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ORTHOGONAL POLYNOMIALSFOR A FAMILY
OF PRODUCT WEIGHT FUNCTIONS ON THE SPHERES

YUAN XU

ABsTRACT.  Based on the theory of spherical harmonics for measuresinvariant un-
der afinite reflection group developed by Dunkl recently, we study orthogonal poly-
nomials with respect to the weight functions |x|1 - - - |x4|% on the unit sphere §'-1
in RY9. The resultsinclude explicit formulae for orthonormal polynomials, reproducing
and Poisson kernel, aswell as intertwining operator.

1. Introduction and Preliminaries. Among their many distinct properties, the
spherical harmonics can be viewed as orthogonal polynomials with respect to the
L ebesgue measure on the unit sphere S of RY. For years they remained to be the only
orthogonal polynomials on spheresthat had been studied in detail (see, however, [8] and
the references there). Recently Dunkl [3-5] developed a theory of spherical harmonics
for measuresinvariant under the finite refl ection groups. The theory hasremarkable sim-
ilarities to the theory of spherical harmonics. Among other things, it opensaway to study
orthogonal polynomials on the sphere with respect to a large class of measures. In this
paper we consider the case of h2(x) dx, where h,(x) = [x¢|* - - - |xq|®, & > 0; note
that this measure reduces to the L ebesgue measure when all «; = 0. Our purposeis to
study the system of orthogonal polynomials for this class of weight functions in detail,
deriving explicit formulae for orthonormal polynomialsand reproducing kernels, aswell
asto provide a case study for Dunkl’s general theory.

It turns out that explicit formulae for the orthogonal polynomials can be given in
terms of orthogonal polynomials with respect to the weight function (1 — x?)~/2|x|%"
on[—1, 1]. These polynomialsof one variable can bewritten explicitly in terms of Jacobi
polynomials, but they seem to possess properties that make them closer to the Gegen-
bauer polynomials; we shall call them gener alized Gegenbauer polynomials. A large part
of the paper isdevoted to study these polynomials. Using aproduct formulafor the Jacobi
polynomials due to Dijksma and Koornwinder [2] (different from the one that follows
from the addition formula of Koornwinder), we are able to derive product and addition
formulae for the generalized Gegenbauer polynomials, from which the explicit formulae
for the n-th reproducing kernel and the Poisson kernel for h2 dx will follow.

The paper is organized as follows. In the remainder of this section we state the back-
ground and results from Dunk!’s theory, together with other preliminaries. The study of
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the generalized Gegenbauer polynomials is contained in Section 2. The explicit formu-
laefor orthonormal polynomials and n-th reproducing kernel are givenin Section 3. The
Poisson kernel and the intertwining operator are discussed in Section 4.

For x,y € RY we let x - y denote the usual inner product of R and |x| = (x - x)/?
the Euclidean norm. Let S™1 = {x : |x| = 1} be the unit sphere in RY. We denote by
e, ..., ey the standard basis of RY.

We restrict the statement from Dunkl’s theory to the special case considered in this
paper. The reflection group G is generated by the reflections along ey, . . . , €4, which we
denote by xoj; i.e.,

Xoj =X—2(X-6)g = (X1, ..., Xj—1, =X, Xj+1, - - - , Xd)-
For o = (o, ..., aq), where o > 0, we define
(1- 1) hoz(x) = HO(|X1|{X1 e |Xd|(ydr a >0, xe€ §71

where H,, is chosen so that the integral of h2 on S is 1; we have

H2 — Wd—1 Moy + %)
"7 72 T@m+d) Tag+ )

which can be verified easily using the spherical coordinates.

The key ingredient of the theory is a family of commuting first-order differential-
difference operators, D; (Dunkl’s operators), which act very much like the partial deriva-
tives d;. In the present much restricted case, the operators take the form

f&) — f(xa))
” :

(1.2) Dif(x) = g, (x) + o 1<j<d.

The h-Laplacian, which plays the role similar to that of the usual Laplacian, is defined
by

(1.3) Ay=D2+...+D2
Indeed, let Pd denote the space of homogeneous polynomials of degreenin xy, .. ., Xg.
ThenDiP¢ c P2 ,, AP c P2 ,; moreover, if P € P4, then

n—1
/ PQR2dw=0, vQe |JP¢
s k=0

if and only if A,P = 0. The space H" = H M := P9 kerAy, is called the space of
h-harmonic polynomials of degree n. The dimension of H," is the same as that of the
usual spherical harmonics.

