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ORTHOGONAL POLYNOMIALS FOR A FAMILY
OF PRODUCT WEIGHT FUNCTIONS ON THE SPHERES

YUAN XU

ABSTRACT. Based on the theory of spherical harmonics for measures invariant un-
der a finite reflection group developed by Dunkl recently, we study orthogonal poly-
nomials with respect to the weight functions jx1jã1 Ð Ð Ð jxdj

ãd on the unit sphere Sd�1

in Rd. The results include explicit formulae for orthonormal polynomials, reproducing
and Poisson kernel, as well as intertwining operator.

1. Introduction and Preliminaries. Among their many distinct properties, the
spherical harmonics can be viewed as orthogonal polynomials with respect to the
Lebesgue measure on the unit sphere Sd�1 of Rd. For years they remained to be the only
orthogonal polynomials on spheres that had been studied in detail (see, however, [8] and
the references there). Recently Dunkl [3–5] developed a theory of spherical harmonics
for measures invariant under the finite reflection groups. The theory has remarkable sim-
ilarities to the theory of spherical harmonics. Among other things, it opens a way to study
orthogonal polynomials on the sphere with respect to a large class of measures. In this
paper we consider the case of h2

ã(x) dx, where hã(x) ≥ jx1jã1 Ð Ð Ð jxdjãd , ãi ½ 0; note
that this measure reduces to the Lebesgue measure when all ãi ≥ 0. Our purpose is to
study the system of orthogonal polynomials for this class of weight functions in detail,
deriving explicit formulae for orthonormal polynomials and reproducing kernels, as well
as to provide a case study for Dunkl’s general theory.

It turns out that explicit formulae for the orthogonal polynomials can be given in
terms of orthogonal polynomials with respect to the weight function (1 � x2)ï�1Û2jxj2ñ
on [�1, 1]. These polynomials of one variable can be written explicitly in terms of Jacobi
polynomials, but they seem to possess properties that make them closer to the Gegen-
bauer polynomials; we shall call them generalized Gegenbauer polynomials. A large part
of the paper is devoted to study these polynomials. Using a product formula for the Jacobi
polynomials due to Dijksma and Koornwinder [2] (different from the one that follows
from the addition formula of Koornwinder), we are able to derive product and addition
formulae for the generalized Gegenbauer polynomials, from which the explicit formulae
for the n-th reproducing kernel and the Poisson kernel for h2

ã dx will follow.
The paper is organized as follows. In the remainder of this section we state the back-

ground and results from Dunkl’s theory, together with other preliminaries. The study of
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the generalized Gegenbauer polynomials is contained in Section 2. The explicit formu-
lae for orthonormal polynomials and n-th reproducing kernel are given in Section 3. The
Poisson kernel and the intertwining operator are discussed in Section 4.

For x, y 2 Rd we let x Ð y denote the usual inner product of Rd and jxj ≥ (x Ð x)1Û2

the Euclidean norm. Let Sd�1 ≥ fx : jxj ≥ 1g be the unit sphere in Rd. We denote by
e1, . . . , ed the standard basis of Rd.

We restrict the statement from Dunkl’s theory to the special case considered in this
paper. The reflection group G is generated by the reflections along e1, . . . , ed, which we
denote by xõj; i.e.,

xõj ≥ x � 2(x Ð ej)ej ≥ (x1, . . . , xj�1,�xj, xj+1, . . . , xd).

For ã ≥ (ã1, . . . ,ãd), where ãi ½ 0, we define

(1. 1) hã(x) ≥ Hãjx1jã1 Ð Ð Ð jxdjãd , ãi ½ 0, x 2 Sd�1

where Hã is chosen so that the integral of h2
ã on Sd�1 is 1; we have

H2
ã ≥

°d�1

2

Γ(jãj1 + d
2 )

Γ(ã1 + 1
2 ) Ð Ð Ð Γ(ãd + 1

2 )
,

which can be verified easily using the spherical coordinates.
The key ingredient of the theory is a family of commuting first-order differential-

difference operators, Di (Dunkl’s operators), which act very much like the partial deriva-
tives ∂i. In the present much restricted case, the operators take the form

(1. 2) Djf (x) ≥ ∂jf (x) + ãj
f (x)� f (xõj)

xj
, 1 � j � d.

The h-Laplacian, which plays the role similar to that of the usual Laplacian, is defined
by

(1. 3) ∆h ≥ D2
1 + Ð Ð Ð + D2

d .

Indeed, let P d
n denote the space of homogeneous polynomials of degree n in x1, . . . , xd.

Then DiP d
n ² P d

n�1, ∆hP d
n ² P d

n�2; moreover, if P 2 P d
n , then

Z
Sd�1

PQh2
ã d° ≥ 0, 8Q 2

n�1[
k≥0

P d
k

if and only if ∆hP ≥ 0. The space H h
n ≥ H h,d

n :≥ P d
n \ ker ∆h is called the space of

h-harmonic polynomials of degree n. The dimension of H h
n is the same as that of the

usual spherical harmonics.
The theory of h-harmonics is established for measures invariant under a general re-

flection group, the reader should consult Dunkl’s papers (cf. [3–6]).
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2. Generalized Gegenbauer Polynomials. Throughout this paper we use the stan-
dard notation P(ã,å)

n for the Jacobi polynomials and C(ï)
n for the Gegenbauer polynomials.

For the properties of them we refer to [7, Ch. X] and [13, Ch. 4].
In this section we study the orthogonal polynomials with respect to the weight function

w(ï,ñ)(x) ≥ wï,ñ(1 � x2)ï�
1
2 jxj2ñ, �1 � x � 1, ï,ñ Ù �1Û2,

where

wï,ñ ≥ Γ(ï + ñ + 1)

Γ(ñ + 1
2 )Γ(ï + 1

2 )

is chosen so that the integral of w(ï,ñ) over the integral [�1, 1] is 1. We denote the or-
thonormal polynomials with respect to the weight function w(ï,ñ) by D(ï,ñ)

n ; that is,
Z 1

�1
D(ï,ñ)

n (x)D(ï,ñ)
m (x)w(ï,ñ)(x) dx ≥ én,m, D(ï,ñ)

n 2 Πn,

where Πn denotes the space of polynomials of degree at most n in one variable. When
ñ ≥ 0, the polynomials D(ï,0)

n are the normalized Gegenbauer polynomials C̃(ï)
n , which

differs from C(ï)
n by a normalization constant. We call D(ï,ñ)

n the generalized Gegenbauer
polynomials.

