Journal of Glaciology Vol. 42 No. 140 1996

Shear margins in glaciers and ice sheets

CHARLES RAYMOND
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ABSTRACT. Analytical and numerical techniques are used to examine the flow
response of a sloped slab of power-law fluid (power n) subjected to basal houndary
conditions that vary spatially across the flow direction, as for example near an ice-
stream margin with planar basal topography. The primary assumption is that basal
shear stress is proportional to the basal speed times a spatially variable slip resistance.
The ratio of mean basal speed to the speed originating from shearing through the
thickness, denoted as r, gives a measure of how slippery the bed is. The principal
conclusion is that a localized disturbance in slip resistance affects the basal stress and
speed in a zone spread over a greater width of the flow. In units of ice thickness H, the
spaual scale ol .s‘lljl'vu(liug is proportional to a single dimensionless number
R,=(r/n+ 1)V derived from n and r. The consequence for a shear zone above
a sharp jump in slip resistance is that the shearing is spread out over a boundary layer
with a width proportional to R,. For an ice stream caused by a band of low slip
resistance with a half-width of wH, the margins influence velocity and stress in the
central part of the band depending on R, in comparison to w. Three regimes can be
identified, which for n =3 are quantified as follows: low r defined as Ry < 01w, for
which the central low is essentially unaffected by the margins and the driving stress is
supported entirely by basal drag; high r defined as Ry > lw. for which the boundary
layers from both sides bridge across the full flow width and the driving stress the
center is supported almost entirely by side drag: intermediate r, for which the driving
stress in the center is supported by a combination of basal and side drag. Shear zones
that are narrower than predicted on the basis of this theory (= R3] would require
localized soltening of the ice to explain the concentration of deformation at a shorter
scale.

INTRODUCTION MacAvyeal, 1992). The stress and velocity distributions in
the ice and their manifestations as variations in internal
Velocity and stress vary across the widths of valley temperature and morphology of the ice surlace are

glaciers (Paterson, 1994). The shape of the cross-section of strongly affected by the extension of effects originating

the valley exerts an important influence, which has been
analyzed extensively assuming a no-slip boundary
condition (Nye, 1963). Both observations (Raymond,
1971) and models (Reynaud. 1973; Harbor, 1992) have
shown that variations in the basal-slip condition across
the width of a elacier can also significantly allect the
pattern of shearing in the ice.

Cross-llow effects arising from the basal-slip condition
as opposed Lo basal topography are perhaps best
exemplified by ice streams, such as those that ow from
the interior of the West Antarctic ice sheet to the Ross Iee
Shelf. These ice streams are [ast currents ol ice that are
embedded in slower-moving ice. In some cases the ice
thickness is nearly constant and there is no clear
topographic control of the position of the boundaries
bhetween the [ast- and slow-moving ice (Shabtaie and
Bentley, 1987).

existence to strong contrasts in slip resistance at the ice

In these cases, the ice streams owe their

base that allow rapid basal motion under the ice streams
and not outside their margins (Bentley, 1987). In
addition, there may be variations in slip resistance
within ice streams that are unrelated to basal topography
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at the bed upward through the ice thickness. The shear
zones at the edges of ice streams are dramatic examples.

Effects [rom cross-llow variations in slip resistance
have not been systematically explored from the point of
view of glacier mechanics. This paper provides some
initial steps in that direction through two principal
purposes. The first purpose is to characterize in a general
way how a cross-flow variation in slip resistance is
transferred through the thickness to the surface. This
goal is accomplished with a simplified analytical model
that allows small but otherwise arbitrary variations in slip
resistance [rom a mean condition and assumes lincar
viscous behavior for the ice. The second purpose is to
examine the specific case of a shear zone arising lrom a
sharp jump in slip resistance, such as may occur at an ice-
stream margin, This necessitates numerical calculations
that accommodate large variations in slip resistance and
account for non-lincar flow law for the ice.

To isolate effects from cross-low variations in slip
condition as opposed to bed elevation. a planar, laterally
horizontal bed geometry is assumed. Longitudinal
variations in geometry and slip condition are excluded.
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could
influence the flow (e.g. Echelmever and others, 1994)

Variations in temperature or ice fabric that
are not considered. Although the analysis is idealized. it
identifies important features of the theoretical flow
pattern that would remain as effects from opography,
temperature and fabric are taken into account.
Foremost amongst these [eatures is the way in which a
change in the resistance to slip at a given location allects
the basal velocity and stress over a wider area. The spatial
relative
contributions to the total surface motion from hasal slip

scale of this delocalization is related to the
and shearing within the ice. The spatial spreading and
related smoothing have general implications for the
manner in which effects from basal processes are trans-
ferred to the upper surface. There are corresponding
implications for the inversion of ohservations of cross-flow
variations in surface velocity for the bed conditions that
produce them. For the specific case of a sharp jump in
resistance to slip, the scale of the spreading determines the
width of a marginal boundary layer within which stress

Table 1. List of symbols

Raymond: Shear margins in glaciers and ice sheels

propagation from the side has a significant influence on
the flow.

THEORETICAL FRAMEWORK
Geometry, kinematic and flow-law assumptions

My purpose is to caleulate the distribution of ice velocity
and stress as a function of position in a cross-section
perpendicular to the flow direction, supposing that the
basal boundary condition varies across the flow direction
but not parallel to this direction. To do the analysis I will
use both dimensional variables (denoted by lower-case
letters with a hat (")) and corresponding non-dimen-
sional ones (denoted by un-hatted lower-case letters) that
are related through scales as defined in the text and listed
in Table 1. Figure 1 shows the assumed geometry of the
ice. With reference 1o the definitions of coordinates in
Figure 1 and notation in Table 1, I assume that the flow is

