the Ihara polynomial. This allows us to express the asymptotic growth
of the number of spanning trees in terms of the Mahler measure of this polynomial. Specialising to the
situation where the base graph is a bouquet or the dumbbell graph gives us back previous results in
the literature for circulant and I-graphs (including the generalised Petersen graphs). We also express the
p-adic valuation of the number of spanning trees of the finite intermediate graphs in terms of the p-adic
Mahler measure of the Ihara polynomial. When applied to a particular Z-cover, our result gives us back
Lengyel’s calculation of the p-adic valuations of Fibonacci numbers.
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1. Introduction

The aim of the present paper is to explain how the number of spanning trees in
a Z-cover of finite graphs evolves, by providing an explicit recipe to compute the
invariants that describe this evolution in terms of a polynomial that can be associated
to the cover in question.
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2 R. Pengo and D. Vallières [2]

1.1. Historical remarks. Before describing in detail the main results of this paper,
let us provide an overview of the main questions that motivated the present paper.

Iwasawa theory is concerned with the study of the evolution of certain invariants
within a tower of objects (see [18] for a comprehensive survey). The first example
of this is provided by the evolution, as n→ +∞, of the group of Fn-rational points
of the Jacobian of a curve defined over a finite field F, where Fn ⊇ F is the unique
extension (up to isomorphism) of F having degree n. This example was studied by
Weil and led him to formulate his celebrated conjectures concerning the properties of
the zeta functions associated to varieties defined over a finite field. Iwasawa pursued
analogous investigations concerning the evolution of class groups of number fields in
a tower of cyclotomic extensions, which are akin to the extensions of a function field
that are obtained by increasing the field of constants, as explained in [47, page 188].
This initiated a large series of works that study the evolution of different invariants
along a tower of number fields whose Galois group is a p-adic Lie group (see [25] for
a survey). Moreover, Iwasawa theory has been extended to the study of the evolution of
invariants of many different arithmetic objects, such as elliptic curves or even general
motives (see [14] for one of the most general frameworks available at present).

In a somehow different direction, ideas from Iwasawa theory have found applica-
tions also outside number theory and algebraic geometry. More precisely, the torsion
subgroups of the first homology groups of a tower of hyperbolic 3-manifolds whose
base is the complement of a knot or a link have been shown to evolve according to a
pattern that is very similar to the one appearing in Iwasawa theory (see [21, 24, 55]).
Considering hyperbolic manifolds allows one to study towers whose groups of deck
transformations are not necessarily profinite, which is not possible when one studies
towers of number fields. For instance, one can consider a Z-cover of hyperbolic
manifolds. In this case, when the base of the tower consists of the complement of a
knot in the three-dimensional sphere, the Alexander polynomial of the knot in question
can be used to describe explicitly the growth of the torsion inside the first homology
groups of the manifolds in question, as proven by Ueki [56] in the p-adic case, and by
González-Acuña and Short [17] and Riley [46] in the Archimedean case. These results
are particularly interesting in view of the widely explored analogy between number
fields and knots (see [43] for a survey).

Finally, an analogue of Iwasawa theory has also been developed to study the
evolution of the so-called Picard group of degree zero of a finite connected graph
X, as one moves along a tower. This finite group, defined for instance in [6, Section
1.3], is analogous to the class group of a number field, or to the Picard group of degree
zero of a curve defined over a finite field. Its cardinality, usually denoted by κ(X), is
given by the number of spanning trees of the graph in question. The evolution of this
number when the finite graph in question varies along a tower has been the subject of
a series of papers written by several authors in collaboration with the second author of
the present paper [9, 35, 39, 40, 57]. More precisely, if � ∈ N is a rational prime and

· · · → X�n → · · · → X� → X1 = X (1-1)
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is a tower of finite graphs, such that each X�n/X is a Galois cover with Galois group
Z/�nZ, it was shown in [39, 40, 57] that there exist nonnegative integers μ�, λ� and an
integer ν� such that

ord�(κ(X�n )) = μ� · �n + λ� · n + ν� (1-2)

for n large enough, where ord� denotes the usual �-adic valuation on Q. Moreover, it
was shown in [35] that if p is another rational prime different than �, then there exist a
nonnegative integer μp and an integer νp such that

ordp(κ(X�n )) = μp · �n + νp (1-3)

for n large enough. Furthermore, given an integer d ≥ 1, and a tower of finite graphs

· · · → X(d)
�n → · · · → X(d)

�
→ X1 = X,

such that each X(d)
�n /X is a Galois cover with Galois group (Z/�nZ)d, it was shown in [9]

that there exists a polynomial P ∈ Q[t1, t2] of total degree at most d, and linear in t2,
such that

ord�(κ(X
(d)
�n )) = P(�n, n) (1-4)

for every n that is large enough. These advances in the Iwasawa theory of finite
graphs can be seen as being analogous to more classical theorems and conjectures
in the Iwasawa theory of number fields. More precisely, (1-2) is analogous to a
classical theorem of Iwasawa [22] for Z�-extensions of number fields, whereas (1-3)
is analogous to a result of Washington for the cyclotomic Z�-extension of an abelian
number field, proved in [58], and (1-4) is akin to a conjecture of Greenberg, which is
discussed by Cuoco and Monsky in [7, Section 7].

The results (1-2) and (1-4) were originally proven by working on the ‘analytic side’
of Iwasawa theory, that is, by constructing appropriate elements of the Iwasawa algebra

Z��Zd
�� � Z��T1, . . . , Td�.

However, Gonet [15, 16] reproved (1-2) using a module theoretical approach, which
was recently shown to be closely related to the analytic approach in the work of Kleine
and Müller [27]. More precisely, this work proves an analogue of the Iwasawa main
conjecture in the setting of graphs, which allows Kleine and Müller to prove (1-4) in
an algebraic way. Moreover, Kataoka’s recent work [26] studies the Fitting ideals that
appear in this setting, and Kleine and Müller’s more recent work [28] shows how to
adapt some of these ideas to the nonabelian setting.

To conclude this overview, let us mention that the recent work of Lei and Müller
[33, 34] shows how one can obtain natural towers of finite graphs by looking at
the isogeny graphs associated to elliptic curves defined over a finite field F. More
precisely, in [33], the authors consider �-isogeny graphs G̃m

N of ordinary elliptic curves
with a Γ1(N pm)-level structure, where p is the characteristic of F, while � is a prime
different from p and N is a fixed integer coprime to p. In particular, they fix an ordinary
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elliptic curve E defined over F, which also admits a nontrivial �-isogeny defined over
F, and they prove that there exists an integer m0 such that the connected components
(G̃m

N)+∞m=m0
of the graphs (G̃m

N)+∞m=m0
that contain a vertex corresponding to E give rise to

a Zp-tower. These graphs generalise the celebrated isogeny volcanoes, which are vastly
used in cryptography, and have been classified in recent work of Bambury et al. [1].
In a subsequent paper [34], Lei and Müller considered �-isogeny graphs of elliptic
curves with full Γ(N pn)-level structures, and they showed that their ordinary connected
components do not give rise to Galois covers, while their supersingular ones do, at least
when N ≤ 2 and for a positive proportion of primes p. In this case, the resulting tower
has a nonabelian Galois group, isomorphic to GL2(Zp), which therefore fits into the
framework developed by Kleine and Müller in [28].

1.2. Main results. Inspired by the results mentioned in the previous section, we
show in the present paper how the invariants appearing in (1-2) and (1-3) can be
explicitly computed when (1-1) comes from a Z-cover of finite graphs. More precisely,
every Galois cover of graphs Y/X with Galois group G can be constructed from a
voltage assignment, which is a function α : EX → G such that α(e) = α(e)−1 for every
e ∈ EX , where EX denotes the set of directed edges of X, and e denotes the inverse
of an edge (see Section 3.1 for further details). Indeed, if G is an arbitrary group and
α : EX → G is a voltage assignment, one can construct a graph X(G,α), introduced by
Gross in [19], which generalises the usual notion of a Cayley graph, and is endowed
with a canonical map X(G,α)→ X, which is a Galois cover if and only if X(G,α) is
connected, in which case, Gal(X(G,α)/X) � G. Moreover, if Y/X is a Galois cover of
finite graphs, with Galois group G, there exists a voltage assignment α : EX → G and
an isomorphism of covers Y/X � X(G,α)/X, as outlined in [9, Section 3].

Now, let G be an arbitrary group and α : EX → G be a voltage assignment. Then,
for every normal subgroup H � G that has finite index, one has a finite graph XH :=
X(G/H,αH), where αH : EX → G/H denotes the voltage assignment obtained by
composing αwith the natural projection map π : G� G/H. If each of the finite graphs
XH is connected, then it is a Galois cover of X, whose Galois group is canonically
isomorphic to G/H. In this setting, one of the main goals, which is related to the results
mentioned above, is to describe how the number of spanning trees κ(XH) depends on
H. When G = Zd

� for some d ≥ 1, this is the content of the results that we recalled in
the previous section, that lead to (1-2), (1-3) and (1-4).

As we mentioned above, in this paper, we focus on the case G = Z, and we provide
a global analogue of the results obtained in (1-2) and (1-3). More precisely, for
every finite graph X and every voltage assignment α : EX → Z such that each finite
graph Xn := X(Z/nZ,αn) is connected, where αn := αnZ, we show in Theorem 3.6
that the number of spanning trees κ(Xn) of the graph Xn is intimately related to the
Pierce–Lehmer sequence {Δn(Jα)}+∞n=1 associated to a factor Jα ∈ Z[t] of the Ihara poly-
nomial Iα ∈ Z[t±1], which is a Laurent polynomial that can be explicitly constructed
from the voltage assignment α, as we explain in Section 3.3. The Archimedean and
p-adic absolute values of the aforementioned Pierce–Lehmer sequence, introduced by
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Pierce [44] and Lehmer [32], turn out to be related to the Archimedean and p-adic
Mahler measures of the polynomial Iα, as we explain in Section 2.3. In particular,
these Mahler measures provide the main term that explains the order of growth of the
different absolute values of the Pierce–Lehmer sequence {Δn(Jα)}+∞n=1. This suffices to
describe the asymptotic behaviour of the Archimedean (respectively p-adic) absolute
value of the number of spanning trees κ(Xn) whenever no root of Iα lies on the unit
circle of C (respectively Cp), as we explain in Corollaries 3.10 and 3.15. In particular,
we show in Examples 3.13 and 3.14 that our Archimedean result generalises previous
work of Mednykh and Mednykh [41, 42].

