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Abstract

Behavioural complexity is likely to reflect how animals cope with their environment. A large
behavioural repertoire and the ability to flexibly apply these behaviours provide an individual
with a greater likelihood of adapting to its (captive) environment. Here, we developed a
procedure to aggregate different behavioural measures into a condensedmeasure of behavioural
complexity based on 14 features, which were previously proposed (e.g. number of behaviours,
Shannon diversity index) as well as some new features of behavioural complexity (e.g. variances
of within and between transition durations). To test the measure, artificial behavioural
sequences with potentially varying complexity were created using an individual-basedmodelling
approach. With a Principal Component Analysis, the features extracted from these sequences
could be reduced to two components (‘general complexity’ and ‘state variability’) explaining
59.64 and 27.68% of the total variance, respectively. The effect of the aspects of the artificial
behavioural sequences on ‘general complexity’ and ‘transitions variability’ were analysed using
linear mixed-effects models. The number of behavioural categories and the proportion of short
behavioural states had the largest effect on the components. Both components were increasing
with a greater number of behavioural categories, whereas the proportion of short behavioural
states the opposite effect on the components. We also tested the approach on real data-sets. The
principle components were not identical to the ones from the simulation. Yet, we found
consistencies and similarities in the loadings. The approach for an aggregated measure of
behavioural complexity developed here could form the basis of an individual-based animal
welfare indicator for intensively kept animals.

Introduction

Current approaches in animal-based welfare assessment, such as used in the Welfare Quality®
Protocol® (Welfare Quality® 2009) or the ’Tierschutzindikatoren,’ consider specific individual
aspects, such as behaviour (Schrader et al. 2020). Although examining individual behaviours is a
valid approach, as they can indicate chronic or acute stress (Dybkjær 1992; Young et al. 2012) and
provide insights into illness and pain (Hart 1987; Tizard 2008; Gleerup et al. 2015), it is essential
to recognise that good health serves only as the foundational requirement for animal welfare.
Ultimately, animal welfare is contingent on animals being able to fulfil their needs and satisfy
underlying motivations adequately (Gygax 2017; Gygax & Hillmann 2018). Accordingly, a
measure for a broader set of behaviours and how they are combined by an animal could prove
useful.

A common and general problem with these welfare assessment protocols lies in the question
of how the different indicators thatmeasurewidely varying aspects are combined, e.g. theWelfare
Quality® score and the QBA correlated only poorly in cattle (Andreasen et al. 2014). Often, some
weighing of different aspects by experts is used (Czycholl et al. 2015), which may include
subjective aspects and thereby lead to faulty welfare scores (Browning 2022). Thus, an indicator
that may be more complex to assess but self-evidently assimilates into one score could provide a
welcome alternative to measuringmany simple indicators that are difficult to be merged into one
score. Here, we propose that assessing behavioural sequences in respect to their complexity may
be such an approach.

Understanding and measuring complexity is a concept that has been of great interest in
science (Mazzocchi 2008; Mesjasz 2010; Sherrington 2010). For ethologists, behavioural com-
plexity is of special interest since it may allow us to capture how animals cope with their natural
environment and also may provide an insight into an animal’s welfare in a captive setting
(artifical environment; Cole 1995; Alados & Huffman 2000; Macintosh et al. 2011). A large
behavioural repertoire and the ability to flexibly apply these behaviours increases the capability of
an individual to adapt to its environment be it in the wild or in captivity. Behavioural complexity
as an animal welfare indicator may also extend beyond currently used methods as it not only
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reflects its health status (Macintosh et al. 2011) but also its capabil-
ity to cope with its environment (Asher et al. 2009). Another
advantage of behavioural complexity as an animal welfare indicator
is that a reduction in complexity may occur much earlier than
would otherwise be evident from a change in the duration or
frequency of a behaviour as reflected in conventional indicator
variables (Rutherford et al. 2006; Asher et al. 2009). With these
aspects in mind, a compact measure of behavioural complexity
could have potential as an individual-based animal welfare indica-
tor.

But what have previous views on complexity consisted of and
how can complexity be measured? Here, we follow the ‘organisa-
tional’ complexity view proposed by Sambrook andWhiten (1997)
due to it being more biologically relevant than the classical algo-
rithmic complexity approach of Chaitin (1975). The latter is
focused on the information required to describe a process. This
information is largest in a random process because the process
cannot be abstracted at all. Viewing a random process as maximally
complex does not seemmeaningful for a biological process. As such
and taking an organisational view, complexity follows a bell-shaped
trajectory increasing from simplicity (pure determinism) to a max-
imum and then decreasing towards full randomness (Chaitin 1975;
Sambrook & Whiten 1997). The number of events in a sequence
and their dependencies are crucial determinants of where on this
simplicity-randomness continuum a sequence will be found
(Shannon 1948). If there are only few behaviours with a strong
dependency in a sequence, it is possible to formulate specific and
near-deterministic rules of how the behavioural events will develop
over time and this would be found on the far left of the continuum
(simplicity). If there were a near-infinite number of behaviours with
hardly any dependencies, sequences would be considered random,
with no chance of predicting future behaviours. This sequence
would be found to the far right of the continuum (randomness).
For real life behaviour, the complexity often lies between these
extreme poles on the simplicity-randomness axis (Reznikova
2023). Behaviour is hard to predict as it depends upon numerous
internal and external factors (e.g. motivation, health, environmen-
tal conditions such as temperature; Mench 1998; Gygax 2017).
However, there are certain dependencies between behaviours as
they are affected by each other and one behaviour can lead to the
emergence of several others with different probabilities. Behav-
ioural sequences can therefore be considered as potentially complex
systems.

There are various approaches that have been undertaken to
measure the complexity of (sequential) behavioural data, such as
the Shannon diversity index (Brereton & Fernandez 2022; Miller
et al. 2020; Hall et al. 2021), fractal analysis (Rutherford et al. 2004;
Maria et al. 2004; Miller et al. 2020), Markov-chain models
(Chatfield & Lemon 1970; Macdonald & Raubenheimer 1995;
Ivanouw 2007; Abner et al. 2013), and survival models (Gygax
et al. 2021). The Shannon diversity index provides a simple way
of calculating complexity. It describes behavioural diversity with
respect to two dimensions: the quantity of different behaviours
(proportion of time spent in a certain behaviour) and the evenness
(distribution) across the behaviours in a sequence. Accordingly,
here the main variables are summed durations of behaviours or the
frequencies of bouts of the different behaviours. However, these
measures do not consider sequential dependencies of the behav-
iours (Miller et al. 2020; Hall et al. 2021). Additionally, as the
Shannon diversity index originated from the information theory
(Shannon 1948), it rather follows Chaitin’s (1975) interpretation of
complexity than the more biologically relevant definition of

complexity from Sambrook and Whiten (1997). This means that
the Shannon diversity index increases monotonously with an
increasing number of behaviours. Linked to this, an animal per-
forming only ‘basic’ behaviours could have a lower Shannon diver-
sity index than an individual showing additional, e.g. stereotypic
behaviour. The Shannon diversity index also reaches its highest
values with an equal distribution of time spent in the different
behavioural categories. However, animals naturally spend more
time performing certain behaviours (e.g. sleep, locomotion) than
others (e.g. play, agonistic behaviours). Thus, the Shannon diversity
index by itself is likely to be insufficient in evaluating an animal’s
welfare on theoretical grounds (Cronin & Ross 2019). Yet, the
Shannon diversity index is based on relatively simple data
(overall summed durations or frequencies of different behaviours)
and easily calculated. These are characteristics that are attractive for
a practical application.

Fractal analysis (e.g. spectral analysis, detrended fluctuation
analysis) adds another dimension to the analysis of behavioural
data. It can detect changes in the autocorrelation of a behaviour,
i.e. the performance of a behaviour depends on the previous
performance of that behaviour. The complexity of a behaviour is
considered greater the higher the long-range autocorrelation (Alados
&Weber 1999). The positive aspect of this method is to acknowledge
dependencies of behaviour. The pitfall, on the other hand, is that
different behaviours of a behavioural sequence have to be analysed
separatelywith a binary coding (behaviour is displayed = 1, behaviour
is not displayed = 0) resulting in binary sequences. It is not possible to
directly generate an overall measure of behavioural complexity for
different behaviours with fractal analysis, and their durations are not
considered. Moreover, the analysis is relatively abstract, complicated
and resource intensive.

Another approach for considering sequences of states such as
behaviours are Markov-chain models. Markov-chains are stochas-
tic models that estimate the transition probability from one state to
another based purely on the previous state (Rugg & Buech 1990).
Discrete-time or continuous-time Markov-chains estimate the
transition probability based on the previous state as well as the
time spent in that state (Rugg & Buech 1990; Anderson 1991). But
as noted previously, behavioural sequences are complex systems
with potential long-range dependencies. There are also Markov-
chains of higher order that take longer range dependencies into
account, however it can be difficult to determine the appropriate
order of a model (Katz 1981). In addition, the higher the order of a
Markov-chain, the higher the model’s complexity and the greater
the amount of data needed to calculate the model reliably (Singer
et al. 2014). As a result, one has to balance whether the gained
accuracy of the model by higher orders compensates the added
complexity of the model (Singer et al. 2014).