The theory of h-harmonics is established for measures invariant under a general re-
flection group, the reader should consult Dunkl’s papers (cf. [3-6]).

https://doi.org/10.4153/CJM-1997-009-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-009-4

ORTHOGONAL POLYNOMIALS ON SPHERES 177

2. Generalized Gegenbauer Polynomials. Throughout this paper we usethe stan-
dard notation P for the Jacobi polynomialsand C¢" for the Gegenbauer polynomials.
For the properties of them we refer to [7, Ch. X] and [13, Ch. 4].

In this section we study the orthogonal polynomial swith respect to theweight function

WO () = wy (L =X X%, —1<x<1, Ap>-1/2

where

o TA+p+])

ST+ ro+y)

is chosen so that the integral of wi*#) over the integral [—1, 1] is 1. We denote the or-
thonormal polynomials with respect to the weight function w*+) by D; that is,

Wy N

1
/_ L DEIeIDG W () dx = dam, DY € M,

where I, denotes the space of polynomials of degree at most n in one variable. When
1 = 0, the polynomials D are the normalized Gegenbauer polynomials C), which
differs from C by anormalization constant. We call D{) the generalized Gegenbauer
polynomials.

PrROPOSITION 2.1. The generalized Gegenbauer polynomials can be expressed in
terms of Jacobi polynomials as follows:;

(2.12) DSI(X) = calA, w)PS 2228 — 1),
o) Atp+l Jo-1u+d) o 2
(2.1b) D3l (%) = ca(A, o + 1) u+—1/2XP" (2x° - 1),
where
60 M):Jr(w%)rm%) [@n+ A+ T+ A+l (n+1)
e T +u+1) J Fn+p+Hrn+r+1)

PROCF. In order to establish the relation for the case 2n, it sufficesto prove that
1 1,1 _
[, P8 27D (22 — Dp()(L — 38 HxP dx = 0, peE Man 1,

and then determine the normalization constant. Thisis trivial if p isan odd polynomial.
Let p be even and write it as p(x) = q(x?), where g € M,_1. Then, by the orthogonality
of P9,
1 1,1
[ PEH 228 — 1)a6e) (L — P4 |2 dx
1

1
=2 [ PLTH D@ — 1)q0e) (L — X hx dx

1 1,1 1,1
= /O PO 24722t — 1)qt) (1 — t) 22 dt
=0
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To determine the constant, we use the fact that
1 0—3u—1) 52 2 2—1 10120
[LIPR P2 — DI — %) x| o

1 — 5,03 —= —=
=27 [P R — o eyt

_ 1 Fn+p+r(n+A+13)
C2n+ X +p TN+ X +p)f(n+1)

and take into account the constant w, ,,. A similar argument is used to prove the relation
for the case2n + 1. n

We note that for u = 0, the relations in the proposition are the well-known formulae
that connect the Gegenbauer polynomials and the Jacobi polynomials (cf. [13, p. 59,
(4.1.5)]). From this basic relation, anumber of properties of D{#) will follow easily. We
record one below.

COROLLARY 2.2. For A\, u >0,

. Atp+l ’
2.2 D{I(X) = ﬁxdgy B(x).
2

Our starting point is the following important relation first proved in [2, p. 192, (2.5)]
by group theoretic method, an analytic proof appearedin [10, p. 133].
Fora>-1/2,4>-1/2,
(2.3)

+83+ +a+ + 3+
PE{X"H)(COSZG)PEOC’H)(COSZQ»: r(O( 5 1)r(n a 1)r(n B 1)

af(n+)r(n+a+ )M (a + %)r(ﬁ + %)

1 1
X /_1 /_1 CE**D(tcos cos ¢ +ssinfsing)(1 — 2% (1 — )% dsctt.

Sincecos2f = 2cos? § — 1, we can use the basic relation (2.1) with e = A —1/2 and
B = p — 1/2to write the above formula as

For A >0, u >0,
(2.4

2n+ )\ +
DY) (cosB)DY ) (cos ) = ——— 1

C\C
N+p G

1 1
x Ll Ll CH(tcosf cos +ssindsing)(1 — t2)* (1 — )" dsc,
where

T20(\)
I'()\+%)'

1
ot = [ a-tytd=

This product formula allows us to derive an additional formula for the Gegenbauer
polynomial that involves generalized Gegenbauer polynomials.
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THEOREM 2.3. For A > 0Oand u > 0,
[3]
25 CQ*")(cosf cosgt +sinfsin¢s) = io " > ) bg;(cosf cos ¢)
. m=0 k+j=n—2m
x (sing'sin ) DL (cos )DL cos 6) U 2 )cl2(g)
where

M —3re —3) FA+p+k+j+1)

@O M= TTRN ) meararkea—brG - D)

This formula has appeared in [9, p. 242, (4.7)], where a proof was given using group
theoretic method, but the constants were not given explicitly. We give an analytic proof
in the following.