Dimensional Non-dimensional Dimensional Deseription Definition
variable variable seale
g Gravitational acceleration
P Firn/ice density
H I [H] [ee thickness I'igure 1
i | [T] Driving stress Equation (7a)
Up 1 [Un] Delormational speed Equation (7h
= I = Slip resistance scale Equauon (5)
i Slip ratio Lquation (8
7] Eflective viscosity Equation (1h)
B 1Ml 1y m Flow-law hardness LEquation (1h
n Flow-law power Equation (1b)
m Power in slip law Lquation (56
a Stress tensor
T Deviatorie stress tensor Equation (la
d Strain-rate tensor Lquation [ la
i T [H] Downslope distance Figure |
i y [H] Cross-slope distance Iigure |
z z [H] Slope normal distance Figure 1
w w [H] Stream half-width
l l [H] Boundary-layer width Equation (32
iy, 2) wu(y. z) [Up] Daownslope speed Iligure |, Equation (7)
() s(y) [Un] Surface speed us(y) = ufy.0)
un(y) uy, (y) [Up)] Basal speed wn () = u(y, 1)
. e) [Up] Speed departure Equation (13¢
é(y, z) e(y, 2) [Un/H]| Effective strain rate Equations (2¢) and (9¢)
e [Un/H| Maximum shear rate Lquation (29
t,(4, 2) t,(y, 2) [T Side shear stress Equations (2a), (7a), (9a)
I‘A'{t} 2) A (T (1] Slope shear stress Equations (2b), (7a), (9b)
tu(7) th(y) (1] Basal shear stress th(y) = —t.(y. 1)
by (5] (7] Stress departure Equation (13b)
i L is) [T] Stress departure Equation (13a)
&(y) £(y) = Slip resistance Equation (5
& (y) =] Slip-resistance departure Lquation (12
2 [ Fr) Velocity transfer Equations (21) and (26a)
E (F) Stress transfer Equations (23) and (26b)
e (Fap) Slip transfer Equation (24)
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Fia. 1. Schemalic of geometry and coordinate system.

non-accelerating and rectilinear, such that ice moves only
in the downslope direction (&) at a speed @ that depends
but not on # or time. Since the assumed

(=)

on gy and
motion is parallel to the upper (2= 0) and lower
surfaces, the geometry is independent of time.

To describe the ice, T assume constant density p and a
quasi-viscous flow law relating deformation rate d and
deviatoric stress 7 by

7= 2id (la)

where 7 is an effective viscosity. To account for non-linear
low law, 77 may depend on stress or deformation rate. A
power relation between deformation rate and stress may
be expressed by

.'A,'((N*) - Bfﬁ (=1 n) (11))

where n and B are constants and é* = 0.5 d:d is an
ellective shear=strain rate related to the second invariant
of d. When n =1,
corresponds to a Newtonian fluid, Tt is common Lo assume
n = 3 forice (Paterson, 1994

Equation (1b) gives i) = B, which
|. By assuming I3 is constant,
[ neglect influences on the ice deformation that could
come [rom variations in temperature or fabric.

These assumptions have some immediate implications
that simplify the mathematical problem (e.g. Nye, 1963).
Mass is conserved automatically, since the rectilinear flow
pattern is divergenceless and density is constant. The only
non-zero deformation-rate components are ')rf”,. = du /oy
and 2d,. = da/0%. Thus, by Lqualum
ZCTO \lu‘u -slress components are T,,, — f,, and T.. —1‘

) the only non-

and these are independent of position along the flow.
Conservation of momentum in the cross-flow directions §
and 2 is then satisfied trivially by a hydrostatic
distribution ol normal-stress components
G = —fg:2).

(Grw = "}mt -
The mathematical problem is then reduced
to finding fq(r,':)f(t) 2) and (). 2) subject to the flow
law and conservation ol momentum in the flow direction
#. Since the eflect of temperature on the flow law is

neelected, it is not necessary to consider conservation of

energy.

Il the low law were to have a more complex non-
linearity than allowed by Equations (1), then the
simplifications of planar geometry and rectilinear flow
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could break down. For example, a flow law with “normal
stress effects”™ (such that corresponding components of
deviatoric stress and deformation rate are not propor-
tional) could cause a more complex balance of momen-
tum in the y and z directions, force cross-flow secondary
motions and /or displace the upper surface to a non-planar
configuration. Normal stress eflects are not commonly
assumed for ice (Paterson, 1994), and I will not introduce
that complexity here.

Field equations and boundary conditions

With the simplifications discussed above. the flow law and
conservation of momentum reduce to

; (1 I,fnjf')ﬂ

. = Bé 2
fy = Be 5 (20)
t,= Bé “*””)i (2b)
0z
1[roa\? foa\* :
1| (oa dii "y
A Y ()

a){,, Ot . ot:
00
dy ()" Hiee =
Equations (2) and (3] are the field equations to determine
ty (9. 2), t:(9. 2). a(y. 2).

The upper surface (2 = 0) is shear-stress free, so that
£.(4,0) =0. (4a)

At the base (2= H), the shear stress acting on the bed
Iy(y) = —f.(4. H) and the basal speed dy,(g) = u(gj, H)
are assumed to be related by

t() = £(@)an(d) (4b)

where é describes a resistance to slip.

For my purpose it is not necessary to distinguish
between basal slip that arises from shearing in soft sub-
lacial material, sliding associated with a discrete velocity
discontinuity at the base of the ice or some combination.
Either kind of process can be represented by Equation

(4h). By allowing £ to depend on i, Equation ( 4b) can
be use (l Lo 1(})1(‘\(1][ non-linear relationships between 11,
and iy, as in various theoretical slip laws that have been
proposed. Although realistic relationships between t), and
uy, are likely to be non-linear, the details of such non-
linearity are unknown. Therefore, in most ol the
development, 1 consider only linear relationships subject
to the requirement that #, increases as wj, increases
€ > 0). The view | pursue here is that £
such as bed roughness. till

depends on 3
because control variables,
thickness, till composition, temperature and/or water
pressure, vary with § and alter the way iy, and 1, are
related laterally across the bed. At the end of the paper I

consider the implications of non-linear slip laws.

Dimensionless formulation

I describe the slip resistance £(§) as
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(1) = Z€(p) (5)

where = is a constant that sets the scale ()['EZ(;}), and &(y) is
a dimensionless deseription of the spatial pattern of cross-
How variation,

For the condition that £() =1 in Equation (3) (that
is. E(lj} is constant at value =), Equations (2)-(4) lead
straightforwardly (o the one-dimensional solution

£.(1,3) = —'J% (6a)
[y(!}~ 2)=0 (6Dh)
il 2) =Upll = (3/H)" |+ T}= (6c)
where
T = pg.H (7a)
and
2“ ")
Up=r—_T"H. 71
P Tt 1B Ty

This solution describes a planar slab slipping over its base
at a uniform rate. It is well known in the theory of fluid
low. For a non=slipping Newtonian fluid n = 1,8 = .
= =), it predicts a parabolic velocity profile (Bateh-
clor, 1967).

approximate flow of glaciers [ Paterson. 1994). Equations

It is widely used (normally with n =3) 10
6) show T 1o be the basal shear stress ), = —t- (i, H). Up
to be the wotal deformational speed arising from shearing
in the ice over the thickness H, and T/Z o be a uniform
rate of slip at the base.