One may of course wonder about the behaviour of the Archimedean or p-adic
absolute value of κ(Xn) when Iα has some of its roots on the Archimedean (or
p-adic) unit circle. In fact, this question is central to understanding the behaviour of
the sequence κ(Xn), as for almost every prime p, all the roots of Iα will lie on the
p-adic unit circle. In the case of the Archimedean absolute value, one can only get
some upper and lower bounds for κ(Xn), but not an exact asymptotic, as follows from
Weyl’s equidistribution theorem (see Remark 3.12). In the p-adic case, to understand
the absolute value of κ(Xn), one needs to take into account a correcting factor, which is
described in Theorem 2.3. Doing so, we arrive at the following result, which we now
present in a simplified version. For the precise formulation, see Theorem 3.17.

THEOREM 1.1. Let X be a finite connected graph whose Euler characteristic χ(X) does
not vanish, and α : EX → Z be a voltage assignment such that for every n ≥ 1, the finite
graph Xn := X(Z/nZ,αn) is connected (which can be checked using Theorem 3.2). Let
Iα ∈ Z[t±1] be the Ihara polynomial associated to α, and set

Jα(t) := tb(t − 1)−eIα(t),

where b := −ordt=0(Iα), and e := ordt=1(Iα). Fix a rational prime p ∈ N and let

μp(X,α) = −mp(Jα)/log(p),

where mp(Jα) denotes the logarithmic p-adic Mahler measure of Jα, defined as in (2-3).
Then, there exist two explicit functions

N→ Z≥0

n 	→ λp,n(X,α)
and

N→ Z
n 	→ νp,n(X,α)

whose images are finite, and an integer cp(X,α), such that

ordp(κ(Xn)) = μp(X,α) · n + λp,n(X,α) · ordp(n) + νp,n(X,α) + cp(X,α) (1-5)

for all n ∈ N.

Specialising (1-5) to the subsequence {κ(Xpk )}∞k=1 gives

ordp(κ(Xpk )) = μp(X,α) · pk + λp,pk (X,α) · k + νp,pk (X,α) + cp(X,α)
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and specialising to the subsequence {κ(X�k )}∞k=1, where � is another rational prime
different from p, gives

ordp(κ(X�k )) = μp(X,α) · �k + νp,�k (X,α) + cp(X,α).

After studying the dependency on k of the constants λp,pk (X,α), νp,pk (X,α) and
νp,�k (X,α), one gets back (1-2) and (1-3), as we explain in Remark 3.8. Moreover,
we obtain similar results by specialising Theorem 1.1 to sequences of integers
divisible only by a finite number of primes, as we explain in Corollary 2.10. These
identities can be seen as analogous to a result proven by Friedman [13] for cyclotomic
Zp1 × · · · × Zps -extensions of number fields that are abelian over Q.

To conclude, we show in Section 3.7 that Theorem 1.1 allows one to recover a
well-known formula that computes the p-adic valuations of Fibonacci numbers, which
is due to Lengyel [36].

1.3. Notation and conventions. Let p be a rational prime. We let Cp denote a fixed
completion of an algebraic closure of the p-adic rational numbers Qp. As usual, |·|p
and ordp denote the p-adic absolute value and the p-adic valuation on Cp, respectively.
They are related via

ordp(x) = −
log |x|p
log p

for all x ∈ Cp, and they are normalised so that ordp(p) = 1. We also denote by C the
field of complex numbers, endowed with the usual Archimedean absolute value |·|∞.

If G is an abelian group, not necessarily finite, we let G∨ = HomZ(G, W∞), where
W∞ denotes the group of roots of unity in an algebraic closureQ ⊆ C ofQ. An element
of G∨ will be called a character of finite order. Here, we depart from the usual notation,
since G∨ is not necessarily the Pontryagin dual of G. For each rational prime p, we
fix once and for all an embedding Q ↪→ Cp. Via these embeddings, we view the
characters in G∨ as taking values in Cp once a rational prime p has been fixed. If n
is a positive integer, then we let Wn denote the group of n th roots of unity. The symbol
N = {1, 2, . . .} refers to the collection of all positive integers.

2. Mahler measures and Pierce–Lehmer sequences

In this section, we remind the reader about the resultant of two polynomials, which
appears in Section 2.1, and about the p-adic and Archimedean Mahler measures
of polynomials, which we treat in Section 2.2. Moreover, we devote Section 2.3 to
collecting some results about Pierce–Lehmer sequences. In particular, Theorems 2.2
and 2.3 provide explicit formulae to compute the p-adic valuations of Pierce–Lehmer
sequences.

2.1. Resultant. Let F be a field and let

p(t) = amtm + · · · + a0 = am

m∏
i=1

(t − αi)
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and

q(t) = bntn + · · · + b0 = bn

n∏
j=1

(t − βi)

be two polynomials in F[t] of degrees m and n, respectively. Here, the roots αi and βi

are assumed to be in a fixed algebraic closure of F. The resultant Res(p, q) of p and q
is defined to be

Res(p, q) = an
mbm

n

m∏
i=1

n∏
j=1

(αi − βj) (2-1)

and is easily seen to be an element of F. Let r(t) be another polynomial with
coefficients in F. From the definition in (2-1), the two properties

Res(p, q) = (−1)mnRes(q, p) and Res(p · r, q) = Res(p, q) · Res(r, q)

follow immediately. Furthermore, one has

an
m

m∏
i=1

q(αi) = Res(p, q) = (−1)mnbm
n

n∏
j=1

p(βj),

which can be seen as an instance of Weil’s reciprocity law for the projective line over F.
Finally, the resultant can also be defined as the determinant of the Sylvester matrix of
p and q, as shown for instance in [5, Lemma 3.3.4]. This allows one to define the
resultant Res( f , g) ∈ R of any pair of polynomials f , g ∈ R[t] that have coefficients in
an arbitrary commutative ring with unity R.

2.2. Mahler measure. Recall that if

f (t) = adtd + · · · + a0 ∈ C[t]

is a nonzero polynomial of degree d, which can be factorised as

f (t) = ad

d∏
i=1

(t − αi)

for some α1, . . . ,αd ∈ C, then one defines its Archimedean Mahler measure to be

M∞( f ) := |ad |∞
d∏

i=1

max{1, |αi|∞} ∈ R>0. (2-2)

This invariant, originally studied by Lehmer [32], was generalised by Mahler [38] to
polynomials with any number of variables.

Now, let p be a rational prime and let

g(t) = bdtd + · · · + b0 ∈ Cp[t]
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be a nonzero polynomial of degree d, which factors as

g(t) = bd

d∏
i=1

(t − βi)

for some β1, . . . , βd ∈ Cp. Following [56], we define similarly the p-adic Mahler
measure of g(t) to be

Mp(g) := |bd |p
d∏

i=1

max{1, |βi|p} ∈ R>0.

This invariant and its Archimedean analogue are clearly multiplicative. Furthermore,
the p-adic Mahler measure of a polynomial

g(t) =
d∑

i=0

biti ∈ Cp[t]

can be easily computed from its coefficients, thanks to the formula

Mp(g) = max{|bi|p | i = 0, . . . , d},

which was proved by Ueki in [56, Proposition 2.7]. Finally, we introduce the
logarithmic Archimedean Mahler measure

m∞( f ) := log(M∞( f ))

of a polynomial f (t) ∈ C[t], and analogously the logarithmic p-adic Mahler measure

mp(g) := log(Mp(g)) (2-3)

of a polynomial g(t) ∈ Cp[t].

REMARK 2.1. We note in passing that the logarithmic p-adic Mahler measure
introduced in (2-3) does not coincide with the p-adic logarithmic Mahler measure
introduced by Besser and Deninger in [3], which is a p-adic number.

2.3. Pierce–Lehmer sequences. Let

f (t) = adtd + ad−1td−1 + · · · + a0 ∈ Z[t],

with ad � 0 and write

f (t) = ad

d∏
i=1

(t − αi)

for some α1, . . . ,αd ∈ Q. The associated Pierce–Lehmer sequence is defined to be

Δn( f ) = an
d

d∏
i=1

(αn
i − 1) = Res( f (t), tn − 1) ∈ Z. (2-4)
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Fix now a rational prime p and an embedding Q ↪→ Cp, as we did in Section 1.3, and
view all the algebraic numbers α1, . . . ,αd as lying in Cp via this embedding.

THEOREM 2.2. With the notation as above, one has

|Δn( f )|p = Mp( f )n
d∏

i=1
|αi |p=1

|αn
i − 1|p.

PROOF. Noting that for α ∈ Cp and n ∈ N, one has

|αn − 1|p =
⎧⎪⎪⎨⎪⎪⎩|α|

n
p if |α|p > 1,

1 if |α|p < 1,

one calculates

|Δn( f )|p = |ad |np
d∏

i=1
|αi |p>1

|αi|np
d∏

i=1
|αi |p=1

|αn
i − 1|p

= Mp( f )n
d∏

i=1
|αi |p=1

|αn
i − 1|p. �

It follows that, to determine the p-adic valuation of the numbers Δn( f ), one needs
to understand the p-adic valuation of numbers of the form αn − 1, where n ∈ N and
α ∈ Qp ⊆ Cp is a p-adic number such that |α|p = 1. The following theorem, which is
inspired by [56, Lemma 2.11], provides a first step in this direction.

THEOREM 2.3. Let α ∈ Qp be such that |α|p = 1, and assume that α is not a root of
unity. Let m be the maximal ideal of the valuation ring O of Qp and let N(α) be the
multiplicative order of α modulo m. Then, there exists a function c : N→ Q such that
c(m) is constant for m large and for which

ordp(αn − 1) =

⎧⎪⎪⎨⎪⎪⎩0 if N(α) � n,
ordp(n) + c(ordp(n)) if N(α) | n.

(2-5)

PROOF. First of all, let us write

|αn − 1|p =
∏
ζ∈Wn

|α − ζ |p, (2-6)

where Wn ⊆ O× denotes the group of roots of unity of order dividing n. Now, the
natural embedding of the ring of Witt vectors of Fp inside O gives rise to the
Teichmüller lift

τ : F
×
p ↪→ O×,
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which is a morphism of groups that sends any β ∈ F×p to a root of unity whose order

coincides with the multiplicative order of β in F
×
p . Therefore, if

π : O� O/m = Fp

is the natural projection map, the root of unity ξ = τ(π(α)) ∈ O× has order N = N(α),
and we have that |α − ξ|p < 1 because τ is a section of π.