PrROOF OF THEOREM 2.3.  Sincethe left hand side of (2.5) is apolynomial of degree
ninvariablest and s, it can be written in terms of the product orthogonal polynomials
—1 A—1
(S (Tl CYIES

C{""(cosfcosgt +sinfsings) = > Fy;(cosd, C05¢)C&l_%)(t)CfA_ Y,
0<k+j<n

where, by orthogonality of the product polynomials,

1 1
. /—1 C*1)(cosh cos ¢t + sinf sin ¢s)

1
n —
kj(cosd,cos¢) = h(k“)h-(” /
i

x UM (91— ) H (1 — Syt dseh
in which we write (cf. [13, p. 80, (4.7.14)])
F(k+2u — 1)
(< — DRIT G — D

We first make the observation that changing variabless — —sandt — —t and using
the fact that C{)(—t) = (—1)™C{)(t) leadsto

1
n = [ 1cl PP - 2yt = 2%

FEJ(COSQ, cos¢) =0, ifn—k—jisanoddinteger.

Therefore, we may assume that n — k — j is even in the following. We use Rodrigues
formula for the Gegenbauer polynomial which states[13, p. 81, (4.7.12)],

VTR PN (7 ) PR (1) E Ko ovken—1
(1 — el () = By (dt) (1 — )L,

where
(-2 Tk+p— Hrk+2u — 1)

B — )
K Kl T(p— 32k +2p —1)
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For n — k — j even, we use this formula and integration by parts to conclude that

Fk;(cosb, cos¢)
BB

= h(“)h(*)/ / CO*)(cosf cos ¢t + sinf sin ¢s)

x(—) (1 — )= 1( )(1 214t ds

B( ) d
- kﬂ ()
=(-1 h‘“)h“) / / (dt) (dS)C (cosf cos ¢t + sing sin ¢s)
x(1- tz)k+“ 11— &yPdtds.

Using the derivative formula of the Gegenbauer polynomials ([13, p. 81, (4.7.14)]) re-
peatedly leadsto

(§) o0 =2 e,

from which it follows readily that

Fk;(cos6, cos¢)

B(I‘) B(>\) I_()\ + ,U/ k )

_ ki
( 1) h(“)ho‘) ['(/\+ )

(cosf cos¢)<(sinf sin )

X /_ . / CYy D (cosb cosgt + sinfsings)(1 — 7)< H(1 — &)L dtds
= by;(cosd cos ) (sinfsing) D l{;“fk)(cosG)fo lﬂ;"fk) (cos¢),
where we have used (2.4) since n — k — j iseven and the constant bE_J- isgiven by
) . .
0 Cayer BB O ke Atk 1
K.j h(ku)hj(/\) F\+ ) N+A+ 4 CuujCuek

Using the formulae for various constantsin by; and making use of the formula

r(v - %)r(v) = /12721 (2y — 1),

we can simplify the formulafor by; to the desired form. This completes the proof. ]
For our purpose, the following corollaries of the theorem are of most interest.
THEOREM 2.4. For \ > 0,
1
C, / C*1)(cosf cosgt +sinfsings)(1 +t)(1 — t2)* L dt

2.7)
Z % ") sin“ 0D (cosh) sink pDY ")(Cos¢)C(A 2)(s)
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where

rA—3) T +p+k+1)
() 2
(2.9) a, G mAr kA=)

PrOOF. Taking integral of (2.5) in the previous theorem with respect to
(1— t2)~Y/2dt and C¥~/2(t)(1 — t2)»~2/2 dt, respectively, leadsto
1
C [ 1C$$+/’)(c036 cos¢t +sinfsings)(1 — t2) L dt
3l
2
= > b anfSinsing) DG 2 cos)DG M cos 9)C52(9)
m=
and
1
C, / Ci+) (cose cos¢t +sinfsin$s)(1 — t?)*~Ldt

= 1n Zwl —2m+ )\ + L
x (S|n05|n¢)n 2m—1D(>\+n ZWl;l)(COSG)D(A+n 2W1I’)(COS¢)CH Zm_l(s)

where in deriving the second equation we have used (2.2) and the fact that

1
) = @u—Drand [ [V PP -2y ta= o2
pt3
From (2.5) it isreadily verified that
R=3  \n rn—2m+i+p+1) TF(A—3)