PROPOSITION 2.1. The generalized Gegenbauer polynomials can be expressed in
terms of Jacobi polynomials as follows:

(2. 1a) D(ï,ñ)
2n (x) ≥ cn(ï,ñ)P

(ï� 1
2 ,ñ� 1

2 )
n (2x2 � 1),

(2. 1b) D(ï,ñ)
2n+1(x) ≥ cn(ï,ñ + 1)

vuutï + ñ + 1
ñ + 1Û2

xP
(ï� 1

2 ,ñ+ 1
2 )

n (2x2 � 1),

where

cn(ï,ñ) ≥
vuutΓ(ñ + 1

2 )Γ(ï + 1
2 )

Γ(ï + ñ + 1)

vuut (2n + ï + ñ)Γ(n + ï + ñ)Γ(n + 1)

Γ(n + ñ + 1
2 )Γ(n + ï + 1

2 )
.

PROOF. In order to establish the relation for the case 2n, it suffices to prove that
Z 1

�1
P

(ï� 1
2 ,ñ� 1

2 )
n (2x2 � 1)p(x)(1 � x2)ï�

1
2 jxj2ñ dx ≥ 0, p 2 Π2n�1,

and then determine the normalization constant. This is trivial if p is an odd polynomial.
Let p be even and write it as p(x) ≥ q(x2), where q 2 Πn�1. Then, by the orthogonality
of P(ã,å)

n ,
Z 1

�1
P

(ï� 1
2 ,ñ� 1

2 )
n (2x2 � 1)q(x2)(1 � x2)ï�

1
2 jxj2ñ dx

≥ 2
Z 1

0
P

(ï� 1
2 ,ñ� 1

2 )
n (2x2 � 1)q(x2)(1 � x2)ï�

1
2 x2ñ dx

≥ Z 1

0
P

(ï� 1
2 ,ñ� 1

2 )
n (2t � 1)q(t)(1 � t)ï�

1
2 tñ�

1
2 dt

≥ 0.
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To determine the constant, we use the fact that

Z 1

�1
[P

(ï� 1
2 ,ñ� 1

2 )
n (2x2 � 1)]2(1 � x2)ï�

1
2 jxj2ñ dx

≥ 2�ï�ñ
Z 1

�1
[P

(ï� 1
2 ,ñ� 1

2 )
n (t)]2(1 � t)ï�

1
2 (1 + t)ñ�

1
2 dt

≥ 1
2n + ï + ñ Ð

Γ(n + ñ + 1
2 )Γ(n + ï + 1

2 )

Γ(n + ï + ñ)Γ(n + 1)

and take into account the constant wï,ñ. A similar argument is used to prove the relation
for the case 2n + 1.

We note that for ñ ≥ 0, the relations in the proposition are the well-known formulae
that connect the Gegenbauer polynomials and the Jacobi polynomials (cf. [13, p. 59,
(4.1.5)]). From this basic relation, a number of properties of D(ï,ñ)

n will follow easily. We
record one below.

COROLLARY 2.2. For ï,ñ ½ 0,

(2. 2) D(ï,ñ)
2n+1(x) ≥

vuutï + ñ + 1

ñ + 1
2

xD(ï,ñ+1)
2n (x).

Our starting point is the following important relation first proved in [2, p. 192, (2.5)]
by group theoretic method, an analytic proof appeared in [10, p. 133].

For ã Ù �1Û2, å Ù �1Û2,
(2. 3)

P(ã,å)
n (cos 2í)P(ã,å)

n (cos 2û) ≥ Γ(ã + å + 1)Γ(n + ã + 1)Γ(n + å + 1)

ôΓ(n + 1)Γ(n + ã + å)Γ(ã + 1
2 )Γ(å + 1

2 )

ð Z 1

�1

Z 1

�1
C(ã+å+1)

2n (t cos í cosû + s sin í sinû)(1 � t2)ã�
1
2 (1 � s2)å�

1
2 ds dt.

Since cos 2í ≥ 2 cos2 í�1, we can use the basic relation (2.1) with ã ≥ ï�1Û2 and
å ≥ ñ � 1Û2 to write the above formula as

For ï Ù 0, ñ Ù 0,
(2. 4)

D(ï,ñ)
2n (cos í)D(ï,ñ)

2n (cosû) ≥ 2n + ï + ñ
ï + ñ cïcñ

ð Z 1

�1

Z 1

�1
C(ï+ñ)

2n (t cos í cosû + s sin í sinû)(1 � t2)ï�1(1 � s2)ñ�1 ds dt,

where

c�1
ï ≥ Z 1

�1
(1 � t2)ï�1 dt ≥ ô 1

2 Γ(ï)

Γ(ï + 1
2 )

.

This product formula allows us to derive an additional formula for the Gegenbauer
polynomial that involves generalized Gegenbauer polynomials.
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THEOREM 2.3. For ï Ù 0 and ñ Ù 0,

(2. 5)
C(ï+ñ)

n (cos í cosût + sin í sinûs) ≥
[ n

2 ]X
m≥0

X
k+j≥n�2m

bn
k,j(cos í cosû)k

ð (sin í sin û)jD(ï+j,ñ+k)
n�k�j (cos í)D(ï+j,ñ+k)

n�k�j (cosû)C
(ñ� 1

2 )
k (t)C

(ï� 1
2 )

j (s)

where

(2. 6) bn
k,j ≥

Γ(ñ � 1
2 )Γ(ï � 1

2 )

Γ(ï + ñ)
Γ(ï + ñ + k + j + 1)

(n + ï + ñ)Γ(k + ñ � 1
2 )Γ(j + ï � 1

2 )
.