We can then use this root of unity ξ to write the following formula:

|αn − 1|p =
∏
ζ∈Wn

|α − ξ + ξ − ζ |p, (2-7)

which follows from (2-6). Using this formula, we can prove immediately the first part
of (2-5). Indeed, if N � n, then for every ζ ∈ Wn, the order of the root of unity ζ/ξ is
not a power of p, because otherwise there would exist some r ∈ N such that ζ pr

= ξpr
,

from which it would follow that ξnpr
= 1, and thus that N | npr. Since we know that

(N, p) = 1, this would imply that N | n, contradicting our assumption. Therefore, [56,
Lemma 2.9] implies that

|ξ − ζ |p = |1 − ζ/ξ|p = 1

for all ζ ∈ Wn, which entails that |α − ξ + ξ − ζ |p = 1 for every ζ ∈ Wn, because
|α − ξ|p < 1 by construction. Finally, we see thanks to (2-7) that |αn − 1|p = 1, which
proves the first part of the statement (2-5).

Suppose now that N | n. As before, we have that |ξ − ζ |p = 1 unless the order of
μ := ζ/ξ is a power of p. Therefore,

|αn − 1|p =
∏
μ∈Wpm

|α − ξμ|p =
∏
μ∈Wpm

|α − ξ + ξ(1 − μ)|p, (2-8)

where m := ordp(n). Moreover, if μ has order pk, for some k ∈ N ∪ {0} such that

pk−1(p − 1)ordp(α − ξ) > 1,

we have that |ξ(1 − μ)|p = |1 − μ|p > |α − ξ|p, as follows from the classical fact that

ordp(1 − μ) =
1

pk−1(p − 1)

for every root of unity μ ∈ Wpm \ {1} of order pk, whose proof can be found for example
in [56, Lemma 2.9].

Hence, if we define s ∈ N ∪ {0} to be the minimal nonnegative integer such that

ps(p − 1)ordp(α − ξ) > 1, (2-9)
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and we set r := min(s, m), we see from (2-8) that

|αn − 1|p =
( ∏
μ∈Wpr

|α − ξμ|p
)( ∏

μ∈Wpm \Wpr

|α − ξ + ξ(1 − μ)|p
)

= |α − ξ|p
( ∏
μ∈Wpr \{1}

|α − ξμ|p
|1 − μ|p

|1 − μ|p
)( ∏

μ∈Wpm \Wpr

|1 − μ|p
)

= |α − ξ|p
( ∏
μ∈Wpr \{1}

|α − ξμ|p
|1 − μ|p

)( ∏
μ∈Wpm \{1}

|1 − μ|p
)

= |α − ξ|p
( ∏
μ∈Wpr \{1}

|α − ξμ|p
|1 − μ|p

)
|n|p,

where the last equality follows from the fact that∏
μ∈Wpm \{1}

|1 − μ|p =
∏

μ∈Wn\{1}
|1 − μ|p =

∣∣∣∣∣Res
( tn − 1

t − 1
, t − 1

)∣∣∣∣∣
p
= |n|p.

Therefore, we see that ordp(αn − 1) = ordp(n) + c(ordp(n)), where the expression

c(m) := ordp(α − ξ) +
∑

μ∈Wpr \{1}
(ordp(α − ξμ) − ordp(1 − μ))

= ordp(αpr − ξpr
) − r

depends only on m and α, and is evidently constant when m becomes sufficiently large.
This proves the second part of (2-5), and concludes the proof. �

REMARK 2.4. Let α ∈ Q. Then, there exists a finite subset S ⊆ N such that for every
rational prime p ∈ N \ S and every embedding ι : Q(α) ↪→ Qp, we have that |ι(α)|p = 1
and

ordp(ι(α) − τ(π(ι(α)))) ∈ N.

Therefore, for every rational prime p ∈ N \ (S ∪ {2}), we see that s = 0 is the minimal
nonnegative integer such that (2-9) holds true.

From Theorems 2.2 and 2.3, we obtain several corollaries. First of all, one
can obtain an explicit formula for the p-adic valuation of the elements of the
Pierce–Lehmer sequence associated to a polynomial f ∈ Z[t].

COROLLARY 2.5. Let f ∈ Z[t] \ {0} be a polynomial that does not vanish at any root
of unity, and fix a prime p. Let β1, . . . , βd ∈ Qp denote the p-adic roots of f, counted
with multiplicities. Then, for every n ∈ N, we define

μp( f ) := −mp( f )/log(p), (2-10)

Bp,n( f ) := {β ∈ Qp : f (β) = 0, |β|p = 1, |βn − 1|p < 1}, (2-11)

λp,n( f ) := #{j ∈ {1, . . . , d} : βj ∈ Bp,n( f )} (2-12)
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and for every β ∈ Qp such that |β|p = 1,

sp(β) := min{s ∈ Z≥0 : ps(p − 1)ordp(β − τp(πp(β))) > 1} (2-13)

and we write rp,n(β) := min(ordp(n), sp(β)). Using this notation,

ordp(Δn( f )) = μp( f ) · n + λp,n( f ) · ordp(n) + νp,n( f ), (2-14)

where νp,n( f ) :=
∑

j∈{1,...,d}
βj∈Bp,n( f )

(ordp(βprp,n(βj)

j − τp(πp(βj))prp,n(βj) ) − rp,n(βj)).

PROOF. We see from Theorem 2.2 that

ordp(Δn( f )) = μp( f ) · n +
∑

j∈{1,...,d}
βj∈Bp,n( f )

ordp(βn
j − 1),

and Theorem 2.3 implies that

ordp(βn − 1) = ordp(n) + ordp(βprp,n(β) − τp(πp(β))prp,n(β)
) − rp,n(β)

for every β ∈ Bp,n( f ), which allows us to conclude the proof. �

Moreover, we can use Theorems 2.2 and 2.3 to pin down the asymptotic behaviour
of the p-adic valuation of the Pierce–Lehmer sequence associated to an integral
polynomial that does not vanish on the p-adic unit circle or on roots of unity.

COROLLARY 2.6. Let f (t) ∈ Z[t] \ {0} and assume that f (α) � 0 for every α ∈ Cp such
that |α|p = 1. Then,

|Δn( f )|p = Mp( f )n (2-15)

for all n ∈ N. If one only assumes that f (ζ) � 0 for every ζ ∈ W∞,

|Δn( f )|1/np → Mp( f )

as n→ ∞.

PROOF. This follows directly from Theorems 2.2 and 2.3. We leave the details to the
reader. �

REMARK 2.7. A similar result holds true for the Archimedean Mahler measure. More
precisely, we see directly from the definition given in (2-2) that for every polynomial
f ∈ Z[t] \ {0} that does not vanish on the unit circle of C, the asymptotic

|Δn( f )|∞ ∼ M∞( f )n (2-16)

holds true as n→ +∞. If one only assumes that the roots of f are not roots of unity,
then one sees that

|Δn( f )|1/n∞ → M∞( f )

as n→ ∞. This follows from an inequality originally proved by Gelfand, as explained
for instance in [11, Lemma 1.10]. However, if f has some root on the unit circle ofC, the
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behaviour of the absolute values |Δn( f )|∞ is quite chaotic, as exemplified for instance
by [11, Theorem 2.16], which shows that the sequence of ratios |Δn( f )/Δn−1( f )|∞
converges if and only if f has no roots on the unit circle of C.

The p-adic valuation of various subsequences of a Pierce–Lehmer sequence can
be understood from Theorems 2.2 and 2.3. For instance, the following corollary shows
that such a p-adic valuation of the sub-sequence {Δpn ( f )}+∞n=0 associated to a polynomial
f ∈ Z[t] that does not vanish at roots of unity exhibits a behaviour similar to the p-adic
valuation of the class number in Zp-extensions of number fields, which was already
studied in the seminal work of Iwasawa [22].

COROLLARY 2.8. Let f (t) ∈ Z[t] be a polynomial that does not vanish at roots of
unity, p be a rational prime and β1, . . . , βd denote the p-adic roots of f, counted with
multiplicities. Then, there exist two constants k0( f , p) ∈ N and νp( f ) ∈ Z, depending
on p and f, such that the following equality:

ordp(Δpk ( f )) = μp( f ) · pk + λp( f ) · k + νp( f )

holds true for every k ≥ k0( f , p), where μp( f ) := −mp( f )/log(p) and

λp( f ) := #{j ∈ {1, . . . , d} : |βj|p = 1, |βj − 1|p < 1}.
PROOF. This follows directly from Corollary 2.5. Indeed, the invariant μp( f ) coincides
with the one introduced in (2-10). Moreover, let us note that Bp,pk ( f ) = Bp,1( f ) for
every k ≥ 1. To see this, fix any β ∈ Qp such that |β|p = 1. Then, we have that
|βpk − 1|p < 1 if and only if the multiplicative order of πp(β) ∈ F×p is a multiple
of pk. However, the aforementioned multiplicative order is coprime to p. Therefore,
|βpk − 1|p < 1 if and only if πp(β) = 1, which is equivalent to saying that |β − 1|p < 1.
Hence, we see immediately from the definition of the sets Bp,n( f ) given in (2-11) that
Bp,pk ( f ) = Bp,1( f ) for every k ≥ 1, as we wanted to show. This shows in particular that
λp,pk ( f ) = λp( f ) for every k ≥ 1, where λp,pk ( f ) is the invariant defined in (2-12).

To conclude, it suffices to define

k0( f , p) := max{sp(β) : β ∈ Qp, f (β) = 0, |β|p = 1},

where sp(β) is the invariant defined in (2-13). Then, for every k ≥ k0( f , p) and every
β ∈ Qp, such that |β|p = 1 and f (β) = 0, we have that rp,pk (β) = sp(β), as follows
immediately from the fact that rp,pk (β) = min(k, sp(β)). Therefore, using the definition
of νp,n( f ) given in Corollary 2.5, we see that for every integer k ≥ k0( f , p), the invariant

νp,pk ( f ) =
∑

j∈{1,...,d}
βj∈Bp,pk ( f )

(ordp(βp
r
p,pk (βj)

j − τp(πp(βj))
p

r
p,pk (βj)

) − rp,pk (βj))

=
∑

j∈{1,...,d}
βj∈Bp,1( f )

(ordp(βpsp(βj)

j − τp(πp(βj))
psp(βj)

) − sp(βj))
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is independent of k. This allows us to set

νp( f ) :=
∑

j∈{1,...,d}
βj∈Bp,1( f )

(ordp(βpsp(βj)

j − τp(πp(βj))
psp(βj)

) − sp(βj)),

and to conclude our proof. �

Moreover, if �, p ∈ N are two distinct rational primes, the �-adic valuation of the
sub-sequence {Δpn (P)}+∞n=0 exhibits a behaviour that is similar to that observed by
Washington [58] in the case of Zp-towers of number fields.