A thirdmethod that factors in the dependencies between behav-
iours and the durations of behaviours in a simple and straightfor-
ward way is survival analysis. As such, it is able to reflect patterns
similar to a Markov-chain model or fractal analysis. It basically
determines the ‘risk’ or likelihood of an individual’s transition from
one behaviour to another depending on the time they have already
spent in the current state. The strength of this type of analysis is the
simple estimation of the model parameters and the flexibility of
their application. There are no strict data requirements for the use
of survival analysis. Data can be censored or uncensored and follow
different distributions, e.g. exponential, log-normal, Weibull-
distribution or Gamma distribution (Clark et al. 2003). The down-
side of the application’s flexibility is similar to that of the complexity
of theMarkov-chains of higher order; the amount of data needed to
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estimate these models can often not be realised with real behav-
ioural data (Gygax et al. 2021).

The aim of this study was to devise an approach for creation of a
new aggregated measure of behavioural complexity based on pre-
vious specific approaches. Combining different approaches with
their individual weaknesses and strengths might result in an aggre-
gated measure that has the potential to overcome the limitations of
the specific approaches. We therefore included the simple Shannon
diversity index (durations and frequencies of behaviours and tran-
sitions) as well as a procedure that includes sequential information
(survival analysis) in our approach. We complemented these pro-
cedures with additional measures that may reflect complexity
(variances in transition probabilities, median and distribution of
durations and frequencies of behaviours and transitions). To test
whether these single ‘features’ of complexity can be meaningfully
aggregated, a Principle Component Analysis (PCA) was conducted.

For a theoretical validation of this approach, we first constructed
artificial behavioural sequences, varying aspects that may have an
effect on complexity. For processes that involve some aspects of
unexplained variability (randomness), simulations are a useful tool.
The approach of individual-based models has become widely used
in behavioural biology as the underlying behavioural rules are
completely known and emergent patterns can be investigated
(Hemelrijk & Gygax 2004; Asher et al. 2009). The information
obtained from the simulation can then be used to judge methods
that are to be employed for analysing real world data (DeVries
2009). Here, we used a tool developed for continuous time micro-
simulation to create behavioural sequences (Zinn 2013). In our
simulation, we varied four aspects to construct behavioural
sequences: the number of behaviours; the proportion of short
transitions; and the difference in duration between andwithin short
and long transitions. The simulation provided behavioural
sequences upon which we could apply our approach to measure
behavioural complexity. We further assess how differences in the
manipulated behavioural aspects influence our aggregated measure
of behavioural complexity in terms of a sensitivity analysis. To
illustrate the application of our measure of complexity, we tested
our approach with three real data-sets. These data-sets already
existed (Puls et al. 2024) and could be subjected to our approach
but they were not created specifically for the purpose of this work.

In our approach, several features of complexity are to be aggre-
gated and we used a PCA to do so. If one or more features load
strongly and consistently on the measure of complexity across the
simulation and the three data-sets, it is worthwhile testing whether
these single features could represent the entire measure in the sense
of an iceberg indicator. Such single features may be more easily
applied in practice as an individual-based animal welfare indicator.

Finally, and based upon the analyses of how our measure of
complexity relies on the varied aspects in the simulation, we discuss
how plausibly it reflects behavioural complexity. Given the first
application of ourmethod on real-world data-sets, we can assess the
feasibility of using our method in other studies. We expected our
aggregated measure to mirror the potential differences in the
aspects of the behavioural sequences.

Materials and methods

Microsimulation

To construct artificial behavioural sequences, continuous time
microsimulations using the MicSim package (Zinn 2013) were
run in R version 4.3.1 (R Core Team 2022). Originally, the MicSim

package was designed for demographic microsimulation for
sequential lifetime events (marriage, giving birth, divorce, death,
etc) on a continuous time-scale. We did not use the facility of this
package to define events based, e.g. on the specific age of an agent.
Yet, we took advantage of that package in that events of interest,
i.e. changes between states, can be modelled based on the duration
of time already spent in the current state. Accordingly, we con-
sidered the lifetime events of an individual in the MicSim micro-
simulation as changes of behaviours in a behavioural sequence and
each ‘individual’ in the model thus provided a sequence of behav-
ioural transitions. The number of individuals per simulation run
was set to 10 (see also below). The minimal model constants
required by the software were the number of individuals, their
sex and mortality rate. A start and a stop date also required to be
set within the simulation given as the time horizon and the indi-
viduals are assigned a date of birth and an initial behaviour with
which they enter the simulation and amaximumage they can reach.
To model our behavioural sequences, a 50:50 sex ratio was chosen
and females andmales were defined identically such that there were
no systematic differences between the sexes in the microsimulation
(and, thus, in the behavioural sequences). Themortality rate was set
to 0, i.e. no premature deaths within the simulation were possible,
correspondingly no interruptions of behavioural sequences could
occur for our application. Themaximum age was set to a high value
of 100 as no individuals were supposed to ‘die’ during the simula-
tion. The date of birth of the individuals was set to 01.01.2010, a date
chosen arbitrarily under the premise that it was at least one year but
less than 100 years before the starting date.

The smallest time unit in the MicSim simulation is one day
(24 h). One day in theMicSim simulation was translated into 10 s in
our modelled behavioural sequences. We wanted our behavioural
sequences to have a duration of 24 h, which then resulted
in 8,640 days in the simulation (number of 10 s intervals in 24 h).
To accommodate this, the time horizon was set from 01.01.2021 to
28.04.2044. We aimed for approximately 1,000 changes of behav-
iours during the selected time horizon. This number was chosen
based on pilot observations of five 48-h behavioural observation
videos of real finishing pigs, to which we plan to apply the measure
of behavioural complexity in the future. These videos were con-
tinuously analysed with the BORIS software version 7.12.2 (Friard
& Gamba 2016). The number of changes of behavioural categories
was counted for each 24-h period and ranged between 850 and
1,400. A general transition rate can be added into the MicSim
simulation which corresponds to the time spent in a behaviour
prior to changing to another. A high transition rate equals a high
transition probability and therefore leads to a shorter duration of
that behaviour. In the simulation, an overall transition rate of
6 resulted in approximately 1,000 state changes for each behav-
ioural sequence. Apart from these general and constant parameters,
there were additional aspects that we varied in our simulation to
create behavioural sequences potentially varying in complexity.

The left side of Figure 1 provides a schematic overview of the
data procurement procedure and this will be described in more
detail as follows. In the following, the term ‘transition’ is used to
describe a specific transition between two behaviours (a single cell
in Table 1). The aspects of the simulation that we varied were the
number of behaviours, the proportion of ‘short’ transitions (= high
transition probability, fast transition, short duration), the average
difference of the ‘short’ and ‘long’ transitions as well as the vari-
ability of the duration within the short and long transitions. The
specific values for these aspects of the behavioural sequences were
varied between each simulation run and generated using a
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4-dimensional Halton sequence using the R package randtoolbox
(Dutang & Savicky 2023). A Halton sequence works as a random
number generator and the random numbers on the (four) dimen-
sions vary independently from each other but fill the multi-
dimensional space spanned by the variables evenly. All dimensions
in the Halton sequence could take continuous values between 0 and
1 (Young 2016).

The first dimension of the Halton sequence was used for the
number of behaviours (a to n in Table 1), which we varied between
5 and 20. This range was chosen based on our ethogramused for the
observation of the behavioural video analysis of fattening pigs (see
above). The ethogram consisted of ten behaviours and the simula-
tion was thus centred on this number (from half to twice this
number). The numbers of the Halton-sequence (0–1) were linearly
scaled to the range between 5 and 20 and rounded to a full number.

The second dimension was used for the proportion of short
transitions. The values of the Halton-sequence were multiplied by
the number of transitions (= n2-n; no transitions between the same
behaviours were considered in the simulation) and rounded to a full
number. The remaining transitions were assigned as long transi-
tions (labels ‘short’ and ‘long’ in Table 1).

The third dimension in the Halton sequence was used for the
variation between the short and long transitions, i.e. the difference
between the average duration of the long and short transitions. We
aimed at scaling the shortest durations to 10 s (as the smallest time
unit in MicSim is 24 h which equalled 10 s in our simulation) and
the longest durations to 2 h (reasonably long duration for behav-
iours thatwould be performed for longer periods of time, e.g. resting
or exploration). These values corresponded in the simulation to
rates of approximately 11 and 0.5, respectively. Accordingly, these
were the extreme cases (with the overall transition rate, OTR, of
6 mentioned above in the ‘middle’) that we wanted to see in the

Figure 1. Data procurement and evaluation scheme. On the left are the important steps of the simulation procedure. The four aspects of generating the artificial behavioural
sequences were varied using a four-dimensional Halton Sequence. To the right the procedure of the development of the measure of complexity is schematically depicted. The
measure of complexity contained 14 different features, which were reduced into two principal components. The effects of the explanatory variables (simulation aspects) on the
outcome variables (principal component 1 and 2) were analysed usingmixed effect models. The grey shade of the features corresponds to the principal components based on high
values of the loadings. The white-coloured features did not load on any of the two first components (according to our cut-off) or were constants and therefore not included in the
PCA (also see Table 2 and Microsimulation and Measure of complexity for detailed information).

