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A-MOVES ON LINKS AND 
JONES POLYNOMIAL EVALUATIONS 

DANIEL S. SILVER 

ABSTRACT. We determine the effect on the Jones polynomial evaluated at f = / and 
t = e

ni/3 of an oriented link whenever certain twists are performed. 

1. . Let L C S3 be any oriented link diagram. A A!m-move is any local change 
of the diagram in which m coherently oriented strands are given j half-twists, as in 
Figure 1. (The notation is suggested by analogy with the fundamental m-braid A = 
o\ — ' am-\G\ • • • CTW-2 • • • o\.) Let Aj„(L) denote any oriented link obtained by perform­
ing a Aw-move on a diagram L. In [13], [18] J. H. Przytycki observed that the Jones 
polynomial relation VAi{L)(i) = — VL(i) follows abstractly from Birman and Wajnryb's 
study [2] of finite quotients of the braid groups Bn, and he suggested that an elementary 
argument should be possible. We generalize Przytycki's observation and give two very 
short geometric proofs. 

THEOREM 1. Let L C S3 be any oriented link. For any nonnegative integer n, 

d») v A L i ( L ) ( / ) - ( - i ) r ^VL(0 

(2n) VAtn(L)(i) = (-l)nVL(i), 

where \ | ] denotes the smallest integer > | . 

In [18] Przytycki also showed that VAe(L)(e
ni/3) = -Wde^l3) for any oriented link 

L. We extend this result in the following theorem. 

THEOREM 2. Let L be any oriented link. For any nonnegative integer n, 

dn) VAL](L)(e^3) = VL(eni/3) 

(2n) V^L)ie*ll*) = (-\yVL(e«i/3). 

REMARK. We have defined tlm-move using left-hand twists. Results identical to those 
above using right-hand twists (A„7-moves) follow by applying Theorem 1 to the links 
A^2

+1(L), A n̂
4(L) and Theorem 2 to the links A^4

+1(L), A^6(L). 
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m strands { = = 
AJ, 

- a 

Al 

Figure 1 

The author is grateful to L. Richard Hitt, Dale Rolf sen and Jozef Przytycki for helpful 
discussions, and to University of British Columbia and University of Washington for 
their hospitality. 

2. In [14] Morton modified techniques of Jones and Ocneanu to define a version 
, G Zfv^ 1 ^ 1 ] of the 2-variable polynomial for an oriented link L by the conditions 

v~lPL+ — vPL_ = ZPLO, ûnknot = 1. Here L+,L_,Lo are links that differ only in a neigh­
borhood of one crossing, as in Figure 2. (L+,L_,Lo is called a skein triple of oriented 
links.) In [15] Morton and Traczyk observed that PL actually resides in a quotient ring 
A = Z[v^l,z,S]/ (zS = v - 1 — v) which is isomorphic to a subring of Zfv^1 ,^1] via 
the assignment 8 »—• z~l(v~l — v). The Jones polynomial Vi(t) can be recovered as 
PUtJî — f~2, —ti — t~i). The reader is cautioned that in order to compute VL(0»

 a 

consistent choice of e7"/4 or e57n/4 for n must be made. 

( 

We briefly review the aspects of linear skein theory used in our first proof of Theo­
rem 1. This elegant and surprisingly powerful theory was introduced by Conway [3], [4] 
and subsequently developed by others, including Giller [5], Lickorish and Millet [11], 
Morton and Traczyk [14], [15]. Most of the ideas that we borrow appear in [14], and the 
reader is referred to that paper for details. 

Consider a room Rn, as in Figure 3, having n inputs and n outputs. An oriented n-
tangle (rc-tangle, for brevity) is any oriented 1-manifold T connecting all of the inputs 
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and outputs, as in Figure 3. Geometric «-braids are a special type of «-tangle. The closure 
TA is the oriented link obtained by joining inputs to corresponding outputs outside of Rn 

in the obvious way so that no new crossings are created. Let % denote the collection 
of all «-tangles up to isotopy of Rn fixing its boundary. Henceforth we will identify any 
«-tangle with its equivalence class in %. Tangle composition (i.e., stacking n-tangles) 
induces a semigroup structure on %. 

Figure 3 

Let A[^ ] denote the free A-module generated by %. The linear skein Ln is the quo­
tient A-module A[%]/ (v~lT+ - vT- = zT0, TU unknot = ST). Here, as for links, 
7+, 71, To are «-tangles that differ only in a neighborhood of a single crossing, as in 
Figure 2. The correspondence T »—• P?* induces a homomorphism P: Ln —•* A, and the 
pairing (S, T) i—> PST* induces a bilinear form <j> : Ln x Ln —> A. Using the invariance 
of PL under mutation (see [11]), one can show that <j> is symmetric; by [15, proof of 
Theorem 2] (j> is nondegenerate as well. 

