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Departamento de Matemática, Facultad de Ciencias, Universidad del
B́ıo-B́ıo, Concepción, VIII Región, Chile (clvidal@ubiobio.cl)

(Received 16 November 2022; accepted 16 April 2023)

We investigate the existence of families of symmetric periodic solutions of second
kind as continuation of the elliptical orbits of the two-dimensional Kepler problem
for certain symmetric differentiable perturbations using Delaunay coordinates. More
precisely, we characterize the sufficient conditions for its existence and its type of
stability is studied. The estimate on the characteristic multipliers of the symmetric
periodic solutions is the new contribution to the field of symmetric periodic
solutions. In addition, we present some results about the relationship between our
symmetric periodic solutions and those obtained by the averaging method for
Hamiltonian systems. As applications of our main results, we get new families of
periodic solutions for: the perturbed hydrogen atom with stark and quadratic
Zeeman effect, for the anisotropic Seeligers two-body problem and to the planar
generalized Størmer problem.
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1. Introduction

The study of periodic solutions in celestial mechanics not only benefits the develop-
ment of mathematics, but also provides the intermediate orbits for space missions
[16]. In celestial mechanics, one of the most well-known integrable model is the
Kepler problem. There exist many other problems that are formulated as a per-
turbation of the Kepler problem in Cartesian coordinates (see [5, 6, 10, 13] and
references therein) or in rotating coordinates (see, e.g., [16, 21, 25, 27]). Poincaré
[28] considered the investigation of periodic solutions of the restricted three-body
problem where, in particular, he classified the periodic orbits of second kind that
are generated by the elliptic orbits of the planar Kepler problem (the first kind
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are generated by the circular orbits of the planar Kepler problem). As in the
restricted three-body problem, we call the solutions of the second kind in the per-
turbed Kepler problems those that are generated by the planar elliptic orbits of the
Kepler problem. The objective of this paper is to show analytically the existence of
several families of symmetric periodic solutions of second kind of differentiable sys-
tems which are symmetric perturbations of the planar Kepler problem in cartesian
coordinates. In a future work, we intend to deal with the spatial case.

More precisely, we want to analyse when the second kind of periodic orbits of
the planar Kepler problem can be or not extended to periodic orbits of symmetric
perturbed Kepler problems whose Hamiltonian function has the form

H(q,p, ε) = H0(q,p) + εαH1(q,p) + HR(q,p, ε), (1.1)

with q = (x, y) ∈ R2 \ {(0, 0)}, p = (px, py) ∈ R2, α ∈ N, where H0(q,p) = ‖p‖2

2 −
1

‖q‖ is the two-dimensional Kepler problem, and the perturbed functions H1(q,p)
and HR(q,p, ε) are both differentiable and HR is of order O(εα+1). Furthermore,
we show the approximation of the characteristic multipliers associated with the
symmetric periodic solutions, so its type of stability is characterized.

The continuation method to find periodic solutions goes back to Poincaré who
in [28] studied the existence of periodic solutions in the three-body problem using
the method that now is called Poincaré’s continuation method [32].

There are considerable works that have contributed to find the periodic solution
for perturbations of an integrable problem (see [1, 7]). For a perturbed Kepler
problem, some of these works apply the method of average of first kind (see, e.g.,
[3, 4, 14, 25, 27]). The technique of combining discrete symmetries of Hamiltonian
and the Poincaré continuation method has been considered in other works for two-
degree-of-freedom (2-DOF) and three-degree-of-freedom problems (see, e.g., [5, 10,
25, 31–35]).

With regard to the study of periodic orbits of the second kind in perturbed Kepler
problems, we can cite [2, 25, 31] and references therein. There are standard results
in celestial mechanics which state that every elliptical solution of period T = 2πp/q
(p and q are relative prime positive integers) of the planar rotating Kepler problem
with initial condition on the x-axis can be extended to the perturbed planar circular
restricted 3-body problem. These solutions are symmetric with respect to the x-axis
and have period τ close to T (see [2, 21] ). More generally, the elliptical T -symmetric
(with respect to the x-and y-axis) periodic solutions, where T is as in the previous
sentence, and can be extended to any planar symmetric perturbation of the Kepler
problem (see [5]). But, when we consider a symmetric perturbation of the Kepler
problem in the fixed inertial coordinates, the continuation of the elliptical Keplerian
solutions depends on the first approach term H1 given in equation (1.1). So, we need
to establish sufficient conditions to extend the second-kind periodic orbits and how
to proceed in the verification of them in concrete problems.