Table 1. Transition matrix between current behaviours a–n (column) and
following behaviours a–n (row) providing definitions of the variables used in the
definition of the features of behavioural complexity (see text). Behaviours were
chosen to be mutually exclusive and could only stop when another behaviour
occurred, which leads to an empty diagonal. d indicates the duration of the
corresponding transition represented by that particular cell

Following a b c … n

Current

a dab short dac short … dan long

b dba short dbc long … dbn long

c dca short dcb short … dcn short

… … … … …

n dna long dnb short dnc short …
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simulation. We did not find a simple single function that translated
our 0–1 values from the Halton sequence to this span of values and,
accordingly, used an ad hoc pragmatic solution. We introduced a
scaling factor of 3 (SF) and linearly scaled our Halton value (HV) to
the range between 1/SF = 1/3 and 5. The average rate for the short
transitions was calculated as OTR + HV. For the short transitions,
we thus reached a range for the rate between 6 + 1/3 = 6.33 and 6 +
5 = 11. The average rate for the long transitions was calculated as
OTR/(HV × SF). For the long transitions, we reached a range
between 6/(1/3 × 3) = 6 and 6/(5 × 3) = 0.4.

The fourth dimension in the Halton sequence was used for the
relative variation among the short and long transitions (within the
transition labelled short and long in Table 1) and ranged
between 0.05 and 0.5 times the mean duration for short and long
transitions. For this, the value in the Halton sequence was linearly
scaled to the range of 0.05 to 0.5.

The actual durations of each instance of a transition were varied
inherently in theMicSimmicrosimulation on a bout-per-bout basis
and was therefore not additionally and explicitly varied.

To reduce the dependency between simulated behavioural
sequences, we chose a small number of individuals (behavioural
sequences) in each run (see above). As such, we ran the simula-
tion 500 times, resulting in 5,000 random artificial behavioural
sequences with each simulation providing 10 sequences. The
behavioural sequences were subsequently evaluated in regard to
how the aspects that we varied influenced the degree of complexity,
using a newly developed measure of behavioural complexity (see
the following sub-section).

Measure of complexity

The basis of the measure of complexity were 14 features that were
reduced to fewer variables based on a Principal Component Ana-
lysis (PCA; Figure 1; right). The PCA was based upon the correl-
ation matrix of the features. The most basic features were the
number of observed behaviours and transitions and the proportion
of observed behaviours and transitions given the maximum num-
ber of behaviours in the ethogram and the corresponding number
of possible transitions.

Further features were four different variants of the Shannon
diversity index (H). The index was calculated either based on the
total frequency or the total (summed) duration of the behaviours or
the transitions. In the following formula p was substituted with the
according value: H = �P

ipi ln pi.
Two additional features of the measure of complexity were the

variability of the durations within and between transitions. The
‘within’ variance refers to the variance of the duration of repeated
transitions (the within cell variance in Table 1 averaged across all
transitions). The ‘between’ variance refers to the variance of the
duration between transitions (the between cell variance in Table 1).
These two features were calculated based on a mixed-effects model
with the logarithm of the durations of the single bouts as the
outcome variable, an intercept as the fixed and the transitions as
the random effect. The between transition variance was calculated
by the variance component of transition and the within transitions’
variance by the model’s error. R version 4.3.1 (R Core Team 2022)
(RCore Team2022)and the blme package (Chung et al. 2013) based
on lme4 (Bates et al. 2015b) was used for this.

Finally, the median of the number of bouts across the different
transitions and its interquartile range, and the median of the
median duration of bouts across transitions and its interquartile
range were features included in the measure of complexity.

Real data-sets

To apply our approach to real data-sets, we used the data collected
in three small studies, in which animals could visit eight cages with
different resources from a central choice cage. Here, we only present
the relevant aspects of these studies, see Puls et al. (2024) for the
detailed description of the methods. In these studies, single rats
(n = 11), rat groups of three animals (four groups) and hen groups
of three birds (four groups) were observed. In all experiments, feed,
water, resting, and foraging opportunities as well as novel objects
and olfactory cues of a predator were available in one resource cage
each. Rats were provided with a running wheel and single rats
afforded the opportunity for restricted contact with social partners,
with groups of rats given an empty control cage. Additionally, the
hens were provided with a nest to lay eggs and an area to sand-bath.

The animals spent ten consecutive days in the experimental
system. Data were recorded automatically each day for the single
rats and data based on video recordings from days 1, 3, and 6 for the
rat and hen groups. We considered the duration from the entry to
one resource to the entry of the following resource cage (possibly
the same) as the behaviours on which we based the features for our
complexity measure in the same way as for our simulated data. In
these data-sets, behaviours were not observed in detail but each cage
provided a specific behavioural context and was thought to serve a
specificmotivation. Thismeans that, for these illustrative examples,
we did not calculate the complexity of behaviour in a narrow sense
but focused on the complexity of changes between different motiv-
ations. We conducted the PCA individually for the three real data-
sets in order to ascertain whether the loadings of the principal
components resemble each other in different data-sets.

These studies were approved by the university’s animal welfare
officers and by the responsible veterinary office (LAGeSo Land-
esamt für Gesundheit und Soziales, Berlin; rats, individual testing:
permit no. G003/20; rats, small groups: StN 002/21; hens, small
groups: StN 0012/21).

Statistical analysis

The statistical analysis was conducted with R version 4.3.1 (R Core
Team 2022). To reduce the number of features of the measure of
complexity, a PCA was applied (Abdi & Williams 2010) for the
simulated data as well as the real data-sets based on the correlation
structure. To achieve a univariate normal distribution for the
features as closely as possible prior to including them into the
PCA, they were transformed (Table 2). For any PCA, a decision
needs to be taken on how many variables to further consider. The
number of principal components (PC) that we chose here (two for
the simulated data and three for the real data-sets) represented a
reasonable balance between the cumulative variance explained on
the one hand, and a small number of PCs with an ease of interpret-
ation on the other. This interpretation was specifically simple if we
used an (arbitrary) threshold of 0.3 for the loadings (Table 2).
Moreover, the PCs considered had all an eigenvalue greater than 1
(and all other PCs smaller than 1).

For the simulated data, the effects of the explanatory variables
(aspects of the simulation: number of behaviours, proportion of
short transitions, difference of the duration between and within
short and long transitions) and their interactions on the outcome
variables (principal component 1 and 2) were analysed using linear
mixed-effects models based on the function lme (packages nlme;
Bates et al. 2015a). To do so, these continuous explanatory variables
were normalised. The random effect was the simulation run. We
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calculated model estimates based on the package contrast
(O’Callaghan et al. 2022) and used the ANOVA function for
calculating P-values.

For the real-data sets, the features were calculated for each
observation day and the PCAs were conducted based on the daily
values (separately for each experiment). The effect of day that the
animals had spent in the experimental system (factor with ten
levels for the individual rat data and with three levels for the
group data) on the outcome variables (principal components
1 to 3) were analysed per component and experiment using
linear mixed-effects models based on the packages blme (see
above). The random effect consisted of the individuals nested in
group and, for the group observations, crossed with observation
day. We used a parametric bootstrap for model estimates and
confidence intervals (function bootMer provided in lme4) as
well as for calculating P-values (package pbkrtest; Halekoh &
Højsgaard 2014).

Model assumptions (normal distribution, homoscedasticity)
were checked via graphical analysis of the residuals. No major
deviations from the assumptions were observed.

As a simplification in respect to assessing the complexity of the
behavioural sequences we re-ran these analyses of the simulated
data and the real data-sets using the Shannon diversity-index as
calculated on the frequency of the behaviours as the outcome
variable. This diversity index was chosen because it loaded strongly
on the first principal component in all our data-sets (see Results)
and because it is a relatively simple measure based on counting how
many bouts of each behaviour occurred (see Discussion). Given
these characteristics, the Shannon index could serve as an ideal
iceberg indicator for the overall aggregated complexity measure
(principal components).

Results

Simulated sequences

The PCA showed that most of the variables loaded strongly on
either the first or the second component (Table 2). The number of
observed behaviours, the number of observed transitions and the
Shannon diversity indices loaded positively on PC1. The first

Table 2. Principal Component analysis on the features of behavioural complexity: proportion of variance, cumulative variances, and Eigenvalues of as well as factor
loadings on the first two and three principal components for the simulation and the three pilot data-sets, respectively. Numbers in bold indicate loadings for which
the absolute value was above a cut-off value of 0.3. We focused on interpreting loadings with values ≥ 0.3, however the remaining loadings were not neglected in the
process of component calculation

Data-set
Component No.

Transfor-
mation

Simulation Rats, individuals Rats, groups Hens, groups

1A 2B 1 2 3 1 2 3 1 2 3

Proportion of variance [%] 59.64 27.68 39.74 18.92 13.39 46.86 15.13 12.78 45.54 20.54 14.60

Cumulative variance [%] 59.64 87.32 39.74 58.67 72.06 46.86 62.00 74.76 45.54 66.09 80.69

Eigenvalues 7.75 3.60 4.37 2.08 1.47 4.37 1.66 1.41 5.47 2.46 1.75

Number of observed
behaviours

log 0.323 0.221 Const.1 Const. Const. Const. Const. Const. Const. Const. Const.

