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Shock-induced instability developments of two successive interfaces have attracted much
attention, but remain a difficult problem to solve. The feedthrough and reverberating waves
between two successive interfaces significantly influence the hydrodynamic instabilities of
the two interfaces. The evolutions of two successive slow/fast interfaces driven by a weak
shock wave are examined experimentally and numerically. First, a general one-dimensional
theory is established to describe the movements of the two interfaces by studying the
rarefaction waves reflected between the two interfaces. Second, an analytical, linear model
is established by considering the arbitrary wavenumber and phase combinations and
compressibility to quantify the feedthrough effect on the Richtmyer–Meshkov instability
(RMI) of two successive slow/fast interfaces. The feedthrough significantly influences
the RMI of the two interfaces, and even leads to abnormal RMI (i.e. phase reversal of
a shocked slow/fast interface is inhibited) which is the first observational evidence of
the abnormal RMI provided by the present study. Moreover, the stretching effect and
short-time Rayleigh–Taylor instability or Rayleigh–Taylor stabilisation imposed by the
rarefaction waves on the two interfaces are quantified considering the two interfaces’ phase
reversal. The conditions and outcomes of the freeze-out and abnormal RMI caused by the
feedthrough are summarised based on the theoretical model and numerical simulation.
A specific requirement for the simultaneously freeze-out of the instability of the two
interfaces is proposed, which can potentially be used in the applications to suppress the
hydrodynamic instabilities.

Key words: shock waves

1. Introduction

Rayleigh–Taylor instability (RTI) develops when lighter fluids accelerate heavier fluids
(Rayleigh 1883; Taylor 1950), then bubbles (lighter fluids penetrating heavier ones) and
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spikes (heavier fluids penetrating lighter ones) arise, and a flow transition to turbulent
mixing may finally appear (Zhou et al. 2019; Livescu 2020). Richtmyer–Meshkov
instability (RMI) is a comparable phenomenon when a shock wave accelerates an
interface separating two fluids (Richtmyer 1960; Meshkov 1969). As reviewed by Zhou
et al. (2021), both instabilities play essential roles in various industrial and scientific
fields, including inertial confinement fusion (ICF), supernova explosions, ejecta, material
strength, chemical reactions, solar prominence and ionospheric flows. The RTI and RMI
on a semi-infinite single-mode interface (as the simplest mathematical form) have been
widely studied (Sharp 1984; Brouillette 2002; Zhou 2017a,b; Zhai et al. 2018b). The RTI
and RMI, however, are frequently involved in shock-induced multiple interface evolutions
(Liang 2022a). For example, the RMI occurs when powerful lasers or X-rays interact with
the multiple interfaces of an ICF capsule, determining the seed of the RTI during the
ICF implosion. The mixing induced by the RTI and RMI significantly reduces and even
eliminates the thermonuclear yield (Miles et al. 2004; Qiao & Lan 2021). Furthermore,
the shocks produced by star collapse in a supernova interact with multiple heavy elements
throughout interstellar space. The mixing induced by the RTI and RMI shapes the
filament structures in the remnant of the historical supernova. Therefore, studying the
hydrodynamic instabilities of multiple interfaces driven by a shock wave is crucial.

In the ICF, the disturbance at the hotspot–fuel interface originates from its initial
perturbation, the feedthrough of the perturbation on the ablation surface and the driven
inhomogeneity (Hsing & Hoffman 1997; Weir, Chandler & Goodwin 1998; Shigemori
et al. 2002; Regan et al. 2004; Haan et al. 2011; Simakov et al. 2014; Knapp et al.
2017; Desjardins et al. 2019). Milovich et al. (2004) showed that the feedthrough of the
ablation surface leads to a significant decrease in the implosion efficiency of a double-shell
ignition target. Moreover, simulations indicated that the performance of the ignition target
obviously depends on the distance between the successive interfaces, and a longer distance
reduces the feedthrough between the interfaces (Haan et al. 2011; Simakov et al. 2014).
Therefore, the feedthrough between two successive interfaces is a significant parameter
to evaluate in applications. However, it is still an open problem to exactly quantify the
feedthrough effect on the hydrodynamic instabilities of two successive interfaces with
arbitrary initial conditions. Therefore, it is essential to study the solution and outcome of
the feedthrough effect on the hydrodynamic instabilities.

Theoretically, Taylor (1950) was the first to consider the RTI of two successive interfaces
and discovered that the feedthrough is significant when the initial distance between the two
interfaces is limited. Ott (1972) derived a nonlinear solution describing the asymmetry of
the RTI of a thin massless layer. The linear models for the RMI of successive fast/slow
and slow/fast interfaces were separately derived by Mikaelian (1985, 1995, 1996) and
Jacobs et al. (1995). It was proved that the feedthrough becomes more evident as the
initial distance decreases. Based on the point-vortex model, Jacobs et al. (1995) proposed
a nonlinear model to quantify the mixing width growth of the fluid layer consisting of
two successive interfaces. Recently, the third-order weakly nonlinear solutions for the
RTI and RMI of two superimposed fluid layers in a vacuum were separately deduced
by Wang et al. (2014) and Liu et al. (2018b). The density ratio of the two fluid layers
has a non-negligible influence on the instability development of the middle interface. It
is evident that most previous theoretical studies considered the hydrodynamic instabilities
of A/B/A-type successive interfaces, i.e. two successive interfaces separating two kinds
of fluids (fluids A and B). However, compared with A/B/A-type successive interfaces,
A/B/C-type successive interfaces, i.e. two successive interfaces separating three kinds of
fluids (fluids A, B and C), are more general in applications. Therefore, a general, analytical
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solution for the hydrodynamic instabilities of two successive interfaces separating three
kinds of fluids is urgently needed.

Experimentally, the gas curtain technology combined with a particle image velocimetry
or/and planar laser-induced fluorescence system was primarily used to investigate the RMI
of a thin SF6 gas curtain surrounded by air. The experiments measured the shocked gas
curtain’s mixing widths, circulation, mixedness and other parameters with the quantitative
measurement technique. It was discovered that the shock-induced SF6 gas curtain
morphologies are sensitive to the initial curtain shape (Jacobs et al. 1993; Budzinski,
Benjamin & Jacobs 1994; Jacobs et al. 1995; Rightley, Vorobieff & Benjamin 1997).
Moreover, the initial spectrum of perturbations, shock strength and reshock also influence
the late-time mixing (Prestridge et al. 2000; Tomkins et al. 2008, 2013; Balakumar et al.
2008; Orlicz et al. 2009; Orlicz, Balasubramanian & Prestridge 2013; Balakumar et al.
2012; Balasubramanian et al. 2012). However, the concentration of the test gas inside the
gas curtain is non-uniform (Tomkins et al. 2008; Orlicz et al. 2009; Balasubramanian
et al. 2012), and the gas curtain actually consists of an infinite number of gas interfaces.
Therefore, it is difficult to analyse the wave patterns and flow features, especially the
evolution of each interface, during the shock–gas-curtain interaction. Moreover, the profile
of the gas curtain is mainly cylindrical or elliptical (Bai et al. 2010), which means that the
perturbations of the upstream and downstream interfaces are corrugated with opposite
phases. The other cases, such as two successive interfaces corrugated with the same phase
perturbations, have rarely been studied.

The soap film technique was recently used to create a shape-controllable and
layer-thickness-controllable SF6 or helium gas layer surrounded by air (Liang et al. 2020a;
Liang & Luo 2021a,b, 2022b). The soap film interfaces are discontinuous, and the number
of gas interfaces is definite. It was determined that the reverberating waves between the
two successive interfaces of a gas layer induce various additional interfacial instabilities.
For example, the reflected rarefaction waves inside an SF6 gas layer impose the additional
RTI (Rayleigh 1883; Taylor 1950) on the upstream interface, and the compression waves
inside an SF6 gas layer impose the additional RTI or Rayleigh–Taylor stabilisation (RTS)
on the downstream interface (Liang & Luo 2021a). The reflected shocks inside a helium
gas layer also induce the additional RMI on the two interfaces (Liang & Luo 2022b).

Numerically, several independent simulations were performed to analyse the parameters
dominating the instabilities of two successive interfaces. It was found that the initial
perturbations of the two interfaces, the number of interfaces, the geometry of the
computational domain (i.e. planar, cylindrical and spherical geometries) and reshocks
have different and significant influences on the hydrodynamic instabilities of the multiple
interfaces (Mikaelian 1996, 2005; de Frahan, Movahed & Johnsen 2015; Li, Samtaney &
Wheatley 2018; Qiao & Lan 2021; Ouellet et al. 2022).

In the weak-shock limit, Liang & Luo (2022a) developed a linear model for the RMI
of two successive fast/slow interfaces which are A/B/C-type successive interfaces. It
was proved that the density ratios of the distributed fluids, the amplitude ratio of the
two interfaces and the dimensionless distance between them determine the feedthrough
effect on the RMI. However, the linear model only quantifies the feedthrough between
the two interfaces owning the same wavenumber and the same or opposite phases. The
perturbation on the material interfaces in applications should be random. Therefore,
extending the linear model by considering arbitrary wavenumber and phase combinations
is essential. Moreover, the reverberating waves between two successive slow/fast interfaces
differ significantly from those between two fast/slow interfaces. As a result, the additional
instabilities caused by the reverberating waves are completely different. Rarefaction
waves are expected to reverberate between the shocked two successive interfaces.
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On comparing with the shock–interface interaction, it is more challenging to quantify the
flow field during and after the interaction of rarefaction waves and interfaces. Furthermore,
because a shocked slow/fast interface generally experiences phase reversal (Brouillette
2002), quantifying the waves’ effect on the two successive slow/fast interfaces is more
complicated than on the two fast/slow interfaces. In addition, an abnormal phase reversal
phenomenon (i.e. phase reversal occurs on a shocked fast/slow interface) was discovered
in the shock-tube experiments on the two successive fast/slow interfaces (Liang & Luo
2022a), which is one kind of the abnormal RMI. Nevertheless, it is uncertain whether
the abnormal RMI happens on two successive fast/slow interfaces. The necessary and
sufficient conditions of the abnormal RMI also need further investigation.