The quantities T. Up and = can be defined more
generally from Equations (5 and (7) independently of the
particular spatial variation ol &£(3). The stress 7' is com-
monly termed the driving stress. from which the actual £,
may depart when & depends on g T use H, T, U and = as
scales [or length. shear stress, speed and slip resistance to
define dimensionless variables listed in Table 1.

To deseribe the relative contributions of basal slip
1’/ = and internal deformation Uy o the motion, [ define
the slip ratio

1= T Bl (®)

With these delinitions of scales and related dimension-
less variables (Table 1), the field Equations (2) and (3
and boundary conditions (4) reduce (o

, _1( 2 CIY 7 (0a)
n == o nf— Ha
T Ay

(1 %,6)41

g AL
H(HJrl)( =

(9h)

L] f0u "j_’_ ou\*|’ (%)

€T3 Jy dz a
LN SRR (10)
dy 0z B

u(y.0)/dz=0 (11a)
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tay) = Sy (y) /1. (11h)

Two parameters, the low-law power n and the slip ratio
r. appear in the non-dimensional equations. For the low
law, I will restrict attention to n = 1 (which allows simple
analytical solution) and n =3 (which corresponds to
realistic ice). The slip ratio » can in principle have an
enormous range [rom 0 (no slip) to o¢ ([rictionless base),
A principal goal of this paper is 10 explore how the size of
- allects the character of the the solutions (o Equations
9D—(11).

GENERAL TRANSFER CHARACTERISTICS
Equations for Newtonian viscous deformation

With the simplification of Newtonian viscosity (1 = 1)
and the constraint that Quctuations in the slip resistance
£(2) are small compared to mean conditions. it is possible
to find an analytical solution to Equations (9 11 for an
otherwise arbitrary distribution of €(z). For the analysis it
is convenient to express the distributions ol slip resistance.
speed and stress as

Ey)=1+E&(y) (12)

t(y z) =1."(y:2) — 2 (13a)

ty =1, (4. 2) (13b)

{l(,fj..t)—(l—.l])?+l' Fut(y.z). (13¢)

When £ ={," =t.* =u* =0, then Equations (13) are

|
10), with £&(y) =1
and are dimensionless representations ol

the solution to Equations (90 and
uniform slip ),
Equations (6. The starred quantities #,°. 6" and '
represent departures ol stress and speed that arise when
E(y) #0.

Introduction ol Equations (13) into LEquations (9

with n = | gives

P 7y .
L o’
S =5 (14b)
2 dy
and then into Equation (10 gives
Pt (y, 2 ety o2
du(y,z)  drut(y )_“. (15)

y? a2

Substitution of Equations (12 and (13 into Equation

(L1} gives the boundary conditions

At (y.0)

=0 1G:
dz k1de)

and

uy () & (y)w, " (g
b (y +M/) b (y)
e I

f (y) = € (y) 4 (1Gh)

roand &, (y) = fi(y) — 1.
The approximation in the analytical solution is to

where w," = uy,(y)

93
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assume that £ < 1 and w,” < r, which holds when the
variations in & and wuy, are small in comparison to their
means. With this assumption, the third (non-linear) term
on the right of Equation (16h) can be neglected.

Approximate solution

The solution for u*. ¢, and t.* when & # 0 can be sought
using Fourier-transform methods in the form

flv,2) = / " f(y, 2) exp(~2rivy)dy (17a)
with inverse
2 :f‘ f(w, 2) exp(+2mivy)de . (17h)

[n this formulation the transform variable » 1s wave
number described by inverse wavelength.
The momentum Equation (15) when transformed

becomes

= ()_u()# = (‘271-,!/)2(}*(1/. z).. (18)

(%]

This has exponential solutions exp(=2mvz) and exp
(4+2m2z). The boundary condition on the upper surface
(Equation (16a)) requires that these exponentials be be
combined in the form

i (v, z2) = A(r) cosh(2mvz) (19)

where A(r) is to be determined from the boundary
condition at the base.

At this point several features of the solution can be
identified that will be uselul later. The speed on the upper
surface is given by

it (1) = @ (2. 0) = A(B). (20a)
The basal speed is given by
iy () = a' (v, 1) = A(v) cosh(2my) . (20b)

Fquations (20) show that the surface and basal velocities
are related by

i (1) = Fu(v)d," (v) (21a)
where
F.(v) l h(271) 21h)
- — gee [7) 2
wi cosh(271/) e (

Basal shear stress £y, () can be calculated from Equations

(14a) and (19) as

t, (v) = —t. (v,1) = —A(v)mvsinh(2mv) . (22)

Comparison of Equations (20b) and (22) shows that

fi, (v) = F(v)a," (v) (23a)
where

F,(v) = —mv tanh(27v) . (23b)
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To complete the solution it is necessary to satisfy the
basal boundary condition as described by Equation (16b)
in the approximation of neglecting the non-lincar term.
Substitution of Equation (23a) into Equation (16h) gives

i, (v) = Fy()€ (v) (24a)
where )
~ r
il = —se————— 241
Fa(v) I E0) (24Db)

With these results the solution in the wave number
domain for w,”. £;," and us" resulting from a specified £
can be summarized as [ollows:

iy (v) = Fu(v)€" (v) (25a)
B () = B )iy (v) = E(v) Ea(v)€ (v) (25b)
. (v) = F_‘..(U)ﬁ.,*(u) = F,,(V)I.T;](V)E"’(rr) (25¢)

where the the F are transfer functions given by Equations
(21h), (25h) and (24h). The transfer functions are plotted
in Figure 2. The solution in the wave-number domain for
the full depth distribution of velocity can be found from
Equation (19). using Equations (25¢) and (20a) to
determine A(v).