COROLLARY 2.9. Let f (t) ∈ Z[t] be a polynomial that does not vanish at roots of
unity. Let p and � be two distinct rational primes. Then, there exist two constants
k0( f , p, �) ∈ N and νp( f , �) ∈ Z, depending on p, � and f, such that the equality

ordp(Δ�k ( f )) = μp( f ) · �k + νp( f , �)

holds true for every k ≥ k0( f , p, �), where again μp( f ) = −mp( f )/log(p).

PROOF. This follows once again from Corollary 2.5. Indeed, μp( f ) is once again
identical to the invariant defined in (2-10). Moreover, ordp(�k) = 0 for every k ≥ 0,
which shows that the part of the equality (2-14) involving the invariant λp,n( f ) does
not appear when n = �k.

To conclude, let β1, . . . , βd ∈ Qp be the p-adic roots of f (t), counted with
multiplicities, that lie on the p-adic unit circle, and N1, . . . , Nd be the multiplicative
orders of their reductions πp(β1), . . . , πp(βd) ∈ F×p . Then, for every j ∈ {1, . . . , d}, we
have that |β�k

j − 1|p < 1 if and only if there exists some nonnegative integer aj ≤ k such
that Nj = �

aj . Moreover,

rp,�k (βj) = min(ordp(�k), sp(βj)) = 0

for every j ∈ {1, . . . , d} and every k ≥ 0. Therefore, if we set

k0( f , p, �) := max{ord�(Nj) : j ∈ {1, . . . , d}}

νp( f , �) :=
∑

j∈{1,...,d}
βj∈Bp,�k0 ( f )

ordp(βj − τp(πp(βj))),

where we write k0 instead of k0( f , p, �), then, we see from the definition of νp,n( f )
given in Corollary 2.5 that νp,�k ( f ) = νp( f , �) for every k ≥ k0( f , p, �), and this allows
us to conclude our proof. �

In fact, Corollaries 2.8 and 2.9 can be generalised by looking at sequences of
integers that are divisible only by a finite number of primes, as done by Friedman [13]
for cyclotomic Zp1 × · · · × Zps -extensions of number fields that are abelian over Q.
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COROLLARY 2.10. Let f (t) ∈ Z[t] be a polynomial that does not vanish at roots of
unity. Let �1, . . . , �r be distinct prime numbers, and let S ⊆ N be the set of those
integers whose prime divisors are contained in {�1, . . . , �r}. Then:

• for every j ∈ {1, . . . , r}, there exist a nonnegative integer λj( f ) and an integer νj( f )

such that for every n = �k1
1 · · · �

kj

j · · · �
kr
r ∈ S,

ord�j (κ(Xn)) = μ�j ( f ) · n + λj( f ) · kj + νj( f )

as long as n is big enough, where again μ�j ( f ) = −m�j ( f )/log(�j);
• for every prime p � {�1, . . . , �r}, there exists an integer ν( f ) such that

ordp(κ(Xn)) = μp( f ) · n + ν( f )

for every n ∈ S that is big enough.

PROOF. The proof is similar to the proofs of the two previous corollaries, and we leave
it to the reader. �

REMARK 2.11. In the situation where the polynomial f (t) is monic, the p-adic
valuation of a Pierce–Lehmer sequence was also studied in [23]. In this situation, there
is no p-adic Mahler measure appearing in the formulae.

REMARK 2.12. Note that the Pierce–Lehmer sequence {Δn( f )}n∈N associated to any
polynomial f ∈ Z[t] satisfies a linear recurrence, as explained in [32, Section 8].
Therefore, studying the p-adic valuation of Pierce–Lehmer sequences can be seen as a
special case of the more general problem of studying the p-adic valuation of linearly
recurrent sequences, which has been the subject of great attention (see for instance [4]).
We also refer the interested reader to the works [10, 12], which treat problems related
to the p-adic valuation of Pierce–Lehmer sequences.

3. Graph theory

The aim of this section is to prove Theorem 3.17, which provides an explicit
expression for the p-adic valuation of the number of spanning trees in a Z-tower of
graphs in terms of a polynomial naturally associated to this tower, which we call the
Ihara polynomial and which we define in Section 3.3. In particular, Theorem 1.1 is a
simplified version of Theorem 3.17, as we explain in Section 3.6. To do so, we first
recall some fundamentals about graphs and their covers in Sections 3.1 and 3.2. Then,
we devote Section 3.3 to the proof of Theorem 3.6, which provides an explicit formula
relating the number of spanning trees of the members of a Z-cover of graphs to the
Pierce–Lehmer sequence associated to the Ihara polynomial of this tower. We provide
an explicit example that verifies this relation in Section 3.4. Moreover, Section 3.5
shows how to combine Theorem 3.6 with the results proven in Section 2.3, to provide
some asymptotic expressions for the growth of the number of spanning trees in a
Z-tower. In particular, this generalises two previous results of Mednykh and Mednykh
[41, 42].
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3.1. Galois covers of locally finite graphs. The aim of this subsection is to formally
introduce the kinds of graphs that are considered in this article and their Galois theory.

3.1.1. Locally finite graphs. Let X = (VX , EX) be a graph in the sense of Serre
(see [48] and also [52]), where VX and EX are two sets, to be interpreted as the
sets of vertices and (directed) edges of X. In particular, each edge e ∈ EX has an origin
o(e) ∈ VX and a terminus t(e) ∈ VX , giving rise to the incidence map

inc : EX → VX × VX

e 	→ (o(e), t(e))

and to the inversion map EX → EX , denoted by e 	→ ē, such that

(o(e), t(e)) = (t(e), o(e))

and e = e � e for every e ∈ EX .
A graph X is called finite if both VX and EX are finite sets. Moreover, a graph X is

called locally finite if for each vertex v ∈ VX , the set of edges with origin at v, defined as

EX,v = {e ∈ EX : o(e) = v}

is finite. In this case, one defines the valency (or degree) of a vertex v ∈ VX to be

valX(v) = |EX,v|.

Any finite graph is in particular locally finite.
ASSUMPTION 3.1. In this paper, all graphs will be locally finite.

3.1.2. Paths and loops. Let us recall that a path c = e1 · · · · · em in a graph X consists
of a sequence of directed edges ei ∈ EX such that t(ei) = o(ei+1) for each index
i ∈ {1, . . . , m − 1}. The origin and the terminus of the path c = e1 · · · · · em are defined
as o(c) = o(e1) and t(c) = t(em), respectively.

A graph X is called connected if given any two vertices v1, v2 ∈ VX , there exists a
path c in X such that o(c) = v1 and t(c) = v2. Finally, a loop based at a vertex v0 ∈ X is
a path c in X such that o(c) = t(c) = v0.

This allows one to define the fundamental group of X based at a vertex v0 ∈ VX ,
which is denoted by π1(X, v0), as the set of loops based at v0, considered modulo
homotopy (see [52, Section 3.5] for the precise definition of this equivalence relation
in the context of graphs), endowed with the group operation given by the concatenation
of paths (see [52, Section 5.3] for details).

3.1.3. Galois covers of graphs. Let Y and X be two graphs. A morphism of graphs
f : Y → X is called a cover (or a covering map) if the following two conditions are
satisfied:

(1) f : VY → VX is surjective;
(2) for all w ∈ VY , the restriction f |EY ,w induces a bijection

f |EY ,w : EY ,w
≈→ EX, f (w).
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We will often refer to Y/X as a cover if the covering map is understood from the
context. Given a cover f : Y → X, one defines as usual Aut f (Y/X) to be the subgroup
of Aut(Y) consisting of the automorphisms ι ∈ Aut(Y) satisfying f ◦ ι = f . Again, we
will often write Aut(Y/X) instead of Aut f (Y/X) if f is understood.

Let us also recall that a cover f : Y → X is called Galois if the following two
conditions are satisfied:

(1) the graph Y is connected (and hence also X);
(2) the group Aut(Y/X) acts transitively on the fibre f −1(v) for all v ∈ VX .

If Y/X is a Galois cover, we write Gal(Y/X) instead of Aut(Y/X). In this case, one
has the usual Galois correspondence between subgroups of Aut(Y/X) and equivalence
classes of intermediate covers of Y/X.

3.1.4. Voltage assignments. Let X be a graph and let G be a group. A voltage
assignment on X with values in G is defined to be a function α : EX → G satisfying

α(ē) = α(e)−1

for every e ∈ EX . Each such voltage assignment can be defined starting from an
orientation of X, which is a subset S ⊆ EX such that for each edge e ∈ EX , either e
or e belong to S, but not both. Then, to get a voltage assignment as above, it suffices to
define it on any orientation S and set α(s) := α(s)−1 for every s ∈ S.

3.1.5. Covers from voltage assignments. Given a graph X, a group G and a voltage
assignment

α : EX → G,

one can construct a new graph X(G,α) as follows:

• the vertices of X(G,α) are given by VX × G;
• the (directed) edges of X(G,α) are given by EX × G;
• the origin, terminus and inverse maps are defined as

o(e,σ) = (o(e),σ),
t(e,σ) = (t(e),σ · α(e)),

(e,σ) = (ē,σ · α(e))

for each edge (e,σ) ∈ EX × G.

It is easy to see that if X is locally finite, then so is X(G,α), and that the map of graphs

p : X(G,α)→ X

defined as p(v,σ) := v on each vertex (v,σ) ∈ VX × G, and as p(e,σ) := e on each edge
(e,σ) ∈ EX × G, is actually a covering map. Moreover, this covering map is Galois
whenever X(G,α) is connected and, in this case, Gal(X(G,α)/X) � G canonically.
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To conclude, let us observe that the construction of X(G,α) is functorial with
respect to α. More precisely, for each morphism of groups f : G→ H, one gets a new
voltage assignment β := f ◦ α with values in H, and a natural map of graphs

f∗ : X(G,α)→ X(H, β), (3-1)

which is defined on each vertex (v,σ) ∈ VX × G as f∗(v,σ) := (v, f (σ)), and on
each edge (e,σ) ∈ EX × G as f∗(e,σ) := (e, f (σ)). Finally, it is easy to see that this
morphism f∗ is a covering map whenever f is surjective.

3.1.6. Monodromy representations. Let X be a graph and α : EX → G be a voltage
assignment with values in a group G. Then, the monodromy representation attached to
α at a vertex v0 ∈ VX is given by the following map:

ρα,v0 : π1(X, v0)→ G
[e1 · · · · · en] 	→ α(e1) · · · · · α(en),

which is easily seen to be a well-defined morphism of groups. Moreover, this map
can be used to detect when the graph X(G,α) is connected, and thus when the natural
covering map p : X(G,α)→ X is Galois, as we recall in the following theorem, which
is proven in [45, Section 2.3.1].