Number of observed
transitions

log 0.345 0.137 (1)2 (1) (1) (1) (1) (1) (1) (1) (1)

Proportion of observed
behaviours

arcsin–
sqrt

Const. Const. Const. Const. Const. Const. Const. Const. Const. Const. Const.

Proportion of observed
transitions

arcsin–
sqrt

0.020 –0.417 0.416 0.160 0.177 0.407 0.044 0.092 0.327 0.131 0.155

Shannon diversity index (SDI)
frequency behaviours

none 0.351 0.072 0.356 0.305 0.221 0.409 0.006 0.097 0.374 –0.035 0.271

SDI duration behaviours none 0.352 0.045 0.233 –0.347 0.482 0.305 –0.274 –0.139 0.249 –0.409 –0.290

SDI frequency transitions none 0.334 0.186 0.133 0.474 0.280 0.286 –0.136 0.356 0.311 –0.043 0.457

SDI duration transitions none 0.343 0.118 0.145 –0.478 0.414 0.105 –0.708 –0.067 0.266 –0.512 –0.053

Variance within a transition log –0.239 0.194 0.164 –0.291 –0.337 –0.105 0.079 –0.625 –0.152 0.352 0.439

Variance between transitions log –0.242 0.319 –0.156 0.437 0.141 –0.220 0.307 0.516 –0.114 –0.268 0.376

Median number of transitions none –0.027 –0.477 0.388 0.072 0.061 0.383 –0.028 0.178 0.314 0.078 0.193

IQR3 of the median number of
transitions

none –0.079 –0.386 0.366 –0.116 –0.081 0.240 0.172 –0.339 0.367 –0.060 –0.174

Median of the median
transition duration

log –0.293 0.250 –0.387 –0.112 0.332 –0.294 –0.464 0.160 –0.247 –0.448 0.146

IQR of the median of the
median transition

log –0.252 0.352 –0.350 0.001 0.428 –0.362 –0.237 0.057 –0.205 –0.369 0.424

AGeneral Complexity
BTransition variability
1“Const.” indicates features that were (nearly) constant and showed no variability, i.e. all potential behavioural categories or transitions did occur.
2(1) The maximum number of possible transitions was constant; therefore, the number of transitions and the proportions of transitions are equivalent
3IQR=interquartile range.
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principal component was thus referred to as ‘general complexity’ as
it contained most of the currently established aspects to describe
behavioural complexity. The variance between transitions and the
interquartile range of the median of the median transition duration
loaded positively on PC2 whereas the proportion of observed
transitions, the median number of transitions, and the interquartile
range of the number of transitions loaded negatively on PC2
(Table 2). Due to the high positive loadings of the features regarding
the variability of the transitions the second principal component
was called ‘transition variability’.

The general complexity increased with an increasing number of
behaviours andwas higher for large proportions of short transitions
and slightly higher for small differences in the duration between
short and long transitions (Figure 2, Table 3). The general com-
plexity decreased slightly with an increasing relative variance
among the short and the long transitions. Yet, the strength of this
relationship was negligible (Figure S1; left, Table 3).

The transition variability increased with the number of behav-
ioural categories. This relationship was weaker with an increasing
proportion of short transitions and a higher difference between
short and long transitions. Moreover, the transition variability was
higher for small proportions of short transitions. (Figure 2, Figure 3,
Table 3). Finally, the transition variability increased slightly with an
increasing relative variance among the short and the long transi-
tions. Yet, the strength of this relationship was again negligible
(Figure S1; right, Table 3).

Real data-sets

The results of the PCAs based on real data-sets showed a number of
consistencies in the first principal component over the three

different studies (Table 2). The proportion of observed transitions,
the Shannon diversity index for the frequency of the behaviours,
and the median of the number of transitions loaded strongly
positive on the first component for all data-sets. In addition, the
Shannon diversity index for the duration of the behaviours, and for
the frequency of the transitions as well as the median number of
transitions, the IQR of the median number of transitions loaded
also positively on the first component. The median of the median
transition duration and its IQR loaded negatively on the first
component although these loadings did not surpass our chosen
cut-off value in all three data-sets.

The second component consisted predominantly of the Shan-
non diversity index for the frequencies and the corresponding index
for the durations. The variance between transitions and the median
of the median transition durations also loaded negatively on this
component.

The third component of the pilot data-sets did not show a clearly
consistent pattern in the factor loadings. It was included for pres-
entation here to reach a cumulative variance over 70%.

The PCs from the real data-sets were not identical with the ones
from the simulation. Yet, in the first PC from the real data-sets, all
Shannon indices loaded positively as for the simulation (although
not all with values above our cut-off) and, in the first PC from the
simulation, the median of the median transition duration and its
IQR also still loaded relatively high. Consequently, at least the first
PCs in all our data-sets did have some similarities.

The values of the first PC dropped from day 1 to 2 and increased
again slightly thereafter for the single rats (Figure 4), whereas the
values decreased continuously for the two observations of small
groups (although this decrease could not be supported statistically).
The second PC showed a less clear but similar pattern. Finally, the

Figure 2. Effect of the number of behaviours, the proportion of short transitions and
the difference in the duration of the transitions on the general complexity (see Table 2).
The proportion of short transitions and the difference in the duration of the transitions
were continuously varied in the simulation and divided each into three equal parts for
illustration based on the 33rd (1/3) and 67th (2/3) percentiles. The grey line shows the
model estimate and the dashed lines show the (very narrow) 95% confidence intervals.
The model estimate is based upon the mid-point of the percentiles mentioned above,
i.e. the 16th (1/6), 50th (3/6) and 83rd (5/6) percentiles.

Figure 3. Effect of the number of behaviours, the short transitions and the difference in
the duration of the transitions on the transition variability (see Table 2). The proportion
of short transitions and the difference in the duration of the transitions were continu-
ously varied in the simulation and divided each into three equal parts for illustration
based on the 33rd (1/3) and 67th (2/3) percentiles. The grey line shows the model
estimation and the dashed lines show the (very narrow) 95% confidence intervals. The
model estimation is based on themid-point of the percentilesmentioned above, i.e. the
16th (1/6), 50th (3/6) and 83rd (5/6) percentiles.
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third PC showed little consistency in the pattern over time
(Figure 4).

Shannon diversity index as a representative indicator for
complexity

Due to the consistently strong positive loading of the Shannon
diversity index for the frequency of behaviours on the first compo-
nent throughout all data-sets (Table 2), we chose that feature as a
potential representative for the ‘general complexity’, i.e. the first
principal component. The SDI for the frequency of behaviours
increased with an increasing number of behaviours and was higher
for a larger proportion of short transitions (F1,484 = 45; P < 0.001)
and slightly higher for small differences in the duration between
short and long transitions (F1,484 = 28; P < 0.001) (Figure 5). In the
real data-sets, the evolution of the Shannon diversity index across
time was highly similar to the evolution of the first principal
component (Figure 4 bottom row).

Discussion

The aim of this work was to develop an approach to create an
aggregated measure of behavioural complexity and to validate it
theoretically using artificially generated behavioural sequences of
varying complexity and to illustrate its use with exemplary real
data-sets. In our simulations, we were able to come up with two
dimensions (‘general complexity’ and ‘transition variability’) which
explain 87% of the total variability contained in our 14 features of

complexity. For that reason, these two components yielded a com-
pactmeasure of behavioural complexity. In the sense of a sensitivity
analysis, we found that changes in the aspects of the artificial
behavioural sequences that were assumed to account for differences
of behavioural complexity did translate into a corresponding
change in our two components. The number of behaviours, the
proportion of short transitions and the difference in the duration
between long and short transitions had the greatest effect on both
components.

Both components increased with an increasing number of
behaviours. Indeed, it has been proposed for a long time, that the
number of behaviours in an animal’s behavioural repertoire is an
indicator for behavioural complexity (Sambrook & Whiten 1997).
It has been stated more generally that complexity depends on the
amount of information needed to specify the system concerned
(Shannon 1948). A behavioural sequence containing only two
behaviours requires less information to be described than a
sequence containing, for example, six different behaviours. Our
results, therefore, support the notion that the “number of acts in an
animal’s behavioural repertoire should index its behavioural
complexity” (Sambrook & Whiten 1997). This notion is heavily
focused upon the potential of an animal to perform different
behaviours. Yet, in real-life data, the number of behaviours might
be limited by environmental factors and by the level of detail of the
ethogram used. If environmental factors are similar between con-
ditions of interest, a clear difference in the number of behaviours
may not be expected. Based on a detailed ethogram it was found
that sows in restricted environments only show 30% of the

Table 3. Detailed P-values of the linear mixed effects models. Numbers in bold indicate P-values ≤ 0.05

dfs

General complexity Transition variability SDI frequency behaviours

F P F P F P

Global test1 15 1591.850 <0.0001 1313.320 <0.0001 1667.87 <0.001

Main effects

Number of behaviours (numBehav) 1,484 9409.298 <0.0001 1115.601 <0.0001 115.41 <0.0001

Number of short transitions (numShort) 1,484 1672.913 <0.0001 4556.275 <0.0001 6.74 <0.0001

Difference in duration between short and long transitions (diffDur) 1,484 218.323 <0.0001 108.630 <0.0001 –5.29 <0.0001