A free A-basis {s*} for Ln, indexed by the elements of the symmetric group Sn, is 
described in [15]: sn consists of n unknotted arcs—the first arc joining input 1 to output 
7r(l) and lying below all of the other arcs; the second arc joining input 2 to output 7r(2) 
and lying below all of the remaining arcs, etc. Notice that s^ can be constructed as a 
geometric «-braid representing a negative word in Bn. Furthermore, when tr ^ 1 we 
may assume: ifr is the largest index such that o~x occurs, then a~l occurs exactly once. 

We now specialize the ring A to A' = Z[n ] by setting v = i, z = i1 — i~ï ,6 = —n — 
i~ï. The resulting A'-module Ln <S)\ A' will be denoted by L'n. Denote ̂ 0 1 G L'n by s^. 
The elements sf

7r constitute a free A'-basis for L'n. Suitably tensoring each of the maps P, </> 
with 1A' produces a homomorphism Pf: L'n —> A' and a bilinear form </>': L'n x L'n —»• A'. 
We will see that </>' is degenerate; in fact, it's the degeneracy that makes Theorem 1 
possible. 

3. Proof of Theorem 1. The following general observation about A^-moves pro­
vides a basis for induction. For a proof of the lemma, see Figure 4 below. 

LEMMA 1. Any A^-move, m > 2, can be accomplished using one £âm_x-move, two 
A^_j -moves, one A^_2-move and one A^-move. 
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Figure 4 

We prove statements (ln) and (2„) of Theorem 1 together, using induction on the total 
number m of strands being twisted. 

First consider m — 2. Any link A\(L) can be viewed as the closure of the tangle 
product TA\, where A\ is regarded as a 2-tangle and T is the complementary 2-tangle. It's 
a simple matter to check that A\ is equivalent to —1 in L'2. Hence VA4(L)(/) = (j>'(T, A\) = 
-$'(TA)=-VL(i). 

Assume the statement of Theorem 1 for links in which m— 1 strands are twisted. We'll 
prove the result for m. If m is odd, then in view of the proof for m = 2, it suffices to prove 
the result for each basis element s'^ (which we identify with its n-tangle representative 
constructed in § 2). In fact, since the homomorphism P: Lm —-» A factors through a quo­
tient of Lm in which s\ is a A-linear combination of the elements s^, TT ^ 1 (Kauffman's 
diagram algebra [8], [15] is a concrete realization of this quotient) we need only prove 
the result for basis elements s'^ G L'm, TT ^ 1: replace 5̂  by the ra-tangle 5̂  obtained by 
permuting all trivial right-most strands to the left, as illustrated by example in Figure 5. 
As braids, s^ and ^ represent conjugate elements in Bm, and since A^ lies in the center 
of Bm, the closures of s'n A^ and s^A^ are isotopic links. We'll work only with the latter. 

Figure 6 below reveals that the A^-move on the closure of ^ can be accomplished 
by first performing a A^-move and then a A~^2~move- Letting m = 2w + 1, any A%n+l-
move has the same effect on the Jones polynomial evaluated at t — i as a A^^-move 
when n is even; it has the opposite effect when n is odd. This assertion is equivalent to 
statement (1„) of Theorem 1. 

If m is even, then Lemma 1 shows that VA4 (L)(/) = — VA4 (L)(/) for any oriented link 

A 4 
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*f + /K 

Figure 5 

L. This establishes statement (2„). 

NOTE ADDED IN PROOF. Jôzef Przytycki has informed me that Hugh Morton (private 
correspondence) obtained the above result for m = 3 using these techniques. 

4. Proof of Theorem 2. Lickorish and Millett have shown in [9] that for any ori­
ented link L, VLO7"/3) = aLi(CL~l\iy/3)dL, where aL = ±l,cL is the number of com­
ponents of L and d^ = dim H\ (DL\ Z$), DL being the double branched cover of L. Also, 
Przytycki [18] has shown that dA4 (L) = dL and d^ (L) = dL for any oriented link L. 
Thus in order to establish Theorem 2 it suffices to determine the effect of A^+j -moves 
and &\n-moves on a (the invariant a has been studied by Lipson [12]). If L+,L_,Lo is 
any skein triple of oriented links, we will shorten the notation a^, &L_, 07̂  to cr+, cr_, GQ 
(similarly for c and d). 

