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Abstract. In the context of a perturbed two body problem, in which the Keplerian motion of
the small object (the satellite) is perturbed by the oblateness of the central body (the asteroid)
and the attraction of a third body (the Sun), we discuss the long-term evolution of the orbital
elements of a satellite orbiting an oblate body, with a particular focus on the behavior of the
inclination and the longitude of the ascending node. We derive analytically the position of the
Laplace plane as a function of several parameters and use this solution to analyse the long-term
evolution of distant circular orbits. The analytical study is complemented by numerical tests,
performed in the context of both Cartesian and Hamiltonian frameworks. The results give a
description of the orbital dynamical environment of asteroids and reveal the parameters that
play a key role in the long-term stability of distant circular orbits.
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1. Introduction

Recent and future missions have the purpose of orbiting and landing on the surface
of small bodies, like asteroids, comets and planetary satellites. Some of them are sample
return missions (e. g. OSIRIS-REx mission). Such missions rely on a good knowledge
of the dynamics around the explored object since a detailed study of the motion on
various time scales can provide optimal trajectories for the spacecraft, give stable orbits
or even describe the space environment. Indeed, a cartographic study of the dynamics
around minor bodies might assess the possibility of existence of accompanying swarms
of particles. On the other hand, post mission stability analysis can provide valuable
information on the body system, opening windows into the past of the Solar system and
creating opportunities for future human explorations.
In this work we are using both the Cartesian equations of motion and the Hamiltonian

formalism to investigate the long–term evolution of the orbits of a particle orbiting an
asteroid within the context of a model taking into account the attraction of the central
body (the asteroid), including the perturbations induced by the J2, J3 and J4 harmonic
terms, and the attraction of the Sun. In particular, we determine the location of the
Laplace plane, also called the invariable plane (see Allan & Cook (1964)), whose normal
vector is located in the plane determined by the normal vector of the equatorial plane
of the asteroid and the normal vector of the Sun’s orbital plane, and use this solution to
analyse the long-term evolution of distant initially circular orbits.
We perform a parametric study to identify those parameters whose variation leads to

large amplitude librational motions of the inclination and the longitude of the ascending
node of initially circular orbits. In this sense, we show that the obliquity of the minor body
is a key parameter that plays a major role in the long-term evolution of the inclination and
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the longitude of the ascending node. We illustrate this aspect by analysing two cases,
namely the dynamics around Vesta (the obliquity of Vesta has a moderate value ε=
15.66o, according to Bills & Nimmo (2011)) and, respectively, around Eros (the obliquity
of Eros has the extreme value of ε= 89o, see Souchay et al. (2003)).

We also reveal the role played by the secular resonances and the J3 harmonics terms
in the long-term evolution of the eccentricity of initially circular orbits and based on
this analysis we discuss the conditions in which the asteroids might have accompanying
satellites or swarms of particles.

2. Models and methods

We consider an infinitesimal particle (natural satellite or spacecraft) orbiting an oblate
minor body (asteroid or comet) which is uniformly rotating around a fixed axis, aligned
with the body axis (the principal axis with the highest moment of inertia), and revolves
around the Sun on an elliptical orbit.
In Cartesian coordinates, the motion of the particle, referred to a centred body system,

is described by:

r̈=R3(−θ) ∇V (r)−GmS

( r− rS
|r− rS |3 +

rS
|rS |3

)
, (2.1)

where r is the position vector of the particle, rS is the position vector of the Sun, V is
the gravitational potential of the oblate body (see Kaula (1961)), mS is the Sun’s mass,
G is the gravitational constant, ∇ is the gradient operator, θ is an angle describing the
rotation of the minor body and R3(θ) is the rotation matrix of angle θ around the third
axis.
Using the action–angle Delaunay variables (L, G, H,M, ω,Ω), which are related to the

orbital elements (a, e, i, M, ω,Ω) by L=
√
μa, G=L

√
1− e2,H =G cos i, where μ=Gm,

m being mass of the minor oblate body, the dynamics is described by the Hamiltonian

H=− μ2

2L2
−RA −RS , (2.2)

where RA (see Kaula (1961)) and RS (see Kaula (1962)) are the disturbing functions
due to the minor body and respectively the Sun.
Kaula (1961) gives a Fourier expansion of RA in terms of the orbital elements and

rotation angle θ:

RA =−μA

a

∞∑
n=2

n∑
m=0

(RA

a

)n
Jnm

n∑
p=0

Fnmp(i)

∞∑
q=−∞

Gnpq(e) csnm

(
Ψnmpq(M, ω,Ω, θ)

)
,

(2.3)
where RA is the reference radius of the minor body, Jnm are the harmonic coefficients,
Fnmp, Gnpq are the inclination and eccentricity functions, csnm is the cosine (sine)
function if n−m is even (odd) and

Ψnmpq(M, ω,Ω, θ) = (n− 2p)ω+ (n− 2p+ q)M +m(Ω− θ)−mλnm.

Kaula (1962) derived the expansion of the third body disturbing function, as a function
of the orbital elements of both the perturbed and perturbing bodies, in the form:

RS =
∑

AS
k1k2k3k4k5k6

(a/a∗S , e, i, e
∗
S , i

∗
S) cos(k1M + k2M

∗
S + k3ω+ k4ω

∗
S + k5Ω+ k6Ω

∗
S),

respectively, with kj integers, where the elements of the satellite and the third-body are
referred to the celestial equator. Since the motion of the minor body is assumed to be
elliptic, it follows that, for the Sun, the angles ω∗

S and Ω∗
S are constant and Ṁ∗

S varies
linearly in time.
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Focusing on the study of distant circular orbits (see also Allan & Cook (1964)), we
consider a double averaged model that includes the effects of J2 and the attraction of
the Sun. Expressed in the Milankovitch elements e= eP and h= (1− e)2R, where P is a
unit vector in the orbital plane and directed toward pericentre, while R is the unit vector
along the positive normal to the orbital plane, the equations of motion has the form:

ḣ= h× ∂V ∗

∂h
+ e× ∂V ∗

∂e
, ė= e× ∂V ∗

∂h
+ h× ∂V ∗

∂e
, (2.4)

where V ∗ is the potential averaged over the mean anomalies.

3. Results

The second equation of the system (2.4) is identically satisfied with e= 0. So, assuming
that the orbit is circular, the first equation of (2.4) becomes:

Ṙ=−ω0(R ·R0)(R0 ×R)− ω1(R ·R1)(R1 ×R), (3.1)

where R0 is the unit vector along the normal to the equatorial plane of the asteroid,
R1 is the unit vector along the normal to the orbital plane of the Sun, ω0 is a constant
depending on J2 and ω1 a constant depending on the mass of the Sun.
The identification of the equilibrium points of the dynamical problem (3.1) is effectively

a problem of eigenvalues and eigenvectors (see Allan & Cook (1964)):

(ω0R0R0 + ω1R1R1)V= λV,

where AB is the dyadic product of the vectors A and B. The eigenvalues λ are obtained
by finding the roots of the following equation

det(ω0R0R0 + ω1R1R1 − λI) = 0,

where I is the idemtensor. It is easy to see that one eigenvalue is null, let us denote it
by λ1, λ1 = 0, while the other two, namely λ2 and λ3 might be expressed in terms of
the constants ω0 and ω1. By computing the corresponding eigenvectors, we determine,
in fact, the equilibrium positions for the considered dynamical system. The inclination
and the longitude of the ascending node of the equilibrium points are deduced from the
Cartesian coordinates of the unit vectors associated to the eigenvectors.
In view of the above remarks, it follows that the equation (3.1) admits 3 equilibrium

points in the domain i∈ [00, 900], Ω∈ [00, 1800], two stable and one unstable. The position
of the equilibria can be determined by drawing the level sets as in Figure 1, where two
cases have been depicted, namely the dynamics around Vesta (top panels) and around
Eros (bottom panels).
In the (i,Ω) plane, there are possible two types of motions, namely librational and

rotational, and since the vectorial equation (3.1) can be integrated (it can be reduced
to a set of equations similar to the Euler equations for the motion of a rigid body)
the position of the equilibria as well as the amplitude and the period of librations are
provided by analytical formulas.
For instance, the position of the stable equlibrium point located at Ω= 0o, which, in

facts, gives the position of the Laplace plane (the angle between the Laplace plane and
the equatorial plane of the minor body), is shown in Figure 2 as a function of the distance
(expressed in equivalent radii) from the central body. The amplitude of the librational
island depends on many parameters, such as the orbital elements of the Sun, the value
of J2, in fact - the mass of the minor body and its obliquity. We identified the obliquity
as a key parameter in the sense that the larger the value of the obliquity is, the larger
the amplitude of the libration should be (see Figure 1).