In this work, we shall first extend the soap film technique to generate two successive
slow/fast interfaces with the upstream gas of SF6, the middle gas of a mixture of air
and SF6, and the downstream gas of air. Second, we use the shock-tube facility to
perform three quasi-one-dimensional (1-D) experiments by varying the initial distance
between the two interfaces to understand the reverberating rarefaction waves effect
on the two interfaces’ movements. We also conduct six quasi-two-dimensional (2-D)
experiments by considering various initial distances and interface perturbations to explore
the hydrodynamic instabilities. Numerical simulations are performed to provide more
quantitative data. Third, an analytical, linear solution is established considering the
arbitrary wavenumber and phase combinations and compressibility in the weak-shock
limit. Fourth, the influences of the reverberating rarefaction waves on the hydrodynamic
instabilities of the two interfaces are quantified. Last, the conditions and outcomes of the
freeze-out and abnormal RMI caused by the feedthrough are summarised according to the
extended linear model and numerical results.

2. Experimental and numerical methods

2.1. Experimental setup
The soap film technique is extended to form two shape-controllable, discontinuous
slow/fast interfaces, mainly reducing the additional short-wavelength disturbances,
interface diffusion and three-dimensionality (Liu et al. 2018a; Liang et al. 2019, 2021).
As shown in figure 1(a), three transparent devices (i.e. left device, middle device and right
device) with a width of 140.0 mm and a height of 10.0 mm are first manufactured using
transparent acrylic sheets with a thickness of 3.0 mm. Next, the middle device’s adjacent
boundaries are carefully engraved to be of a sinusoidal shape with a depth of 1.8 mm.
Then, on two sides of the middle device, four thin filaments with a height of 2.0 mm are
attached to the inner surfaces of the upper and lower plates to restrict the shape of the
soap film (marked by green in figure 1a). Thus the filament bulges in the flow field with
only 0.2 mm height. Finally, before the interface formation, the filaments are appropriately
wetted with a soap solution containing 78 % (in mass fraction) distilled water, 2 % sodium
oleate and 20 % glycerine.

First, a small rectangular frame is drawn along the sinusoidal filaments on both sides of
the middle device, with moderate soap solutions dipped on its edges. The middle device
is closed, and two soap film interfaces are created. Second, SF6 is pumped into the closed
space through an inflow hole to discharge air through an outflow hole. Third, an oxygen
concentration detector is placed at the outflow hole to monitor the concentration of SF6
inside the closed space. The inflow and outflow holes are sealed when the volume fraction
of oxygen at the outflow hole reduces to 10 %. Fourth, the left and right transparent devices
are gently connected to the middle device, and the combined one is inserted into the test
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Figure 1. Schematics of (a) the soap film interface generation, (b) the shock-tube and schlieren photography,
and (c) the initial configuration of two successive slow/fast interfaces, where L0 denotes the initial distance
between the two interfaces, II1 denotes the initial upstream interface and II2 denotes the initial downstream
interface.

section of the shock-tube. Fifth, the air in the driven section of the shock-tube is entirely
replaced by SF6, as sketched in figure 1(b). Finally, high-pressure air is pumped into the
driver section of the shock-tube, breaking the diaphragm between the driver section and
the driven section and generating a shock wave. The two successive slow/fast interfaces
are impacted by the shock wave in the open-ended test section.

In the Cartesian coordinate system, as sketched in figure 1(c), the perturbations on the
two interfaces are single-mode. In this work, the perturbation wavenumbers on the two
interfaces are fixed as 104.7 m−1, and the initial amplitude of the upstream interface
(a1(0)) and the downstream interface (a2(0)) are fixed as 2.0 mm. To minimise the
wall effect of the shock-tube on the interface evolution, a short flat part with 10.0 mm
on each side of the two interfaces is adopted (Vandenboomgaerde et al. 2014). Its
influence on interface evolution is limited (Luo et al. 2019). Here, L0 is defined as the
distance between the average positions of the initial upstream interface (II1) with the
initial downstream interface (II2). We shall perform three quasi-1-D experiments and six
quasi-2-D experiments. The three cases (i.e. cases L10-IP, L30-IP and L50-IP) in which
the initial perturbations on the two interfaces are in-phase are defined as the in-phase
cases and the three cases (i.e. cases L10-AP, L30-AP and L50-AP) in which the initial
perturbations on the two interfaces are anti-phase are defined as the anti-phase cases. As
sketched in figure 1(c), gas A is SF6, gas B is a mixture of air and SF6, and gas C is air. The
mass fraction of SF6 in gas B, MF, is listed in table 1. Moreover, R1 (= ρA/ρB) and R3 (=
ρC/ρB) separately denote the density ratios of the fluids on the two sides of the upstream
interface and downstream interface, with ρA (= 6.14 kg m−3), ρB (as listed in table 1)
and ρC (= 1.20 kg m−3) being the pre-shock densities of gases A, B and C, respectively.
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Case L10-1D L30-1D L50-1D L10-IP L10-AP L30-IP L30-AP L50-IP L50-AP

L0 (mm) 10.0 30.0 50.0 10.0 10.0 30.0 30.0 50.0 50.0
MF 0.67 0.48 0.49 0.67 0.67 0.53 0.53 0.49 0.51
ρB (kg m−3) 4.48 3.59 3.60 4.48 4.48 3.79 3.79 3.57 3.67
R1 1.37 1.73 1.71 1.37 1.37 1.62 1.62 1.72 1.67
R3 0.33 0.40 0.38 0.33 0.33 0.38 0.38 0.41 0.37
A1 −0.16 −0.27 −0.26 −0.16 −0.16 −0.24 −0.24 −0.26 −0.25
A2 −0.43 −0.42 −0.45 −0.43 −0.43 −0.45 −0.45 −0.42 −0.46

Table 1. Initial physical parameters of two successive slow/fast interfaces, where L0 denotes the initial distance
between the two interfaces; MF denotes the mass fraction of SF6 in gas B; ρB denotes the density of gas B;
R1 and R3 denote the density ratios of the fluids on the two sides of the upstream interface and downstream
interface, respectively; and A1 and A2 denote the Atwood numbers of the upstream interface and downstream
interface, respectively.

In addition, A1 (= (ρB − ρA)/(ρB + ρA)) and A2 (= (ρC − ρB)/(ρC + ρB)) are the
Atwood numbers of the upstream interface and downstream interface, respectively.

The ambient pressure and temperature are 101.3 kPa and 295.5 ± 1.0 K, respectively. In
the experiments, the incident shock wave travels from left to right with a Mach number
of 1.24 ± 0.01 and a velocity (vIS) of 167 ± 2 m s−1. The velocity of the flow behind the
incident shock wave (vps) is 56 ± 1 m s−1. We choose schlieren photography combined
with a high-speed camera to monitor the flow field and capture the density gradient
induced by the reverberating waves between the two interfaces. The frame rate of the
high-speed video camera (FASTCAM SA5, Photron Limited) is 60 000 f.p.s., and the
shutter time is 1.0 μs. The spatial resolution of schlieren images is 0.4 mm pixel−1. The
flow field visualisation is limited within the range of x ∈ [−50, 50] mm, as shown in
figure 1(c).

2.2. Numerical scheme
Numerical simulation is performed to obtain quantitative data considering more initial
conditions. The process of a planar shock interacting with two successive slow/fast
interfaces examined in this study is described by compressible Euler equations, which
coincides with the numerical studies focusing on the early to intermediate regimes of
RMI with or without reshocks (Grove et al. 1993; Holmes & Grove 1995; Holmes et al.
1999; Herrmann, Moin & Abarzhi 2008; Niederhaus et al. 2008; Leinov et al. 2009;
Ding et al. 2017, 2018; Zhai et al. 2017, 2018a; Zou et al. 2019; Igra & Igra 2020).
An upwind space–time conservation elements/solution elements (CE/SE) scheme is used
with second-order accuracy in both space and time (Shen et al. 2015a; Shen, Wen &
Zhang 2015b; Shen & Wen 2016). A volume-fraction-based five-equation model (Abgrall
1996; Shyue 1998) is used to illustrate the different species residing on both sides of
the inhomogeneous interface. The contact discontinuity restoring Harten–Lax–van Leer
contact Riemann solver (Toro, Spruce & Speares 1994) is used to determine the numerical
fluxes between the conservation elements. The use of this scheme in capturing shocks
and details of complex flow structures for the RMI issues and shock–droplet interactions
has been well validated (Shen & Parsani 2017; Shen et al. 2017; Guan et al. 2018; Fan
et al. 2019; Liang et al. 2020b; Liang 2022b). A comprehensive review of the scheme
and its extensive applications was recently reported by Jiang, Wen & Zhang (2020). The
initial settings of the 2-D simulation are presented in figure 2. Open boundary conditions
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Figure 2. Schematics of the initial simulation setup, where a1 and a2 represent the amplitudes of the
upstream interface and downstream interface, respectively.

are enforced on the left and right boundaries (y = −40.0 and y = 200.0 mm) to eliminate
the waves reflected from the left and right boundaries (Liang et al. 2020b; Liang 2022b),
and reflection conditions are imposed at the top and bottom boundaries (x = −70.0 and
x = 70.0 mm), respectively.