THEOREM 3.2. Let X be a connected graph and α : EX → G be a voltage assignment.
Then, the graph X(G,α) is connected if and only if the monodromy representation ρα,v0

attached to α at some (equivalently, any) vertex v0 ∈ VX is surjective.

REMARK 3.3. Let X be a connected graph, v0 ∈ VX a vertex of X, and α : EX → G
a voltage assignment such that ρα,v0 is surjective. Fix moreover a universal cover
π : X̃ � X and a vertex w0 ∈ X̃ such that π(w0) = v0. Thanks to the universal property
of the universal cover, proved for example in [52, Theorem 5.10], it can be shown that
the intermediate Galois cover of X̃ → X given by X(G,α) corresponds to the subgroup
ϕw0 (ker(ρα,v0 )) � Gal(X̃/X), where

ϕw0 : π1(X, v0)
∼−→ Gal(X̃/X)

is the usual group isomorphism.

3.1.7. Systems of Galois covers. Let X be a graph and α : EX → G a voltage
assignment taking values in a group G. Given a group homomorphism f : G→ H
and a vertex v0 ∈ VX , the monodromy representation attached at v0 to the Galois cover
f∗ defined in (3-1) is given by f ◦ ρα,v0 . This shows in particular that if the graph
X(G,α) is connected, the graph X(H, f ◦ α) will be connected whenever f is surjective.
Moreover, any morphism of groups f : G→ H induces another morphism of groups

ker( f )→ Aut(X(G,α)/X(H, f ◦ α)), (3-2)

which sends each τ ∈ ker( f ) to the automorphism φτ : X(G,α)→ X(G,α) defined by
setting φτ(v,σ) := (v, τ · σ) for each vertex (v,σ) ∈ VX × G, and φτ(e,σ) := (e, τ · σ)
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for each edge (e,σ) ∈ EX × G. The morphism of groups (3-2) is actually an
isomorphism whenever f is surjective, as follows from the unique lifting theorem
[52, Theorem 5.1].

In particular, the previous discussion shows that any voltage assignment

α : EX → G

for which X(G,α) is connected induces a system of Galois covers indexed by the lattice
of quotients of the group G. As we will see in the upcoming sections of this paper, it
is interesting to study how various graph invariants evolve when moving across this
system.

3.2. The number of spanning trees in finite abelian covers of finite graphs. One
particularly interesting kind of invariant of a connected finite graph X is given by its
Picard group Pic0(X), also known as the Jacobian, sandpile or class group of X. Its
cardinality, denoted by κ(X), is given by the number of spanning trees of the graph X.
The aim of this section is to recall, following [57, Section 3], how this number changes
in an abelian cover of a finite graph, using Ihara’s determinant formula.

3.2.1. Ihara zeta functions. To do so, we will make use of another invariant of
a finite connected graph X, namely its Ihara zeta function, which we denote by
ZX(u). This is a rational function of u, which can be explicitly computed thanks
to the Ihara determinant formula, which we recall below in (3-3), and is proven in
[2, 29]. More precisely, given an ordering VX = {v1, . . . , vg} of the vertices of X, we
let AX := (ai,j) ∈ Zg×g denote the adjacency matrix of X, which is defined by setting
ai,j := #{e ∈ EX : o(e) = vi, t(e) = vj}. Moreover, we let DX := (di,j) ∈ Zg×g denote the
valency (or degree) matrix of X, which is a diagonal matrix defined by setting
di,i := valX(vi) for each i ∈ {1, . . . , g}. Then, we can write the Ihara zeta function ZX(u)
using the following explicit formula:

ZX(u) =
1

(1 − u2)−χ(X) · det(Idg − AXu + (DX − Idg)u2)
, (3-3)

where Idg denotes the g × g identity matrix and χ(X) := |VX | − |EX |/2 is the Euler
characteristic of X. In particular, we have that ZX(u)−1 = (1 − u2)−χ(X) · hX(u), where

hX(u) := det(Idg − AXu + (DX − Idg)u2) ∈ Z[u]

is a polynomial.

3.2.2. Hashimoto’s formula. This explicit formula can be used to relate the Ihara zeta
function to the number of spanning trees of X. More precisely, given a finite connected
graph X, one has

h′X(1) = −2χ(X)κ(X), (3-4)

as was proven by Hashimoto in [20, Theorem B] (see also [2, Part II, Sections 5 and 6]).
Such a formula, which can be considered as an analogue of the class number formula
in the context of graph theory, admits an equivariant generalisation.
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3.2.3. Artin–Ihara L-functions. Given a Galois cover of finite connected graphs
Y/X, one can associate to any linear complex representation ρ : Gal(Y/X)→ GLn(C)
an Artin–Ihara L-function LY/X(u, ρ). This admits an explicit description analogous
to (3-3). More precisely, let dρ ∈ N denote the degree of the representation ρ, and
fix an ordering VX = {v1, . . . , vg} of the vertices of X and a section ι : VX → VY of the
projection VY → VX . Then, [53, Theorem 18.15] shows that the Artin–Ihara L-function
LY/X(u, ρ) can be explicitly computed thanks to the following formula:

LY/X(u, ρ) =
1

(1 − u2)−χ(X)·dρ · det(Idgdρ − Aρu + Qρu2)
,

where Aρ, Qρ ∈ Cgdρ×gdρ are two explicit matrices, whose definitions we now recall.
Given σ ∈ G,

A(σ) := (#{e ∈ EY : o(e) = ι(vi), t(e) = σ(ι(vj))})i,j=1,...,g,

and we define

Aρ :=
∑
σ∈G

A(σ) ⊗ ρ(σ) and Qρ := (DX ⊗ Iddρ) − Idg·dρ ,

where ⊗ denotes the Kronecker product of matrices. For more details, we refer the
interested reader to [53, Definition 18.13]. As before, this explicit formula allows one
to write LY/X(u, ρ)−1 = (1 − u2)−χ(X)·dρ · hY/X(u, ρ), where

hY/X(u, ρ) := det(Idgdρ − Aρu + Qρu2) ∈ C[u]

is a polynomial. In particular, if Gal(Y/X) is abelian and ψ is a character of Gal(Y/X),
we have that LY/X(u,ψ)−1 = (1 − u2)−χ(X) · hY/X(u,ψ), where

hY/X(u,ψ) := det(Idg − Aψu + (DX − Idg)u2), (3-5)

because dψ = 1 and Qψ = DX − Idg, as follows easily from [53, Definition 18.13].

3.2.4. Spanning trees and abelian covers. To conclude this subsection, let us recall
that the Artin–Ihara L-functions satisfy the Artin formalism (see [2, 51]). This implies
that for every Galois cover of finite graphs Y/X, with Galois group G := Gal(Y/X), the
Ihara zeta function ZY (u) admits the following factorisation:

ZY (u) =
∏

ρ∈Irr(G)

LY/X(u, ρ)dρ ,

where Irr(G) denotes the set of equivalence classes of complex irreducible represen-
tations of a finite group G (see [53, Corollary 18.11]). Therefore, we see easily that

hY (u) =
∏

ρ∈Irr(G)

hY/X(u, ρ)dρ , (3-6)

using the relation χ(Y) = |G| · χ(X) between the Euler characteristics of Y and X, which
is explained at the end of [52, Section 5.1], and the classical identity |G| = ∑ρ∈Irr(G) d2

ρ,
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proven for example in [49, Section 2.4, Corollary 2]. Finally, if ρ0 denotes the trivial
representation of G and χ(X) � 0,

|G| · κ(Y) = κ(X) ·
∏
ρ�ρ0

hY/X(1, ρ)dρ ,

thanks to (3-4) and (3-6), combined with the fact that

hY/X(1, ρ0) = hX(1) = 0,

which holds because the Laplacian matrix DX − AX is singular (as explained in
[6, Proposition 2.8]). In particular, if Y/X is a Galois cover of finite graphs such that
χ(X) � 0 and G := Gal(Y/X) is abelian,

|G| · κ(Y) = κ(X)
∏
ψ�ψ0

hY/X(1,ψ), (3-7)

where ψ0 denotes the trivial character of G and ψ ∈ G∨ runs over all nontrivial
characters of G.

3.3. Exact formulae for the number of spanning trees. In this subsection, we
introduce what we take the liberty to call the Ihara polynomial Iα associated to
a voltage assignment α : EX → G. When G = Zd for some d ∈ N, this polynomial
was introduced, with a slightly different terminology, in the work of Silver and
Williams [50] (see Remark 3.4 for a comparison between the two definitions).
Moreover, when G ∈ {Z,Z�}, for some rational prime �, this polynomial was considered
by Lei and the second author of the present paper [35]. In the general case, this
invariant consists of an element of the group ring Z[G], which we write as a generalised
polynomial ring Z[tG] by adding a formal variable t.

3.3.1. The Ihara polynomial. More precisely, let X be a finite connected graph such
that χ(X) � 0, and let us start with a voltage assignment α : EX → G. As before, let us
fix an ordering of the vertices of X, given by VX = {v1, . . . , vg}. Then, we can define the
matrix

Aα(t) :=
( ∑

e∈EX
inc(e)=(vi,vj)

tα(e)
)
∈ Z[tG]g×g,

which we use to introduce the Ihara polynomial

Iα(t) = det(DX − Aα(t)) ∈ Z[tG], (3-8)

where DX denotes, as before, the valency (or degree) matrix of X. When no confusion
seems to occur, we will just write Iα instead of Iα(t).

We note in particular that the Ihara polynomial is self-reciprocal. In other words,
we have the following identity:

Iα
(1

t

)
= Iα(t), (3-9)
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which comes from the fact that the transpose of the matrix Aα(t) equals the matrix
Aα(t−1) by definition. Moreover, for every morphism of groups f : G→ H, we have by
definition that

Iβ = f∗(Iα), (3-10)

where β := f ◦ α and f∗ : Z[tG]→ Z[tH] denotes the morphism of rings induced by f.

REMARK 3.4. For G = Zd with d ∈ N, this polynomial was introduced in [50] under
the name of Laplacian polynomial. In particular, an unsigned d-periodic graph X in
the sense of [50, Section 6] can be obtained as X = X(Zd,α), where X is a finite graph
and α : EX → Zd is a voltage assignment.

3.3.2. The Ihara polynomial and the number of spanning trees. Suppose now that X
is a finite connected graph such that χ(X) � 0, and fix a voltage assignment

α : EX → G

with values in some finite abelian group G, such that the induced graph X(G,α) is
connected. The following result expresses how the number of spanning trees changes
from X to X(G,α), using the Ihara polynomial Iα.