7 2 p —
n—2m+ )+ bn2mt (N+X+p)r(n—2m+ X —3) T\ +p)
= bg,n72rm1'

Therefore, adding the two formul ae together and changing the summationindex, we have

the desired equation. n
We can take the limit y — 0 in the formula by using the relation
. 1 _ f(1) +f(-1)
_ $2\pu—1 —
(2.9) limc, [ O@ -yt = S

then the formula (2.6) becomes

o nFA+k+ DI\ — 1)
&) = 2
CY(cosf cos¢ +sinf sin ¢s) kg)Z(n+>\)l'(k+A — %)I’(A)

x (sinfsin6)*CC*M (cosB)EC I (cos )V 2(s),

which is the addition formulafor the Gegenbauer polynomials(cf. [7, Vol. I, Sec. 3.15.1,
(19)] and taking into account the normalization constant of C{").
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THEOREM 2.5. For A\, u > 0,
(2.10)

(i) (i) _nt
D; " (cosf)Dy ' (cos¢) N

1 1
X /—1 /—1 CO*M(tcosf cosg +ssinfsing)(1 + t)(1 — t2)* 11 — ) L dtds.

Cx Cu

PROOF. Becauseof (2.1) and thefact that t(1—t2)*~1/2 jsodd, it fol lows from change
of variablest — —t and s+— —sthat thefactor (1 +1t)(1 — t2)*~ /2 in the integral can be
replaced by (1—t2)*~1/2 whennisevenand by t(1—t2)*~1/2 when nisodd. Thus, for 2n,
the formula (2.10) is the same as the formula (2.4). For 2n + 1 we multiply the formula
(2.5) by CY"Y/A(t) = (2u — 1)t and integrate with respect to (1 — t2)~1(1 — > dsdit
to conclude that

1 1 +1 . . — _
Gy /_1 /_ 1 C(zﬁﬁl)(cose cos¢t +sinfsings)t(l — t2) 11 — )} Ldtds

2n+1

b 1 -1 + +
=10 [C 3 (O]2(L — £2)*L dt cos cos DL *D(cos#)DS*D (cos ),
2/1/ —1J-1 1 2n 2n

from which the desired result follows from (2.2), while the constant can be easily
verified. ]

As u — 0, the above formula reduces to the product formula of the Gegenbauer
polynomials(cf. [7, Val. I. Sec. 3.15.1, (20)]). One immediate consequenceof the above
theorem is the following interesting representation of the generalized Gegenbauer poly-
nomial.

COROLLARY 2.6. For A\, >0,n> 0,
n+A+u

(M) (M) _
@1  DPIRDEIE) = =

1
c, L LSOO+ (L — Py

We will not use this particular representation. However, the following remark seems
to be worthwhile. The normalization of the usual Gegenbauer polynomials C{) comes
more or less from the simple generating function

o9 1
COMM = ——————.
nX:;) n (1 — 2rx+r2)A
In our definition of D$#) we have chosen the constant so that the polynomial is orthonor-
mal sincethereis no obviousreason to choose any other one at the time. In this respect,
the formula (2.11) suggeststhat a reasonable choice would be

(L >\ + :u’ (L (L
CH00 = e DR @DR 09,
since these polynomials will have a generating function
00 1 1
2.12 COMp)r" = e (1+ (1 — )L,
(2.12) go ) (x)r cu./f1 ey 0=

which can be taken asthe definition of C{#). In particular, if 1 — 0, then (2.12) reduces
to the generating function of C{).
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THEOREM 2.7. For A\, u > 0,

(2.13)
Atp+l o ML ALy n+A+p
51 sindsin #D" 1) (cos#)DL ) (cos o) = e O

2
1 1
X /_1 /_1 CO*1(cosf cos gt + sinfsin¢s)(1 +t)(1 — t2)"1s(1 — $)* L dtds.

PrROOF. The proof is very similar to that of Theorem 2.5. For the case of odd inte-
ger 2n + 1, we multiply (2.7) by C(f_l/ 2 (s) and then integrate against (1 — t2)*~1(1 —
&?)*~1dtds. For the case of even integer 2n, we multiply (2.7) by C(lAfl/ 2 (s)C(l"fl/ 2(t)
and then integrate against the same measure; here we need to use the formula (2.2). We
omit the details. "

3. Orthogonal polynomialson spheres. Westudy orthogonal polynomialson §**
with respect to the weight function h? dw, where the function h, is defined in (1.1).
For d = 2, one family of h-spherical harmonics is explicitly given in terms of Jacobi
polynomialsin [4]. We state it below using the notation of the generalized Gegenbauer
polynomials.