Relative variance between short and long transitions (relVar) 1,484 9.023 0.0028 6.802 0.0094 –0.87 0.387

2–way interactions

numBehav:numShort 1,484 9.046 0.0028 82.275 <0.0001 0.20 0.844

numBehav:diffDur 1,484 1.087 0.2978 0.176 0.6746 1.13 0.261

numBehav:relVar 1,484 0.824 0.8240 1.412 0.2353 4.34 <0.0001

numShort:diffDur 1,484 234.946 <0.0001 473.906 <0.0001 0.19 0.853

numShort:relVar 1,484 0.550 0.3644 0.024 0.8770 –0.19 0.850

diffDur:relVar 1,484 0.075 0.4548 0.284 0.5942 0.29 0.769

3–way interactions

numBehav:numShort:diffDur 1,484 0.004 0.9503 13.458 0.0003 –1.07 0.287

numBehav:numShort:relVar 1,484 0.005 0.9427 0.165 0.6849 –0.30 0.766

numBehav:diffDur:relVar 1,484 2.997 0.0841 0.009 0.9238 –0.69 0.488

numShort:diffDur:relVar 1,484 0.903 0.3425 0.239 0.6250 1.47 0.142

4–way interaction

numBehav:numShort:diffDur:relVar 1,484 0.506 0.4771 3.280 0.0708 –1.71 0.089

1Likelihood-ratio test with a χ2 test statistic listed in the column of the F-value
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behaviours compared to sows in semi-natural environments
(Stolba et al. 1983). Yet, if an ethogram is defined in less detail
due, for example, to practical feasibility, the chances of detecting
differences in the number of behaviours are relatively low or only
possible with extreme differences of conditions. This is specifically
true if the behaviours considered satisfy basic needs, which can be
expected in almost all circumstances. As a result, differences may
only become apparent with more nuanced ethograms including
behaviours such as comfort and play behaviour or even subdividing
these further into grooming and allo-grooming, for example. Then,
differences in the number of behaviours performed could be
expected also between housing systems that differ little as, for
example, the space allowance could inhibit some behaviours such
as play behaviour as shown in calves (Jensen et al. 1998; Jensen &
Kyhn 2000). The level of detail of the ethogram used for real-life
data is crucial for the possibility of detecting differences in the
number of behaviours. However, the level of detail of an ethogram
is fixed within a given study and only relative comparisons can and
need to be made, such as relative differences in behavioural com-
plexity between housing conditions or within the same animal.

The feasibility of the analysis of behavioural sequences based on
a more detailed ethogram will decrease with higher levels of details.
The future application of computer-based, video-analysing tools,
such as DeepLabCut (Mathis et al. 2020), could help to reduce the
workload related to manual video analysis and enable an increased
level of detail for ethograms and, as a result, detecting complexity in
behavioural sequences based on the number of behaviours. In our
real data-sets with eight different behaviours, the number of behav-
iours were constant and no difference in the number of behaviours
was detectable across time. It is advisable therefore to choose an
ethogram as detailed as possible for analysing the behavioural
sequence while still being feasible.

The proportion of short transitions and the difference in the
duration between short and long transitions were aspects that also
affected the general complexity and the transition variability
although with opposite signs. The general complexity was higher
with an increasing proportion of short transitions and smaller
differences in the duration between short and long transitions. A
high number of short transitions leads to a higher number of
transitions in a 24-h period. The more transitions taking place,
the greater the chances for different transitions to be observed,
which contributes to the overall variability of a behavioural
sequence. The general complexity contained four different Shan-
non diversity indices. These indices have their highest value with
the greatest homogeneity among the behaviours. This is in align-
ment with a higher general complexity for small differences in the
duration between short and long transitions. Concerning the

Figure 4. Values of the first three principal components based on the 14 features for
behavioural complexity (see Table 2) and the Shannon diversity index based on the
frequency of the different behaviours across days in the experiment for three real data-
sets based on observations of individual rats, rats in small groups, and hens in small
groups. P-values are given for the effects of experimental day. Boxplots show raw data
(thick lines), model estimates (thin lines) 95% confidence intervals.

Figure 5. Effect of the number of behaviours, the proportion of short transitions and
the difference in the duration of the transitions on the Shannon diversity index for the
frequency of behaviours. The proportion of short transitions and the difference in the
duration of the transitions were continuously varied in the simulation and divided each
into three equal parts for illustration based on the 33rd (1/3) and 67th (2/3) percentiles.
The grey line shows the model estimate and the dashed lines show the (very narrow)
95% confidence intervals. The model estimate is based on the mid-point of the
percentiles mentioned above, i.e. the 16th (1/6), 50th (3/6) and 83rd (5/6) percentiles.
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transition variability, a smaller proportion of short transitions and
larger differences in the duration between short and long transi-
tions lead to higher values for this component. This component has
higher values for behavioural sequences with less transitions, if
there is greater variability in the durations within and between
the transitions. This could be seen in the high loadings for the
‘variance between transitions’ and the ‘IQR of the median of the
median duration of transitions’ which both positively loaded
on the transition variability. The general complexity reflects the
number of transitions as the main contribution, whereas the tran-
sition variability maps the variance of the transitions as the main
contribution to the overall varying behavioural complexity of a
behavioural sequence.

Perhaps unsurprisingly, the patterns were somewhat less clear
for the real data-sets. Yet, the original variables loading relatively
highly on the first principal component were the same as for the
simulation even if the loadings were somewhat smaller. Moreover,
the changes in behavioural complexity over time are plausible
specifically for this first component as it is reasonable to assume
that the behavioural complexity increased when an animal was
introduced to a new environment in order to adjust to the new
surroundings. A similar reaction in hens was shownpreviously. The
behavioural complexity of vigilance behaviour increased in hens
when entering a novel arena (Rutherford et al. 2003). For the single
rats, we can rule out that the high initial values for complexity being
due to a stress response since no elevated faecal stress markers
were found (Puls et al. 2024). The behavioural complexity in our
pilot data-set then decreased with habituation to the environment.
A decrease in behavioural complexity due to a lack of unpredict-
ability and novelty was described before in relation to stereotypic
behaviour (Mason & Rushen 2008). In our data-sets, the behav-
ioural complexity increased again for the individual rats towards
the end of the test period. A similar effect has been shown previ-
ously due to latent learning (Blodgett 1929; Tolamn 1948). After a
few days in a maze, the behaviour of rats seemed to be random
(decrease in behavioural complexity due to a lack of novelty, see
previously). However, in the next phase of their experiment when
they introduced a reward, a change in the rats’ behaviour again
became apparent, with them moving in a goal-orientated way
(Christensen 2004). Learning can lead to the modification, discard
or generation of new behavioural rules depending on its relevance
in the current environmental conditions (Inglis & Langton 2006).
The slight differences in the behavioural complexity over time,
i.e. an increase of behavioural complexity after initial decrease in
individual but not group-tested rats, may be due to the observation
windows. The individual rats were observed for ten consecutive
days whereas the groups of hens and rats were only observed on
days 1, 3 and 6. The behavioural complexity of the groups may
possibly have increased again had an additional observation on day
10 been included. A difference between the pattern between rats
and hens could also be explained by different motivations to
explore. Rats are thought to have a high intrinsic motivation for
exploration (Hughes 1997) whereas chickens as typical prey ani-
mals can be more wary and less explorative when faced with new
stimuli (Calder & Albright 2021)

Overall, most of our features of complexity did show a relatively
strong loading on either of the two first components, indicating that
the approach to aggregate the features is useful. The Shannon
diversity index for the frequency of behaviours loaded consistently
high on the first principal component in all the data-sets and the
analysis of that feature alone did show the same pattern as the
‘general complexity’ and was mainly driven by the number of

behaviours in the simulation. The Shannon diversity index for
the frequency of behaviours could thereby function as a potential
iceberg indicator. This measure could be observed with relatively
little effort because only the number of bouts of the different
behaviours needs to be recorded.

One understanding of complexity is that it is “structures that fill
space and time” (Macintosh et al. 2011). This is a fairly abstract
concept. Translated to behavioural complexity one could say that
anything that alters the spatial or temporal arrangement of behav-
ioural sequences contributes to behavioural complexity. We not
only included different numbers of behavioural categories to fill the
‘space’ of our behavioural sequence but also altered different aspects
of the temporal arrangement of the behaviours with the different
proportions of short transitions and the variance within and
between the long and short transitions. Another more explicit
understanding of complexity is that complex systems have
three dimensions, namely diversity, flexibility and combinability
(Rebout et al. 2021). Diversity was described as the variation of the
number of elements in a system. Flexibility is the variation within
the elements of a system. Combinability is the possibility of the
elements of a system interacting (Rebout et al. 2021). With the
four aspects we chose, all three of these dimensions were con-
sidered. The diversity is given by the varying numbers of behav-
iours, the flexibility is given by the variation in the duration
among transitions and the combinability is given by the fact that
we used specific transitions as the elements of our system. Vari-
ations in these four aspects were successfully mirrored in the
features of our complexity measure, which are assumed to reflect
behavioural complexity. We are therefore confident that the four
aspects we chose were sufficient to create behavioural sequences
of varying complexity.