2.3. Code validation
The experimental results of cases L10-1D and L10-AP are used for the code validation.
For the data of numerical simulations, the nodes with a mass fraction of SF6 between 0.99
with (MF + 0.01) are chosen as the upstream interface, and the nodes with a mass fraction
of SF6 between (MF − 0.01) with 0.01 are chosen as the downstream interface. Then, the
mean value of y of these nodes on each row is taken as the average position of the local
interface.

First, the time-varying displacements of the shocked upstream interface (SI1), ySI1, and
the shocked downstream interface (SI2), ySI2, in the L10-1D case, are extracted from the
experiments, as shown with solid symbols for the upstream interface and hollow symbols
for the downstream interface in figure 3(a). The moment when the incident shock wave
impacts the average position of the II1 at y01 is defined as t = 0. The numerical results
with four mesh sizes of 0.40 mm, 0.20 mm, 0.10 mm and 0.05 mm are compared with the
experiments, as shown with lines in figure 3(a). It is found that all the numerical results
agree well with the experimental ones.

Second, the time-varying amplitudes of the upstream interface (a1) and downstream
interface (a2) are extracted from the experiments in the L10-AP case, as shown in
figure 3(b). Here, a1 and a2 are defined as half of the streamwise distances between the
bubble tip and spike tip of the upstream interface and downstream interface, respectively,
as sketched in figure 2. It is found that the numerical results with mesh sizes of
0.20 mm, 0.10 mm and 0.05 mm quantitatively agree well with the experiments within the
experimental measurement errors. Moreover, the values of a1 and a2, acquired from the
simulations, separately converge when the mesh size is reduced to 0.10 mm and 0.05 mm
in the numerical simulations. Therefore, an initial mesh size of 0.10 mm is adopted for all
simulations to ensure accuracy and minimise the computational cost.

3. Quasi-1-D wave pattern and interface movement

We shall first discuss the reverberating waves observed from schlieren images. The
interface displacements and velocities are then measured and compared between various
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Figure 3. Code validation based on (a) the time-varying displacements of the shocked upstream interface (SI1)
and downstream interface (SI2) in the L10-1D case, and (b) the time-varying amplitudes of the SI1 and SI2 in
the L10-AP case, where n = 1 for the upstream interface and n = 2 for the downstream interface in this study.
Solid (or hollow) symbols represent the experimental results for the SI1 (or SI2), and dash–dot (or dashed) lines
represent the numerical results for the SI1 (or SI2), considering various mesh sizes.

initial distance cases. Last, the velocities of the two interfaces are calculated after
the reverberating rarefaction waves have impacted them. A general 1-D theory for
characterising the interface movement is established in this way.

3.1. Experimental observation
Experimental schlieren images of the evolutions of two successive, quasi-1-D slow/fast
interfaces driven by a shock wave are shown in figure 4(a–c) for L0 = 10.0, 30.0 and
50.0 mm, respectively. Taking the L50-1D case as an example, the wave pattern and
interface movement are discussed in detail. After the incident shock wave (IS) impacts the
II1, the reflected rarefaction waves (RW1) and the transmitted shock (TS1) are immediately
generated, and the shocked upstream interface (SI1) begins to move forwards (116 μs).
Then the TS1 impacts the II2, and the TS2 is refracted downstream, followed by the
shocked downstream interface (SI2) (299 μs). Meanwhile, the rarefaction waves (rRW2)
are reflected upstream since the II2 is a slow/fast interface relative to the movement of
the TS1. After the rRW2 impacts the SI1 (449 μs), the transmitted rarefaction waves
(tRW1) and reflected rarefaction waves (rRW1) are immediately generated since the SI1
is a fast/slow interface relative to the movement of the rRW2. However, due to the limited
strength of the rRW1, the density variation induced by the rRW1 is restricted such that it
is challenging to distinguish the rRW1 between the two interfaces. Finally, all waves are
refracted away from the two interfaces, and the two interfaces move forward at the same
velocity.

The interface displacements (ySIn) and velocities (vSIn) of the two interfaces, with
n = 1 for the upstream interface and n = 2 for the downstream interface, are measured
from experiments, as shown in figures 5(a) and 5(b), respectively. Time is scaled as
tvt1/L0 with vt1 denoting the velocity of the TS1. Interface displacement is scaled as
( ySIn − y01)/L0, and interface velocity is scaled as vSIn/v

α
1 with vα1 denoting the velocity

jump of the upstream interface induced by the IS. The values of vt1 and vα1 in all cases
are calculated according to the 1-D gas dynamics theory (Drake 2018), as listed in table 2.
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Hydrodynamic instabilities of two slow/fast interfaces
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TS1 SI2

297114 630 1191

tRW1

(a)

(b)

(c)

Figure 4. Schlieren images of evolutions of two successive, quasi-1-D slow/fast interfaces driven by a shock
wave in cases (a) L10-1D, (b) L30-1D and (c) L50-1D, where SI1 (or SI2) denotes the shocked upstream (or
downstream) interface, RW1 (or TS1) denotes the reflected rarefaction waves (or transmitted shock) after the IS
impacts II1, rRW2 (or TS2) denotes the reflected rarefaction waves (or transmitted shock) after the TS1 impacts
II2, and tRW1 denotes the transmitted rarefaction waves after the rRW2 impacts the SI1. Numbers indicate time
in μs.
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Figure 5. The dimensionless (a) displacements and (b) velocities of the upstream interface (solid symbols) and
the downstream interface (hollow symbols). Black, yellow and orange solid (or dashed) lines represent the 1-D
theory predictions for the upstream (or downstream) interface movements in Stages I, II and III, respectively.
The vertical dash–dot lines represent the specific times calculated with (3.1) and (3.9a,b).

The dimensionless displacements and velocities of the upstream (or downstream) interface
converge in all L0 cases, as shown in figure 5(a,b), indicating that the dimensionless
movements of the two interfaces are independent of the initial distance between the two
interfaces.

3.2. Characteristics of reverberating rarefaction waves
The reverberating rarefaction waves between the two successive slow/fast interfaces are
sketched in figure 6. Here, we define the time when the TS1 impacts the II2 as tα2 , the time
when the rRW2 impacts the SI1 as tβ1 , and the time when the rRW1 impacts the SI2 as tβ2 .
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SI1
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SI2
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II2

TS1
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(b)

v1
α v2

α

v2
α

v1
α

v1
β v1

β v2
β

rRW2

rRW1

γA, cA

γC, cC

γB, cB
α, p1

cB
σ, p3

cB
β, p2

p4

Figure 6. Sketches of (a) the interaction of the TS1 and II2, (b) the interaction of the rRW2 and SI1, (c) the
interaction of the rRW1 and SI2, and (d) the movements of the SI1 and SI2 after all waves are refracted away,
where γA, γB and γC denote the specific heat ratios of gas A, gas B and gas C, respectively; cA denotes the
sound speed of gas A after the IS impacts the II1, cαB denotes the sound speed of gas B between the TS1 with
the II2, cβB denotes the sound speed of gas B between the rRW2 tail and the SI2, cσB denotes the sound speed
of gas B between the rRW1 tail and the SI1, cC denotes the sound speed of gas C behind TS2; p1 denotes
the pressure of gas B behind the TS1, p2 denotes the pressure of gas B behind the rRW2 tail, p3 denotes the
pressure of gas B behind the rRW1 tail, and p4 denotes the pressure of gas B after the interaction of the rRW1

and SI2. (a) t = tα2 , (b) t = tβ1 , (c) t = tβ2 , (d) t > tβ2 .

Then tα2 , tβ1 and tβ2 can be derived as

tα2 = L0

vt1
,

tβ1 = tα2 + L0 − tα2 v
α
1

vα1 − vrRW2

,

tβ2 = tβ1 + L0 − tα2 v
α
1 + (tβ1 − tα2 )(v

α
2 − vα1 )

vrRW1 − vα2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

in which vα2 represents the velocity jump of the downstream interface induced by the TS1;
vrRW2 and vrRW1 separately represent the velocity of the rRW2 head and that of the rRW1
head, and they can be stated as

vrRW2 = vα1 − cαB, vrRW1 = vα2 + cβB, (3.2a,b)

where cαB denotes the sound speed of gas B between the TS1 and SI1, and cβB denotes the
sound speed of gas B between the rRW2 tail and SI2, as sketched in figure 6(a,b). The
values of vα2 , vrRW2 and vrRW1 are calculated according to the 1-D gas dynamics theory
(Drake 2018) and (3.2a,b), as listed in table 2. Then tα2 , tβ1 and tβ2 are calculated based on
(3.1), as listed in table 2. As L0 increases, tα2 , tβ1 and tβ2 increase.