To our knowledge, there is no analogous and systematic study on the existence
of periodic solutions of the second kind for a planar Keplerian perturbation in an
inertial frame using Delaunay variables. There are a significant number of authors
who search for periodic solutions to perturbations of the planar Kepler problem (in
inertial frame) using Delaunay coordinates, but the technique used is the average
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method. Important references in this regard can be found in [2, 3, 20, 25, 27].
Many other authors considered the study of symmetric periodic orbits of first or
second kind for planar perturbations of the Kepler problem. For the first kind of
symmetric periodic solutions, we recommend the reader the references [5, 10, 34,
35]. For the second kind of symmetric periodic solutions, we mention [2, 8, 21,
25, 33].

The study of symmetric periodic orbits of a perturbed Kepler problem (1.1) also
can be performed using averaging theory of Hamiltonian systems combined with
symplectic reduction (see reference [36] and, more specifically, theorem 2.6). In
this work, the authors gave sufficient conditions for the continuation of symmetric
Keplerian solutions to the complete perturbed problem from the point of view
of averaging theory. The results obtained in [36] depend on the implicit function
theorem of Arenstorf. As a consequence of this study, the results are valid only for
some values of the perturbed parameter.

In this work, we combine the discrete symmetries of the Hamiltonian function
and the Poincaré continuation method, using strongly the first approximation of
the solutions of the full Hamiltonian system given by a variational system. The
technique used in this research is similar to that used in [5] for the existence of first
kind symmetric solutions of the perturbed problem (1.1). The main contribution of
this paper is to provide sufficient conditions for the existence of families of second-
kind symmetric periodic solutions for planar Keplerian perturbations in inertial
frame and using Delaunay variables. In addition, we give information about the
stability of these solutions.

Moreover, we analyse that certain elliptic Keplerian solutions, which can be con-
tinued by the analytic Poincaré’s continuation method as in theorem 2.3), also
can give periodic solution to the full problem by using the averaging method for
Hamiltonian systems, i.e., Reeb’s Theorem.

To carry out our results, we have organized the contents of the paper as follows.
In § 2, we write the problem in Delaunay coordinates. Then, using the continuation
method, we prove a theorem that gives us the sufficient conditions for the exis-
tence of two types of families of initial conditions such that it gives us second-kind
symmetric periodic solutions for the Hamiltonian (2.1). The first type of initial con-
ditions depends on one small parameter and gives us symmetric periodic solutions
with the same period of the Keplerian orbit. The second type of initial conditions
depends on two small parameters and the periodic solutions generated by them have
period close (not necessarily fixed) to the elliptical Keplerian orbit. In order to com-
plement our study, we finish § 2 analysing the symmetric periodic solutions given
by theorem 2.3 and those periodic solutions obtained using the averaging method.
We point out the relationship of the period solutions obtained from these two differ-
ent techniques. Moreover, the nontrivial characteristic multipliers of the symmetric
periodic solutions are characterized, so the type of stability can be deduced. In § 3,
as an application of our results, we obtain new periodic solutions for the 2-DOF gen-
eralized Størmer problem, hydrogen atom with Stark and quadratic Zeeman effect
and anisotropic two-body problem under Seeliger’s potential and we give some
important information on these models. In fact, after checking the literature on the
subject, we emphasize that our results are new for this kind of dynamics of these
problems. Finally, in § 4, some conclusions and prospective work are mentioned.
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2. Second-kind symmetric periodic solutions

In this section and following the classification of Poincaré [28], we investigate
the existence of second-kind symmetric periodic solutions associated with the
Hamiltonian system with Hamiltonian function as in (1.1).

During this work, we are going to assume that the Hamiltonian function H in
(1.1) is invariant under one or both of the following anti-symplectic reflections

S1 : (x, y, px, py) −→ (−x, y, px,−py),

S2 : (x, y, px, py) −→ (x,−y,−px, py).