For our measure of complexity we only considered first-order
dependencies by using transitions (= a specific transition between
two subsequent behaviours) as the basis for most of the fourteen
features contributing to our measure, although it can be assumed
that not only current behaviours but also previous ones determine
the following behaviour of an animal (Gygax et al. 2021). As
mentioned in the Introduction, it can be difficult to determine the
correct order for a model and the amount of data needed for
generating reliable results with models of higher order can only
rarely be realised with behavioural data (Singer et al. 2014). Using
models of higher order would most likely have resulted in over-
fitting with our data. In our simulation where the number of
behaviours ranged between 5 and 20, we would have ended up with
125–8,000 different possible transitions assuming a 3rd order
model only. With only approximately 1,000 transitions per
sequence a reliable estimation of such higher order processes would
not have been possible. In this sense, there is the potential for our
measure of complexity to not offer an accurate reflection of the
absolute behavioural complexity. However, since this is a system-
atic bias, the relative differences in complexity between the different
behavioural sequences, for example, collected in different circum-
stances should still reflect relative differences. For our purpose,
differences in complexity between the behavioural sequences in
different situations are more important than the actual level of
complexity. Furthermore, we aimed at developing a measure of
complexity that has the potential to be applied in practice and
therefore needed to be practicable. We therefore did not consider
increasing the duration of our behavioural sequences to longer
than 24 h to obtain a greater number of changes for each transition.
Additionally, a constant internal and external state of the animal
and the environment would need to be presumed to produce valid

10 Christina Raudies and Lorenz Gygax

https://doi.org/10.1017/awf.2024.48 Published online by Cambridge University Press

https://doi.org/10.1017/awf.2024.48


results when increasing the observation period. The longer the
observation period the less the likelihood of this being achieved.

The next step towards developing use of behavioural complexity
as a welfaremeasure will be a practical validation of the approach in
a specific data-set and testing the potential for automated meas-
urement of behavioural complexity in the same data-set. We will
therefore analyse real-life behavioural sequences of fattening pigs at
different ages and in housing systems differing in their intensity.
Generally, we advise including all behaviours in order to diversify
the ethogram thereby increasing the chances of detecting differ-
ences in behavioural complexity. It might be tempting to exclude
behaviours that are potentially linked to negative animal welfare
(e.g. stereotypic or agonistic behaviour) since behavioural com-
plexity is often viewed as an indicator for positive welfare given that
it may reflect the behavioural capacity to deal with a specific
situation. However, all behaviours are part of a continuous behav-
ioural sequence upon which certain aspects of our approach to
behavioural complexity is based. Moreover, it is likely that behav-
ioural complexity decreases when an animal, for example, performs
stereotypic behaviour as the number of behaviours, the number of
transitions and the proportion of short behavioural states will
decrease when an animal performs the same behaviour over an
extended period of time. To a certain extent, agonistic behaviour is
part of the natural behavioural repertoire and important to estab-
lish social hierarchies (Stolba & Wood-Gush 1989). Consequently,
there is no basic and a priori reason to exclude such a behaviour
from calculating behavioural complexity. An analogy to the previ-
ous argument would be that wemay expect behavioural complexity
to be reduced if agonistic behaviour becomes a major aspect in an
animal’s behavioural sequence. In addition, there is no doubt that
persistent agonistic behaviour in a group of pigs has negative
welfare implications and requires action (O’Malley et al. 2022).
We will therefore also include the mentioned behaviours in our
ethogram for the next validation step. We will choose 11 different
behaviours with the aim of achieving a balance between level of
detail and feasibility. We will apply the 14 features of behavioural
complexity presented in this study on the behavioural sequences of
the fattening pigs. For the validation of the approach, we expect to
find similar patterns of the loadings in the PCA indicating a
consistent way of aggregation of the single measures. For the
complexity measure itself we expect to see higher values for indi-
viduals in environments approaching more natural conditions
compared to individuals in conventional and more intensive hous-
ing systems. For the automated measurement we will collect add-
itionally continuous data on activity and movement patterns from
3-D accelerometers. We aim at extracting the features of behav-
ioural complexity from the recorded activity patterns for a practical
and automated application on-farm.

Animal welfare implications

With further validation, behavioural complexity as an individual-
based animal welfare indicator could extend beyond the currently
used animal-based welfare indicators.There are indications that it
does not only indicate states of pain and distress, for example, but
also an animal’s capability of meeting its needs and motivations
(Asher et al. 2009; Macintosh et al. 2011). Another advantage of
behavioural complexity as an animal welfare indicator is its pre-
sumed sensitivity. A reduction in complexity may occur much
earlier than a change in the duration or frequency of a behaviour
as currently used in conventional animal-based indicators
(Rutherford et al. 2006). Possibly, complexity can even be reflected

by a relatively simple iceberg indicator, the Shannon diversity index
of the frequency of different behaviours. In addition, behavioural
complexity is an individual-based indicator and it is therefore also
conceivable that it could function as an on-farm, early warning
system on the state of single animals. The use of complexity as an
individual-based welfare indicator could be further increased if it
proves to be automatically detectable.

Conclusion

Wewere able to devise an approachwith the potential to construct a
compact and aggregated measure of determining behavioural com-
plexity. This measure reflected variations in complexity of artifi-
cially created behavioural sequences. The number of behavioural
categories and the proportion of short transitions had the greatest
influence on behavioural complexity. Our approach shows promise
as a basis for further studies on behavioural complexity and may
shed light on how complexity is related to (reduced) welfare.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/awf.2024.48.

Data and code availability. The study’s generated datasets and correspond-
ing analysis code can be obtained under https://doi.org/10.17605/osf.io/g5rvu.

Acknowledgements. We conducted this work under the scope of the project
‘Piglexity’ supported by funds from the Federal Ministry of Food and Agricul-
ture (BMEL) based on a decision by the Parliament of the Federal Republic of
Germany via the Federal Office for Agriculture and Food (BLE) under the
Innovations support programme with the grant number 28N-6-043-00. More-
over, wewould like to thank ProfessorDr SZinn for support in using theMicSim
R Package as well as M Knoll-Rosenberg and D Brucks for commenting on
earlier versions of this manuscript.

Competing interest. None.

References

Abdi H and Williams LJ 2010 Principal component analysis. Wiley Interdis-
ciplinary Reviews: Computational Statistics 2: 433–459. https://doi.
org/10.1002/wics.101

Abner EL,Charnigo RJ and Kryscio RJ 2013Markov chains and semi-Markov
models in time-to-event analysis. Journal of Biometrics & Biostatistics Suppl
1: 19522. https://doi.org/10.4172/2155-6180.S1-e001

Alados CL and Huffman MA 2000 Fractal long-range correlations in behav-
ioural sequences of wild chimpanzees: a non-invasive analytical tool for the
evaluation of health. Ethology 106: 105–116. https://doi.org/10.1046/j.1439-
0310.2000.00497.x

Alados CL and Weber DN 1999 Lead effects on the predictability of repro-
ductive behavior in fatheadMinnows (Pimephales promelas): a mathemetical
model. Environmental Toxicology and Chemistry pp 2392–2399. https://doi.
org/10.1002/etc.5620181038

AndersonWJ 1991 Continuous-time Markov Chains: An Applications Oriented
Approach. Springer: New York, NY, USA.

Andreasen SN, Sandøe P and Forkman B 2014 Can animal-based welfare
assessment be simplified? A comparison of the Welfare Quality® protocol for
dairy cattle and the simpler and less time-consuming protocol developed by
the Danish Cattle Federation. Animal Welfare 23: 81–94. https://doi.
org/10.7120/09627286.23.1.081

Asher L, Collins LM, Ortiz-Pelaez A, Drewe JA, Nicol CJ and Pfeiffer DU
2009 Recent advances in the analysis of behavioural organization and inter-
pretation as indicators of animal welfare. Journal of the Royal Society,
Interface 6: 1103–1119. https://doi.org/10.1098/rsif.2009.0221

BatesD,Kliegl R,Vasishth S andBaayenH 2015aParsimoniousMixedModels.
https://doi.org/10.48550/arXiv.1506.04967

Animal Welfare 11

https://doi.org/10.1017/awf.2024.48 Published online by Cambridge University Press

http://doi.org/10.1017/awf.2024.48
https://doi.org/10.17605/osf.io/g5rvu
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.4172/2155-6180.S1-e001
https://doi.org/10.1046/j.1439-0310.2000.00497.x
https://doi.org/10.1046/j.1439-0310.2000.00497.x
https://doi.org/10.1002/etc.5620181038
https://doi.org/10.1002/etc.5620181038
https://doi.org/10.7120/09627286.23.1.081
https://doi.org/10.7120/09627286.23.1.081
https://doi.org/10.1098/rsif.2009.0221
https://doi.org/10.48550/arXiv.1506.04967
https://doi.org/10.1017/awf.2024.48


Bates D,Mächler M, Bolker B andWalker S 2015b Fitting linear mixed-effects
models using lme4. Journal of Statistical Software 67: 1–48. https://doi.
org/10.18637/jss.v067.i01

Blodgett HC 1929 The effect of the introduction of reward upon the maze
performance on rats. University of California Publications in Psychology 4:
113–134.