0 o5 t 15 2 0 2 4 6 8 10
0.8f F,(v) { o8t F,(y)
0.6} . 0.6}

0.4} 0.4}
0.2+ 0.2

0 0
4 | os “F.(y)

3 | o6
2 ~ 0.4

~R iV}

1 0.2 ]

0 0

100 =

8 8
_Fs|(v)

6| 6
4| 4
2t & | 20\ 4o
pii=— ' 0k

0 05 1 15 2 0 2 4 6 8 10

Wave Number (V) Distance (¥)

Fig. 2. Wave-number and space representations of (ransfer
funetions for linear flow defined in Equations (21), (23)
and (24). Numbers on curves for Fy give values of slip
ratio r.
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The spatial forms ol the wansfer functions £, (1) and

Fi(#) can be expressed analytically as

1
Fule)i= Esv('h(%) (26a)
and
1 T I
Fly) = ﬁj(-oth (%)rﬁc'h(?y) . (26h)

These expressions can be found from Equations (21h) and

23b) with standard manipulations using similarity. the
derivative theorem and well-known Fourier-transform
pairs (Bracewell, 1978). T have not found an analytical
expression for the spatial form of Fy(y) from £2(2), but it
can be found numerically using the discrete Fourier
transform. Figure 2 shows the spatial forms of £, (y). Fi(y)
and Fjy(y). They can be viewed as space-domain [lilters
that can be convolved with £ (y) and w,”(y) to deline the
solution in the space domain in a way alternative to the
convolution in the wave-number domain defined by
LEquations (23).

Important general properties of the solution are
displayed by the correlations amongst £ (y). w,” (y) and
' (y): wy " (y) and £(y) are negatively correlated

Equations (24); Fig. 2): £, (y) and w,"(y) are negatively
corvelated (LEquations (23); Fig. 2). Thus, w,* (y) is low
and 4, (y) is high where € () is high (i.e. bed is sticky

Delocalization of slip-resistance response

The hunctions F, F| and F, deseribe how departures in
ship resistance from a relerence level allect the distrib-
utions ol velocity and stress. The ellect can be viewed in
terms ol spectral (F“[JJ. z)) or spatial (£(y.2)) character-
istics. T shall now focus on the spatial characteristics [rom
the point of view of how a localized disturbance in slip
resistance allects the velocity and stress on the hase and in
the ice over a broader width spread across the flow. The
widths of the spatial forms of F give measures of the
delocalization,

The widths of £ can be defined analyvtically in terms of
the second moment

o] -*/ v F(y)dy. (27a)

It can be evaluated in wave number domain [rom

S 1 FEF(v) -
l=——————~ 271
a Im2F () ” \BIby

evaluated at » =0 (Bracewell., 1978), which f(rom

Equations (21h). (23b) and (24h) eives
| s

[,',""]H =1 (28a)
el = 1 (28h)
], = #/7. (28¢)

These spatial widths are apparent in Figure 2. The widths
ol F\, and Fy are scaled by thickness [H]| and are
otherwise independent of the low dynamics. The width of
Iy depends on the flow dynamics through the slip ratio r,
Implications ol these general characteristics can be
llustrated with some specific examples.
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Figure 3a shows the solution [or an impulse in
E(y) = —=bly) tor the case r=10. The solution for tey,”
is Fig. 2},

The basal speed uy," is spread out over a hall~width of

given divectly from the wansfer [unction £

about 3, which corresponds o the width of Fy and is
consistent with the /r dependence [or the width of £
Equation (28¢) ). The surface speed w.” and base stress
1" show only slight additional spreading associated with
the unit widths of I, and F.

-6 -4 -2 0 2 4 6 8

e T T T T T

L a &(y)=-5(y) ]

il 4
ik ~ up=Fy-S |
_6 A i i i i L

8 6 4 -2 0 2 4 6 8
Distance (y)

Fig. 3. Solulion for the deparlures in bed speed w,” . basal
shear stress 1, and suiface speed ul caused by a delta
Sunction impulse (a) and a siep function (b) in the stip
reststance €.

Figure 3b shows results [or a jump in £(y) =
—0.5sgn(y) for the case = 10, The transition in basal
speed g, produces a shear margin that is spread out over
a boundary laver with a half-width ol about 3, which
corvesponds to the width ol £ for = 10,

These solutions illustrate that the eflfects of a sticky or
slippery zone can be spread out over a multi-thickness
width. By relerence 1o Fy (Equations (24) and (28¢); Fie.
2}, the width of the spreading is larger, when the bed is
more generally slippery in comparison (o the deform-
ability ol the ice as deseribed by . This means, (or
example, that at a higher general level of w,, the spatial
variation of w, reflects a more strongly smoothed response
1o spatial patterns of €.
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Stress concentration and relaxation at a shear
margin

The results in Figure 3b illustrate some general features of

a shear margin caused by a jump in slip resistance, T will
refer o the location of the jump in § (y =0) as the
margin. There is a redistribution of basal shear stress from

the slippery to the sticky side of the margin. Two zones of

the boundary layer can be defined. On the slippery side
(y > 0), side drag provides partial support to the ice
column and ¢, < 1. On the sticky side (y < 0), &, > 1
hecause ice is being dragged along from the side. T will
refer to these zones as the stress-relaxation and stress-
concentralion £0nes.

Global force balance requires that the basal shear-
force reduction in the relaxation zone, the shear force
acting across the margin and the basal shear-force
increase in the concentration zone are all equal, which
expresses the transfer of driving stress from the relaxation
zone through the margin to the concentration zone.

The discontinuous jump in § at y =0 causes du/dy
and t, to he singular at the base and ¢, to be
discontinuous and singular. Thus, the stress relaxation
and concentration can be very large locally near the
margin.

The boundary layer has reflection symmetry. The
marein (y = 0) is the location of maximum side-shear
strain rate (Qu/dy) and stress
Pu/Oy’ and Ot,/dy change across the margin. The
marginal speed both at the surface ue = u(0,0) and at the
bed u,(0) = w(0, 1) is the mean of the far field values on
cither side. The reflection symmetry arises because of the
neglect of the non-lincar cross-term in the basal-boundary
condition (Equation (16b)). Although this symmetry is
valid for small jumps in & it is shown below that it breaks
down for large jumps.

SHEAR MARGINS
Assumptions for numerical solutions

The approximation of the foregoing solution for a step in
€ requires the step to be small compared to the mean (i.e.
¢ « 1). In reality, there can be large jumps, for example,
at ice-stream margins. Solutions for large jumps were
found numerically using finite elements. The basal
resistance € was chosen to be very large (effectively
infinite) and constant outside of the ice-stream boundary,
which suppresses any basal motion. Following current
terminology. I refer (o this slow ice as ridge ice. "The value
ol € was chosen relatively small and constant under the ice
stream to allow significant slip rate.

I deline the scale for slip resistance = to be the value of

€ heneath the ice stream. The ratio r defined by Equation
(8) then corresponds to the slip speed in units of Up that
would occur at the base of the ice stream in the presence
of the full driving stress of 1[T] undiminished by side
drag.

