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Recently, by analyzing the problem of the observation of superconducting fluxons by transmission
electron microscopy, it has been found that the calculation of the electron optical phase shift can
been carried out successfully by a new approach[1,2]. First the vector potential is decomposed into
its Fourier components and then the phase shift is calculated for each component separately.  In
this way, once the problem of finding the vector potential in analytical form has been solved, the
Fourier transform of the phase shift is immediately obtained, and can be inverted either analytically
or numerically.  The main advantages of this approach are that the case of a periodic array of fluxon
can be easily analyzed [1], a troublesome problem in the former real space approach owing to the
long-range behaviour of the fluxon magnetic field, and that new superconducting structures, like
pancake vortices present in high-Tc  materials [2,3], which were beyond the scope of the flux tube
model and its implementations, can be successfully investigated.  In this way,  it is possible to
interpret recently-obtained experimental results by means of the new 1-MV holographic microscope
relative to fluxons pinned at tilted columnar defects [4,5] and to correlate the image features to the
anisotropy of the underlying structure, as also shown in other contributions [6].

In this work it will be outlined how this approach can be profitably extended also to other cases.
Mansuripur [7] introduced Fourier methods for the numerical calculation of the magnetic field, its
vector potential and the corresponding phase shift, under the assumption that the distribution of the
magnetization  is doubly periodic so that the Fast Fourier Tranform algorithm can be safely applied.
These requirements are not met by the case of antiparallel magnetic stripe domains, lying in a semi-
infinite specimen, where the question is how the presence of the edge and of the associated fringing
field influences the field and corresponding phase shift. It can be shown that by means of our
Fourier approach this problem can be solved analytically, obtaining the solution in closed form
when the domain wall width is negligible [8].

In the case of electrostatic fields, Fourier methods were employed by Vanzi [9] in his investigation
of electric fields to prove important relations in the real space. Let us focus our attention on the
Fourier space. The general solution of the Laplace equation, e.g. in the vacuum region above the
specimen, z > 0, can be written as
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upper specimen surface.  From this expression it is easy to ascertain that the corresponding
contribution to the phase shift is given by
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The former equation  allows us to extract a simple and significative relation in the Fourier space
between the Fourier transform of the phase shift and potential:  
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These considerations can be extended also to the vacuum region below the specimen, emphasizing
that the calculation of the external phase shift in the Fourier space, at least formally, is a very
simple matter, once the potential distribution on the two surfaces of the specimen is known.

These results have been applied to the analytical model for the electric field associated to a periodic
array of alternating p- and n-doped stripes lying in a half-plane, tilted with respect to the specimen
edges [10].  The solution of this problem has been found in the real space, by exploiting the striking
similarity with the well-known optical problem of the diffraction of an inclined plane wave by a
perfectly conducting half-plane [11].   As it is possible to calculate the Fourier transform of the
potential at the specimen surface, it turns out that the the time-consuming integration along z  of the
potential (whose expression in the whole space, although analytical, is much more complicated with
respect to its value on the specimen plane) is replaced by the division by k⊥ .  The inverse Fourier
transform can be subsequently carried out by a mixed analytical-numerical method which allows a
substantial reduction of the computation time for the phase shift.

My coworkers, M. Beleggia and P.F. Fazzini, and I are presently exploiting the capabilities of
Fourier methods when applied to the investigation of long range electromagnetic fields and our
results [12] seem to indicate that this is a powerful approach to find the solution of otherwise
unmanageable problems and even when the solution of the problem is known by real space
methods, it can offer a useful different perspective or at least lead to computational benefits.

The stimulus to use Fourier methods originated with the interpretation problems related to the
experimental observations of superconducting fluxons, a research carried out within a collaboration
scheme with Dr. A. Tonomura and his group at the Hitachi Advanced Research Laboratory, Japan.
Useful discussions with Dr. A. Tonomura, the members of his group, and with Professors H. Lichte
and M. Vanzi are gratefully acknowledged.
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