This formula has appeared in [9, p. 242, (4.7)], where a proof was given using group
theoretic method, but the constants were not given explicitly. We give an analytic proof
in the following.

PROOF OF THEOREM 2.3. Since the left hand side of (2.5) is a polynomial of degree
n in variables t and s, it can be written in terms of the product orthogonal polynomials

fC
(ñ� 1

2 )
k (t)C

(ï� 1
2 )

j (s)gk,j as

C(ï+ñ)
n (cos í cosût + sin í sinûs) ≥ X

0�k+j�n
Fn

k,j(cos í, cosû)C(ñ� 1
2 )

k (t)C(ï� 1
2 )

j (s),

where, by orthogonality of the product polynomials,

Fn
k,j(cos í, cosû) ≥ 1

h(ñ)
k h(ï)

j

Z 1

�1

Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)

ð C
(ñ� 1

2 )
k (t)C(ï� 1

2 )
j (s)(1 � t2)ï�

1
2 (1 � s2)ñ�

1
2 ds dt,

in which we write (cf. [13, p. 80, (4.7.14)])

h(ñ)
k ≥ Z 1

�1
[C(ñ� 1

2 )
k (t)]2(1 � t2)ñ�1 dt ≥ 22�3ñô Γ(k + 2ñ � 1)

(k + ñ � 1
2 )k![Γ(ñ � 1

2 )]2
.

We first make the observation that changing variables s 7! �s and t 7! �t and using
the fact that C(ç)

m (�t) ≥ (�1)mC(ç)
m (t) leads to

Fn
k,j(cos í, cosû) ≥ 0, if n � k � j is an odd integer .

Therefore, we may assume that n � k � j is even in the following. We use Rodrigues’
formula for the Gegenbauer polynomial which states [13, p. 81, (4.7.12)],

(1 � t2)ñ�1C
(ñ� 1

2 )
k (t) ≥ B(ñ)

k

� d
dt

�k
(1 � t2)k+ñ�1,

where

B(ñ)
k ≥ (�2)k

k!

Γ(k + ñ � 1
2 )Γ(k + 2ñ � 1)

Γ(ñ � 1
2 )Γ(2k + 2ñ � 1)

.
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For n � k � j even, we use this formula and integration by parts to conclude that

Fn
k,j(cos í, cosû)

≥ B(ñ)
k B(ï)

j

h(ñ)
k h(ï)

j

Z 1

�1

Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)

ð
� d

dt

�k
(1 � t2)k+ñ�1

� d
ds

�j
(1 � s2)j+ï�1 dt ds

≥ (�1)k+j
B(ñ)

k B(ï)
j

h(ñ)
k h(ï)

j

Z 1

�1

Z 1

�1

� d
dt

�k� d
ds

�j
C(ï+ñ)

n (cos í cosût + sin í sinûs)

ð (1 � t2)k+ñ�1(1 � s2)j+ï�1 dt ds.

Using the derivative formula of the Gegenbauer polynomials ([13, p. 81, (4.7.14)]) re-
peatedly leads to � d

dt

�m
C(ç)

n (t) ≥ 2m Γ(ç + m)
Γ(ç)

C(ç+m)
n�m (t),

from which it follows readily that

Fn
k,j(cos í, cosû)

≥ (�1)k+j
B(ñ)

k B(ï)
j

h(ñ)
k h(ï)

j

2k+j Γ(ï + ñ + k + j)
Γ(ï + ñ)

(cos í cosû)k(sin í sinû)j

ð Z 1

�1

Z 1

�1
C(ï+ñ+k+j)

n�k�j (cos í cosût + sin í sinûs)(1 � t2)k+ñ�1(1 � s2)j+ï�1 dt ds

≥ bn
k,j(cos í cosû)k(sin í sinû)jD(ï+j,ñ+k)

n�k�j (cos í)D(ï+j,ñ+k)
n�k�j (cosû),

where we have used (2.4) since n� k � j is even and the constant bn
k,j is given by

bn
k,j ≥ (�1)k+j

B(ñ)
k B(ï)

j

h(ñ)
k h(ï)

j

2k+j Γ(ï + ñ + k + j)
Γ(ï + ñ)

ï + ñ + k + j
n + ï + ñ

1
cï+jcñ+k

.

Using the formulae for various constants in bn
k,j and making use of the formula

Γ
�
ç � 1

2

�
Γ(ç) ≥ pô22�2çΓ(2ç � 1),

we can simplify the formula for bn
k,j to the desired form. This completes the proof.

For our purpose, the following corollaries of the theorem are of most interest.

THEOREM 2.4. For ï Ù 0,

(2. 7)
cñ
Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)(1 + t)(1 � t2)ñ�1 dt

≥
nX

k≥0
a(ï,ñ)

k,n sink íD(ï+k,ñ)
n�k (cos í) sink ûD(ï+k,ñ)

n�k (cosû)C(ï� 1
2 )

k (s)
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where

(2. 8) a(ï,ñ)
k,j ≥ Γ(ï � 1

2 )

Γ(ï + ñ)
Γ(ï + ñ + k + 1)

(n + ï + ñ)Γ(k + ï � 1
2 )

.

PROOF. Taking integral of (2.5) in the previous theorem with respect to
(1� t2)ñ�1Û2 dt and C(ñ�1Û2)

1 (t)(1 � t2)ñ�1Û2 dt, respectively, leads to

cñ
Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)(1 � t2)ñ�1 dt

≥
[ n

2 ]X
m≥0

bn
0,n�2m(sin í sin û)n�2mD(ï+n�2m,ñ)

2m (cos í)D(ï+n�2m,ñ)
2m (cosû)C

(ï� 1
2 )

n�2m (s)

and

cñ
Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)(1 � t2)ñ�1 dt

≥
[ n

2 ]X
m≥0

bn
1,n�2m�1

ñ � 1
2

n � 2m + ï + ñ
ð (sin í sinû)n�2m�1D(ï+n�2m�1,ñ)

2m+1 (cos í)D(ï+n�2m�1,ñ)
2m+1 (cosû)C(ï� 1

2 )
n�2m�1(s)

where in deriving the second equation we have used (2.2) and the fact that

C
( ñ�1

2 )
1 (t) ≥ (2ñ � 1)t and

Z 1

�1
[C

(ñ� 1
2 )

1 (t)]2(1 � t2)ñ�1 dt ≥ c�1
ñ
ñ � 1

2

ñ + 1
2

.