The solution was carried out in a region of finite width
extending 10[H] into the slow-moving ridge ice and
30| H| into the fast-moving stream ice. The boundary
condition du/dy =10 was imposed at these lateral
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t,), and the signs of

boundaries. The distance 10[H] into the ridge was
sullicient that this edge of the solution region was
decoupled from effects at the shear margin. The distance
30[ H] into the stream flow and the symmetry imposed by
the boundary condition correspond to [ull ice-stream
width of 60[ H |. More generally I denote the hall-width of
the strcam as w. which is 30[H] in these specilic
numerical calculations,

Results from numerical calculations

Numerical calculations were done for a sequence of
dilferent values of slip ratio r to display the effect of 7 on
the character of the solutions. Results were obtained for
r=1x10" 2x 10" and 5% 10*, where k=15 for
== 1. atid K= 17 for m =3

Figure 4 shows an example of numerical results for
n=1 (Newtonian viscosity) and r = 10 (10 units of slip
and 1 unit of deformational motion when side drag is
absent). All solutions show a marginal boundary layer
characterized by strong horizontal shearing that separates
interior Nows of the slow ridge and fast stream where
horizontal gradients are absent or small,

In Figure 4 the boundary layer lacks the reflection
symmetry of that for a small step in & shown in Figure 3b.
The asymmetry can be understood fairly simply. The
local ellective value of r is small (large) in the ridge

Distance (y)

-10 0 10 20 30
[ [ I I 1
1 RETY I me T
!
EY
| —

sticky bad slippary bed

ap 3 1
= Slip Resistance
8; T > 4
i |
=1
10 +
5 bed
5t surface Velocity
2 -
;_AI\/
=
F /’— Basal Shear Stress B
0 .
| | | | |
-10 0 10 20 30

Distance ( y)

Fig. 4. Finite-element solution for linear-flow and linear-
slip laws with the shown variation of slip resistance §. The
solution is for v = 10. Paths passing through triangular
elements are contours of constan! speed. Every other contour
is highlighted in the slow (ridge) and fast (stream) zones.
Contours in the shear zone are not highlighted because of
the close spacing.
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stream | yielding a narrow (broad) stress-concentration
The the

concentration zone is much lareer than the drop in t,

relaxaton) zone, mcerease in t, in SITess-
in the stress-relaxation zone, which is expected from the
different widch seales and global force balance. Because of
the essentially no-slip condition at the base under the
ridge (y<0), there is no expression ol the stress-
concentration zone in uy,. However, the stress redistribu-
tion causes enhanced shearing in the overlying ice, so that
the stress-concentration zone allects w, with a width of
about I[H] associated with the transler F Lquation
28a)). The overall width of the boundary layer is
dominated by the

determined primarily by the transfer Fj (Equation (28¢

stress=relaxation zone with a scale
Figure 5 shows the patterns of surface speed wy(y) =
0.50u(y. 0)/dy.
and basal speed wy,(y) = u(y. 1) for n =1 (Fig. 5a—¢) and
Fig. 5d-f)

Comparison of Figure da-—¢ and Figure 3d [ shows that

u(y.0), side-shear strain rate e(y.0) =

o = with a range of choices for 7.

Raymond: Shear margins in glaciers and ice sheels

n =3 than for n = 1. The boundary-laver asymmetry
and width mcrease as » increases for both n=1 and
n=3. The

surface is spread farther into the ridge (i.e. the expression

side-shear strain-rate  disturbance at the
of the stress concentration zone at the surface is broader
lor n = 3 than for n = 1. This behavior is associated with
the strain-rate soltening arising from the flow-law non-
linearity that causes stress guiding in a relatively stll] Tow-
strain-rate near-surface layer moving over relatively soft,
rapidly shearing ice near the hase.

The maximum shear strain rate on the surface ey,
appears to be just in board (i > 0) of the margin y = 0.
For n = 3 and values of r less than 10°, the displacement
is less than 0.5[H |, which is the resolution of the
numerical caleulations, When v exceeds 107 a small
displacement appears to be resolved, but it remains less
than I[H]. The value of ¢, depends systematically on r

I'ig. 6a) and can be represented approximately hy

- . 2 0y - =y . . o (1R v
the overall width of the boundary laver is narrower for 2ey, = Ju(= 0,0) /0y = "/ 11 (29)
-10
~ 08 —
oo =
= =
| 0.6 =
=) !
=04 =
3 ~
0.2 -
0.0
10t b 1 I e 1.0
Surface Surface
Sirainftate Strain Rate
£ n= n=3
v L
g S
< (0B} 1 F 0.5
= =
® 3
0.0 r 0.0
1.0 1.0
0.8 t Basal 0.8
X
~ 06 - 06 &
= =
= -y
I 4 i 0.4 =
0.2 - 0.2
0.0
0 10 20 30 -10
Distance (y)
Fig. 5. Distributions of surface speed, surface shear strain rate and basal speed for linear v =1 (a. b and ¢) and power
n=3(d,eandf) flow law with selected values of stip rvatio r. Numbers on curves indicate values of v in poeers of 10,
Surface shear strain rale in (b)) and (¢) is normalized by the maximum value e,,.
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w s

Log (u(1,0) -1)

Fig. 6. Dependence of maximum shear strain rate (a) and
surface speed al the margin (b)) on slip ratio r.

for 10! < r < 10? with n = 1 and for 10" < r < 10* with
n = 3. The rcason for this dependence becomes clear in
the next section.

The surface speed at the margin 1, (0) = u(0,0) 1s
related to the pattern of side shearing on the surface. It is
smaller than the average of the distant speed on either
side of the boundary layer. which is 1+ /2 (Fig. 6b).
The results determine that approximately

1(0,0) — 1 = 0.5/ (30)
for 10! < < 10* with n = 1 and for 10" < r < 103with

i =05
As r becomes large (> 107 forn =1, > 10% forn = 3,

the boundary-layer width exceeds the hall-width of

30[H] assumed in the numerical solution (Fig. 5. and
the relationships described by Equations (29) and (30)
break down (Fig. 6). This behavior arises because the
boundary layers from ecach side bridge across the full
stream width. Side drag then affeets the [ull flow width,
and speed in the center is less than expected in the
absence of side drag (Fig. 5a and d).