The results are validated by numerical studies obtained by integrating the Cartesian
equations of motion (2.1) and the canonical equations associated to the Hamiltonian
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Figure 1. The level sets for the case of Vesta: a = 6000 km (top left), a = 9000 km (top middle),
a = 15000 km (top right) and for the case of Eros: a = 200 km (bottom left), a = 250 km (bottom
middle), a = 280 km (bottom right).

Figure 2. The location of the Laplace plane in the cases of Vesta (left) and Eros (right).

(2.2) and by considering a more complete model that includes all zonal harmonic terms
up to degree n= 4.

Although the inclination and the longitude of the ascending node have the behaviour
predicted by the above analytical arguments, the eccentricity does not remain constant.
As effect of J3, which induces a slight variation of the eccentricity (even if the initial
eccentricity is zero), and of the secular solar resonances, which might induce very large
variations of eccentricity for non–circular orbits, the long-term behaviour of the orbits
is complex. Indeed, if an initially circular orbit suffers a variation in inclination large
enough to cross a secular solar resonance, then, as effect of J3, the eccentricity becomes
larger than zero making possible for the orbit to be captured in the libration region of
the secular resonances, which induces large excursions in eccentricity.
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Figure 3. Evolution of the orbital elements for the case of particles orbiting Vesta, located at
the distance 6000 km, with the initial eccentricity e = 10−4. The green and yellow thick lines
represent orbits propagated using the Cartesian approach and the thin lines are obtained using
the Hamiltonian formalism. In both frameworks, the effects of the J2, J3 and J4 harmonic terms
is taken into account.

Figure 4. Evolution of the orbital elements for the case of particles orbiting Eros, located
at the distance 250 km, with the initial eccentricity e = 10−6. The green and yellow thick lines
represent orbits propagated using the Cartesian approach (considering all 3 harmonic terms) and
the thin lines are obtained by using the Hamiltonian formalism (considering only the J2 term).

For relatively small inclinations (the secular resonances are absent), the circular orbits
around Vesta are stable (remain almost circular) even at appreciable distances (see
Figure 3). At i= 63.4o and i= 63.4o and i= 116.4o are located the critical inclination
resonances. The curves in green, blue and red (Figure 3) cross one of these resonances,
and as described above the eccentricity increases considerably.
On the other hand, the initially circular orbits around Eros do not share the same

properties, due to the large obliquity of Eros, about 89o. At distances, let say larger than
250 km, the inclinations of the orbits perform large excursions (see Figure 1, bottom
panels) and as a consequence, they cross the regions where secular regions are located.
As effect of the J3 harmonic term the eccentricity becomes larger than zero, and the
secular resonances induces a large increase in eccentricity (see Figure 4).

4. Implications

In this work we have done an analysis of the equilibrium points (in the (Ω, i) plane)
and we have obtained some preliminary results: the position of the equilibrium points
and the amplitude of the libration islands depend on a variety of parameters (the semi-
major axis of the asteroid, its eccentricity, its obliquity and so on). The simulations show
that a key parameter is the obliquity of the minor body. The results are important for
the determination of the orbital dynamical environment of asteroids and, in particular,
in the analysis of the long-term stability of circular orbits. A preliminary conclusion is
the following: Vesta might possess satellites even at appreciable distances, provided the

https://doi.org/10.1017/S1743921323003915 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323003915


164 G. Nadabaică

inclination is less than 450. However, in the case of Eros, for altitudes larger than 250 km,
the large Eros’ obliquity of 89◦ (see Souchay et al. (2003)) induces large excursions in
inclinations that cross multiple secular resonances. Eros cannot have satellites on circular
orbits at distances larger than 250 km.
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