After the rRW2 impacts the SI1, the velocity of the SI1 increases from vα1 to vβ1 since
the pressure behind the rRW2 tail (p2) is lower than the pressure in front of the rRW2 head
(p1), as sketched in figure 6(a,b). Differently, after the rRW1 impacts the SI2, the velocity
of the SI2 reduces from vα2 to vβ2 since the pressure behind the rRW1 tail (p3) is lower than
p2, as sketched in figure 6(b,c). The solutions of vβ1 and vβ2 are discussed in detail.
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Hydrodynamic instabilities of two slow/fast interfaces

Case L10-1D L30-1D L50-1D L10-IP L10-AP L30-IP L30-AP L50-IP L50-AP

vt1 195 220 218 195 195 212 212 218 215
vrRW2 −105 −126 −124 −105 −105 −119 −119 −125 −122
vrRW1 235 261 260 237 235 254 254 260 258
vα1 59.5 62.4 62.2 59.5 59.5 61.6 61.6 62.3 62.0
vα2 71.1 74.2 74.8 71.1 71.1 74.1 74.5 73.9 74.7

v
β

1 70.3 72.7 73.2 70.3 70.3 72.7 73.0 72.5 73.2

v
β

2 70.0 72.3 72.9 70.0 70.0 72.3 72.8 72.2 73.0
vfn 70.1 72.4 73.0 70.1 70.1 72.4 72.9 72.3 73.1
tα2 51 137 229 51 51 141 141 229 232

tβ1 94 251 421 94 94 259 259 420 426

tβ2 139 373 627 139 139 386 386 624 634
tσ1 97 259 436 97 97 268 269 434 441
tσ2 139 374 628 139 139 390 387 626 636

Table 2. Physical parameters of the waves and interfaces in the laboratory reference, where vt1 denotes the
velocity of the TS1; vrRW2 (or vrRW1 ) denotes the velocity of the rRW2 head (or rRW1 head); vα1 (or vα2 ) denotes
the velocity of the SI1 (or SI2) in Stage I; vβ1 (or vβ2 ) denotes the velocity of the SI1 (or SI2) in Stage II; vfn
denotes the asymptotic velocity of the two interfaces; tα2 denotes the specific time when the TS1 impacts the
II2; tβ1 denotes the time when the rRW2 head impacts the SI1 and tβ2 denotes the time when the rRW1 impacts
the SI2; tσ1 (or tσ2 ) represents the time when the rRW2 (or rRW1) leaves the SI1 (or SI2). The units for velocity
and time are m s−1 and μs, respectively.

First, based on the 1-D gas dynamics theory for the interaction of rarefaction waves and
a fast/slow interface (Drake 2018; Liang & Luo 2022a), vβ1 can be solved as

v
β

1 = vα1 − 2cA

γA − 1

[
p(γA−1)/2γA

31 − 1
]
, (3.3)

where γA is the specific heat ratio of gas A, and cA is the sound speed of gas A after the IS
impacts the II1, as sketched in figure 6(a). The only unknown parameter p31, i.e. the ratio
of the p3 to p1, satisfies

cA

cαB
=
(γA − 1)

[
p(γB−1)/2γB

31 − 2 p(γB−1)/2γB
21 + 1

]
(γB − 1)

[
1 − p(γA−1)/2γA

31

] , (3.4)

where γB is the specific heat ratio of gas B, cαB is the sound speed of gas B between the
TS1 with the II2, and p21 is the ratio of p2 to p1. Then vβ1 in all cases can be calculated by
solving (3.3)–(3.4), as listed in table 2.

Second, based on the 1-D gas dynamics theory for the interaction of rarefaction waves
and a slow/fast interface (Drake 2018; Liang & Luo 2021a), vβ2 can be calculated as

v
β

2 = vα2 + 2cβB
γB − 1

[
( p32)

(γB−1)/2γB − 1
]

−
√

2cβB( p42/p32 − 1)√
γB(γB + 1) p42/p32

, (3.5)

where cβB is the sound speed of gas B between the rRW2 tail and the SI2, and p32 is the
ratio of p3 to p2. The only unknown parameter p42, i.e. the ratio of the pressure of the flow
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Y. Liang and X. Luo

after the rRW1 leaves the SI2 (p4) to p2, satisfies

cC

cβB
= γC − 1

p(γC−1)/2γC
42 − 1

{
2

γB − 1

[
p(γB−1)/2γB

32 − 1
]

−
√

2( p42/p32 − 1) p(γB−1)/2γB
32√

(γB + 1)γB p42/p32 + (γB − 1)γB

}
, (3.6)

where cC is the sound speed of gas C after the TS1 impacts the II2, and γC is the specific
heat ratio of gas C. Then vβ2 in all cases can be calculated by solving (3.5)–(3.6), as listed
in table 2.

We note that the number of reverberating waves between the two interfaces should
be infinite. However, the consecutive pressure and velocity changes imparted by
these reverberations decrease, eventually converging to a well-defined asymptotic 1-D
post-shock state. The influences of the reverberating waves on the 1-D and 2-D dynamics
of the two interfaces should be considered until the two interfaces enter the asymptotic
post-shock state (Aglitskiy et al. 2006; Liang & Luo 2022a). A simple and advantageous
method is adopted to judge whether the higher-order reverberations should be accounted
for or not. The interaction of an incident shock wave with a semi-infinite interface
separating two fluids with ρA and ρC is considered, ignoring the intermediate layer of
gas B. The post-shock final velocity, vfn, is calculated according to the 1-D gas dynamics
theory (Drake 2018), as listed in table 2. The differences among the vβ1 , vβ2 and vfn

are limited: vfn is only 0.2 % smaller than vβ1 and 0.1 % larger than vβ2 . Therefore, it
is reasonable to regard that after the rRW1 impacts the SI2, the movements of the two
interfaces enter the asymptotic state.

The interaction between rarefaction waves and an interface is a continuous process (Li
& Book 1991; Li, Kailasanath & Book 1991; Morgan, Likhachev & Jacobs 2016; Morgan
et al. 2018; Liang et al. 2020b; Wang et al. 2022). The length of the rRW2 at tβ1 (LrRW2), the
interaction time of the rRW2 with the SI1 (TrRW2), and the average acceleration imposed
on the SI1 by the rRW2 (ḡrRW2) are respectively deduced as

LrRW2 = (cαB + vα2 − cβB − vα1 )(t
β

1 − tα2 ),

TrRW2 = 2LrRW2

2(cβB − vα2 )+ vα1 + v
β

1

,

ḡrRW2 = v
β

1 − vα1
TrRW2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Similarly, the length of the rRW1 at tβ2 (LrRW1), the interaction time of the rRW1 with the
SI2 (TrRW1), and the average deceleration imposed on the SI2 by the rRW1 (ḡrRW1) are
respectively derived as

LrRW1 = (cβB + vα2 − cσB − v
β

1 )(t
β

2 − tβ1 ),

TrRW1 = 2LrRW1

2(cσB + v
β

1 )− vα2 − v
β

2

,

ḡrRW1 = v
β

2 − vα2
TrRW1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

in which cσB (= cβB − (γB − 1)(uα2 − uβ1 )/2) is the sound speed of gas B behind the rRW1,
as sketched in figure 6(c). The values of LrRW2 , TrRW2 and ḡrRW2 in all cases are calculated
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Hydrodynamic instabilities of two slow/fast interfaces

Case L10-1D L30-1D L50-1D L10-IP L10-AP L30-IP L30-AP L50-IP L50-AP

LrRW2 0.52 1.45 2.59 0.61 0.52 1.58 1.63 2.40 2.66
TrRW2 3.30 8.04 14.5 3.92 3.30 9.13 9.44 13.4 15.1
ḡrRW2 3.26 1.28 0.76 3.23 3.26 1.22 1.21 0.76 0.75
LrRW1 0.04 0.19 0.34 0.05 0.04 0.18 0.20 0.33 0.33
TrRW1 0.24 1.02 1.86 0.28 0.24 1.02 1.13 1.76 1.83
ḡrRW1 −4.54 −1.83 −1.02 −4.70 −4.54 −1.74 −1.52 −0.98 −0.95

Table 3. Physical parameters of the reverberating rarefaction waves, where LrRW2 denotes the length of the
rRW2 at tβ1 , TrRW2 denotes the interaction time of the rRW2 and the SI1, ḡrRW2 denotes the average acceleration
imposed on the SI1 by the rRW2, LrRW1 denotes the length of the rRW1 at tβ2 , TrRW1 denotes the interaction
time of the rRW1 and the SI2, and ḡrRW1 denotes the average deceleration imposed on the SI2 by the rRW1.
The units for length, time and acceleration are mm, μs and 106 m s−2, respectively.

Stage I Stage II Stage III

Interface Period Motion Period Motion Period Motion

Upstream tβ1 > t > 0 Uni. (vα1 ) tσ1 > t > tβ1 Acc. (ḡrRW2 ) t > tσ1 Uni. (vβ1 )
Downstream tβ2 > t > tα2 Uni. (vα2 ) tσ2 > t > tβ2 Dec. (ḡrRW1 ) t > tσ2 Uni. (vβ2 )

Table 4. The movements of the shocked two successive slow/fast interfaces in different stages, where ‘Uni.’ is
short for ‘Uniform movement’, ‘Acc.’ is short for ‘Acceleration movement’ and ‘Dec.’ is short for ‘Deceleration
movement’.

based on (3.7), and the values of LrRW1 , TrRW1 and ḡrRW1 in all cases are calculated
according to (3.8), as listed in table 3. As L0 increases, LrRW2 , LrRW1 , TrRW2 and TrRW1
increase, whereas both ḡrRW2 and |ḡrRW1 | decrease.

In summary, the shocked two successive slow/fast interfaces’ movements can be
separated into Stages I, II and III, as listed in table 4, where tσ1 (or tσ2 ) represents the
time when the rRW2 (or rRW1) leaves the SI1 (or SI2),

tσ1 = tβ1 + TrRW2, tσ2 = tβ2 + TrRW1 . (3.9a,b)

As a result, a general 1-D theory is established to describe the movements of the two
interfaces based on the derived specific times ((3.1) and (3.9a,b)) and interface velocities
((3.2a,b)–(3.8)). The predictions of the 1-D theory for the interface movements in Stages
I, II and III are marked with black, yellow and orange lines, respectively, as shown with
solid lines for the upstream interface and dashed lines for the downstream interface in
figure 5(a,b), and they agree well with the experimental results. Significantly, the specific
times when the reverberating waves impact the two interfaces (e.g. tβ1 , tσ1 , tβ2 , and tσ2 ) and
the velocity jumps at these moments predicted by the 1-D gas dynamic theory agree well
with the experiments.