Boundary-layer characteristics

The departure from reflection symmetry, boundary-layer
width and bridging are all interrelated. 'This section
quantifies how these characteristics depend on slip ratio .
To explore this dependence, 1 introduce
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R, = (” - 1) : (31)

For n=1. RI = (-"/2)0':'. For n=23. Hii — (’/ 1)“'""". Tt

turns out to be convenient to compare solutions [or

different r and 1 on the basis of R,,. The rationale for this
particular variable is developed in the nest section.

There are various alternatives for describing the width
! of the boundary layver. For simplicity T use the
distribution of wuy,. and define 1 to be the distance from
the margin (y = 0) to the point where wy, reaches 0.8
times the actual speed at the center uy,(w), that is

un(l) = 0.8up (w) - (32)

Reference to uy, does not differ significantly from .,
because of the domination of the width by the stress-
relaxation zone and the small difference = 1[Up] between
u. and w, for the values of slip ratio 7 under consideration.
The factor 0.8 was chosen with the following considera-
tions. A factor 1.0 is not practical, since the approach of
w, 1o the limiting value of r is asymptotic, A factor much
less than 1 would he sensitive only to the details of
shearing very close to the margin.

Figure 7a shows how [ is related to 7 described in terms
of lfw and R,/w as found f[rom the numerical
calculations with w =30 (Fig. 3). For R,/w < 0.1, the
numerical results for n=1 and n =3 approximately
coincide, and for this low range of IR, /w,

1=~ 13R,. (33)

Equations (31) and (33) imply that I is proportional to
PV For o= 1. 120972, which is consistent with
the analytical result for small jumps in & (Equation
28¢)). The corresponding result for n =3 is [ = 0.9r/4,
This dependence of [ on r implics that the mean side-
shear strain rate should scale as r/l=r""1/" shich
explains the power in the dependence of &, on 1T
(Equation (29)).

The effect of bridging is illustrated in Figure 7h, which
shows w, /1 =, in the center (y=w=30). Keep in mind
that in the absence of any side drag dt,/dy =0, t;, = 1
and u, = r. For small values of 7 such that R, /fw < 0.1,
side drag does not aflect u,(w) and t,(w). For large values
of 7 such that R, /w > 1, w,(w) and f,(w) are reduced
well helow values for no side drag, and the dynamics in
the center are dominated by side drag. In the super-high
r regime with R, /w3 1, the stream flow is essentially
like an ice shelf where f;, = 0 and support is entirely by
side drag. With n = 3, side and basal drag are equal for
Ry/w =0.5. which delines a transition hetween side- and
basal-dominated regimes.

GENERALIZATION WITH A SIMPLIFIED MODEL
Formulation
To generalize the numerical results o widths other than

30 H], T use a one-dimensional boundary-layer model to
predict the variation of basal speed up(y) under the
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Fig. 7. Dependence of boundary layer width 1 (a) and
center-line basal shear stress t,(w) = wy(w)/r (b)) on
stip ratio roexpressed through Ry ( Lguation (51) ) for
linear (v ="1) and non-lincar (0 = 3) flow laws. Poinls
show vesulls from numerical caleulations wilth w = 50,
Salid curves shoie vesulls from simplified honndary-layer
model ( Equations (54). (33) and (116)). In (a).
dashed curve shows Equation (33).

stream flow. The model is based on the lowlaw (Equation
9 and conservation of momentum [ Equation (10
with two assumptions about stress and strain rate at the

base z=1: (i) dt./0z= —t,, and (ii) du/dy > Fu/O=.
The lirst means that Ot-(y. 1) /= is the same as its average

over depth =1, /1. The second is reasonable over much of

the width ol the boundary layer, which is characterized
by dominantly horizontal gradients. Tt is signilicant only
in the case that n # 1, when du/dz allects the caleulaton
ol effective strain rate and viscosity. o analvze the one-

dimensional model T make the substitutions

y= vl ik = s (34)

With assumptions (i) and (ii) and substitutions
Equation (31, Equations (9 and (10) reduce to
L
|| Ay
o F SE
Jdu| do v

t,+1=0. (35)

This equation is to be solved [or gz as a function of © on
[0.w/R,| with the boundary conditions ol no motion at
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the margin (p(0) = 0) and no side shear in the center
(pu(w/R,) /e =0). When ), depends on u/r=p (c.g.
Equation (11h)). Equations (34) and (35) show that u/r
is a lunction of y/R,. This is the radonale for the
imtroduction ol R, (Equation (31 and its use in the
scaling of axes in Figure 7.

Equation (353 illustrates the underlving cause for a
[inite-width boundary laver. which stems [rom the
property of the slip law (Equation (11b)) that #,
increases monotonically with wy,. As oy, inereases [rom
the margin with distance into the stream llow. #), also
rises. As wy, approaches r, #), approaches 1, and side drag
must drop to nil.

For n=1 and #, given by Equation [I1b) with
Ely) = 1 tor y > 0. the solution to Equations (35 and

34 for w,(y) is straightforwardly found w be

w—1y w o

) =Tl = (‘t)Sll(—)/('l)Hll(—) o (80)
/2 /2

For n=23. | have not succeeded in finding a useful

analytic representation of the solution to Equation (35, 1

therefore resorted o numerical integration o explore

characteristies of its solutions.
Test against full numerical model

The predictions of the one-dimensional model for the
dependence of T and w(w) on r and w as expressed
through R, /w are shown in Figure 7, where they are
compared to the numerical results from the full equations
for w =30, In spite of the assumptions, the one-
dimensional model predicts the boundary-laver width
and the onset ol bridging very accurately. The difference
between the simplified and full numerical model is most
evident for small values ol v, where both caleulations
begin to break down from lack of resolution when the
bhoundary laver gets narrow in the case ol the [ull
numerical caleulations or ol the failure ol assumptions
i and i) in o the simplilied model. Except for this
restriction, the numerical results in Ficure 7 can then he
aeneralized to w # 30.

Figure 8 shows the shape of the cross-profile of speed
predicted by the one-dimensional model for n =35, when
there is no significant brideing (calculated forw/R, =20,
viclding £,(w) =0.99). The results from the numerical
calculations [or which there was no signilicant bridging

0 | 1 1 1 | | I | |
2 4 6 8 10 12 14 16 18 20
¥/Ry

lig. 8. Basal speed versus distance for different basal slip
lawes ( Equations (56) and (37) ). Numbers on curves give
powcer o in Equation (36). Pomts give resulls [rom
nwmerical calculations for n =3 and v = 10, 20, 50. 100).