LEMMA 2. (1) If do = d+ + 1 and Co = c+ + 1, then <7o = <r+. (2) If do = d+ — 1 and 
Co = C+ — 1, f/î£« 0 0 = 0"+. 

PROOF. Using the above-mention result of [9] together with the defining relation for 
Vi, we obtain 

o + é ^ O ' V ^ +a-e-ni'6(iV3)d- +aoi(c°-c+)(iVÏ)do = 0, 

since c+ 

write 

c- (this equation appears in [12]). When do = d+ + 1 and Co = c+ + 1 we can 

(iV3)d -rf+ _ f3 l \ v 3 v 

Since |o"o — ĉr+ is never 0, d- — d+ must be even and hence <JO — a+ = 0. This proves 
statement ( 1 ). The proof of (2) is similar. • 

The link A2n+1 (L) can be obtained by joining L and the {In + 1, 2{2n +1)) torus link 
T with In + 1 bands as in Figure 7. 

Since J is invariant under A2„+1-moves, dj — In. If we break In bands joining Land T, 
we obtain L#7, and d must increase by 2n. (Break each band by smoothing its crossing.) 
Breaking a single band can alter d by at most dbl (see [17]), so each time we break a 
band d must increase by 1 (and so does c). By Lemma 2 (1) aA4 (L) = a^r = (TL<TT-
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i 
// 

Figure 6 

It will be convenient to denote oj also by <J2n+\- In order to compute <J2n+\, reverse the 
orientation of any component of T; call the altered link T'. By the Jones reversing result 
[6], [10] (See [18] for our situation) ar = &T- NOW smooth any crossing of V that 
involves the reversed component to obtain the (in — l,2(2n — 1)) torus link plus an 
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* * 

Figure 7 

unknotted, unlinked component. By Lemma 2 (2) a is unchanged, so G2n+\ = ^2n-i(= 
• • • = cri = 1). Statement (ln) of Theorem 2 follows immediately. The proof of (2„) is 
similar; the only difference arises when we reverse the orientation of a component—in 
this case a changes; i.e., Oïn = —om-i- Hence 02« = (—l)n-10"2 = (—l)n and statement 
(2„) follows. • 

5. Another proof of Theorem 1. The techniques used to prove Theorem 2 can be 
used to give another proof of Theorem 1. 

If L is proper (i.e., each component has even linking number with the union of the 
remaining components), then the Arf or Robertello [19], Z2-invariant Arf(L) is defined. 
For such a link Murakami [16] has shown that VL(i) = (-V2)CL~l(-l)Arf(L), taking 
ii = e7"/4; vL(i) = 0 if L is not proper (see [9] for another proof of Murakami's result). 
Since L is proper if and only if A2n+1(L) or à^n(L) is proper, Theorem 1 is equivalent to 
the following statement: If L is any proper oriented link and n is any nonnegative integer, 
then 

(mod 2) (1„) Arf(A*n+1(L))-Arf(L) = 

(2„) Arf(A^(L)) - Arf(L) = n (mod 2). 

As in the proof of Theorem 2, A^^iL) can be obtained by joining L and the (in + 
1,2(2n +1)) torus link T with 2n + 1 bands (Figure 7), and by breaking all but one band, 
we obtain L#7\ Since banding together distinct components of any link does not affect 
the Arf invariant (see [9], for example) Arf(A^+1(L)) = Arf(L#r) = Arf(L) + Arf(T). 
We will denote Arf (T) by #2n+i • In order to compute 02*1+1, we proceed as in § 3: reverse 
the orientation of any strand of T; call the altered link T'. By the Jones reversing result 
VL(i) = (/)3(2n)VV(0 = (-1)"W(0. In particular a2n+i - Arf(r) = n (mod 2). Now 
consider any crossing of T' that involves the altered strand. If we change the crossing, the 
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resulting link is no longer proper. If we smooth the crossing, we obtain a link 7o which 
is the (in — 1,2(2/z — 1)) torus link plus an unknotted, unlinked component. Using the 
defining relation for the Jones polynomial (t = i) together with Murakami's result, we 
immediately find that Arf(r') = Arf(r0) = a2n-i' Hence a2n+\ — ain-\ — n (mod 2) 
which implies statement (1„). The proof of (2„) is similar; alternatively, one can now use 
Lemma 1. • 

REMARK. The delta-moves in this paper can be regarded as a special case of t2k,m-
moves defined by R. Fox. Here t2k,m(L) is the link obtained by giving k full twists to 
any parallel collection of strands of L, provided the strands intersect a standard 2-disk 
transversely with oriented intersection number m. (See [18] for details.) The arguments 
above (§§3,4) can be easily extended to prove results about these more general moves. 
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