PROPOSITION 3.5. For every finite connected graph X, such that χ(X) � 0, and every
voltage assignment α : EX → G with values in a finite abelian group G, such that the
associated graph X(G,α) is connected,

|G| · κ(X(G,α)) = κ(X) ·
∏
ψ�ψ0

Iα(ψ(1)),

where Iα(ψ(1)) := ψ(Iα) ∈ C is obtained by applying to Iα the natural linear
extension of the character ψ to the group ring Z[tG].

PROOF. First of all, observe that Iα(ψ(1)) = det(DX − Ãψ), where we define

Ãψ :=
( ∑

e∈EX
inc(e)=(vi,vj)

ψ(α(e))
)
∈ Cg×g

for every character ψ ∈ G∨. In particular, one can prove that Ãψ = Aψ, as explained in
[40, Corollary 5.3]. Therefore, we see from the definition of the polynomial hY/X(u,ψ),
which was given in (3-5), that Iα(ψ(1)) = hY/X(1,ψ) for every character ψ ∈ G∨.
To conclude the proof, it is just sufficient to substitute this equality in the explicit
expression

|G| · κ(Y) = κ(X)
∏
ψ�ψ0

hY/X(1,ψ),

which was recalled in (3-7). �
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3.3.3. Z-towers of graphs and Pierce–Lehmer sequences. From now on, we will
specialise to the case of Z-towers of graphs. More precisely, we will consider a
finite connected graph X such that χ(X) � 0, endowed with a voltage assignment
α : EX → Z with values in the additive group of the integers, such that the derived
graph X∞ := X(Z,α) is connected, which is equivalent to saying that there exists
a vertex v0 ∈ VX such that the monodromy representation ρα,v0 : π1(X, v0)→ Z is
surjective, as explained in Theorem 3.2. In this case, we have a natural isomorphism
Z[tZ] � Z[t±1]. Therefore, we see from (3-9) that the Ihara polynomial can be written as

Iα(t) = c0 + c1(t + t−1) + · · · + cb(tb + t−b)

for some c0, . . . , cb ∈ Z such that cb � 0. Clearing denominators, we can define

Iα(t) := tbIα(t) ∈ Z[t],

which is a polynomial of degree 2b such that Iα(0) � 0. Finally, we define
e := ordt=1(Iα), and we write

Iα(t) = (t − 1)eJα(t) (3-11)

for some polynomial Jα ∈ Z[t] such that Jα(0) · Jα(1) � 0.
Now, one can associate to the voltage assignment α : EX → Z a system of finite

graphs Xn := X(Z/nZ, πn ◦ α), where πn : Z� Z/nZ is the natural quotient map. In
particular, each of these graphs will be connected, because X∞ is assumed to be
connected, and the maps πn are surjective. Moreover, the number of spanning trees
of each graph Xn can be computed in terms of a Pierce–Lehmer sequence associated
to the polynomial Jα, as the following result shows.

THEOREM 3.6. Let X be a finite connected graph such that χ(X) � 0 and fix a voltage
assignment α : EX → Z such that the graph X∞ := X(Z,α) is connected. Moreover, for
every n ∈ N, we let Xn := X(Z/nZ, πn ◦ α), where πn : Z� Z/nZ is the natural quotient
map. Then, the number of spanning trees of Xn can be computed as

κ(Xn) = (−1)b(n−1) · κ(X) · ne−1 · Δn(Jα)
Δ1(Jα)

, (3-12)

where the integers b := −ordt=0(Iα) ≥ 0 and e := ordt=1(Iα) ≥ 1 are defined in terms
of the Ihara polynomial Iα ∈ Z[t±1], whose definition was recalled in (3-8). Moreover,
{Δn(Jα)}n∈N is the Pierce–Lehmer sequence, defined as in (2-4), which is associated to
the polynomial Jα(t) := tb · (t − 1)−e · Iα(t) ∈ Z[t].

PROOF. First of all, observe that e ≥ 1 because Iα(1) = det(DX − AX), where DX

and AX are respectively the degree and adjacency matrices associated to X, whose
difference DX − AX is singular, as explained in [6, Proposition 2.8]. Now, applying
Proposition 3.5 to the Galois cover Xn/X,

n · κ(Xn) = κ(X) ·
∏
ψ�ψ0

Iαn (ψ(1)), (3-13)
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where αn := πn ◦ α for every n ∈ N. Moreover, it is easy to see using (3-10) that∏
ψ�ψ0

Iαn (ψ(1)) =
∏
ψ�ψ0

Iα(ψ(1)) =
∏
ζ∈W∗n

Iα(ζ), (3-14)

where W∗n := Wn \ {1} denotes the set of nontrivial roots of unity whose order divides n.
Now, let us observe that∏

ζ∈W∗n

Iα(ζ) =
∏
ζ∈W∗n

(ζ−b · Iα(ζ)) = (−1)b(n−1)
∏
ζ∈W∗n

Iα(ζ)

= (−1)b(n−1)Res
(
Iα(t),

tn − 1
t − 1

)
(3-15)

as follows from the definition of resultant recalled in Section 2.1. Thus,

n · κ(Xn) = (−1)b(n−1) · κ(X) · Res
(
Iα(t),

tn − 1
t − 1

)
(3-16)

by combining (3-13) with (3-14) and (3-15). To conclude, it suffices to observe that

Res
(
Iα(t),

tn − 1
t − 1

)
= Res

(
t − 1,

tn − 1
t − 1

)e
· Res
(
Jα(t),

tn − 1
t − 1

)

= ne · Res
(
Jα(t),

tn − 1
t − 1

)
= ne · Δn(Jα)

Δ1(Jα)
,

thanks to the multiplicative property of resultants. �

REMARK 3.7. Formulae such as (3-16) appear also in the theory of curves over finite
fields and in knot theory. Indeed:

• if C is a nonsingular, geometrically irreducible projective curve over a finite field
Fq with at least one rational point over Fq, and J is its Jacobian variety, then [47,
Corollary, page 110] implies that

#J(Fqn ) = |Res(PC(t), tn − 1)|,

where PC(t) is the Weil polynomial of C, defined as the reverse of the L-polynomial
LC(t);

• if K ⊆ S3 is a knot and Mn is a Galois cover of M := S3 \ K, with Galois group
Z/nZ, Fox’s formula (see [59]) implies that

#H1(Xn,Z)tors = |Res(AK(t), tn − 1)|,

where AK(t) is the Alexander polynomial associated to the knot K.

REMARK 3.8. Let us note that, in the setting of Theorem 3.6, the explicit formula
(3-12) implies that Jα does not vanish at roots of unity. Indeed, if this was the case,
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we would have κ(Xn) = 0 for some n ≥ 2, which is absurd because Xn is not empty.
Therefore, combining Theorem 3.6 with Corollaries 2.8 and 2.9, one can recover (1-2)
and (1-3) for the Z�-towers {X�n}+∞n=0 induced from a Z-tower {Xn}+∞n=1. More generally,
combining Theorem 3.6 with Corollary 2.5 will allow us to prove Theorem 1.1, as we
will explain in Theorem 3.17.

REMARK 3.9. Since the polynomial Jα is a reciprocal polynomial, it is known that
the quantity |Δn(Jα)/Δ1(Jα)| is a square when n is odd and Jα is a monic polynomial,
as explained for instance in [10, Section 2]. It follows that if p and � are two distinct
rational primes with � odd and Jα is monic, then

ordp(κ(X�k )) = ordp(κ(X)) + ordp(Δ�k (Jα)/Δ1(Jα)),

and the parity of the number ordp(κ(X�k )), for all k ≥ 1, depends only on the parity of
ordp(κ(X)). This remark explains the parity of the p-adic valuation of the number of
spanning trees in various Z�-towers appearing in [39, 40, 57] and [35], since in each
case, the tower in question is constructed from a voltage assignment α : EX → Z� such
that α(EX) ⊆ Z. We point out as well that (3-12) is compatible with various results in
the literature, such as [31, Theorem 5.5], [42, Theorem 5.5] and [41, Theorem 3].

3.4. An explicit example. Let us revisit [57, Example 2] using the results proven
in the present paper. Consider the bouquet graph X = B2 on two loops and pick
an orientation S = {s1, s2}. Consider the function α : S→ Z given by α(s1) = 3 and
α(s2) = 5. Note that α(s2

1 · s̄2) = 1, and thus Theorem 3.2 implies that X(Z,α) is
connected. Therefore, so are all the finite graphs

Xn := X(Z/nZ, πn ◦ α),

where πn : Z� Z/nZ denotes the canonical projection map. The infinite graph X(Z,α)
is a connected 4-regular graph that is not a tree, but it is a quotient of the infinite
4-regular tree. All the finite graphs Xn are finite quotients of X(Z,α). Moreover,
one can draw each of these graphs Xn, using their definition, and we did so for
n ∈ {1, . . . , 10, 25, 27} in Figure 1, where we also drew a line Xn → Xm whenever m | n.

Note in particular that the Z2-tower considered in [57, Example 2] corresponds to
the leftmost column of the previous figure. For the Z-tower considered in the present
example, the Ihara polynomial is given by

Iα(t) = 4 − (t3 + t−3) − (t5 + t−5) = t−5 · (t − 1)2 · Jα(t),

with Jα(t) = −(t8 + 2t7 + 4t6 + 6t5 + 8t4 + 6t3 + 4t2 + 2t + 1). Using SAGEMATH [54],
for each n ∈ {1, . . . , 10}we computed the number of spanning trees κ(Xn), the resultants
Res(Iα(t), (tn − 1)/(t − 1)) and the values of the Pierce–Lehmer sequence Δn(Jα).
Doing so, we obtained the values that are tabulated in the following table, which
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FIGURE 1. The Z-tower of graphs described in Section 3.4.

shows in particular that the relationship between these invariants is the one predicted
by (3-12):

n 1 2 3 4 5 6 7 8 9 10

κ(Xn) 1 4 3 32 5 300 1183 1024 12321 16820
Res(Iα(t), tn−1

t−1 ) 1 −8 9 −128 25 −1800 8281 −8192 110889 −168200
Δn(Jα) −34 68 −34 272 −34 1700 −5746 4352 −46546 57188

3.5. Asymptotics for the number of spanning trees. The aim of this subsection
is to obtain some asymptotic results for the number of spanning trees in a Z-tower of
graphs, using the relation between the number of spanning trees and Pierce–Lehmer
sequences, provided by Theorem 3.6, in combination with the asymptotic results for
Pierce–Lehmer sequences, which we explored in Section 2.3.

3.5.1. Archimedean asymptotics. We will start from the Archimedean asymptotics
of the number of spanning trees, which are provided by the following corollary of
Theorem 3.6.