99
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r =10, 20, 30, 100) are also plotted in Figure 8 as points.
The points represent wy, /v calculated at grid points with y
scaled by Rz, With this rescaling of y, the distinet curves
of w,(y) in Figure 5 collapse on to approximately a single
curve that describes the boundary-laver structure,

Comparison of the one-dimensional model and the full
numerical model shows a small, systematic difference near
the margin. It arises because the ice directly over the
margin (y = 0) in the full model is free to move (e.g. . in
Figure 5), whereas v =0 is implicitly imposed by the
assumptions of the one-dimensional model. Although the
agreement is not perfect, it is quite good.

In Figure 8. one can see that the width of the

boundary laver | (Equation (32)) is about 1.3 in units of

Ry in accordance with Equation (33). It also illustrates
the extreme plug-like flow associated with a narrow
boundary laver introduced by a velocity-dependent drag
al the base.

Non-linear slip
The precision ol the one-dimensional model suggests that

it can be used o explore the implications ol non-linearity
in the slip condition. For this purpose. I assume a slip law

i s (”,—')l (37)

When m = 1, Equation (37) is equivalent to the slip law

of the form

used carlier (Equaton (11b)). When m = 2. it gives the
dependence uy, x 2 commonly assumed for sliding over
hard beds as originally proposed by Weertman (1957) on
the basis of motion past scaleless bed roughness by a
combination of creep and regelation. If there are only
large roughness elements present, then m =3 is indi-
cated. Equaton (37) preserves the condition that #, = 1
when u, = r.
I also consider a basal-vield condition such that

tiy, =10 T & iy by =il Upo> 0. (35)

This slip law is an extreme non-linear version of Equation
(37) and would approximate slip over a perfectly plastic
subglacial material with a distinct yield stress ;. The
glacial all beneath ice streams by itself could have a near-
perfectly plastic behavior (Kamb, 1991). Under the
stream  where w, # 0, Equation (38) requires that
0<typ <1 and t, =1y everywhere. Correspondingly,
the support of all ice columns by side drag is the same

(1 —1y). The solution for this plastic slip law in the

simplificd model is easily derived by integration of

Equation (35) with , = {3y and substitution back into
Equation (34), which gives

u(y) = (1 — to)"w* 1 — (1 — y/w)™]. (39)

For this solution, the boundary-layer width I defined by
Equation (32) is {/w =0.55 for n =1 and I/w =0.33 for
n = 3. These values predict the limiting values of I/w for
very large r (Fig. 7a), for which #, approaches zero
everywhere under the stream flow (Fig. 7h).

Figure 8 compares the variation of w, found lorn =3
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and w/R, =20 using m =1 and 3 in Equation (37). A
profile for w, predicted from LEquation (38) is also shown
for the case that w and ¢y are adjusted to give the same
up, (w).

The results in Figure 8 show that the boundary layer is
broader for the non-lincar slip laws compared o the
lincar one. The non-lincarity (m > 1) makes it diflicult to
raisc #, to I[{T']. In the case of a basal-yvield condition
(Equation (38)) with {5 < 1, it 1s not possible to raise #, to
1[T] for any wy,. An alternative viewpoint is that the non-
linearity in the slip law results in a smeared-out variation
ol an eflective slip resistance that broadens the boundary
layer.

DISCUSSION
Comparison with observations

The spatial scale ol spreading { should be apparent in
observations ol cross-variation ol velocity in ice streams.
The theoretical size ol 1 can be predicted from Equations
(8), (31) and (33), when delormational speed Up can be
calculated (Equation (7)) and bhasal speed can be backed
out from velocity measurements (Equation (6¢)). The
direct expression of | in observations can be found [rom
measurements of velocity through the marginal shear
zones and Equation (32).

For the Siple Coast ice streams, the thickness, driving
stress and central surface speed have typical values:
H~10"km, T 2 10" kPa or less and (@) = 10° ma '
or more. On the basis of a flow law (Paterson, 1994, table
5.2 evaluated for the vertically averaged ice temperature
of ~15°C (Engelhardt and others, 1990}, Equation (7h)
predicts a deformational speed Up of order 10 'ma ' or
less. Comparison of Up to s indicates that ug and w, are
essentially the same and are order 10" or more. The slip
ratio r, which is the bed speed in the absence of side drag,
is then order 10* or larger when allowance is made for the
reduction in actual speed by side drag (Fig. 7b).
Equations (31) and (33) then predict Ry =7 or more
and [ 710 or more. The corresponding dimensional scale
ol spreading introduced by thickness H is then [ = 10km
or more. An implication of these evaluations is that lateral
variations in s on these ice streams should occur at scales
that are about 10 km or longer.

In some places on the margins of Siple Coast ice
streams, the shear zones are wider than [~ 10km.
Examples have been found in Ice Streams E (Bindschad-
ler and Scambos, 1991, fig. 6), B2 (Whillans and others,
1993, upstream part ol transect), and D (Scambos and
others, 1994, profile 5). A wide shear zone can be
explained by laterally distributed variations in the slip
resistance arising from spatial changes in variables that
control & Slip-law non-linearity could also contribute to a
gradational variation of an effecuve slip resistance (Fig.
8). Indeed, the irregularity of the surface veloeity
variations found on lee Stream E indicates that similarly
complex variations occur in the basal-houndary condition
(Bindschadler and Scambos, 1991; MacAyeal, 1992).
Extreme examples are locales within a broader marginal
zone of increasing speed where the cross-profile of speed is
concave toward the down-flow direction and the ice
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motion is actually being dragged forward rather than
being resisted [rom the side. Thus, from the point of view
of side drag alone, the interior ice is isolated from the drag
[rom the margings and instead responds to more local
influences from the side (and probably along the length).
These kinds of observation show that the change from
sticky under a ridge to slippery under an ice stream can
be transitional and irregular.

In other places on the margins of Siple Coast ice
streams, the marginal shear is concentrated in zones that
arc narrow compared to [ 210 km. Examples have been
lound in Tee Streams B (Bindschalder and others, 1987,
DwnB: Whillans and others, 1993, downstream part of B2
transect: Echelmeyer and others. 1994, UpB). D

Scambos and others, 1994, profile 1) and E (Bindschad-

ler and Scambos, 19911, The boundary-layer widths as
defined from Equation (32) are 1.4km at UpB. 4km at
D1 and 5 km at DwnB. The distortion of crevasses in some
locations points to bands of shearing as narrow as | km
Merry and Whillans, 1993, fig. 3).