The fixed sets of the symmetries S1 and S2 are the Lagrangian subspaces L1 =
{(0, y, px, 0) ∈ R4 : y, px ∈ R} and L2 = {(x, 0, 0, py) ∈ R4 : x, py ∈ R}, respectively.
Note that if ϕ(t,q,p) = (x(t), y(t), px(t), py(t)) is a solution associated with the
Hamiltonian (1.1), then Sj ◦ ϕ(t,q,p) is also a solution. In particular, if we con-
sider an initial condition (q,p) ∈ Lj such that ϕ(T/2,q,p) ∈ Lj , then the solution
ϕ(t,q,p) is T -periodic and Sj-symmetric, that is, knowing two different points on
the orbit, we are able to get periodic solutions.

To obtain our results, we use Delaunay variables (see more details, e.g., in [8, 21,
33]), because with these coordinates it is easy to characterize the solutions of the
Kepler problem and they are well defined for elliptic solutions. The Delaunay planar
variables are (�, g) (angular variables modulus 2π) and (L,G) (radial variables),
where

L =
√

a, G2 = L(1 − e2),

e (0 � e < 1) is the eccentricity of the Keplerian orbit and a is the semi-major
axis of the ellipse (see figure 1). The angular variable � is the mean anomaly, g
is the argument of the perigee measured from the ascending node, L is the action
related with the semi-major axis a and G is the angular momentum. We point out
that the domain of the Delaunay variables is the set D = {(�, g, L,G) : L > 0, l, g ∈
[0, 2π), 0 < |G| < L}, and of course, it excludes the rectilinear motions and circular
solutions and they are well defined in a neighbourhood of an elliptic orbit of the
Kepler problem.

Now express (1.1) in mixed polar-nodal coordinates and after we change polar-
nodal to Delaunay variables. See [9, 24] for a complete description of the process
of changing Cartesian coordinates to Delaunay coordinates. In Delaunay variables,
the Hamiltonian (1.1) takes the form

H(�, g, L,G, ε) = H0(L) + εαH1(�, g, L,G) + HR(�, g, L,G, ε), (2.1)

where HR(�, g, L,G, ε) = O(εα+1), and the Hamiltonian of the Kepler problem is
as follows:

H0(L) = − 1
2L2

. (2.2)
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Figure 1. Schematic of angular Delaunay variables. The angle g is the argument of perigee
and the angle � is the ratio of the sector swept to the total area of the ellipse normalized
by 2π, i.e., if S is the area of the sector swept out from perigee and A is the area of ellipse
then � = 2πS/A.

The perturbed Hamiltonian system associated with the Hamiltonian (2.1) is
written as

�̇ = HL =
1
L3

+ εα ∂H1

∂L
+ O(εα+1), L̇ = −H� = −εα ∂H1

∂l
+ O(εα+1),

ġ = HG = εα ∂H1

∂G
+ O(εα+1), Ġ = −Hg = −εα ∂H1

∂g
+ O(εα+1).

(2.3)

We will denote by ϕ(t) = ϕ(t,Y; ε) = (�(t,Y; ε), g(t,Y; ε), L(t,Y; ε), G(t,Y; ε)), the
flow of the Hamiltonian system associated with (2.3) with initial condition Y =
(�0, g0, L0, G0) and we propose the following approximation of the solution:

�(t,Y; ε) = �(0)(t,Y) + εα�(1)(t,Y) + O(εα+1),

g(t,Y; ε) = g(0)(t,Y) + εαg(1)(t,Y) + O(εα+1),

L(t,Y; ε) = L(0)(t,Y) + εαL(1)(t,Y) + O(εα+1),

G(t,Y; ε) = G(0)(t,Y) + εαG(1)(t,Y) + O(εα+1).

(2.4)

Obviously, the solution of the unperturbed system represents the first approxima-
tion and it is given by

ϕ0(t,Y) = (�(0)(t,Y), g(0)(t,Y), L(0)(t,Y), G(0)(t,Y)) =
(

t

L3
0

+ �0, g0, L0, G0

)
.

