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DIRICHLET SERIES WITH POSITIVE REAL PART

N. SAMARIS

We consider the sequence A = {0 < Aj < Aj < . . . } , for which An -+ +00.
We denote by PD(A) the class of Dirichlet's series having the form F(s) =

00

^2 a,, exp{—Ans}(oo = 1) defined in the half plan Res > 0 converging absolutely
n=0

and ReF ^ 0. If No = {0, 1, 2, . . . } then the class PD(N0) coincides with the
Caratheodory's class P. In this paper some classical results holding for the class
P are generalised in any class PD(A). In special cases for the sequence A extreme
problems are examined in the class PD(A.).

INTRODUCTION

We consider the sequence A = {0 = Ao < Ai < A2 < . . . } , for which An —> +00.

We denote by

(a) -D(A) the class of Dirichlet's series having the form

F{s) = 2^an exp{-Ans} (a0 = 1)
n=0

defined in the half-plane Re a > 0 and converging absolutely;

(b) PD(A) the class

{F £ D(A) :ReF^ 0};

(c) D the union of all classes -D(A) and by PD the union of all classes

PD(A).

If we set exp{—Res} = r, —Ims = t (0 ^ r < 1, —oo < t < +oo) then every

F{a) E D can be written in the form

F{r, <) = l + 2 ctnr
Xn exp{tAnt}.

7 1 = 1

If JV0 = {0, 1, 2, . . . } , then the class PD(N0) coincides with the Caratheodory's class
P.
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160 N. Samaris [2]

In [1] the inequality \an\ ^ 2, which is true for the class P, is generalised for the
class PD.

In [2] it is shown that if / £ P, then / is an extreme point of the class P if and

only if | a i | takes the maximal possible value, that is a i = 2exp{iip}, or, equivalently,

In the present paper some results holding for the class P axe generalised in the

class PD.

The form of extreme points of a class JD(A) is decisively affected by the structure

of the sequence A, hence the solution of this problem is difficult in the general case.

This assertion is also implied by Remark 2 of Theorem 2, Theorem 3 and Theorem 4.

Remark 2 of Theorem 2 shows how to find all the extreme elements of a class
P-D(A), if the values of the sequence A — {0} form a linearly independent set with
respect to the field of rationals.

Theorems 3 and 4 examine, in some specific cases for the sequence A, the form of

the series
oo

\ns} £ PD{A),
n = 0

when |ai | takes the maximal possible value.

The following lemma from classical Harmonic analysis will be used in the proofs of

the theorems.

LEMMA 1 . If f(x) is an integrable function in R,

f{t) = I f(x)exp{-itx}dx

is the Fourier transform of f and Re / ^ 0; then

/ ( 0 + / ( - < ) | < 2 R e / ( 0 ) i for every t € R.

The proof is obvious.

THEOREM 2 . If
oo

F{a) = ]Tanexp{-An5} £ D
n=0

then the following are equivalent:

(i) F(s)ePD.
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(ii) \F(s) - -4 i ( s )exp{AiRes} - ^(sJexp-C-A* Res} | < 2RcAt(s ) where

M') = [Fh(a)exp{XhBea}-Fh(-a)exp{-\hRea}]-

[exp{AA Res} - exp{-Ajt Res}]"2,
k

n=0

(iii) Proposition (ii) is true for at ieast one natural number k.

(iv) Re £ « n ( l - A n / A f c ) e x p { i A n < } U » 0 , fc = l , 2 , . . . , t 6 R .
Ln=0 J

PROOF: (i) ^ (ii). Let a > 0, c> 0 and

}\— J .
Since

oo

it follows that P(t) = - V an exp{-Ano- - c \i - An|}.
c n=o

Applying Lemma 1, the function P, for t 6 [At, Ajt_i] becomes

|Ffc(<r - c)exp{-ct} + F{<r + c)exp{ct} - Fk(a + c)exp{ct}

For t = Ajfc and a —* 0 it becomes

- F*(c)exp{cAfc} + F(c)exp{-cAA}|

If we replace the absolute value with the real part we obtain the evaluation

Also, taking the square of (*), we obtain

\F(c) - Ai(c)exp{cAJb} -2 f c ( c )exp{-cAj t} | 2 ^ [2Re Ak{c
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which, for s = c, is the required result.