From (2.5) it is readily verified that

ñ � 1
2

n � 2m + ï + ñbn
1,n�2m�1 ≥

Γ(n � 2m + ï + ñ + 1)

(n + ï + ñ)Γ(n � 2m + ï � 3
2 )

Γ(ï � 1
2 )

Γ(ï + ñ)

≥ bn
0,n�2m�1.

Therefore, adding the two formulae together and changing the summation index, we have
the desired equation.

We can take the limit ñ ! 0 in the formula by using the relation

(2. 9) lim
ñ!0

cñ
Z 1

�1
f (t)(1 � t2)ñ�1 dt ≥ f (1) + f (�1)

2
,

then the formula (2.6) becomes

C(ï)
n (cos í cosû + sin í sinûs) ≥

nX
k≥0

Γ(ï + k + 1)Γ(ï � 1
2 )

2(n + ï)Γ(k + ï � 1
2 )Γ(ï)

ð (sin í sinû)kC̃(ï+k)
n�k (cos í)C̃(ï+k)

n�k (cosû)C(ï� 1
2 )

k (s),

which is the addition formula for the Gegenbauer polynomials (cf. [7, Vol. I, Sec. 3.15.1,
(19)] and taking into account the normalization constant of C̃(ñ)

n ).
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THEOREM 2.5. For ï,ñ Ù 0,
(2. 10)

D(ï,ñ)
n (cos í)D(ï,ñ)

n (cosû) ≥ n + ï + ñ
ï + ñ cïcñ

ð Z 1

�1

Z 1

�1
C(ï+ñ)

n (t cos í cosû + s sin í sinû)(1 + t)(1 � t2)ñ�1(1 � s2)ï�1 dt ds.

PROOF. Because of (2.1) and the fact that t(1�t2)ñ�1Û2 is odd, it follows from change
of variables t 7! �t and s 7! �s that the factor (1 + t)(1� t2)ñ�1Û2 in the integral can be
replaced by (1�t2)ñ�1Û2 when n is even and by t(1�t2)ñ�1Û2 when n is odd. Thus, for 2n,
the formula (2.10) is the same as the formula (2.4). For 2n + 1 we multiply the formula
(2.5) by C(ñ�1Û2)

1 (t) ≥ (2ñ� 1)t and integrate with respect to (1� t2)ñ�1(1� s2)ï�1 ds dt
to conclude that

cï
Z 1

�1

Z 1

�1
C(ï+ñ)

2n+1 (cos í cosût + sin í sinûs)t(1 � t2)ñ�1(1 � s2)ï�1 dt ds

≥ b2n+1
1,0

2ñ � 1

Z 1

�1
[C

ñ� 1
2

1 (t)]2(1 � t2)ñ�1 dt cos í cosûD(ï,ñ+1)
2n (cos í)D(ï,ñ+1)

2n (cosû),

from which the desired result follows from (2.2), while the constant can be easily
verified.

As ñ ! 0, the above formula reduces to the product formula of the Gegenbauer
polynomials (cf. [7, Vol. I. Sec. 3.15.1, (20)]). One immediate consequence of the above
theorem is the following interesting representation of the generalized Gegenbauer poly-
nomial.

COROLLARY 2.6. For ï,ñ Ù 0, n ½ 0,

(2. 11) D(ï,ñ)
n (x)D(ï,ñ)

n (1) ≥ n + ï + ñ
ï + ñ cñ

Z 1

�1
C(ï+ñ)

n (xt)(1 + t)(1 � t2)ñ�1 dt.

We will not use this particular representation. However, the following remark seems
to be worthwhile. The normalization of the usual Gegenbauer polynomials C(ï)

n comes
more or less from the simple generating function

1X
n≥0

C(ï)
n (x)rn ≥ 1

(1 � 2rx + r2)ï
.

In our definition of D(ï,ñ)
n we have chosen the constant so that the polynomial is orthonor-

mal since there is no obvious reason to choose any other one at the time. In this respect,
the formula (2.11) suggests that a reasonable choice would be

C(ï,ñ)
n (x) ≥ ï + ñ

n + ï + ñD(ï,ñ)
n (1)D(ï,ñ)

n (x),

since these polynomials will have a generating function

(2. 12)
1X

n≥0
C(ï,ñ)

n (x)rn ≥ cñ
Z 1

�1

1
(1 � 2rtx + r2)ï+ñ (1 + t)(1 � t2)ñ�1 dt,

which can be taken as the definition of C(ï,ñ)
n . In particular, if ñ ! 0, then (2.12) reduces

to the generating function of C(ï)
n .

https://doi.org/10.4153/CJM-1997-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-009-4


ORTHOGONAL POLYNOMIALS ON SPHERES 183

THEOREM 2.7. For ï,ñ Ù 0,
(2. 13)
ï + ñ + 1

ï + 1
2

sin í sinûD(ï+1,ñ)
n�1 (cos í)D(ï+1,ñ)

n�1 (cosû) ≥ n + ï + ñ
ï + ñ cïcñ

ð Z 1

�1

Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)(1 + t)(1 � t2)ñ�1s(1� s2)ï�1 dt ds.

PROOF. The proof is very similar to that of Theorem 2.5. For the case of odd inte-
ger 2n + 1, we multiply (2.7) by C(ï�1Û2)

1 (s) and then integrate against (1 � t2)ñ�1(1 �
s2)ï�1 dt ds. For the case of even integer 2n, we multiply (2.7) by C(ï�1Û2)

1 (s)C(ñ�1Û2)
1 (t)

and then integrate against the same measure; here we need to use the formula (2.2). We
omit the details.