THEOREM 3.1. Letd = 2and h, = Hy/|Xq|*|x2|*2. An orthonormal basis for HNis
given by

top+1
(3.1)  Y{(x) = r"D{+2)(cosh), YH(x) =r" % sinD12) (cos ),
(o4} 5

where we use the polar coordinatesx = (r sind, r cosf) and we take YJ(x) = O.

In particular, the restriction of Y on St are orthonormal polynomials of degree n with
respect to the weight function h2 on S'. The theorem can be easily proved by verifying
the orthonormal relation directly.

To describe the result for d > 3, we need the definition of the spherical coordinates.
For x € RY, these coordinates are defined by

XL =rSinNfg_1---Sinfrsing,
Xo = rsinfg_q1---sinf, cosf,

Xd—1 = r'Sinfy_1 COSO4_»
Xg = rcosfy_q,

wherer > 0,0 < 6; < 27, 0 < 6k < 7, k # 2. We aso introduce the following
notations. For each n € N, let

N=k >k >-+>ky2>0 k=(ky,... Ky2).
For o = (o, ..., aq), we define
o = (ag,...,05), 1<j<d.

Since ot consists of only the first element of o, we write ot = ;.
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THEOREM 3.2. Letd > 2andn = kg > ky > -+ > kg_» > 0. In spherical
coordinates an orthonormal basis of H." is given by

. d-2 iy, d=j-1
(3.2) Y0 = A" TT D " cost )
. j=1

X (Sinfg_;)9 Y<-2(sin 6y, cosfy),
where YikH, i = 1,2, arethe h-harmonicsin (3.1), and

d—2 [ (k d—j+1 d=j+l
(3.9 (a2 = Tear o+ D) GET + oM+ 57
Flali+3) =i Tk + [+ S

We note that if ky_» = Othen YQ’Z = 0 by the convention we adopted in Theorem 3.1.

These explicit formulae are known to Dunkl (personal communication) in terms of
Jacobi polynomials. The orthonormal relation as stated can be verified by computing the
relevant integrals. However, to stress the analog of h-harmonics and the usual spherical
harmonics, we shall derive the h-harmonics from Anp = 0. Since the development is
similar to that of usual spherical harmonics (cf. [14, Ch. 1X]), we shall give only an
outline of the proof.

PROOF OF THEOREM 3.2. W start with the following decomposition of P g
n
(3.4) Pd =S x*HI M +r2pd,.
k=0

It follows from the fact that f € Pd can be written as
f(X) = PPF(X) + xap2(X) + 92(X'), X = (X', Xa),

whereF € P9 ,, ¢1 € P, and ¢, € P, then use the canonical decomposition of [3,
Theorem 1.7]

(3] .
Pr? = ZO @|X|2] Hn(igj
j=

to expand ¢; and collect terms according to the power of x4 after replacing |x|2 by |x|?> —
x3. For any P € H.", the decomposition (3.4) allows usto write

P(X) = 3" X P(x) + Q). Qe PY,.
k=0

Therefore, using the harmonic projection operator projyy  given in [3, Theorem 1.11] it
follows that

P(X) = kzo proiy, (X3 PL(X))
_\ 5 (=L [x28,(x5Pu(x))

k=0j=0 4']'(—% — |(X|1 —n+ 2)1 '
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We write A 4 for Ay, to indicate the dependenceon d. Since our h, is separablein vari-
ables, it follows from the definition of A, and Dunkl’s operators (1.3) that

Dng = Dng-1+ D3,

whereAn g1 iswithrespecttox’ = (xq, ..., Xq). Therefore, since P, € H2 ", it follows
that
D (X§P(X)) = DG )PL(X).

By the definition of Ty, it follows easily that
DEOG™) = (n—k+[1— (=" ag) (n—k—1+[1— (-1 ag)xj 2

Using the formula repeatedly, we end up with that for n — k being an even integer,

- =k —k—1 e
By,4 (X Pe(x)) = 23 (_n 2 )i (_n 2 ad)jxg AP,

where (a); = a(a+1)--- (a+]j — 1). Therefore, for n — k even, we get

projy, (X3™Pk(x)

& DN — aa) ks
— Z 2 /] d2 . Jrzjxg k: ZIPk(X/)

iz (=n—lofs — 5 +2)j!
— My N—k _n_k_n_k_l_ - _9+ ﬁ
= Pk(X )Xd 2F1< 5 5 g, —N |(X|1 > 2; Xg)

gt 83 g ) [ X5
= const P(x)rkplloliost e 2)(2):‘—5 — 1),
2

wherein thelast step we have used theformulaon[13, p. 64, (4.22.)]. A similar equation
holds for n — k odd. By the definition of the generalized Gengenbauer polynomials, we
then have

projyy, (X “Pw(x’)) = const Pk(x’)r”‘kcgﬂfh_aﬁ%z‘a”) (cosby).