4. Quasi-2-D hydrodynamic instabilities

We shall first examine the deformations of the two interfaces observed from experimental
and numerical schlieren images. The amplitude growth rates are then acquired from
the experiments and simulations. Next, an analytical, linear model is further extended
by considering the arbitrary wavenumber and phase combinations and compressibility,
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which successfully describes the RMI of the two successive slow/fast interfaces. Later,
the influences of the reverberating rarefaction waves on the hydrodynamic instabilities of
the two interfaces are quantified. Last, the conditions and outcomes of the freeze-out and
abnormal RMI are summarised.

4.1. Experimental and numerical results
Schlieren images of the shock-induced two successive slow/fast interface evolutions
acquired from experiments and simulations are shown in figure 7(a– f ). The magnitude
of the density gradient (∇ρ) field in the simulations is calculated as (Quirk & Karni 1996;
Sembian, Liverts & Apazidis 2018)

|∇ρ| =
[(
∂ρ

∂x

)2

+
(
∂ρ

∂y

)2
]1/2

. (4.1)

Taking the L50-IP case as an example, the deformations of the two interfaces are discussed
in detail. After the IS impacts the perturbed II1, the rippled RW1 is reflected upstream,
and the rippled TS1 moves towards the II2 (121 μs). Meanwhile, the perturbation on
the SI1 decreases due to phase reversal (Brouillette 2002). After the TS1 impacts the
perturbed II2, the rippled TS2 is refracted downstream, and the rippled rRW2 is reflected
towards the SI1 (304 μs). Meanwhile, the perturbation on the SI2 decreases due to phase
reversal (Brouillette 2002). After the rRW2 impacts the SI1, the tRW1 is refracted upstream
(454 μs) and, theoretically, the rRW1 is reflected towards the SI2. Finally, the perturbations
on the two interfaces increase gradually with phases opposite to their initial perturbations.

In addition, we observe that the SI1 in the L10-AP case does not experience phase
reversal (see the white dashed lines in figure 7b), which is different from the other cases
and the RMI of a semi-infinite slow/fast interface reported before (Jourdan & Houas 2005;
Mariani et al. 2008). The phenomena, including the perturbation of a shocked slow/fast
interface growing with the same phase as its initial state and the perturbation of a shocked
fast/slow interface growing with the opposite phase as its initial state, are called ‘abnormal
RMI’. This study is the first to provide observational evidence of the abnormal RMI.

The amplitude growth rate of the upstream interface obtained from experiments (ȧexp
1 )

and simulations (ȧnum
1 ), and that of the downstream interface obtained from experiments

(ȧexp
2 ) and simulations (ȧnum

2 ) in Stage I are acquired by linearly fitting the quantitative
data, as listed in table 5. First, it is found that ȧnum

1 and ȧnum
2 separately agree well with

ȧexp
1 and ȧexp

2 within the experimental measurement errors, further validating the code
adopted in this study. Second, in the three in-phase cases, as L0 increases, both |ȧexp

1 | and
|ȧexp

2 | decrease. However, in the three anti-phase cases, as L0 increases, both |ȧexp
1 | and

|ȧexp
2 | increase. The results indicate that the RMI of two successive interfaces is influenced

by the initial distance and perturbations of the two interfaces, i.e. the feedthrough between
the two interfaces. Third, due to the feedthrough effect, the sign of ȧexp

1 is the same as the
sign of a1(0) in the L10-AP case, which goes against the classical RMI where the sign of
the amplitude growth rate of a semi-infinite slow/fast interface is opposite to the sign of its
initial perturbation (Jourdan & Houas 2005; Mariani et al. 2008). As we mentioned above,
this is called abnormal RMI. Unlike the present results, an opposite amplitude growth
rate to the initial perturbation amplitude of a fast/slow interface was found by Liang &
Luo (2022a). Therefore, the outcomes of the abnormal RMI are dependent on the fluid
distribution.
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TS1

II2

SI1

rRW2

129 312 462 645 1129

128 311 461 644 1128

TS2

SI2

RW1

116 299 449 633 1116

tRW1

129 312 462 645 1129

121 304 454 637 1121

128 311 461 644 1128

(a)

(b)

(c)

(d)

(e)

( f )

Figure 7. Schlieren images of evolutions of quasi-2-D two successive slow/fast interfaces driven by a shock
wave acquired from experiments (upper) and simulations (below) in cases (a) L10-IP, (b) L10-AP, (c) L30-IP,
(d) L30-AP, (e) L50-IP and ( f ) L50-AP. The upstream interface in panel (b) is highlighted with a white dashed
line. Although the upstream interface in panel (b) is a slow/fast one, it does not experience phase reversal.
Numbers denote time in μs.
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Case L10-IP L10-AP L30-IP L30-AP L50-IP L50-AP

ȧexp
1 −3.83 ± 0.20 0.23 ± 0.03 −2.83 ± 0.20 −1.84 ± 0.20 −2.65 ± 0.20 −2.50 ± 0.20

ȧnum
1 −3.64 0.22 −2.80 −1.92 −2.70 −2.46

ȧlin
1 −3.74 0.25 −2.90 −2.05 −2.85 −2.53
ψ1 2.35 −0.16 1.18 0.83 1.03 0.96

ȧexp
2 −6.08 ± 0.40 −3.37 ± 0.20 −5.88 ± 0.40 −5.50 ± 0.40 −5.46 ± 0.40 −5.56 ± 0.40

ȧnum
2 −6.08 −3.48 −5.78 −5.52 −5.57 −5.67

ȧlin
2 −6.36 −3.47 −6.15 −5.53 −5.50 −5.81
ψ2 1.17 0.72 1.07 0.92 1.02 0.98

Table 5. The linear amplitude growth rates of the two interfaces, where ȧexp
1 , ȧnum

1 and ȧlin
1 denote the

experimental, numerical and theoretical results of the upstream interface, respectively; ȧexp
2 , ȧnum

2 and ȧlin
2

denote the experimental, numerical and theoretical results of the downstream interface, respectively; and ψ1
and ψ2 denote the feedthrough effect on the RMI of the upstream and downstream interfaces, respectively.

4.2. The feedthrough effect on the RMI
Because the influences of the feedthrough and reverberating rarefaction waves on the
hydrodynamic instabilities of the two interfaces are coupled, it is essential to quantify
the two effects separately and analytically. Based on the linear stability analysis, Liang
& Luo (2022a) deduced a linear model for evaluating the amplitude growth rates of the
upstream interface (ȧlin

1 ) and downstream interface (ȧlin
2 ) owning the same wavenumber (k)

as

ȧlin
1 = kvα1

[
Z1a1(0)(1 − R1)(2R3ξ + ξ2 + 1)+ Z2a2(0)(R3 − 1)(1 − ξ2)

]
2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)

,

ȧlin
2 = kvα2

[
Z1a1(0)(R1 − 1)(ξ2 − 1)+ Z2a2(0)(R3 − 1)(2R1ξ + ξ2 + 1)

]
2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

in which three compression factors Z1 (= 1 − vα1 /vs), Z2 (= 1 − vα2 /vt1) and ZL (=
1 − vα1 /vt1) are introduced; ξ = tanh(kh0) and h0 = ZLL0/2 are included. However, this
model can only quantify the RMI of two successive fast/slow interfaces with the same
wavenumber and initially in-phase or anti-phase perturbations. In this work, we extend
the linear model by considering the arbitrary wavenumber and phase combinations and
compressibility.

We set the single-mode perturbation on the initial upstream interface as η1(0) =
a1(0) cos(k1x) and the single-mode perturbation on the initial downstream interface as
η2(0) = a2(0) cos(k2x + θ), where θ represents the phase difference between the two
interfaces’ perturbations. If there is no perturbation on the downstream interface, then
the amplitude growth rates of the two interfaces at x = 0 are

ȧlin
1 (a1(0), 0) = k1v

α
1 Z1a1(0)(1 − R1)(2R3ξ + ξ2 + 1)

2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)
,

ȧlin
2 (a1(0), 0) = k1v

α
2 Z1a1(0)(R1 − 1)(ξ2 − 1) cos(θ)

2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)
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Hydrodynamic instabilities of two slow/fast interfaces

If there is no perturbation on the upstream interface, then the amplitude growth rates of
the two interfaces at x = −θ/k2 are

ȧlin
1 (0, a2(0)) = k2v

α
1 Z2a2(0)(R3 − 1)(1 − ξ2) cos(θ)

2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)
,

ȧlin
2 (0, a2(0)) = k2v

α
2 Z2a2(0)(R3 − 1)(2R1ξ + ξ2 + 1)

2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

Based on the linear superposition principle, if there are perturbations imposed on the two
initial interfaces simultaneously, then the amplitude growth rates of the two interfaces can
be derived by superposing (4.3) and (4.4) as

ȧlin
1 = ψ1ȧSI

1 , ȧlin
2 = ψ2ȧSI

2 , (4.5)

in which ȧSI
1 and ȧSI

2 denote the linear amplitude growth rates of the upstream interface and
downstream interface when they are semi-infinite, respectively; andψ1 andψ2 quantify the
feedthrough effect on the RMI of the upstream and downstream interfaces, respectively,

ψ1 = (R1 + 1)(2R3ξ + ξ2 + 1)− (R1 + 1)(R3 − 1)(1 − ξ2) cos(θ)/[κ(R1 − 1)]
2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)

,

ψ2 = κ(R1 − 1)(R3 + 1)(ξ2 − 1) cos(θ)/(R3 − 1)+ (R3 + 1)(2R1ξ + ξ2 + 1)
2ξ(R1R3 + 1)+ (R1 + R3)(ξ2 + 1)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)
with κ = k1Z1a1(0)/k2Z2a2(0).