3. Orthogonal polynomials on spheres. We study orthogonal polynomials on Sd�1

with respect to the weight function h2
ã d°, where the function hã is defined in (1.1).

For d ≥ 2, one family of h-spherical harmonics is explicitly given in terms of Jacobi
polynomials in [4]. We state it below using the notation of the generalized Gegenbauer
polynomials.

THEOREM 3.1. Let d ≥ 2 and hã ≥ Hãjx1jã1 jx2jã2 . An orthonormal basis for H h
n is

given by

(3. 1) Yn
1(x) ≥ rnD(ã1,ã2)

n (cos í), Yn
2(x) ≥ rn

vuutã1 + ã2 + 1

ã1 + 1
2

sin íD(ã1+1,ã2)
n�1 (cos í),

where we use the polar coordinates x ≥ (r sin í, r cos í) and we take Y0
2(x) ≥ 0.

In particular, the restriction of Yn
i on S1 are orthonormal polynomials of degree n with

respect to the weight function h2
ã on S1. The theorem can be easily proved by verifying

the orthonormal relation directly.
To describe the result for d ½ 3, we need the definition of the spherical coordinates.

For x 2 Rd, these coordinates are defined by

x1 ≥ r sin íd�1 Ð Ð Ð sin í2 sin í1

x2 ≥ r sin íd�1 Ð Ð Ð sin í2 cos í1

...

xd�1 ≥ r sin íd�1 cos íd�2

xd ≥ r cos íd�1,

where r ½ 0, 0 � í1 � 2ô, 0 � ík � ô, k Â≥ 2. We also introduce the following
notations. For each n 2 N0, let

n ≥ k0 ½ k1 ½ Ð Ð Ð ½ kd�2 ½ 0, k ≥ (k1, . . . , kd�2).

For ã ≥ (ã1, . . . ,ãd), we define

ãj ≥ (ã1, . . . ,ãj), 1 � j � d.

Since ã1 consists of only the first element of ã, we write ã1 ≥ ã1.
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THEOREM 3.2. Let d ½ 2 and n ≥ k0 ½ k1 ½ Ð Ð Ð ½ kd�2 ½ 0. In spherical
coordinates an orthonormal basis of H h

n is given by

(3. 2)
Yn,i

k (x) ≥ An
krn

d�2Y
j≥1

D
(kj+jãd�jj1+ d�j�1

2 ,ãd�j+1)
kj�1�kj

(cos íd�j)

ð (sin íd�j)
kj Ykd�2

i (sin í1, cos í1),

where Ykd�2
i , i ≥ 1, 2, are the h-harmonics in (3.1), and

(3. 3) [An
k]2 ≥ Γ(ã1 + ã2 + 1)

Γ(jãj1 + d
2 )

d�2Y
j≥1

Γ(kj + jãd�j+1j1 + d�j+1
2 )

Γ(kj + jãd�jj1 + d�j
2 )

.

We note that if kd�2 ≥ 0 then Yn,2
k ≥ 0 by the convention we adopted in Theorem 3.1.

These explicit formulae are known to Dunkl (personal communication) in terms of
Jacobi polynomials. The orthonormal relation as stated can be verified by computing the
relevant integrals. However, to stress the analog of h-harmonics and the usual spherical
harmonics, we shall derive the h-harmonics from ∆hp ≥ 0. Since the development is
similar to that of usual spherical harmonics (cf. [14, Ch. IX]), we shall give only an
outline of the proof.

PROOF OF THEOREM 3.2. We start with the following decomposition of P d
n

(3. 4) P d
n ≥

nX
k≥0

xn�k
d H d�1,h

k + r2P d
n�2.

It follows from the fact that f 2 P d
n can be written as

f (x) ≥ r2F(x) + xdû1(x0) + û2(x0), x ≥ (x0, xd),

where F 2 P d
n�2, û1 2 P d

n�1 and û2 2 P d
n , then use the canonical decomposition of [3,

Theorem 1.7]

P d
n ≥

[ n
2 ]X

j≥0
ýjxj2jH d,h

n�2j

to expandûi and collect terms according to the power of xd after replacing jx0j2 by jxj2�
x2

d. For any P 2 H d,h
n , the decomposition (3.4) allows us to write

P(x) ≥
nX

k≥0
xn�k

d Pk(x0) + r2Q(x), Q 2 P d
n�2.

Therefore, using the harmonic projection operator projHn
given in [3, Theorem 1.11] it

follows that

P(x) ≥
nX

k≥0
projHn

�
xn�k

d Pk(x0)
�

≥
nX

k≥0

[ n
2 ]X

j≥0

(�1)jjxj2j∆j
h

�
xn�k

d Pk(x0)
�

4jj!(� d
2 � jãj1 � n + 2)j

.
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We write ∆h,d for ∆h to indicate the dependence on d. Since our hã is separable in vari-
ables, it follows from the definition of ∆h and Dunkl’s operators (1.3) that

∆h,d ≥ ∆h,d�1 + D2
d ,

where ∆h,d�1 is with respect to x0 ≥ (x1, . . . , xd). Therefore, since Pk 2 H d�1,h
k , it follows

that
∆h,d

�
xn�k

d Pk(x0)
� ≥ D2

d (xn�k
d )Pk(x0).

By the definition of Td, it follows easily that

D2
d (xn�k

d ) ≥ �
n � k + [1 � (�1)n�k]ãd

��
n � k � 1 + [1 � (�1)n�k�1]ãd

�
xn�k�2

d .