Within the context of this analysis, such narrow shear
zones would require values of » that are much smaller
than could be consistent with the measured w. and Up
expected [rom the normal low law for ice. The
discrepancy is very large at UpB. which is seen
straightforwardly from the observations of Echelmeyer
1994): H=1.1km, w=14km and (=
L4km. By reference 1o Equation (32). the last is

and others

estimated as the lateral distance between locations on
the upper surlace of maximum shear strain rate and 80%
of center speed, which utilizes the expectations that the
margin (i.c. the location of a jump in slip resistance at the
bed) lies beneath the maximum in shear strain rate and
that the surface and bed speeds in the ice stream are
nearly the same. It ollows that [ 2 1.3, [/w = 0.1.

7a and Equation (31) then imply that By = 1 and r = 5.
which 15 orders of magnitude oo small given the
measured w () =0.43kma ' and any reasonable Up.
The situation is not so extreme for DI where the same
reasoning leads to [/w =0.26. and the implied values for

Ry =6 and r=5x 10" arc closer to the range of

possibility (7 > 10") but still distinetly o low.
Echelmeyer and others (1994 and Scambos and
others (1994 show that these narrow shear zones can be

explained by a localized softening (shear enhancement) of

the ice that localizes the shearing, However. it is
important to recognize that localization ol shear at
scales less than order 10 ice thicknesses does not, in
general. prove that there is local softening of the ice. Thai
is only the case when r is high slip much larger than
deformation

Implications for inversions

The above discussion motivates consideration of (he
mverse problem ol deducing the distribution ol slip
resistance £ from measurements ol surface spoed .
Realistic inversions of measurements should account for
hoth longitudinal and lateral variations in slip conditions
MaeAyeal, 1999).
It also seems important o include variations in ice

and non-lincarity of the ice-flow law

viscosity arising from fabric and/or temperature (Echel-
meyer and others, 1991). Nevertheless, some  specific
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problems associated with inversion arising lrom lateral
variations can be identified based on the general analysis
for a lincar flow law with small variations in £ Tt is uselul
to consider the inversion as a two-step process: first,
determine wy, from we (Equation (21a)): second, deter-
mine § [rom uw, (Equation (24a)), which in combination
are expressed as Equation (25¢).

The first step is illustrated by Equations (21) and
Figure 2. High frequency (> 1[H 1)) variations in w,
are strongly attenuated f;, = () at the free upper surface,
Thus, within the physics of the model, any high-frequency
Muctuations in w.. however small, would have o come
from very large Muctuations in wy,. The calculation ol #,
from wug is similarly unstable [Equations (23) and (21)
Noise in u, [rom measurement errors or inadequacy of the
physical model, such as shear enhancement of the type
discussed above, would tend to obscure any actual sienal
associated with the bed, and make accurate inversion for
wy, and 1y, at spatial scales smaller than 1[H]| hopeless
(Fig. 2). The length 1[H] then separates two spatial
scales: long > 1[H](F, = 1 in Equations (21
< 1[H](F, =0 in Equations (21)

practical or not.

and short

for which mversion is

The behavior for lateral variations in « has some
similarity o features known for longitudinal variations
c.g. Balise and Raymond. 1985), but it is [ortunately less
complex. For longitudinal variations, there is an inter-
mediate scale for which surlace and basal variations in u
have opposite sign. There is no corresponding behavior
lor the lateral variations. The differences arise largely
because longitudinal variations involve blocking along
flow paths that cause interactions imposed by continuity.
Lateral variations interact by shear alone and ave free of
such continuity constraints.

The second step is motivated by the realization that
variations in wy, arise [rom variations in £ and therelore
may be expected to have certain properties, In the high
range (high mean basal slip), a localized disturbance in €
is converted o a relatively broader disturbance in
and f;, (Equations (24) and (25): Figs 2 and 3) with a
width 1> 1[H]

tons in & and w), mav be small compared to their

Furthermore, even though the varia-

respective means, the long-scale variations in wy, can be
much larger than the deformational speed Up.

Now consider both steps in combination for high r.
Induced variations w, will have long spatial-scale
features. At this scale, they can be transferred 1o the
surface with only minor attenuation to appear as a signal
in u.. Morcover. the transfer from the bed to the surface is
not attenuated by a depth-varving speed (e.g. Ilies 2 and
3, Equations (21) with F, =~ 1). These results then
support nversion lor slip resistance at long spatial scales
with a depth-integrated model such as used by MacAyeal

1992, However, inversion for short-scale features in slip
resistance is conlounded by spatial spreading both over
the bed and through the ice that smooths their ellects at
the location of potential observation on the upper surface.

A corollary of this discussion is that any substantial
lateral variation of u. with a scale much shorter than [
must arise from physics that is not included in the model,
for example. short-scale, lateral variations in the proper-
ties of the ice.

Although the above discussion is cast in terms ol the
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theory for a linear fluid, the numerical calculations show
the same features oceur for a power-law fluid like ice with
the quantitative difference that the spreading is mediated
by the scale R, (Equation (31)) with n =3 (Figs 7 and 8.

CONCLUSIONS

The central conclusion is that a local, cross-flow (lateral)
variation in hasal slip resistance £(y) has a non-local effect
on basal speed w,(y) and stress £,(y). The scale ol the
lateral spreading [ in relation to ice thickness is
determined by R, (Equations (31) and (33)), which
increases as as a power of the ratio of hasal slip to internal
deformation. Within the zone of spreading, the driving
stress is balanced by a combination of basal and side drag.
The distributions of #,(y) and w,(y) are positively and
negatively, respectively, correlated with £(y).

In the case of a shear margin originating from a jump
in & from very high to low values, this general result is
manifested as a boundary layer with a width [ (Equation
(32)) that extends into the fast-slipping (low §) side of the
houndary. Reduction of basal drag on the fast-slipping
side of the boundary is concentrated in a zone of high
stress with a width of about one thickness on the slow-
slipping (high &) side.

Three regimes of side drag can be identified for an ice
stream of halltwidth w. For R, < 0.1w (I < 0.13w), side
drag is restricted to the sides and does not affect the
central part of an ice stream. For R, > lw (I — 0.33w),
side drag dominates and #, — 0 even in the center. Siple
Coast ice streams are in an intermediate regime with

driving stress in the center balanced by a combination ol

side and basal drag. Relative to predictions ol the
analysis, localized softening of the ice in the shear
margins of these ice streams causes boundaries that are
more narrow, and results in less side drag in the interior.
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