The general case, where s = c - M r (Res > 0), is immediately obtained by substi-

tuting FT e PD(A) for F in the last inequality, where FT(w) = F(u> +ir).

(iii) => (i) By (iii), it is obvious that

Re F(s) ^ (exp{Afc Re s} + exp{-Xk Re s} - 2) Re Ak(s) ^ 0.

(i) =>• (iv) The inequality lie Ak(c — it) ^ 0 is equivalent to

R e g a , exP{an<}eXP{c(Afc 7 .*"» ~ " ^ ~ A>)} ̂  „
^ exp{cAA} - exp{-

which, for c —» 0, gives the required result,

(iv) =» (i) If

n=0

then the function / is bounded in the disc U — {\z\ < 1}, because

Re[(l + z){\ - z)~1} > 0, for every z G U.

Furthermore, Re/(.z) ^ 0 almost everywhere in dU = {\z\ = 1} because

Re[(l + z)(l - z)'1} = 0 ahnost everywhere in dU = {\z\ = 1}.

From the Poisson integral of the function / , it follows that Re/(z) > 0, for every
z &U, or

Re I S^ an 11 - ^ ) exp{-Ans} \ > 0, when Res > 0.\ £ a" (1 ~ Y

For k -> +oo, it follows that F(s) € PD.

REMARK 1. From Part (ii) of Theorem 2, the following evaluation for |.F(s)| follows:

1.4*00 exp{Afc Res}+:?*(*) exp{-A*Res}| -2ReAk{s) < \F{a)\

^ |^fc(s)exP{AfcReS}+ZJb(a)exp{-AfcRes}|+2Re^i!(s), k = 1, 2, . . . .

For k = 1 and

oo

*v . *) = E a"rAn «p{*A»*}
7»=0

1 — r A l 1 4- r
< | F ( * ) K ^

w e h a v e

This last inequality generalises the classical evaluation

(1 - r)(l + r ) " 1 ^ \F(r, t)\ ^ (

when F £ P in case F £ P D .
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REMARK 2. For k = 1, (iv) is equivalent to the inequality | a i | ̂  A2(A2 — Ai)~ which
is stronger than \cti | ^ 2, in the case A2 > 2A.

More generally, if for the natural number p , the numbers Ai, A2, . . . , Ap are lin-
early independent with respect to the field of rational numbers, then (ii), for k = p ,

yields
° p / \

;} = 1-E(l-!^

(see [3], p.181).

Suppose that the hnear independence for the sequence A is true for every natural

number p and F € -D(A). The following proposition is obvious:

oo oo

F(a) = ^ a n e x p { - A n s } £ PD(A) if and only if ^ |an | ^ 1.
n=0 n=l

If there exist two non-zero coefficients ap = \ap\ exp{ii?}, ajt = |ajfe| exp{i(p} and

0 < e < min{|ap|, \ak\},

\ap ±eexp{ii?}| + \a\ ^eexp{i<p}\ = \ap\ + \a\\.

Consequently, F(s) is an extreme element of the class PD(A) if and only if it has
the form

F(s) = 1 + oexp{-Afcs}

where \a\ = 1, Jfe = 1, 2, . . . . D

THEOREM 3 . 1/for A = {0 = Ao < Ax < A2 < . . . } it is true that

A4-t-A1^2A2, Ajt+4-Afc-! ^2A 2 , A; = 1 ,2 , . . .
oo

and F{r, *) = E a " r A n exP{iAn*} £ PD{A)
n = 0

tiien the following propositions are equivaient:

(i) a i = A2(A2 - Ai)"1 exp{iy?};
(ii) Afc = &Ai, a* = 2exp{tfc^}, fc = 1, 2, . .., or

F(r, *) = [1 + rAx exp{i (a ! + p)}][l - rA> expi

THEOREM 4 . If for A = {0 = Ao < Ax < A2 < . . .} it is true that Afc - At_ i
k = 1, 2, . . . and

^(r. 0 = E a"rAn
71=0

https://doi.org/10.1017/S000497270001176X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001176X


164 N. Samaris [6]

then the following propositions are equivalent:

(i) ai =2exp{iy>};