Liang & Luo (2022a) adopted the original prescription introduced by Richtmyer (1960)
to evaluate ȧSI

1 and ȧSI
2 considering the shock-reflected case in incompressible flow,

ȧSI
1 = k1Z1a1(0)vα1 A1, ȧSI

2 = k2Z2a2(0)vα2 A2. (4.7a,b)

Therefore, the original linear model only applies to two successive fast/slow interfaces
in the weak-shock limit. In this work, we extend the linear model considering the
compressibility by using the linearised compressible solution for a shocked slow/fast
interface introduced by Wouchuk & Nishihara (1996, 1997). Then, the expressions of ȧSI

1
and ȧSI

2 can be written as

ȧSI
1 = k1a1(0)vα1

vIS − vt1 − R1(1 − vps)(vIS + cA − vα1 )

(R1 + 1)vIS
,

ȧSI
2 = k2a2(0)vα2

vt1 − vt2 − R3(1 − vα1 )(vt1 + cβB − vα2 )

(R3 + 1)vt1
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.8)

in which vt2 denotes the velocity of the TS2. Equation (4.8) not only quantifies
the baroclinic contribution to the vorticity but also considers the tangential velocity
perturbations along the contact surface separately generated by the corrugated transmitted
shock and the corrugated rarefaction waves.

Moreover, Liang & Luo (2022a) concluded that the feedthrough effect on RMI is
partially related to the amplitude ratio of the two interfaces, which is not rigorous. From
(4.6), it is noted that the feedthrough ψ is not only related to the density ratios R1 and R3,
the dimensionless distance ξ and the phase difference θ , but is also related to the ratio of
the products of the wavenumber and amplitude of the two interfaces κ .
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Figure 8. The values of ψ versus kh0 under different κ conditions when (a) θ = 0 and (b) θ = π. Hollow
circles represent the instability freeze-out of the upstream or downstream interface.

The values of ȧlin
1 and ȧlin

2 are calculated with the extended linear model (i.e. (4.5)–(4.8))
and listed in table 5. It can be seen that they agree well with all experimental and numerical
results. Notably, the extended linear model successfully predicts the abnormal RMI of the
upstream interface in the L10-AP case. Therefore, the extended linear model is proved to
be applicable for describing the RMI of two successive slow/fast interfaces with various
initial conditions.

The values of ψ1 and ψ2 in all experimental cases are listed in table 5. In the
L10-AP case, ψ1 < 0 indicates the abnormal RMI of the upstream interface caused by the
feedthrough. Moreover, it is found that |ψ1| > 1 and |ψ2| > 1 in the three in-phase cases
and |ψ1| < 1 and |ψ2| < 1 in the three anti-phase cases, indicating that the feedthrough
leads to the two in-phase slow/fast interfaces being more unstable and the two anti-phase
slow/fast interfaces being more stable in the six experimental cases. However, this
conclusion is not rigorously applied to all possibilities. Some exceptions are found under
specific initial conditions. The values of ψ versus kh0 under different κ conditions when
the two interfaces are initially in-phase and anti-phase are calculated based on (4.6), as
shown in figures 8(a) and 8(b), respectively. It is found that when kh0 > 2, the feedthrough
has negligible influence on the RMI of the two interfaces.

In figure 8(a), we plot ψ1 and ψ2 as functions of kh0 for the case κ varying from
0.1 to 10.0, R1 = 1.5, R3 = 0.5 and θ = 0. It is found that when kh0 < 2, except for
the κ = 0.1 case, ψ1 > 1 and ψ2 > 1, indicating that the feedthrough results in the
two interfaces being more unstable. However, when κ and kh0 are limited (e.g. κ = 0.1
and kh0 < 1), ψ1 > 1 and 1 > ψ2 > 0, demonstrating that the feedthrough leads to the
upstream interface being more unstable and the downstream interface being more stable.
Therefore, the two successive interfaces with initially in-phase perturbations are generally
destabilised by the feedthrough, but the downstream interface might be stabilised if κ is
limited.

In figure 8(b), we plot ψ1 and ψ2 as functions of kh0 for the case κ varying from
0.1 to 10.0, R1 = 1.5, R3 = 0.5 and θ = π. First, ψ1 = 0 or/and ψ2 = 0 under specific
kh0 conditions demonstrate that the feedthrough might cause the RMI of the upstream
interface or/and the downstream interface to be frozen. Notably, the freeze-out RMI
concerned in this study is caused by the feedthrough between the two interfaces, not
the compressibility as discussed by previous studies (Fraley 1986; Mikaelian 1993, 1994;
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Figure 9. The time-varying dimensionless amplitudes of the (a) upstream interface and (b) downstream
interface obtained from experiments.

Wouchuk & Nishihara 1997, 2004; Wouchuk & Sano 2015). Moreover, ψ1 < 0 or ψ2 < 0
demonstrates that the abnormal RMI of the upstream interface or downstream interface
occurs. Although the two slow/fast interfaces are initially anti-phase, |ψ1| > 1 under the
small κ condition (e.g. κ = 0.1 and 0.5) indicates the RMI of the upstream interface is
promoted, and |ψ2| > 1 under the large κ condition (e.g. κ = 10.0) indicates the RMI of
the downstream interface is promoted.

Overall, the feedthrough generally leads to the two in-phase slow/fast interfaces being
more unstable and the two anti-phase slow/fast interfaces being more stable, but there are
exceptions under specific conditions: first, the downstream one of the two initially in-phase
interfaces might be stabilised if κ is limited; second, the upstream one of the two initially
anti-phase interfaces might be destabilised if κ is limited; third, the downstream one of the
two initially anti-phase interfaces might be destabilised if κ is large. It is evident that the
freeze-out and abnormal RMI complicate the analysis of the hydrodynamic instabilities of
the two interfaces and will be discussed in detail later.

4.3. The reverberating rarefaction waves effect
The time-varying amplitudes of the upstream interface and downstream interface are
scaled to eliminate the feedthrough effect and highlight the reverberating rarefaction waves
effect, as shown in figures 9(a) and 9(b), respectively. For the upstream interface, time
is scaled as τ1 = |k1ȧlin

1 t| and amplitude is scaled as η1 = |k1a1|. For the downstream
interface, time is scaled as τ2 = |k2ȧlin

2 (t − tα2 )| and amplitude is scaled as η2 = |k2a2|.
Except for η1 in the L10-AP case, both η1 and η2 decrease to zero at first due to phase
reversal (Brouillette 2002) and then increase. The rarefaction waves have short-time
influences on the hydrodynamic instabilities due to the short duration times of the
interaction of the rarefaction waves and the two interfaces in this study (see TrRW2 and
TrRW1 in table 3). However, it is found that the perturbation of the upstream interface in
the L10-AP case is suddenly stretched by the rRW2, as seen in the inset of figure 9(a). The
rarefaction waves influence the hydrodynamic instabilities of the two interfaces in two
ways: on the one hand, the rarefaction waves stretch the two interfaces in the streamwise
direction during the interaction; on the other hand, the rarefaction waves impose the
short-time RTI or RTS on the two interfaces since the interaction of the rarefaction waves
and an interface is not instantaneous but a process (Li & Book 1991; Li et al. 1991; Morgan
et al. 2016, 2018; Liang et al. 2020b; Wang et al. 2022).
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To simplify the analysis, the interaction of 1-D rarefaction waves and 2-D interfaces
are considered. For the upstream interface, since the rRW2 accelerates the spike then the
bubble of the upstream interface, the rRW2 stretches the perturbation of the upstream
interface during the interaction. The amplitude of the upstream interface when the rRW2

head impacts the upstream interface is aβ1 (= Z1a1(0)+ ȧlin
1 tβ1 ), the relative velocity

difference between the upstream interface and the rRW2 is cαB, and the upstream interface
velocity increment induced by the rRW2 is (vβ1 − vα1 ). Therefore, the time-varying
stretching effect of rRW2 on the upstream interface amplitude (arRW2) is

arRW2 = (v
β

1 − vα1 )(t − tβ1 + aβ1 /c
α
B)

2
, (4.9)

with (tβ1 + aβ1 /c
α
B) > t > (tβ1 − aβ1 /c

α
B).

For the downstream interface, since the rRW1 decelerates the bubble tip then the
spike tip of the downstream interface, the rRW1 also stretches the perturbation of the
downstream interface during the interaction. The amplitude of the downstream interface
when the rRW1 head impacts the downstream interface is aβ2 (= Z2a2(0)+ ȧlin

2 (t
β

2 − tα2 )),
the relative velocity difference between the downstream interface and the rRW1 is cβB, and
the downstream interface velocity decrement induced by the rRW1 is (vα2 − v

β

2 ). Therefore,
the time-varying stretching effect of rRW1 on the downstream interface amplitude (arRW1)
is

arRW1 = (vα2 − v
β

1 )(t − tβ2 + aβ2 /c
β
B)

2
, (4.10)

with (tβ2 + aβ2 /c
β
B) > t > (tβ2 − aβ2 /c

β
B).