COROLLARY 3.10. Let X be a finite connected graph such that χ(X) � 0 and fix a
voltage assignment α : EX → Z such that X(Z,α) is connected. Then, if the polynomial
Jα defined by (3-11) does not have any root on the unit circle of C,

κ(Xn) ∼ ne−1 κ(X)
|Δ1(Jα)|M∞(Iα)n

as n→ +∞.

PROOF. This follows directly by combining (3-12) with (2-16). �
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REMARK 3.11. Let us note that given an Ihara polynomial Iα associated to some
voltage assignment α, either M∞(Iα) = 1 or M∞(Iα) ≥ 2, as was proved in [50,
Proposition 12.7].

REMARK 3.12. It is reasonable to ask what happens when the Ihara polynomial Iα
has some roots on the Archimedean unit circle. In this case, it is easy to see that these
roots will prevent one from getting a precise asymptotic for the growth of κ(Xn). To see
this, fix some α = e2πiθ ∈ C with θ ∈ R \ Q. Then, the sequence

|αn − 1|2∞ = 2(1 − cos(2πnθ))

is distributed on the interval [0, 4] according to the probability density function
(2/π)

√
4x − x2, thanks to Weyl’s equidistribution theorem [30, Ch. 1, Example 2.1],

and to the explicit computation of the probability density function of the random
variable 2(1 − cos(2πU)), where U is a random variable that is uniformly distributed
in the interval [0, 1], which follows from the general transformation formula for
probability density functions (see [8, Theorem 3.8.4]). Therefore, we see that any
asymptotic expansion for the growth of κ(Xn) would have to feature some oscillating
term, which takes into account this equidistribution phenomenon.

The previous Corollary 3.10 allows us to recover the asymptotics for the number of
spanning trees of two particular examples of Z-towers, which were thoroughly studied
in [41, 42].

EXAMPLE 3.13. Consider the following orientation S = {s1, s2, s3} on the dumbbell
graph:

s2s1 s3

and fix a function α : S→ Z such that α(s2) = 0. This defines a voltage assignment
on the dumbbell graph X, with values in Z. Moreover, the derived covers Xn :=
X(Z/nZ, πn ◦ α), where πn : Z� Z/nZ denotes the canonical projection, are given by
the I-graphs I(n, k, l), where k := α(s1) and l := α(s3). In particular, if k = 1, one gets
the family of generalised Petersen graphs GP(n, l).

Now, one sees from Theorem 3.2 that the graph X(Z,α) is connected if and only if
(k, l) = 1, which we will assume for the rest of this example. Then, we can compute
the Ihara polynomial associated to the voltage assignment α, which is given by

Iα(t) = (3 − tk − t−k)(3 − tl − t−l) − 1 = t−(k+l) · Iα(t)

where Iα(t) = (3tk − t2k − 1) · (3tl − t2l − 1) − tk+l. Since Iα(1) = I′α(1) = 0, while
I′′α (1) � 0, we see that e := ordt=1(Iα) = 2, which allows us to write

Iα(t) = (t − 1)2 · Jα(t)
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for some Jα ∈ Z[t] such that Jα(1) � 0. A simple calculation shows that Jα has no roots
on the unit circle, as explained for instance in [42, Lemma 5.2]. Moreover, it is easy to
see that

|Δ1(Jα)| = |Jα(1)| = |I′′α (1)|/2 = k2 + l2

and that κ(X) = 1. Therefore, Corollary 3.10 shows that

κ(I(n, k, l)) ∼ n
k2 + l2

·M∞(Iα)n

as n→ ∞, which is precisely [42, Theorem 6.1].

EXAMPLE 3.14. Consider the graph X consisting of a bouquet with k loops for
some k ∈ N, and take an orientation S = {s1, . . . , sk} of X. Moreover, fix any function
α : S→ Z such that

1 ≤ α(s1) < α(s2) < · · · < α(sk)

and write ai := α(si) for every i ∈ {1, . . . , k}. Then, for n large enough, the derived
graph Xn := X(Z/nZ, πn ◦ α) is the circulant graph Cn(a1, . . . , ak). Note in particular
that the example described in Section 3.4 belongs to this more general family.

Once again, it is easy to see by Theorem 3.2 that the graph X(Z,α) is connected if
and only if (a1, . . . , ak) = 1, which we will assume for the rest of this example. Then,
we can compute the Ihara polynomial associated to the voltage assignment α, and we
obtain

Iα(t) = 2k −
k∑

i=1

(tai + t−ai ) = t−ak Iα(t),

where Iα(t) := 2ktak −∑k
i=1(tak+ai + tak−ai ) ∈ Z[t]. In particular, we easily see that

Iα(1) = I′α(1) = 0 � I′′α (1),

which implies that e := ordt=1(Iα) = 2, and that Iα(t) = (t − 1)2 · Jα(t) for some
Jα ∈ Z[t] satisfying Jα(1) � 0. Moreover, one can easily show that Jα does not have
any root on the unit circle of C, as explained in [41, Lemma 2]. Finally, we see that
κ(X) = 1 and

|Δ1(Jα)| = |Jα(1)| = |I′′α(1)|/2 =
k∑

i=1

a2
i

which, thanks to Corollary 3.10, implies that

κ(Cn(a1, . . . , ak)) ∼ n∑k
i=1 a2

i

·M∞(Iα)n

as n→ ∞, which is [41, Theorem 5] in the particular case when d = 1.

https://doi.org/10.1017/S1446788724000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000144


[29] Spanning trees in Z-covers of a finite graph and Mahler measures 29

3.5.2. p-adic asymptotics. Let us look at the asymptotics of the p-adic valuations of
the number of spanning trees in a Z-tower, for a fixed prime p. As in the Archimedean
setting, we start from the case when the Ihara polynomial Iα does not have any
nontrivial root lying on the unit circle of Cp.

COROLLARY 3.15. Let X be a finite connected graph such that χ(X) � 0, and fix a
voltage assignment α : EX → Z such that X(Z,α) is connected. Fix moreover a rational
prime p ∈ N. Then, if the polynomial Jα defined by (3-11) has no root on the unit circle
of Cp,

|κ(Xn)|p = |n|e−1
p

|κ(X)|p
|Δ1(Jα)|p

Mp(Iα)n

for every n ∈ N, where e := ordt=1(Iα) is the order of vanishing at t = 1 of the Ihara
polynomial associated to α.

PROOF. This follows immediately by combining (3-12) with (2-15). �

REMARK 3.16. Let f (t) =
∑d

j=0 cjtj ∈ Z[t] be any polynomial. Then, every root of f lies
in the unit circle of Cp whenever p � c0 · cd. Therefore, we see that, for every given
Z-tower of graphs, Corollary 3.15 can be applied only for finitely many primes p.

3.6. Exact formulae for the p-adic valuation of the number of spanning trees.
The previous remark prompts us to study the case when Jα has some roots on the unit
circle of Cp. In this case, we can prove the following result (which is the more precise
version of Theorem 1.1 from §1), which gives a partial analogue of Iwasawa’s theorem
for Z-towers.

THEOREM 3.17. Let X be a finite connected graph whose Euler characteristic χ(X)
does not vanish, and let α : EX → Z be a voltage assignment such that X(Z,α) is
connected. Let Iα ∈ Z[t] be the Ihara polynomial associated to α, and set

Jα(t) := tb(t − 1)−eIα(t),

where b := −ordt=0(Iα), and e := ordt=1(Iα).
Fix now a rational prime p ∈ N, an algebraic closure Qp of the field of p-adic

numbers, and let Op be the ring of integers of Qp. Using this notation, we can define
the quantities

μp(X,α) := −mp(Jα)/log(p),
cp(X,α) := ordp(κ(X)) − ordp(Δ1(Jα)),

where mp(Jα) denotes the logarithmic p-adic Mahler measure of Jα, defined as in (2-3).
Moreover, let β1, . . . , βd ∈ Qp be the p-adic roots of Jα, counted with multiplicity.

Then, for every n ∈ N, we introduce the set

Bp,n(X,α) := {β ∈ Qp : Jα(β) = 0, |β|p = 1, |βn − 1|p < 1}, (3-17)
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which can be used to define the quantity

λp,n(X,α) := #{j ∈ {1, . . . , d} : βj ∈ Bp,n(X,α)} + e − 1.

Finally, for every β ∈ Op such that |β|p = 1,

sp(β) := min{s ∈ Z≥0 : ps(p − 1)ordp(β − τp(πp(β))) > 1} (3-18)

and for every n ∈ N, we set rp,n(β) := min(ordp(n), sp(β)), where τp(πp(β)) denotes the
Teichmüller lift of the reduction πp(β) of β modulo the maximal ideal of Op. This can
be used to define the quantity

νp,n(X,α) :=
∑

j∈{1,...,d}
βj∈Bp,n(X,α)

(ordp(βprp,n(βj)

j − τp(πp(βj))
prp,n(βj)

) − rp,n(βj)).

Then,

ordp(κ(Xn)) = μp(X,α) · n + λp,n(X,α) · ordp(n) + νp,n(X,α) + cp(X,α)

for every n ∈ N.

PROOF. From Theorem 3.6, one has the identity

ordp(κ(Xn)) = ordp(Δn(Jα)) + (e − 1) · ordp(n) + cp(X,α). (3-19)

Moreover, Corollary 2.5 implies that

ordp(Δn(Jα)) = μp(X,α) · n + Ap,n(X,α) · ordp(n) + νp,n(X,α), (3-20)

where Ap,n(X,α) := #{j ∈ {1, . . . , d} : βj ∈ Bp,n(X,α)}, because we have that
Bp,n(X,α) = Bp,n(Jα) and νp,n(X,α) = νp,n(Jα) by definition. Therefore, we can
conclude the proof by combining (3-20) with (3-19). �

Using Theorem 3.17, one can easily show that once we fix the base graph X, the
voltage assignment α : EX → Z and the prime number p, we can subdivide N in a
finite number of sequences, given by imposing certain divisibility conditions. Along
each of these sequences, the invariant ordp(κ(Xn)) can be computed as a linear form in
n and ordp(n), as we show more precisely in the following theorem.

THEOREM 3.18. Let X be a finite connected graph whose Euler characteristic χ(X)
does not vanish, and α : EX → Z be a voltage assignment such that for every
n ≥ 1, the finite graph Xn := X(Z/nZ,αn) is connected (which can be checked using
Theorem 3.2). Moreover, for every prime p ∈ Z,

μp(X,α) := −mp(Iα)/log(p),

where mp(Iα) denotes the logarithmic p-adic Mahler measure of the Ihara polynomial
Iα. Then, for every rational prime p, there exist a finite set Np(X,α) ⊆ N of integers
coprime to p, and an integer Rp(X,α) ≥ 0 such that for every n ⊆ Np(X,α) and every
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r ∈ {0, . . . , Rp(X,α)}, there exist two integers λp(X,α, n) ≥ 0 and νp(X,α, n, r) such
that

ordp(κ(Xn)) = μp(X,α) · n + λp(X,α, n) · ordp(n) + νp(X,α, n, r) (3-21)

for every n ∈ Sp(X,α, n, r), where Sp(X,α, n, r) consists of those n ∈ N such that:

• N | n for each N ∈ n;
• N′ � n for each N′ ∈ Np(X,α) \ n;
• ordp(n) = r if r < Rp(X,α), or ordp(n) ≥ Rp(X,α) if r = Rp(X,α).