Brereton JE and Fernandez EJ 2022 Investigating unused tools for the Animal
Behavioral Diversity Toolkit. Animals 12. https://doi.org/10.3390/ani12212984

Browning H 2022 Assessing measures of animal welfare. Biology & Philosophy
37. https://doi.org/10.1007/s10539-022-09862-1

Calder C and Albright J 2021 Chicken behavior. In: Greenacre CB and
Morishita TY (eds) Backyard Poultry Medicine and Surgery pp 434–454.
Wiley: London, UK. https://doi.org/10.1002/9781119511816.ch22

Chaitin GJ 1975 Randomness andmathematical proof. Scientific American 232:
47–53. https://www.jstor.org/stable/24949798 (accessed 2 September 2024).

Chatfield C and Lemon RE 1970 Analysing sequences of behavioural events.
Journal of Theoretical Biology 29: 427–445. https://doi.org/10.1016/0022-
5193(70)90107-4

Christensen W 2004 Self-directedness, integration and higher cognition. Lan-
guage Sciences 26: 661–692. https://doi.org/10.1016/j.langsci.2004.09.010

Chung Y, Rabe-Hesketh S, Dorie V, Gelman A and Liu J 2013 A nondegene-
rate penalized likelihood estimator for variance parameters in multilevel
models. Psychometrika 78: 685–709. https://doi.org/10.1007/s11336-013-
9328-2

Clark TG,BradburnMJ, Love SB andAltmanDG 2003 Survival analysis part I:
basic concepts and first analyses. British Journal of Cancer 89: 232–238.
https://doi.org/10.1038/sj.bjc.6601118

Cole BJ 1995 Fractal time in animal behaviour: the movement of Drosophila.
Animal Behaviour pp 1317–1324. https://doi.org/10.1016/0003-3472(95)
80047-6

Cronin KA and Ross SR 2019 Technical contribution: a cautionary note on the
use of behavioural diversity (H-Index) in animal welfare science. Animal
Welfare 28: 157–164. https://doi.org/10.7120/09627286.28.2.157

Czycholl I, Büttner K, Grosse Beilage E and Krieter J 2015 Review of the
assessment of animal welfare with special emphasis on the “Welfare Quality®

animal welfare assessment protocol for growing pigs”. Archives Animal
Breeding 58: 237–249. https://doi.org/10.5194/aab-58-237-2015

DeVries H 2009 On using the domworldmodel to evaluate dominance ranking
methods. Behaviour 146: 843–869. https://www.jstor.org/stable/40296100
(accessed 2 September 2024).

Dutang C and Savicky P 2023 randtoolbox:Generating and Testing Random
Numbers: R package. https://r-forge.r-project.org/projects/rmetrics/ (accessed
2 September 2024).

Dybkjær L 1992 The identification of behavioural indicators of ‘stress’ in early
weaned piglets. Applied Animal Behaviour Science 35: 135–147. https://doi.
org/10.1016/0168-1591(92)90004-U

Friard O and Gamba M 2016 BORIS: A free, versatile open‐source event‐
logging software for video/audio coding and live observations. Methods in
Ecology and Evolution 7: 1325–1330. http://onlinelibrary.wiley.com/doi/
10.1111/2041-210X.12584/abstract (accessed 14 August 2024).

Gleerup KB, Andersen PH, Munksgaard L and Forkman B 2015 Pain evalu-
ation in dairy cattle. Applied Animal Behaviour Science 171: 25–32. https://
doi.org/10.1016/j.applanim.2015.08.023

Gygax L 2017 Wanting, liking and welfare: The role of affective states in
proximate control of behaviour in vertebrates. Ethology 123: 689–704.
https://doi.org/10.1111/eth.12655

Gygax L and Hillmann E 2018 ’Naturalness’ and its relation to animal welfare
from an ethological perspective. Agriculture 8: 136. https://doi.org/10.3390/
agriculture8090136

Gygax L, Zeeland YRA and Rufener C 2021 Fully flexible analysis of behav-
ioural sequences based on parametric survival models with frailties—A
tutorial. Ethology 128: 183–196. https://doi.org/10.1111/eth.13225

Halekoh U and Højsgaard S 2014 A Kenward-Roger approximation and
parametric bootstrap methods for tests in Linear Mixed Models - The R
Package pbkrtest. Journal of Statistical Software 59. https://doi.org/10.18637/
jss.v059.i09

Hall K, Bryant J, Staley M, Whitham JC and Miller LJ 2021 Behavioural
diversity as a potential welfare indicator for professionally managed

chimpanzees (Pan troglodytes): Exploring variations in calculating diversity
using species-specific behaviours. Animal Welfare 30: 381–392. https://doi.
org/10.7120/09627286.30.4.002

Hart BL 1987 Behavior of sick animals. Veterinary Clinics of North America:
Food Animal Practice 3: 383–391. https://doi.org/10.1016/S0749-0720(15)
31159-2

Hemelrijk C and Gygax L 2004 Dominance style, differences between the sexes
and species: An agent-based model. Interaction Studies 5: 131–146. https://
doi.org/10.1075/is.5.1.07hem

Hughes RN 1997 Intrinsic exploration in animals: motives and measurement.
Behavioural Processes 41: 213–226. https://doi.org/10.1016/S0376-6357(97)
00055-7

Inglis IR and Langton S 2006 How an animal’s behavioural repertoire changes
in response to a changing environment: A stochastic model. Behaviour
143: 1563–1596. https://psycnet.apa.org/doi/10.1163/156853906779367044
(accessed 14 August 2024).

Ivanouw J 2007 Sequence analysis as a method for psychological research.
Nordic Psychology 59: 251–267. https://psycnet.apa.org/doi/10.1027/1901-
2276.59.3.251 (accessed 14 August 2024).

Jensen MB and Kyhn R 2000 Play behaviour in group-housed dairy calves, the
effect of space allowance. Applied Animal Behaviour Science 67: 35–46.
https://doi.org/10.1016/S0168-1591(99)00113-6

Jensen MB, Vestergaard KS and Krohn CC 1998 Play behaviour in dairy calves
kept in pens: the effect of social contact and space allowance. Applied Animal
Behaviour Science 56: 97–108. https://doi.org/10.1016/S0168-1591(97)00106-8

Katz RW 1981 On some criteria for estimating the order of a Markov chain.
Technometrics 23: 243–249. https://doi.org/10.1080/00401706.1981.10486293

Macdonald IL and Raubenheimer D 1995 Hidden Markov models and animal
behaviour. Biometrical Journal 37: 701–712. https://doi.org/10.1002/
bimj.4710370606

Macintosh AJJ, Alados CL and Huffman MA 2011 Fractal analysis of behav-
iour in a wild primate: behavioural complexity in health and disease. Journal
of the Royal Society, Interface 8: 1497–1509. https://doi.org/10.1098/
rsif.2011.0049

Marı ́a GA, Escós J and Alados CL 2004 Complexity of behavioural sequences
and their relation to stress conditions in chickens (Gallus gallus domesticus): a
non-invasive technique to evaluate animal welfare. Applied Animal Behav-
iour Science 86: 93–104. https://doi.org/10.1016/j.applanim.2003.11.012

Mason G and Rushen J 2008 Stereotypic Animal Behaviour: Fundamentals and
Applications to Welfare, 2nd Edition. CABI: Wallingford, UK.

Mathis A, Schneider S, Lauer J and Mathis MW 2020 A primer on motion
capture with deep learning: Principles, pitfalls, and perspectives.Neuron 108:
44–65. https://doi.org/10.1016/j.neuron.2020.09.017

Mazzocchi F 2008 Complexity in biology. Exceeding the limits of reductionism
and determinism using complexity theory. EMBO Reports 9: 10–14. https://
doi.org/10.1038/sj.embor.7401147

Mench J 1998Why it is important to understand animal behavior. ILAR Journal
39: 20–26. https://doi.org/10.1093/ilar.39.1.20

Mesjasz C 2010 Complexity of social systems. Acta Physica Polonica A 117:
706–715. https://doi.org/10.12693/APhysPolA.117.706

Miller LJ,Vicino GA, Sheftel J and Lauderdale LK 2020 Behavioral diversity as
a potential indicator of positive animal welfare. Animals 10. https://doi.
org/10.1371/journal.pone.0253113

O’Callaghan A, Kuhn M, Weston S, Wing J, Forester J and Thaler T 2022
contrast: A collection of Contrast Methods. https://cran.r-project.org/pack
age=contrast (accessed 14 August 2024).

O’Malley CI, Steibel JP, Bates RO, Ernst CW and Siegford JM 2022 The social
life of pigs: Changes in affiliative and agonistic behaviors following mixing.
Animals 12. https://doi.org/10.3390/ani12020206

Puls F,Kosin L‐M,Garbisch F,ToumaC,Thöne‐Reineke C andGygax L 2024
Steps into a Small World: First glimpses on everyday moment‐to‐moment
decision making in an ecologically meaningful multi‐choice system for
assessing animal preferences. Ethology. https://doi.org/10.1111/eth.13468

R Core Team 2022 R Foundation for Statistical Computing. R Core Team:
Vienna, Austria. https://www.R-project.org/ (accessed 14 August 2024).