Except for the freeze-out and abnormal RMI cases, the two slow/fast interfaces
generally experience phase reversal, resulting in the difficulty of modelling the additional
instabilities imposed by the rarefaction waves on the two interfaces. Since the post-shock
amplitude of the upstream (or downstream) interface is Z1a1(0) (or Z2a2(0)) and the
perturbation amplitude of the upstream (or downstream) interface decreases at a linear
rate ȧlin

1 (or ȧlin
2 ), the time when the perturbation of the upstream (or downstream) interface

decreases to zero, i.e. the end time of the phase reversal of the upstream (or downstream)
interface tpr

1 (or tpr
2 ), can be evaluated as

tpr
1 = |Z1a1(0)/ȧlin

1 |, tpr
2 = tα2 + |Z2a2(0)/ȧlin

2 |. (4.11a,b)

The values of tpr
1 and tpr

2 in all cases are listed in table 6. On comparing tpr
1 with tβ1 in

table 2, it is found tpr
1 > tβ1 in all cases except for the case L10-AP, indicating that the rRW2

impacts the upstream interface before the end of the upstream interface’s phase reversal.
Because of the baroclinic vorticity created by the misalignment of the density gradient
(∇ρ) and the pressure gradient (∇p), the rRW2 continuously deposits the vorticity with the
same direction as the vorticity deposited by the IS on the upstream interface, as sketched
in figure 10(a). Therefore, the rRW2 imposes the short-time RTI on the upstream interface,
resulting in the upstream interface being more unstable. Due to the abnormal RMI in the
L10-AP case, the vorticity deposited on the upstream interface by the IS is opposite to that
in other cases, as sketched in figure 10(b). As a result, the rRW2 imposes the short-time
RTS on the upstream interface in the L10-AP case, leading to the upstream interface being
more stable.
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Case L10-IP L10-AP L30-IP L30-AP L50-IP L50-AP

tpr
1 345 N.A. 422 597 440 484

tpr
2 251 418 361 386 469 465

Table 6. The end times of the upstream (or downstream) interface’s phase reversal tpr
1 (or tpr

2 ) calculated with
(4.11a,b). The unit of time is μs.
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Figure 10. Sketches of (a) the interaction of the rRW2 and SI1 in all cases (except for the L10-AP case), (b) the
interaction of the rRW2 and SI1 in the L10-AP case, (c) the interaction of the rRW1 and SI2 under L0 = 10.0
and 30.0 mm conditions, and (d) the interaction of the rRW1 and SI2 under L0 = 50.0 mm conditions. The
blue (or orange) arcs with an arrow in panels (a,b) illustrate the vorticity deposited by the IS (or rRW2) on the
upstream interface. The blue (or orange) arcs with an arrow in panels (c,d) represent the vorticity deposited
by the TS1 (or rRW1) on the downstream interface. The purple (or green) arrows represent the pressure (or
density) gradient ∇p (or ∇ρ).

Similarly, by comparing tpr
2 with tβ2 in table 2, it is found that tpr

2 > tβ2 under L0 = 10.0
and 30.0 mm conditions and tpr

2 < tβ2 under L0 = 50.0 mm conditions. In other words,
the rRW1 impacts the downstream interface before the end of the downstream interface’s
phase reversal under L0 = 10.0 and 30.0 mm conditions, depositing the vorticity in the
opposite direction to the vorticity deposited by the TS1 on the upstream interface, as
sketched in figure 10(c). In contrast, the rRW1 impacts the downstream interface after
the downstream interface’s phase reversal under L0 = 50.0 mm conditions, depositing the
vorticity with the same direction as the vorticity deposited by the TS1 on the downstream
interface, as sketched in figure 10(d). As a result, the rRW1 imposes the short-time RTS on
the downstream interface, resulting in the downstream interface being more stable under
L0 = 10.0 and 30.0 mm conditions. In contrast, the rRW1 imposes the short-time RTI on
the downstream interface, leading to the upstream interface being more unstable under
L0 = 50.0 mm conditions.

Here, we modify the nonlinear model proposed by Zhang & Guo (2016), considering the
universal curves of all spikes and bubbles at any density ratio, to quantify the short-time
RTI or RTS imposed by the rRW2 on the upstream interface and that imposed by the rRW1
on the downstream interface. The expressions of the modified nonlinear model for the
bubble/spike amplitude growth rate of the upstream interface (ȧ1b/1s) and the downstream
interface (ȧ2b/2s) in Stage II are

äns/nb = (−1)iαns/nbkn

[
(ȧns/nb)

2 − (ȧqs
ns/nb)

2
]
. (4.12)
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For the upstream interface, i = 0 when tpr
1 > tβ1 or ψ1 < 0, and i = 1 when tpr

1 < tβ1 ; for
the downstream interface, i = 0 when tpr

2 < tβ2 or ψ2 < 0, and i = 1 when tpr
2 > tβ2 ;

ȧqs
ns/nb =

√√√√ |AnḡrRW(3−n) |
3kn

8
(1 ± An)(3 ± An)

[
3 ± An + √

2(1 ± An)
]2[

4(3 ± An)+ √
2(1 ± An)(9 ± An)

] , (4.13)

and

αns/nb = 3
4

(1 ± An)(3 ± An)[
3 ± An + √

2(1 ± An)
]

[
4(3 ± An)+ √

2(1 ± An)(9 ± An)
]

[√
3 ± An + 2

√
2(1 ± An)(3 ∓ An)

] . (4.14)

The upper (or lower) signs of ± and ∓ in all equations apply to the spike (or bubble). Note
that the feedthrough is considered since ȧns/nb equals ȧlin

n at tβn .
After the rRW2 (or rRW1) leaves the upstream (or downstream) interface, only the RMI

dominates the perturbation growths of the upstream (or downstream) interface in Stage
III. The upstream (or downstream) interface evolves linearly with the amplitude growth
rate almost the same as in Stage I. The predictions of the models established in this work
for the upstream (or downstream) interface amplitude in Stages I, II and III are marked
as solid blue (or dashed orange) lines in figure 11(a– f ) in all cases, and they agree well
with the experimental and numerical results. Notably, the stretching effect imposed by the
rarefaction waves on the upstream interface perturbation growth is well described in the
inset of figure 11(b).

4.4. The freeze-out and abnormal RMI
The freeze-out and abnormal RMI will be discussed in detail using the extended linear
model and numerical simulations. It is evident that the sufficient condition for the
perturbation growth freeze-out of the upstream interface is ψ1 = 0, and that of the
downstream interface is ψ2 = 0. Based on (4.6), the freeze-out RMI of the upstream
interface occurs when

(ξ2 − 1) cos(θ) = κ(2R3ξ + ξ2 + 1)(R1 − 1)
1 − R3

, (4.15)

and the freeze-out RMI of the downstream interface occurs when

(ξ2 − 1) cos(θ) = (1 − R3)(2R1ξ + ξ2 + 1)
κ(R1 − 1)

. (4.16)

For two successive slow/fast interfaces, R1 > 1 and R3 < 1, indicating that the right-hand
side of the equality signs in (4.15) and (4.16) are larger than 0. Since ξ ∈ (0, 1), the terms
(ξ2 − 1) must be negative on the left-hand side of the equality signs, and, therefore,
the term cos(θ) must also be negative. As a result, the phase difference between the
perturbations of the two interfaces θ should be within the range of (0.5π,π]. Suppose
the fluid distribution and perturbations of the two interfaces are known. In that case, the
values of R1, R3, κ and θ are given. Then, we can deduce the value of the initial distance
between the two interfaces L0 for the freeze-out RMI of the upstream interface or the
downstream interface by solving (4.15) or (4.16).

First, we take case F-1 as an example to freeze the RMI of the upstream interface. The
initial parameters in case F-1 are the same as the experimental case L10-AP, including
R1 = 1.37, R3 = 0.33, κ = 1.0 and θ = π. Then, we can deduce that when the initial
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Figure 11. Comparisons of the amplitudes of the upstream interface and downstream interface measured from
experiments and simulations with theories in cases (a) L10-IP, (b) L10-AP, (c) L30-IP, (d) L30-AP, (e) L50-IP
and ( f ) L50-AP. The solid and hollow symbols represent the experimental results for the upstream interface
and downstream interface, respectively; the solid red and dashed green lines represent the simulation results
for the upstream interface and downstream interface, respectively; and the solid blue and dashed orange lines
represent the theoretical predictions for the upstream interface and downstream interface, respectively.
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Figure 12. The time-varying amplitudes of the upstream interface and downstream interface in cases (a) F-1
and (b) F-2. The solid and hollow symbols represent the numerical results for the upstream interface and
downstream interface, respectively; the solid red and dashed blue lines represent the theoretical predictions for
the upstream interface and downstream interface, respectively, and similarly hereinafter.

distance L0 equals 11.8 mm, the RMI of the upstream interface is frozen. The time-varying
amplitudes of the two interfaces in the F-1 case are shown in figure 12(a). The perturbation
growth of the upstream interface is frozen by the feedthrough (see the solid symbols),
which can be well described by the models established in this work (see the solid lines).

Second, we take case F-2 as an example to freeze the RMI of the downstream interface.
Most of the initial parameters in case F-2 are the same as in case F-1, including R1 =
1.37, R3 = 0.33 and θ = π. Differently, we adopt κ = 4 in the F-2 case. Then, we can
deduce that when the initial distance L0 equals 9.1 mm, the RMI of the downstream
interface is frozen. The time-varying amplitudes of the two interfaces in the F-2 case
are shown in figure 12(b). The perturbation growth of the downstream interface is
frozen by the feedthrough (see the hollow symbols), which can be well described by
the models established in this work (see the dashed lines). However, we note that a1
does not decrease to 0 when the upstream interface finishes its phase reversal (see a1
at approximately 1160 μs), which goes against the theoretical prediction. We conjecture
that this phenomenon is ascribed to the effect of high-order harmonics introduced by
the feedthrough on the RMI of the upstream interface at a later time. The feedthrough
accompanied by the nonlinearity effect on the RMI of two interfaces will be investigated
in further studies.