Moreover, the finite set Np(X,α), the integer Rp(X,α), and the two invariants
λp(X,α, n) and νp(X,α, n, r) can be explicitly computed in terms of the polynomial Iα.

PROOF. Fix a finite connected graph X and a voltage assignment α : EX → Z.
Moreover, fix a rational prime p and let β1, . . . , βd denote the roots of Jα, counted
with multiplicities, that lie on the unit circle of Cp, and let N1, . . . , Nd denote the
multiplicative orders of πp(β1), . . . , πp(βd) in F

×
p . Then,

Np(X,α) := {N1, . . . , Nd},
Rp(X,α) := max

j=1,...,d
sp(βj),

where sp(βj) is defined as in (2-13). Moreover, for every subset n ⊆ Np(X,α),

λp(X,α, n) := #n + e − 1,

as we will now show.
First of all, suppose that n = ∅. In other words, let us take an integer n ∈ N such

that N1 � n, . . . , Nd � n. Then, the set Bp,n(X,α) defined in (3-17) is empty. Therefore,
Theorem 3.17 shows that for every r ∈ {0, . . . , Rp(X,α)},

νp(X,α, ∅, r) := cp(X,α)

and (3-21) will hold true.
Now let us suppose that n � ∅ and let J ⊆ {1, . . . , d} be the unique nonempty

subset such that n = {Nj : j ∈ J}. Then, if we suppose in addition that p � 2 and
p � Disc(Jα), we have that Bp,n(X,α) = {βj : j ∈ J}. Moreover, the quantity rp,n(β),
which was defined in (3-18), vanishes whenever β ∈ Bp,n(X,α), because
ordp(β − τp(πp(β))) ∈ N and p − 1 > 1 in this case. Therefore, Theorem 3.17 shows
that for every prime p � 2 such that p � Disc(Jα) and every r ∈ {0, . . . , Rp(X,α)},

νp(X,α, n, r) := cp(X,α) +
∑
j∈J

ordp(βj − τp(πp(βj))),

and (3-21) will hold true. However, if p = 2 and Disc(Jα) is odd, we still have
that Bp,n(X,α) = {βj : j ∈ J} and ordp(β − τp(πp(β))) ∈ N for every β ∈ Bp,n(X,α).
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Therefore, we see that for every β ∈ Bp,n(X,α), we have rp,n(β) = 0 if 2 � n, and
rp,n(β) ≤ 1 otherwise, because Disc(Jα) is assumed to be odd. In other words, if r = 0,

ν2(X,α, n, 0) := c2(X,α) +
∑
j∈J

ord2(βj − τ2(π2(βj))),

while if r ≥ 1,

ν2(X,α, n, r) := c2(X,α)

+
∑
j∈J

ord2(βj−τ2(π2(βj)))=1

(ord2(β2
j − τ2(π2(βj))

2) − 1)

+
∑
j∈J

ord2(βj−τ2(π2(βj)))≥2

ord2(βj − τ2(π2(βj)))

and Theorem 3.17 will ensure that (3-21) holds true when p = 2.
To conclude, let us assume that p | Disc(Jα) and let again n = {Nj : j ∈ J} for some

nonempty J ⊆ {1, . . . , d}, so that Bp,n(X,α) = {βj : j ∈ J}. Then, if r = Rp(X,α), which
implies that ordp(n) ≥ Rp(X,α),

rp,n(β) = sp(β) := min{s ∈ Z≥0 : ps(p − 1)ordp(β − τp(πp(β))) > 1}

for every β ∈ Bp,n(X,α). Therefore, Theorem 3.17 guarantees that if we take
νp(X,α, n, Rp(X,α)) to be

cp(X,α) +
∑
j∈J

(ordp(βpsp(βj)

j − τp(πp(βj))
psp(βj)

) − sp(βj)),

the identity (3-21) will hold true. Finally, if we fix r ∈ {0, . . . , Rp(X,α) − 1}, we can
take νp(X,α, n, r) to be

cp(X,α) +
∑
j∈J

(ordp(βpmin(r,sp(βj))

j − τp(πp(βj))
pmin(r,sp(βj))

) −min(r, sp(βj)))

and Theorem 3.17 still guarantees that (3-21) holds true. �

REMARK 3.19. The previous proof shows that the p-adic valuation of the number of
spanning trees is actually constant along many of the sequences Sp(X,α, n, r). More
precisely, let ‖Jα‖ be the greatest common divisor of the coefficients of Jα. Then, if p
is a prime such that

p � Disc(Jα) · ‖Jα‖,

for every n = {Nj : j ∈ J} ⊆ Np(X,α),

ordp(κ(Xn)) = cp(X,α) +
∑
j∈J

ordp(βj − τp(πp(βj)))

whenever n ∈ Sp(X,α, n, 0).
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REMARK 3.20. It is clear from the proof of Theorem 1.1 that the multiplicative orders
N1, . . . , Nd play a crucial role in the understanding of the evolution of the p-adic
valuation of the number of spanning trees along a Z-tower. Therefore, it would be
nice to know how these orders vary with the prime number p. This can be understood
in terms of a far reaching generalisation of Artin’s primitive root conjecture, due to
Lenstra [37], which is known to hold under the assumption of the generalised Riemann
hypothesis.

3.7. The Fibonacci tower. To conclude this paper, let us note how the formula
provided by Theorem 3.17 generalises a famous formula for the p-adic valuation of
the Fibonacci numbers, due to Lengyel [36]. More precisely, if in Example 3.14 we
take the bouquet on two loops X, with an orientation S = {s1, s2}, and we let α be
the unique voltage assignment α : EX → Z such that α(s1) = 1 and α(s2) = 2, then we
obtain the Z-tower portrayed in Figure 2.

It turns out that the number of spanning trees of the finite layers of this tower is
intimately related to the sequence of Fibonacci numbers. To show this, let us observe
that κ(X) = 1 and

Iα(t) := 4 − (t + t−1) − (t2 + t−2),

which implies that e = 2 and Jα(t) = −(t2 + 3t + 1). We denote by β1 = (−3 −
√

5)/2
and β2 = (−3 +

√
5)/2 the roots of Jα, and we observe that Δ1(Jα) = −5.

Then, Theorem 3.6 can be combined with a simple computation to show that

κ(Xn) = n
Δn(Jα)
Δ1(Jα)

= n
(−1)n(βn

1 − 1)(βn
2 − 1)

−5
= nF2

n ,

FIGURE 2. The Z-tower of graphs described in Section 3.7.
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where Fn is the n th Fibonacci number. Therefore, Theorem 3.17 implies that

2 · ordp(Fn) = ordp(κ(Xn)) − ordp(n) = #Bp,n(X,α) · ordp(n) + νp,n(X,α)

for every prime p � 5 and every n ∈ N, because mp(Jα) = 0 for every prime p ∈ N.
Now, let us note that the two roots β1 and β2 of the polynomial Jα are both

reciprocal units, which implies that the set Bp,n(X,α) is either empty or consists of
the two roots {β1, β2}. The latter scenario occurs if and only if n is a multiple of the
multiplicative order Np of β1 (and β2) in F

×
p . Therefore, Theorem 3.17 shows that Np

coincides with the so called rank of apparition of the prime p, that is, with the smallest
index n such that p | Fn. Since there exists k ∈ N such that Np | pk − 1, we see that
ordp(Np) = 0 and thus that

∑2
j=1 ordp(βj − τp(πp(βj))) = 2 · ordp(FNp ), provided one

assumes moreover that p � 2. Hence, these considerations entail that

ordp(Fn) =

⎧⎪⎪⎨⎪⎪⎩ordp(n) + ordp(FNp ) if Np | n,
0 otherwise,

for every p � 2, 5, as was proven in [36, Section 3].
To conclude this example, and this paper, let us see what happens when p = 2

and p = 5. In the first case, when p = 2, we can observe that Jα has no roots in
F2, which implies necessarily that N2 = 3. Moreover, to compute the Teichmüller
representatives τ2(π2(βj)), for j ∈ {1, 2}, we can work globally and consider the number
field K = Q(

√
5, ζ3), where ζ3 is a primitive third root of unity. A simple calculation

shows that 2 decomposes as a product of two primes in K both with inertia degree 2
and ramification degree 1. Using SAGEMATH [54], or by hand, one calculates that
(β1 − ζ3) = p, where p is one of the two primes lying above 2. If we denote the
other prime lying above 2 by q, then we also have (β1 − ζ2

3 ) = q. Moreover, we have
(β2

1 − ζ
2
3 ) = p3 and (β2

1 − ζ
4
3 ) = q3. A similar calculation can be performed for β2. After

embedding K into Q2 with any embedding, these calculations show that N2 = 3 and

ord2(βj − τ2(π2(βj))) = 1, ord2(β2
j − τ2(π2(β2

j ))) = 3,

for every j ∈ {1, 2}. Finally, one can check easily that ord2(F3) = 1. Thus, (3-18) implies
that

ord2(Fn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if n ≡ 1, 2 (mod 3),
1 if n ≡ 3 (mod 6),
ord2(n) + 2 if n ≡ 0 (mod 6),

which was proven in [36, Lemma 2].
Let us now suppose that p = 5. Since −Jα ≡ (t − 1)2 (mod 5), we see that the

multiplicative order of β1 and β2 in F
×
5 is 1, which is not the rank of apparition of

the prime 5. Moreover, one has that ord5(βj − τ5(π5(βj))) = 1/2. Indeed, τ5(π5(βj)) =
τ5(1) = 1. Hence, ord5(βj − τ5(π5(βj))) = ord5(

√
5) = 1/2 for every j ∈ {1, 2}, as we
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wanted to show. Finally, let us observe that s5(βj) = 0 for every j ∈ {1, 2}. Combining
this with the fact that c5(X,α) = −1,

ord5(Fn) = ord5(n) + 1
4 +

1
4 −

1
2 = ord5(n)

for every n ∈ N, as was proven in [36, Lemma 1]. This shows that Theorem 3.17 can
be seen as a generalisation of Lengyel’s theorem to sequences that arise as the number
of spanning trees in a Z-cover of finite graphs.
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