SincePy € Hkh'd‘l they admit asimilar decomposition. We can continuethis processun-
til we get to the case of h-harmonic polynomials of two variables x; and x,, which can be
written as linear combinations of the spherical h-harmonicsin Theorem 3.1. Therefore,
taking into account that in spherical coordinates; /rj = cosj_1 and rj_1 /rj = sinfj_a,
whererj = X2+ -+ + xj?, we conclude that any polynomiasin H," can be uniquely
presented as a linear combination of functions of the form r"Y. The value of A? is
determined by
fo [YRTPREC) do = 1,

where the integral can be evaluated by using the spherical coordinates. We omit the
details. .
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For each n € Ny, the reproducing kernel function, PR, for H," is defined by the prop-
erty that

Jos QUIPRO YN dioy) = Q). Q € Hy

Let Y bethe basisof H," in Theorem 3.2. It follows readily that

n
Ph(X,Y) = ZO ZO Z [Yn ()Yt (y) + Y2 0YR2ml;

1 2 —2*
in other words, P! is equal to the sum of the product spherical h-harmonics of degree
n, where the sum is over all h-harmonics. In fact, since any two orthonormal basis of
H," differ only by an orthonormal transform, it's easy to see that P! is independent of
the choice of the orthonormal bases—afact that is of interest in the study of orthogonal
polynomialsin several variablesin general (cf. [15]).

THEOREM 3.3. For h2 dw on S*1,

n+ o, + &2 ool 4822
Ph(x,Y) = Ld_zz / CI ) (xayaty + - - + XgYata)
(3.5) oy + 952 -1

X ﬁ(l +1) ﬁ Cor (1 — 7)™ Lt
i i=1

i=1

PrROOF.  First we derive the compact formulafor the cased = 2, which will be used
in deriving the formulafor d > 2. Let x = (sing,cosfd) andy = (Sin¢, cos¢). From
Theorem 3.1 we need to derive aformula for

PCSI(X,y) = Pho(X, )
= D{)(cosf)D ") (cos ¢)

A+ 1
)\+ sinfsin D) (cosf)DC ) (cos ¢).
2

From Theorem 2.5 and Theorem 2.7 we have

n+\+u
A+
x (L+1)(1— ) 11 +9)(1— ) tdtds.

1 1
P (x,y) = C\C, L . L . CO*)(cosf cos ot + sinf sin ¢s)

For the general case d > 3, we use the spherical coordinates. Let X be associated with
(01,...,04-1) and y be associated with (¢1,...,d¢_1). For x € S1 we write x =
(SiNfg_1Xg_1,c0SH4_1) where xq_, € S2. Since

X1yt + - - - + XgYgly = COSO4_1 COSPg_1tg + (Xayats + - - - + Xg_1Ya—1td—1),
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we can apply the formula (2.7) to conclude that

(Jola+952) d _ d _ 2vai—1
‘/Hl]dcn Cayata ++- +Xayata) TTL+8) [T e (1 — )"l

i_
d 1 [ Otd 1 d-2 a
_ Z |1+ ”)(smed 1S|I’l(}5d 1)k1D51|7 « |1+952 +kq, d)(COSGd_l)
od-1),+92 o,
D(| |1+ 24y, d)(COS(;Sd,l)
i1, 4+4=3 d—-1 d—1 -
x /[ 12501 C(k|1 ) oty + - XaaYaata-a) 1@+ [T (1 — D) et
J[-1, i=1 i=1

Clearly, we can repeat the above process and reduce the integral in the right hand side
one at atime until we are down to the integral

/[—1 1P an 19 (xay1ty + XoYat)(1 + tr)(1 + 2)Co, Ca (1 — 1) ~1(1 — )=~ cly dity,

which we use the formula we derived for d = 2. This way, we conclude that

af+952 d d B
/[ 111“(:%| 2 (xayaty + -+ Xayata) TL(L+ 1) T € (1 — )72t
- i=1 i=1

n ki Ki—3

d-2 i L d—j—1
(Jo J‘1+JT'O(EH+1)) aLt o ( K
=22 K SiNfy_j SiNgg_j)
ki=0 k=0 kd,zzo(jgl i1 Kgo+ar+az ,H ! !
d—| d—j-1 ,
D(ki‘al JL?"‘ Z +k1,f¥d—|+1)(cosgd7j)Dﬂ’0’1 ’I\;*' g, M)(COS(f)d J)

X Pl(g,lz(,xzz) ((sinfy, cosbh), (sin ¢1,cOS¢1)).