Using the formula repeatedly, we end up with that for n � k being an even integer,

∆j
h,d

�
xn�k

d Pk(x0)
� ≥ 22j

�
�n � k

2

�
j

�
�n � k � 1

2
� ãd

�
j
xn�k�2j

d Pk(x0),

where (a)j ≥ a(a + 1) Ð Ð Ð (a + j � 1). Therefore, for n� k even, we get

projHn

�
xn�k

d Pk(x0)
�

≥
[ n�k

2 ]X
j≥0

(�1)j(� n�k
2 )j(� n�k�1

2 � ãd)j

(�n � jãj1 � d
2 + 2)jj!

r2jxn�k�2j
d Pk(x0)

≥ Pk(x0)xn�k
d 2F1

�
�n� k

2
,�n � k � 1

2
� ãd;�n � jãj1 � d

2
+ 2;

r2

x2
d

�

≥ const Pk(x0)rn�kP
(k+jãj1�ãd+ d�3

2 ,ãd�
1
2 )

n�k
2

�
2

x2
d

r2
� 1

�
,

where in the last step we have used the formula on [13, p. 64, (4.22.)]. A similar equation
holds for n � k odd. By the definition of the generalized Gengenbauer polynomials, we
then have

projHn

�
xn�k

d Pk(x0)
� ≥ const Pk(x0)rn�kC

(k+jãj1�ãd+ d�2
2 ,ãd)

n�k (cos íd).

Since Pk 2 H h,d�1
k they admit a similar decomposition. We can continue this process un-

til we get to the case of h-harmonic polynomials of two variables x1 and x2, which can be
written as linear combinations of the spherical h-harmonics in Theorem 3.1. Therefore,
taking into account that in spherical coordinates xjÛrj ≥ cos íj�1 and rj�1Ûrj ≥ sin íj�1,
where rj ≥ x2

1 + Ð Ð Ð + x2
j , we conclude that any polynomials in H h,d

n can be uniquely
presented as a linear combination of functions of the form rnYn,i

k . The value of An
k is

determined by Z
Sd�1

[Yn,i
k ]2h2

ã(x) d° ≥ 1,

where the integral can be evaluated by using the spherical coordinates. We omit the
details.
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For each n 2 N0, the reproducing kernel function, Ph
n, for H h

n is defined by the prop-
erty that Z

Sd�1
Q(y)Ph

n(x, y)h2
ã d°(y) ≥ Q(x), Q 2 H h

n .

Let Yn,i
k be the basis of H h

n in Theorem 3.2. It follows readily that

Ph
n(x, y) ≥

nX
k1≥0

k1X
k2≥0

Ð Ð Ð
kd�3X

kd�2≥0
[Yn,1

k (x)Yn,1
k (y) + Yn,2

k (x)Yn,2
k (y)];

in other words, Ph
n is equal to the sum of the product spherical h-harmonics of degree

n, where the sum is over all h-harmonics. In fact, since any two orthonormal basis of
H h

n differ only by an orthonormal transform, it’s easy to see that Ph
n is independent of

the choice of the orthonormal bases—a fact that is of interest in the study of orthogonal
polynomials in several variables in general (cf. [15]).

THEOREM 3.3. For h2
ã d° on Sd�1,

(3. 5)

Ph
n(x, y) ≥ n + jãj1 + d�2

2

jãj1 + d�2
2

Z
[�1,1]d

C
(jãj1+ d�2

2 )
n (x1y1t1 + Ð Ð Ð + xdydtd)

ð
dY

i≥1
(1 + ti)

dY
i≥1

cãi(1 � t2
i )ãi�1 dt.

PROOF. First we derive the compact formula for the case d ≥ 2, which will be used
in deriving the formula for d Ù 2. Let x ≥ (sin í, cos í) and y ≥ (sinû, cosû). From
Theorem 3.1 we need to derive a formula for

P(ï,ñ)
n,2 (x, y) ≥ Ph

n,2(x, y)

≥ D(ï,ñ)
n (cos í)D(ï,ñ)

n (cosû)

+
ï + ñ + 1

ï + 1
2

sin í sin ûD(ï+1,ñ)
n�1 (cos í)D(ï+1,ñ)

n�1 (cosû).

From Theorem 2.5 and Theorem 2.7 we have

P(ï,ñ)
n,2 (x, y) ≥ n + ï + ñ

ï + ñ cïcñ
Z 1

�1

Z 1

�1
C(ï+ñ)

n (cos í cosût + sin í sinûs)

ð (1 + t)(1 � t2)ñ�1(1 + s)(1 � s2)ï�1 dt ds.

For the general case d ½ 3, we use the spherical coordinates. Let x be associated with
(í1, . . . , íd�1) and y be associated with (û1, . . . ,ûd�1). For x 2 Sd�1 we write x ≥
(sin íd�1xd�1, cos íd�1) where xd�1 2 Sd�2. Since

x1y1t1 + Ð Ð Ð + xdydtd ≥ cos íd�1 cosûd�1td + (x1y1t1 + Ð Ð Ð + xd�1yd�1td�1),
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we can apply the formula (2.7) to conclude that

Z
[�1,1]d

C
(jãj1+ d�2

2 )
n (x1y1t1 + Ð Ð Ð + xdydtd)

dY
i≥1

(1 + ti)
dY

i≥1
cãi(1 � t2

i )ãi�1 dt

≥
nX

k1≥0
a

(jãd�1j1+ d�2
2 ,ãd)

k1,n (sin íd�1 sinûd�1)k1 D
(jãd�1j1+ d�2

2 +k1,ãd)
n�k1

(cos íd�1)

ð D
(jãd�1j1+ d�2

2 +k1,ãd)
n�k1

(cosûd�1)

ð Z
[�1,1]d�1

C
(jãd�1j1+ d�3

2 )
k1

(x1y1t1 + Ð Ð Ð + xd�1yd�1td�1)
d�1Y
i≥1

(1 + ti)
d�1Y
i≥1

cãi(1 � t2
i )ãi�1 dt.