In the ICF, we prefer the perturbations on all surfaces to be frozen by the feedthrough.
Based on (4.15) and (4.16), it is easy to write the sufficient condition for the simultaneously
freeze-out RMI of the two interfaces as

κ(2R3ξ + ξ2 + 1)(R1 − 1)2 = (2R1ξ + ξ2 + 1)(1 − R3)
2. (4.17)

It can be found that the simultaneously freeze-out RMI can be achieved by carefully
choosing the combinations of R1, R3, κ and ξ . Moreover, we can find a specific solution for
(4.17): κ = 1, R1 + R3 = 2 and ξ � 1. Here, we take case F-3 as an example to freeze the
RMI of both the upstream and downstream interfaces and validate the specific solution.
The initial parameters in case F-3 include the incident shock Mach number of 1.24, ρA =
6.14 kg m−3, ρB = 4.10 kg m−3, ρC = 2.05 kg m−3, L0 = 4.0 mm, k1 = k2 = 20.9 m−1,
a1(0) = a2(0) = 0.5 mm and θ = π. In other words, we set R1 = 1.5, R3 = 0.5, κ = 1.0
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Figure 13. The time-varying amplitudes of the upstream and downstream interfaces in case F-3.

and ξ = 0.03 in case F-3. The time-varying amplitudes of the two interfaces in the F-3
case are shown in figure 13. The feedthrough freezes the perturbation growths of both the
upstream and downstream interfaces (see the solid and hollow symbols), which can be
well described by the models established in this work (see the solid and dashed lines).

Next, we focus on the abnormal RMI of the upstream or downstream interface. It is
evident that the sufficient condition for the abnormal RMI of the upstream interface is
ψ1 < 0, and that of the downstream interface is ψ2 < 0. Because the denominators on the
right-hand side of (4.6) are larger than 1, the numerators on the right-hand side of (4.6)
should be negative if the abnormal RMI occurs. Therefore, for two successive slow/fast
interfaces, the abnormal RMI of the upstream interface occurs when

(ξ2 − 1) cos(θ) >
κ(2R3ξ + ξ2 + 1)(R1 − 1)

1 − R3
, (4.18)

and the abnormal RMI of the downstream interface occurs when

(ξ2 − 1) cos(θ) >
(1 − R3)(2R1ξ + ξ2 + 1)

κ(R1 − 1)
. (4.19)

Similar to the abnormal RMI of the two interfaces, the right-hand sides of the equality
signs in (4.18) and (4.19) are larger than 0. Therefore, the term cos(θ) must be negative.
As a result, the phase difference θ ∈ (0.5π,π] is not only the necessary condition for the
freeze-out RMI but also the necessary condition for the abnormal RMI.

We plotψ1 andψ2 as functions of kh0 for the case θ varying from 0 to π, R1 = 1.5, R3 =
0.5, and κ = 0.1 and 10.0 in figures 14(a) and 14(b), respectively. It is again confirmed that
the abnormal RMI cannot occur when θ ≤ 0.5π. Furthermore, if the abnormal RMI occurs
on the upstream (or downstream) interface, then the downstream (or upstream) interface
must experience phase reversal. In other words, the abnormal RMI cannot occur on the two
interfaces simultaneously. For example, if the abnormal RMI occurs on the downstream
interface, then (4.19) holds. Because ξ ∈ (0, 1) and cos(θ) ∈ [−1, 1], the product of the
two terms on the left-hand side of (4.19) is smaller than 1, and, therefore, the product of
the terms on the right-hand side of (4.19) must be smaller than 1, too. As a result, we can
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Figure 14. The values of ψ versus kh0 under different θ conditions when (a) κ = 0.1 and (b) κ = 10.0.

derive an inequality as

κ(R1 − 1) > (1 − R3)(2R1ξ + ξ2 + 1). (4.20)

Then, we substitute (4.20) to the right-hand side of (4.18) and acquire

(ξ2 − 1) cos(θ) > (2R1ξ + ξ2 + 1)(2R3ξ + ξ2 + 1). (4.21)

However, (4.21) cannot hold because the product of the terms on the left-hand side is less
than 1, but the product of the terms on the right-hand side is larger than 1. Therefore, the
abnormal RMI of the upstream interface cannot occur. As a result, we have proved that the
abnormal RMI cannot occur on the two interfaces simultaneously.

5. Conclusions

Shock-tube experiments and simulations on two successive slow/fast interfaces are
performed to investigate wave patterns, interface movements and hydrodynamic
instabilities of the two interfaces. Three quasi-1-D cases with different initial distances
between the two interfaces and six quasi-2-D cases with various initial distances and
perturbations are created using the extended soap film approach in the experiments.
Schlieren photography combined with a high-speed camera is used to capture legible
experimental pictures, providing the first observational evidence of the abnormal RMI.
The reverberating rarefaction waves between the two interfaces are focused. The
rarefaction waves, on the one hand, stretch the two interface perturbations; on the other
hand, they impose the short-time RTI or RTS on the two interfaces depending on the
phases of the two interfaces when the rarefaction waves impact them. Theoretical models
for quantifying the various hydrodynamic instabilities are examined. For the first time, the
conditions and outcomes of the freeze-out and abnormal RMI caused by the feedthrough
between the two interfaces are summarised.

First, the wave patterns and interface movements of two successive slow/fast interfaces
are studied. The rarefaction waves reflected from the downstream interface accelerate
the upstream interface, and the rarefaction waves reflected from the upstream interface
decelerate the downstream interface. The movements of the two interfaces finally enter
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the asymptotic state. A general 1-D theory is adopted to describe the two interfaces’
movements in three stages.

Second, the hydrodynamic instabilities of two successive slow/fast interfaces induced by
a shock wave are investigated. The final phases of the two interfaces are generally opposite
to the two interfaces’ initial perturbations. However, the abnormal RMI, that is, phase
reversal of a shocked slow/fast interface is inhibited, is observed when the initial distance is
limited, and the two interfaces are initially anti-phase. The hydrodynamic instabilities can
be separated into three stages: Stage I. The RMI affected by the feedthrough dominates the
two interface perturbation growths. Compared with the semi-infinite RMI, the feedthrough
destabilises the two in-phase interfaces but stabilises the two anti-phase interfaces in the
experiments. Stage II. On the one hand, the rarefaction waves stretch the two interfaces’
streamwise perturbations. On the other hand, if the end time of the upstream interface’s
phase reversal is larger (or smaller) than the time when the rarefaction waves impact the
upstream interface, i.e. tpr

1 > tβ1 (or tpr
1 < tβ1 ), the rarefaction waves impose the short-time

RTI (or RTS) on the upstream interface, destabilising (or stabilising) the upstream
interface; if the end time of the downstream interface’s phase reversal is larger (or smaller)
than the time when rarefaction waves impact the downstream interface, i.e. tpr

2 > tβ2 (or
tpr
2 < tβ2 ), the rarefaction waves impose the short-time RTS (or RTI) on the downstream

interface, stabilising (or destabilising) the downstream interface. Stage III. After the
rarefaction waves are refracted away from the two interfaces, only the RMI dominates
the two interfaces’ developments.

Third, the linear solution proposed by Liang & Luo (2022a) is extended by considering
arbitrary wavenumber and phase combinations and the compressibility, which is proved
to apply to two successive slow/fast interfaces and successfully quantify the feedthrough.
It is proved that the feedthrough generally leads to the two in-phase slow/fast interfaces
being more unstable and the two anti-phase slow/fast interfaces being more stable, but
there are exceptions under specific conditions. During the interaction of the reverberating
rarefaction waves and the two interfaces, on the one hand, the stretching effect imposed by
the rarefaction waves on the two interfaces is quantified; on the other hand, the nonlinear
model proposed by Zhang & Guo (2016) is modified to describe the RTI or RTS imposed
by the rarefaction waves on the two interfaces with the consideration of the two interfaces’
phase reversal.

The freeze-out and abnormal RMI caused by the feedthrough are discussed in detail.
The necessary condition for both the freeze-out and abnormal RMI is θ ∈ (0.5π,π].
The sufficient conditions for the instability freeze-out of the upstream interface or/and
the downstream interface are ψ1 = 0 or/and ψ2 = 0. The sufficient condition of the
abnormal RMI of the upstream interface or the downstream interface is ψ1 < 0 or ψ2 < 0.
It has been proved that the simultaneous freeze-out RMI of the two interfaces occurs
under specific conditions, but the abnormal RMI cannot occur on the two interfaces
simultaneously. Our study suggests that when the initial distance between two successive
surfaces is limited, and the perturbations on the two surfaces are comparable, it is
potentially favourable to adopt the fluid distribution satisfying (R1 + R3 = 2) in the ICF
capsule design to freeze the instability of the two interfaces simultaneously.

In the ICF, the initial perturbations on the surfaces are essentially multi-mode with
wavenumbers spanning many orders of magnitude. It is believed that the coupling occurs
not only between the constituent modes of each interface but also between the constituent
modes of all interfaces. We look forward to performing the experiments and simulations on
two successive interfaces consisting of multi-mode perturbations and proposing a general
nonlinear theory to quantify the complicated mode coupling mechanism.
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