From the definition of a{;) and Ay, it's not hard to see that

d—2 0 Lde d-2
H ag?(::Tl*—d J2 1'adﬂ+l) al + az = |a|l " 2 AEy
=1

kiz+tar+oaz  n+laf+ 52

from which the desired result follows from the definition of Y2 in Theorem 3.2. n

REMARK. It's worthwhile to mention that the formulain the theorem reducesto the
classical addition formula for the spherical harmonics (cf. [11])

n+ 9% (e
Pa(X,y) = a2 Ch?'(xy)
2

when o = 0. Thisfollows easily from the limit relation (2.9).
Since |CO(1)] < |CYM(D)] for all |t| < 1, it follows readily that
+ o +

2 (|ol1+%52)
Ca 1
| o+ &2 2).

PR, Y| <

uniformly in x andy.
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4. ThePoisson kernel and theintertwiningoperator. ThePoissonkernel P"(x, y)
isafunction that satisfies the following properties: for each f € P,,,

ot PPOGYENPY) desty) = £(0),

where |x| < |y| = 1and n > 0. The following theorem gives an explicit formula of this
kernel.

THEOREM 4.1. Let h, bedefined asin (1.1). For |x| < |y| = 1,
1-Ix?

(1= 20aysts + - - +XaYata) + [x[2)leli*$

X ﬁ(l +1) ﬁ Co, (1 — t2)4 1t
i=1 i=1

PO = [
(4.1) '

PROOF. It iseasy to seethat the Poisson kernel is given by
PI(xY) = 22 Pr(x.y).
n=

Therefore, by the compact formulaof P!, we only need to sum up aseries of Gegenbauer
polynomials. From the generating function of the Gegenbauer polynomials, we conclude

that 5
X N+ 1—r
— 2 = R —
r;) A" M (1 — 2tr +r2)x+1
from which the desired result follows readily from that of Theorem 3.3. ]

REMARK. Againlet usmention that as o« — 0, we end up with the classical Poisson
kernel for the ball (cf. [12)]),
1 1—|x[?

Px,y) = .
.Y) wd—1(1—2x-y+|x|2)%

For d = 2, this formula has appeared in [5].
From the formula (4.1), we obtain the following properties of the Poisson kernel,

(i) 0<P'(xy) <1, [x<ly=1,

(i) o PPN doy) = 1, [x| <L
Moreover, for each integrable function f on $*-1, we define the Abel means S (f) by
S(f,x) = /Sj WP X R ) duly), x=r1X, X €S r<i,

We have the following theorem.
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THEOREM 4.2. If f iscontinuouson $-1, then

limS(f,x) = f(x), x esS1

PROOF. LetAs = {y € "1 : |x' —y| < §}. Then, by the properties (i) and (ii) of
P", we have

SEX) =10 < ([, + i JTOP X WIE) dey)

< sup +2fff]l Ph(rx’, y)h2(y) dw(y),
< s 2l [, PO de)

where ||f|| is the maximum of f over -1, Sincef is continuous over S™1, we only
need to prove that the last integral convergesto zero when r — 1. By the definition of
P", it suffices to show that

limsu / / 1
r—1 p gt J[o1¢ / / 2 lofa+3
(1—2r(qysty +- - + Xygta) +12)

(4.2) )
X IT Coy(1 = )™ dthi(y) dy
i=1

isfinite for every x’ € 1. LetB, = {t = (tg,...,tq) : i > 1— 0,1 < i < d} with
o=6/4.Fory € §1\ As andt € B, we have that

Xpyats + - - - XgYata] = X' -y = Xqya(1 — t2) + - - +X5ya(1 — tg)|
<1-62/2+max(l—t) <1-—6%/4
I

from which it follows readily that
1—2r(Xjysty + - - Xpyata) + 1> > 1+12 — 2r(1 — 6% /4) = (L —r)*> +16% /2 > 6%/ 4.