Clearly, we can repeat the above process and reduce the integral in the right hand side
one at a time until we are down to the integral
Z

[�1,1]2
C(jã2j1)

kd�2
(x1y1t1 + x2y2t2)(1 + t1)(1 + t2)cã1cã2 (1 � t2

1)ã1�1(1 � t2
2)ã2�1 dt1 dt2,

which we use the formula we derived for d ≥ 2. This way, we conclude that

Z
[�1,1]d

C
(jãj1+ d�2

2 )
n (x1y1t1 + Ð Ð Ð + xdydtd)

dY
i≥1

(1 + ti)
dY

i≥1
cãi (1 � t2

i )ãi�1 dt

≥
nX

k1≥0

k1X
k2≥0

Ð Ð Ð
kd�3X

kd�2≥0

�d�2Y
j≥1

a
(jãd�jj1+ d�j�1

2 ,ãd�j+1)
kj ,kj�1

� ã1 + ã2

kd�2 + ã1 + ã2

d�2Y
j≥1

(sin íd�j sinûd�j)
kj

ðD
(jãd�jj1+ d�j�1

2 +kj ,ãd�j+1)
kj�1�kj

(cos íd�j)D
(jãd�jj1+ d�j�1

2 +kj ,ãd�j+1)
kj�1�kj

(cosûd�j)

ð P(ã1,ã2)
kd�2,2

�
(sin í1, cos í1), (sin û1, cosû1)

�
.

From the definition of a(ï,ñ)
k,n and Ak, it’s not hard to see that

d�2Y
j≥1

a
(jãd�jj1+ d�j�1

2 ,ãd�j+1)
kj ,kj�1

ã1 + ã2

kd�2 + ã1 + ã2
≥ jãj1 + d�2

2

n + jãj1 + d�2
2

A2
k,

from which the desired result follows from the definition of Yn,i
k in Theorem 3.2.

REMARK. It’s worthwhile to mention that the formula in the theorem reduces to the
classical addition formula for the spherical harmonics (cf. [11])

Pn(x, y) ≥ n + d�2
2

d�2
2

C
( d�2

2 )
n (x Ð y)

when ã ≥ 0. This follows easily from the limit relation (2.9).
Since jC(ï)

n (t)j � jC(ï)
n (1)j for all jtj � 1, it follows readily that

jPh
n(x, y)j � n + jãj1 + d�2

2

jãj1 + d�2
2

C
(jãj1+ d�2

2 )
n (1).

uniformly in x and y.
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4. The Poisson kernel and the intertwining operator. The Poisson kernel Ph(x, y)
is a function that satisfies the following properties: for each f 2 Pn,

Z
Sd�1

Ph(x, y)f (y)h2(y) d°(y) ≥ f (x),

where jxj Ú jyj ≥ 1 and n ½ 0. The following theorem gives an explicit formula of this
kernel.

THEOREM 4.1. Let hã be defined as in (1.1). For jxj Ú jyj ≥ 1,

(4. 1)

Ph(x, y) ≥ Z
[�1,1]d

1 � jxj2�
1 � 2(x1y1t1 + Ð Ð Ð + xdydtd) + jxj2)jãj1+ d

2

ð
dY

i≥1
(1 + ti)

dY
i≥1

cãi (1 � t2
i )ãi�1dt.

PROOF. It is easy to see that the Poisson kernel is given by

Ph(x, y) ≥
1X

n≥0
Ph

n(x, y).

Therefore, by the compact formula of Ph
n, we only need to sum up a series of Gegenbauer

polynomials. From the generating function of the Gegenbauer polynomials, we conclude
that

1X
n≥0

n + ï
ï C(ï)

n (t)rn ≥ 1 � r2

(1� 2tr + r2)ï+1
,

from which the desired result follows readily from that of Theorem 3.3.

REMARK. Again let us mention that as ã ! 0, we end up with the classical Poisson
kernel for the ball (cf. [12]),

P(x, y) ≥ 1
°d�1

1 � jxj2
(1 � 2x Ð y + jxj2)

d
2

.

For d ≥ 2, this formula has appeared in [5].
From the formula (4.1), we obtain the following properties of the Poisson kernel,

(i) 0 � Ph(x, y) � 1, jxj Ú jyj ≥ 1,

(ii)
Z

Sd�1
Ph(x, y)h2(y) d°(y) ≥ 1, jxj Ú 1.

Moreover, for each integrable function f on Sd�1, we define the Abel means Sr(f ) by

Sr(f , x) ≥ Z
Sd�1

f (y)Ph(rx0, y)h2
ã(y) d°(y), x ≥ rx0, x0 2 Sd�1, r Ú 1.

We have the following theorem.
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THEOREM 4.2. If f is continuous on Sd�1, then

lim
r!0

Sr(f , x) ≥ f (x0), x0 2 Sd�1.

PROOF. Let Aé ≥ fy 2 Sd�1 : jx0 � yj Ú ég. Then, by the properties (i) and (ii) of
Ph, we have

jSr(f , x)� f (x0)j �
�Z

Aé

+
Z

Sd�1nAé

�
f (y)Ph(rx0, y)h2

ã(y) d°(y)

� sup
jx0�yj�é

+2kfk1
Z

Sd�1nAé

Ph(rx0, y)h2
ã(y) d°(y),

where kfk1 is the maximum of f over Sd�1. Since f is continuous over Sd�1, we only
need to prove that the last integral converges to zero when r ! 1. By the definition of
Ph, it suffices to show that

(4. 2)

lim sup
r!1

Z
Sd�1

Z
[0,1]d

1�
1 � 2r(x01y1t1 + Ð Ð Ð + x0dydtd) + r2

�jãj1+ d
2

ð
dY

i≥1
cãi (1 � t2

i )ãi�1 dth2
ã(y) dy

is finite for every x0 2 Sd�1. Let Bõ ≥ ft ≥ (t1, . . . , td) : ti Ù 1 � õ, 1 � i � dg with
õ ≥ é2Û4. For y 2 Sd�1 n Aé and t 2 Bõ we have that

jx01y1t1 + Ð Ð Ð x0dydtdj ≥ jx0 Ð y � x01y1(1 � t1) + Ð Ð Ð + x0dyd(1 � td)j
� 1 � é2Û2 + max

i
(1 � ti) � 1 � é2Û4

from which it follows readily that

1 � 2r(x01y1t1 + Ð Ð Ð x0dydtd) + r2 ½ 1 + r2 � 2r(1 � é2Û4) ≥ (1 � r)2 + ré2Û2 ½ é2Û4.