Rebout N, Lone J-C, de Marco A, Cozzolino R, Lemasson A and Thierry B
2021 Measuring complexity in organisms and organizations. Royal Society
Open Science 8: 200895. https://doi.org/10.1098/rsos.200895

12 Christina Raudies and Lorenz Gygax

https://doi.org/10.1017/awf.2024.48 Published online by Cambridge University Press

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.3390/ani12212984
https://doi.org/10.1007/s10539-022-09862-1
https://doi.org/10.1002/9781119511816.ch22
https://www.jstor.org/stable/24949798
https://doi.org/10.1016/0022-5193(70)90107-4
https://doi.org/10.1016/0022-5193(70)90107-4
https://doi.org/10.1016/j.langsci.2004.09.010
https://doi.org/10.1007/s11336-013-9328-2
https://doi.org/10.1007/s11336-013-9328-2
https://doi.org/10.1038/sj.bjc.6601118
https://doi.org/10.1016/0003-3472(95)80047-6
https://doi.org/10.1016/0003-3472(95)80047-6
https://doi.org/10.7120/09627286.28.2.157
https://doi.org/10.5194/aab-58-237-2015
https://www.jstor.org/stable/40296100
https://r-forge.r-project.org/projects/rmetrics/
https://doi.org/https:/doi.org/10.1016/0168-1591(92)90004-U
https://doi.org/https:/doi.org/10.1016/0168-1591(92)90004-U
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12584/abstract
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12584/abstract
https://doi.org/10.1016/j.applanim.2015.08.023
https://doi.org/10.1016/j.applanim.2015.08.023
https://doi.org/10.1111/eth.12655
https://doi.org/10.3390/agriculture8090136
https://doi.org/10.3390/agriculture8090136
https://doi.org/10.1111/eth.13225
https://doi.org/10.18637/jss.v059.i09
https://doi.org/10.18637/jss.v059.i09
https://doi.org/10.7120/09627286.30.4.002
https://doi.org/10.7120/09627286.30.4.002
https://doi.org/10.1016/S0749-0720(15)31159-2
https://doi.org/10.1016/S0749-0720(15)31159-2
https://doi.org/10.1075/is.5.1.07hem
https://doi.org/10.1075/is.5.1.07hem
https://doi.org/10.1016/S0376-6357(97)00055-7
https://doi.org/10.1016/S0376-6357(97)00055-7
https://psycnet.apa.org/doi/10.1163/156853906779367044
https://psycnet.apa.org/doi/10.1027/1901-2276.59.3.251
https://psycnet.apa.org/doi/10.1027/1901-2276.59.3.251
https://doi.org/10.1016/S0168-1591(99)00113-6
https://doi.org/10.1016/S0168-1591(97)00106-8
https://doi.org/10.1080/00401706.1981.10486293
https://doi.org/10.1002/bimj.4710370606
https://doi.org/10.1002/bimj.4710370606
https://doi.org/10.1098/rsif.2011.0049
https://doi.org/10.1098/rsif.2011.0049
https://doi.org/10.1016/j.applanim.2003.11.012
https://doi.org/10.1016/j.neuron.2020.09.017
https://doi.org/10.1038/sj.embor.7401147
https://doi.org/10.1038/sj.embor.7401147
https://doi.org/10.1093/ilar.39.1.20
https://doi.org/10.12693/APhysPolA.117.706
https://doi.org/10.1371/journal.pone.0253113
https://doi.org/10.1371/journal.pone.0253113
https://cran.r-project.org/package=contrast
https://cran.r-project.org/package=contrast
https://doi.org/10.3390/ani12020206
https://doi.org/10.1111/eth.13468
https://www.R-project.org/
https://doi.org/10.1098/rsos.200895
https://doi.org/10.1017/awf.2024.48


Reznikova Z 2023 Information theory opens new dimensions in experimental
studies of animal behaviour and communication. Animals 13. https://doi.
org/10.3390/ani13071174

Rugg DJ and Buech RR 1990 Analyzing time budgets with Markov chains.
Biometrics 46: 1123. http://doi.org/10.2307/2532453

Rutherford KMD, Haskell MJ, Glasbey C, Jones RB and Lawrence AB 2003
Detrended fluctuation analysis of behavioural responses to mild acute stres-
sors in domestic hens. Applied Animal Behaviour Science 83: 125–139.
https://doi.org/10.1016/S0168-1591(03)00115-1

Rutherford KMD, Haskell MJ, Glasbey C, Jones RB and Lawrence AB 2004
Fractal analysis of animal behaviour as an indicator of animal welfare.Animal
Welfare 13(S1): 99–103. https://doi.org/10.1017/S0962728600014433

Rutherford KMD, Haskell MJ, Glasbey C and Lawrence AB 2006 The
responses of growing pigs to a chronic-intermittent stress treatment. Physi-
ology&Behavior 89: 670–680. https://doi.org/10.1016/j.physbeh.2006.08.006

Sambrook T andWhiten A 1997 On the nature of complexity in cognitive and
behavioural science. Theory & Psychology 7: 191–213. https://psycnet.a
pa.org/doi/10.1177/0959354397072004 (accessed 14 August 2024).

Schrader L, Schubbert A,Rauterberg S,Czycholl I, LeebC,ZironM,Krieter J,
Schultheiß U and Zapf R 2020 Tierschutzindikatoren: Leitfaden für die
Praxis - Schwein: Vorschläge für die Produktionsrichtungen Sauen, Saugferkel,
Aufzuchtferkel undMastschweine, 2nd Edition: Kuratorium für Technik und
Bauwesen in der Landwirtschaft e.V. (KTBL): Darmstadt, Germany. [Title
translation: Animal welfare indicators: Guide for practice - Pig: Suggestions
for the production directions of sows, suckling piglets, rearing piglets and
fattening pigs].

Shannon CE 1948 A mathematical theory of communication. Bell System
Technical Journal 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948.
tb01338.x

Sherrington D 2010 Physics and complexity. Philosophical Transactions.
Series A, Mathematical, Physical, and Engineering Sciences 368: 1175–1189.
https://doi.org/10.1098/rsta.2009.0208

Singer P, Helic D, Taraghi B and Strohmaier M 2014 Detecting memory and
structure in human navigation patterns using Markov chain models of varying
order. PloS One 9: e102070. https://doi.org/10.1371/journal.pone.0114952

Stolba A, Baker N and Wood-Gush DGM 1983 The characterisation of
stereotyped behaviour in stalled sows by informational redundancy. Behav-
iour 87: 157–182. https://www.jstor.org/stable/4534302 (accessed 14 August
2024).

Stolba A and Wood-Gush DGM 1989 The behaviour of pigs in a semi-natural
environment. Animal Science 48: 419–425. https://doi.org/10.1017/S00033
56100040411

Tizard I 2008 Sickness behavior, its mechanisms and significance. Animal Health
Research Reviews 9: 87–99. https://doi.org/10.1017/S1466252308001448

Tolamn EC 1948 Cognitive maps in rats and men. Psychological Review 55:
189–208. https://psycnet.apa.org/doi/10.1037/h0061626 (accessed 14 August
2024).

Welfare Quality® 2009 Welfare Quality® assessment protocol for pigs (sows and
piglets, growing and finishing pigs). Welfare Quality® Consortium: Lelystad,
The Netherlands.

Young ME 2016 The problem with categorical thinking by psychologists. Behav-
ioural Processes 123: 43–53. https://doi.org/10.1016/j.beproc.2015.09.009

Young T,Creighton E, Smith T andHosie C 2012 A novel scale of behavioural
indicators of stress for use with domestic horses. Applied Animal Behaviour
Science 140: 33–43. https://doi.org/10.1016/j.applanim.2012.05.008

Zinn S 2013 The MicSim Package of R: An entry-level toolkit for continuous-
time microsimulation. International Journal of Microsimulation 7: 3–32.
http://doi.org/10.34196/ijm.00105

Animal Welfare 13

https://doi.org/10.1017/awf.2024.48 Published online by Cambridge University Press

https://doi.org/10.3390/ani13071174
https://doi.org/10.3390/ani13071174
https://doi.org/10.2307/2532453
https://doi.org/10.1016/S0168-1591(03)00115-1
https://doi.org/10.1017/S0962728600014433
https://doi.org/10.1016/j.physbeh.2006.08.006
https://psycnet.apa.org/doi/10.1177/0959354397072004
https://psycnet.apa.org/doi/10.1177/0959354397072004
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1098/rsta.2009.0208
https://doi.org/10.1371/journal.pone.0114952
https://www.jstor.org/stable/4534302
https://doi.org/10.1017/S0003356100040411
https://doi.org/10.1017/S0003356100040411
https://doi.org/10.1017/S1466252308001448
https://psycnet.apa.org/doi/10.1037/h0061626
https://doi.org/10.1016/j.beproc.2015.09.009
https://doi.org/10.1016/j.applanim.2012.05.008
https://doi.org/10.34196/ijm.00105
https://doi.org/10.1017/awf.2024.48

	The construction of a measure of behavioural complexity as a potential individual-based welfare indicator and its theoretical validation
	Introduction
	Materials and methods
	Microsimulation
	Measure of complexity
	Real data-sets
	Statistical analysis

	Results
	Simulated sequences
	Real data-sets
	Shannon diversity index as a representative indicator for complexity

	Discussion
	Animal welfare implications

	Conclusion
	Supplementary material
	Data and code availability
	Acknowledgements
	Competing interest
	References