Fort € [0,1]9\B,, wehavethatt; < 1—o for atleast onei. Let usassumethatt; < 1—o.
We can assumethat x; # 0, since otherwise, t; does not appear in theintegral (4.2), and
we can repeat the above argument for (to, . . ., tg) € [0, 1]9-L. It follows then that

1—2r(yaty + -+ + Xyyata) +r2 = 12X 51— )
d 1+ \2 2 12 d 12,2
+ o — )T+ ro(l— X7 — Yo Xt)
i=1 i=2
2
> 1231 — t8)
> r2ox2 > 0.

Therefore, for each x = rx’, the denominator of the integrand in (4.2) is never zero and
the expressionisfiniteasr — 1. n

https://doi.org/10.4153/CJM-1997-009-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-009-4

190 YUAN XU

In [6], it is proved that the Poisson kernel for measures invariant under a reflection
group can be given by the intertwining operator, V, uniquely determined by

VP,cP, Vi=1 DVv=Vy 1<i<d
for the h, definedin (1.1), the formulain [6, Theorem 4.2] states that
(4.3) P(x,Y) = Vy (1 — X)L — 2x -y + [x[2) Il 2)

where Vy meansthat the operator acts on the variabley. For the special weight function
that we are interested in, the Theorem 4.1 suggests the following explicit formula of the
intertwining operator.

THEOREM 4.3. For the h,, definedin (1.1),

d d
(4 4) Vf (X) = /[71’11d f(Xltl, RV thd) 1:_[1(1 + ti) 1:_[1 Co, (1 _ ti2)ozi—1 dt.

ProoF. Thefact that V1 = 1 and VP,, C P, are obvious from the definition. Thus,
we only need to verify that D;V = Vo;. From the definition of D;, we write
f(X) — f(x — 2xe)
i .
Xi

Dif = af +Dif, Dif(x) = o
Take, for example, i = 1, we consider

B.VE(X) = o /[_1 y f(Xaty, ..., Xqgtg) — f)((l—xltl, Xol2, . . ., Xqta)

% [[@+6) [T en(@ — D ct.
i=1 i=1

Since the difference in the integral is an odd function of ty, it follows that

20(]_
Xy JI-11d

I:N)lVf (X) f(Xltl, . ,thd)tl ﬁ(l + t,) ﬁ Co; (1 - tiz)alil dt
i=2 i

=1

d d
[ Orf Oty Xat) (@ — ) T +6) [T o2 — )7t
/=1 i=1 i=1

where the second integral follows from integral by parts. Since
d

Co (1 — 7)1,
=1

d
01VF(X) = /Hm df(xaty, ..., Xata)ts T[(1+1)
/=1 i=1

the desired result follows easily from the last two equations. ]

Ford = 1and h(x) = |x|* the formula (4.4) has been obtained in [6]. Although the
form of Vf is suggested by the formula of Poisson kernel in Theorem 4.2, its proof is
only asimple verification. Thus, one can start with Theorem 4.3 and use (4.3) to derive
the formula (4.2) for the Poisson kernel.
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The intertwining operator for the general reflection group has been discussed in [6].
It may allow oneto transform the results from the ordinary spherical harmonicsto the h-
harmonics. In particular, in the case of d = 2, we know that the spherical harmonics are
given by cosnd and sinnd. Thus, the intertwining operator shows that the h-harmonics
can be written asintegrals against trigonometric functions. In fact, the analytic proof of
the formula (2.3) is based on the following formulain [1],

F(n+A+Hr(n+ s+ )
rO+ 9rGe+3)

1 1 o o s
X/_l/_l(tcoseﬂssne) (1—to)* (1_52) dtds.

P{ ) (cos26) =

Integrating by parts and using the definition of D{?, it is not hard to seethat the follow-
ing formula holds

1 rl
D(cosf) = BYcyc, [ ) [ (tcost +issing)'(1+1)(1 — 2y ~1 (1 — &) dtds,
where B{") is aconstant, from which we can performintegration by partsagainto derive
the formula

2\ 171
is (1) — gWLln) issing)"
i sinfD{ " (cos6) = B ey, /_1 ./_1(tcosa+|ssn9)
« (1+1)s(1 — )11 — 2Lt ds.

Therefore, we have the following formula which gives explicitly the action of intertwin-
ing operator,

ALMDE) (cosh) +i % O+11) sin gD 1) (cosb)
1 1 P 2\u—1 A—1
=cc, /_ ) /_ (tcost +issing)"(1+ (L +9)(1 — {1 — &) dtds

the constant AQ#) can be written as an integral by setting # = 0 in the above formula.
Thisintegral generalizesthe Dirichlet typeintegral for the Gegenbauer polynomials (see
[6, p. 1226]).
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