For t 2 [0, 1]dnBõ, we have that ti � 1�õ for at least one i. Let us assume that t1 � 1�õ.
We can assume that x01 Â≥ 0, since otherwise, t1 does not appear in the integral (4.2), and
we can repeat the above argument for (t2, . . . , td) 2 [0, 1]d�1. It follows then that

1 � 2r(x01y1t1 + Ð Ð Ð + x0dydtd) + r2 ≥ r2x021(1 � t2
1)

+
dX

i≥1
(yi � rx0i ti)

2 + r2(1 � x021 �
dX

i≥2
x02i t2

i )

½ r2x021(1 � t2
1)

½ r2õx021 Ù 0.

Therefore, for each x ≥ rx0, the denominator of the integrand in (4.2) is never zero and
the expression is finite as r ! 1.
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In [6], it is proved that the Poisson kernel for measures invariant under a reflection
group can be given by the intertwining operator, V, uniquely determined by

VPn ² Pn, V1 ≥ 1, DiV ≥ V∂i, 1 � i � d;

for the hã defined in (1.1), the formula in [6, Theorem 4.2] states that

(4. 3) Ph(x, y) ≥ Vy

�
(1 � jxj2)(1 � 2x Ð y + jxj2)�jãj1�

d
2

�

where Vy means that the operator acts on the variable y. For the special weight function
that we are interested in, the Theorem 4.1 suggests the following explicit formula of the
intertwining operator.

THEOREM 4.3. For the hã defined in (1.1),

(4. 4) Vf (x) ≥ Z
[�1,1]d

f (x1t1, . . . , xdtd)
dY

i≥1
(1 + ti)

dY
i≥1

cãi (1 � t2
i )ãi�1 dt.

PROOF. The fact that V1 ≥ 1 and VPn ² Pn are obvious from the definition. Thus,
we only need to verify that DiV ≥ V∂i. From the definition of Di, we write

Dif ≥ ∂if + D̃if , D̃if (x) ≥ ãi
f (x)� f (x � 2xiei)

xi
.

Take, for example, i ≥ 1, we consider

D̃1Vf (x) ≥ ã1

Z
[�1,1]d

f (x1t1, . . . , xdtd)� f (�x1t1, x2t2, . . . , xdtd)
x1

ð
dY

i≥1
(1 + ti)

dY
i≥1

cãi(1 � t2
i )ãi�1 dt.

Since the difference in the integral is an odd function of t1, it follows that

D̃1Vf (x) ≥ 2ã1

x1

Z
[�1,1]d

f (x1t1, . . . , xdtd)t1
dY

i≥2
(1 + ti)

dY
i≥1

cãi (1 � t2
i )ãi�1 dt

≥ Z
[�1,1]d

∂1f (x1t1, . . . , xdtd)(1 � t1)
dY

i≥1
(1 + ti)

dY
i≥1

cãi (1 � t2
i )ãi�1 dt

where the second integral follows from integral by parts. Since

∂1Vf (x) ≥ Z
[�1,1]d

∂1f (x1t1, . . . , xdtd)t1
dY

i≥1
(1 + ti)

dY
i≥1

cãi(1 � t2
i )ãi�1 dt,

the desired result follows easily from the last two equations.
For d ≥ 1 and h(x) ≥ jxjã the formula (4.4) has been obtained in [6]. Although the

form of Vf is suggested by the formula of Poisson kernel in Theorem 4.2, its proof is
only a simple verification. Thus, one can start with Theorem 4.3 and use (4.3) to derive
the formula (4.2) for the Poisson kernel.
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The intertwining operator for the general reflection group has been discussed in [6].
It may allow one to transform the results from the ordinary spherical harmonics to the h-
harmonics. In particular, in the case of d ≥ 2, we know that the spherical harmonics are
given by cos ní and sin ní. Thus, the intertwining operator shows that the h-harmonics
can be written as integrals against trigonometric functions. In fact, the analytic proof of
the formula (2.3) is based on the following formula in [1],

P
(ï� 1

2 ,ñ� 1
2 )

n (cos 2í) ≥ Γ(n + ï + 1
2 )Γ(n + ñ + 1

2 )

Γ(ï + 1
2 )Γ(ñ + 1

2 )

ð Z 1

�1

Z 1

�1
(t cos í + is sin í)2n(1 � t2)ñ�1(1 � s2)ï�1 dt ds.

Integrating by parts and using the definition of D(ï,å)
n , it is not hard to see that the follow-

ing formula holds

D(ï,ñ)
n (cos í) ≥ B(ï,ñ)

n cïcñ
Z 1

�1

Z 1

�1
(t cos í + is sin í)n(1 + t)(1 � t2)ñ�1(1 � s2)ï�1 dt ds,

where B(ï,ñ)
n is a constant, from which we can perform integration by parts again to derive

the formula

i sin íD(ï+1,ñ)
n�1 (cos í) ≥ B(ï+1,ñ)

n�1

2ï
n

cïcñ
Z 1

�1

Z 1

�1
(t cos í + is sin í)n

ð (1 + t)s(1 � t2)ñ�1(1 � s2)ï�1 dt ds.

Therefore, we have the following formula which gives explicitly the action of intertwin-
ing operator,

A(ï,ñ)
n D(ï,ñ)

n (cos í) + i
n

2ïA(ï+1,ñ)
n�1 sin íD(ï+1,ñ)

n�1 (cos í)

≥ cïcñ
Z 1

�1

Z 1

�1
(t cos í + is sin í)n(1 + t)(1 + s)(1 � t2)ñ�1(1 � s2)ï�1 dt ds,

the constant A(ï,ñ)
n can be written as an integral by setting í ≥ 0 in the above formula.

This integral generalizes the Dirichlet type integral for the Gegenbauer polynomials (see
[6, p. 1226]).
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