(ii) A* = fcAi, oik — 2exp{ik<p}, or

F(r, t) = [l+ rA l e x p { i ( a ! + <p)][l - rAl exp{ i ( a 1

PROOF OF THEOREM 3: If we consider the function

then the general case is reduced to aj = -A2(A2 — Aj)~ . If

hr(x) = S-^F(r, t), P(t) = *(*^£) = suP(0, 26 - \t\)

OO

then hr(t) = ^ anr
nP(t - An)

n=0

and lim hr(0) = 0
l—>0

whenever 26 = A2 . Applying Lemma 1 in the function hT we have that

lim = 0

or
oo oo

(**) ^ anP(* + An) + ^ 5nP(* - An) = 0.
n=0 n=0

The set {e: 0 < e < Ai, A3 — e > A2} is an interval. Setting t = e in (**), we have

2P(e) + a1P(e + AJ + aiP(Ai - e) + a2P(A2 - e) = 0, or a2 = 2.

From the inequalities A2 ^ 2Ai (since |a i | ^ 2 ) , A4 +Ai ^ 2A2, it follows that the
set

{e: Ai > e > 0, 0 ^ A2 — 2Ai + e < A2, A4 + Ai — A2 - e > A2}

is an interval.

Setting t = A2 — Ai + e in (**) we have

2P(A2 - A 1 +e)+a iP(A 2 - 2Aj +e) + a2P(A! - e ) + a3P(A3 - X2 + \i - e) = 0

or - a i e + 2Aitt! + 2A2 + asP(A3 - A2 + Aj - e) = 0.
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From the last equality it follows that

P(A3 - A2 + Aj - e) ± 0

or P(A3 — A2 + Ai — e) = 2A2 — A3 — Ai + e, a3 = ai and A3 = 3Ai.

In the same manner, if we set t = A2 + £ in (**), we obtain the relations a.4 = 2

and A4 = 2A2 .

Suppose that for n ^ fc + 3 the equalities an — a n _ 2 , An = raAi when n is odd

and n = (n/2)A2 when n is even, hold. We will examine the case n = k + 4, when k

is even.

First, the following inequalities are true:

0 < Ajt+2 — Afc+i < A2 because Ajt+2 = Aj. + A2

0 < Afc+3 - Ajt+2 < A2 because A/b+2 = -{k + 2)A2, Ajt+3 = (A; + 3)Aj, A2 ^ 2Aj
2

A2 < Aj+5 — Afc+2 because Ai+5 — \k> 2A2.

The above inequalities assure us that the set

{e > 0, 0 < A t + 2 - Ajb+i - e < A2, 0 < A i + 3 - AA+2 - e < A2 < Afc+5 - Afc+2 - e}

is an interval.

If we set t = A2 + Aj. + e = Afc+2 + e in the relation (**), then

ak+iP(Xk+2 - Afc+i + e) + a f c + 2P(e) + a f c + 3 P ( A t + 3 - Afc+2 - e)

+ajfe+4P(Ai+4 - Afc+2 - e) = 0

or - 2 e + afc+4P(Aib+4 - A*+2 - e) = 0.

The last equality says that

P(Afc+4 - Afc+2 - e) # 0

or P(A*+4 - Afc+2 - e) = A2 - \k+4 + AA+2 + e,

ajt+4 = 2, Afc+4 = Afc+2 + A2 = -(fc + 4)A2.

In case k is odd we can prove in the same manner that Ajt+4 = (k + 4)Ai and

ajfe+4 = a i •

By the inequality

*A2 <(2fc + l )A! <(fc + l )A 2 , J f e ^ l , 2, . . . ,
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it follows that A2 = 2Aj. D

PROOF OF THEOREM 4: If we consider the function

then Theorem 4 is reduced to the case where ai = —2, Ai = 1.

From the relation

it follows that A2 = 2Aj = 2.

If we set t — Ai in (**) of Theorem 3, then we have that a2 = 2.

Suppose that for k = kf, it is true that Xk = k and ak = 2( — 1) . If we set t = Xk

in (**) we have

akP(0) + afc_1P(At - AA_!) + ak+1P(\k+1 - Xk) = 0

2(- l )* + ak+1P{Xk+1 - Xk) = 0

Combining the last equality with the inequalities

|ajfe+2| ^ 2 ,

we have Afc+i = Xk + 1 = k and a*+i = 2(—1)

0
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