(2.5)
While the second approximation is characterized by

�(1)(t,Y) =
∫ t

0

∂H1

∂L
(ϕ0(τ,Y)) dτ, L(1)(t,Y) = −

∫ t

0

∂H1

∂�
(ϕ0(τ,Y)) dτ,

g(1)(t,Y) =
∫ t

0

∂H1

∂G
(ϕ0(τ,Y)) dτ, G(1)(t,Y) = −

∫ t

0

∂H1

∂g
(ϕ0(τ,Y)) dτ.

(2.6)
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Figure 2. Representation of a S1-symmetric elliptical orbit and the possible positions of
the perigee (depending on k). Left: k = 0 (� = π and g = π/2). Right: k = 1 (� = 0 and
g = π/2).

Lemma 2.1. Let ϕ(t) be a solution of system (2.3), then the following characteri-
zation holds:

(1) ϕ(t) hits the fixed set L1 (associated with the symmetry S1) at time t = T if
ϕ(T ) is on the perigee or apogee (i.e., � = 0 mod π) and furthermore, the
perigee is on the y-axis (i.e., g = π/2 mod π).

(2) ϕ(t) hits the fixed set L2 (associated with the symmetry S2) at time t = T if
ϕ(T ) is on the perigee or apogee (i.e., � = 0 mod π) and furthermore, the
perigee is on the x-axis (i.e., g = 0 mod π).

Proof. The proof follows directly from the definition of the sets L1 and L2 and the
geometrical interpretation of the Delaunay variables. See figures 1 and 2.

�

Next, we take an elliptic solution ϕ0(t,Y
j,k
0 ) of the Kepler problem (2.2) in

Delaunay variables with the initial condition

Yj,k
0 = (Y (0)

1 , Y
(0)
2 , Y

(0)
3 , Y

(0)
4 ) ≡ (0, gj,k

0 , L0, G0) ∈ Lj , (2.7)

where |G0| < L0, j = 1, 2 and

g1,k
0 = (2k + 1)π/2, g2,k

0 = kπ, k = 0, 1.

Note that the index k determines the position of the perigee on the x-axis or y-axis
(see figure 2).

It is clear that the solution ϕ0(t,Y
j,k
0 ) =

(
t

L3
0
, gj,k

0 , L0, G0

)
of the Kepler problem

is elliptic, T = 2πL3
0-periodic and its initial condition Yj,k

0 ∈ Lj for each j = 1, 2.
After that, we take a small and convenient perturbation (in the ‘directions’ of L

and G) of the initial condition Yj,k
0 of the previous unperturbed elliptical solution
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in the form

Yj,k = (0, gj,k
0 , L0 + δL,G0 + δG) ∈ Lj . (2.8)

Of course, the solution of the Kepler problem with this initial condition, ϕ0(t,Yj,k),
is also elliptic and it is given by

l(t) = (L0 + δL)−3t, L(t) = L0 + δL,

g(t) = gj,k
0 , G(t) = G0 + δG,

(2.9)

with |δG| � δL.

Remark 2.2. Here we discuss the effect of the perturbation of the Delaunay vari-
ables L and G in the initial condition Yj,k

0 , Yj,k in terms of the position and
the velocity in cartesian coordinates called (q0,p0) and (q(0),p(0)), respectively.
Initially, note that the elliptic Keplerian orbit ϕ0(t,Yj,k) has semi-major axis
(L0 + δL)2. So, one increment in δL gives us a perturbation on the initial position of
the orbit ϕ0(t,Y

j,k
0 ). On the other hand, since Yj,k ∈ Lj , it follows that the angu-

lar momentum of the elliptic orbit ϕ0(t,Yj,k) satisfies |G0 + δG| = ‖q(0) × p(0)‖ =
‖q(0)‖‖p(0)‖ because q(0) ⊥ p(0). Note that by the previous discussion, we have
q(0) = q0 + δq. So, we get |G0 + δG| = ‖q0 + δq‖‖p(0)‖, and we point out that an
increment in δG gives us a perturbation on the initial velocity of the elliptical orbit
ϕ0(t,Y

j,k
0 ).

Before stating our main result, we introduce some notation in order to sim-
plify the computations. Let X = (X1,X2) = (δg, δG) (independent variables) and
ϕ0(t, (Y

(0)
1 , Y

(0)
2 + X1, Y

(0)
3 , Y

(0)
4 + X2)) be a solution of the Kepler problem with

initial condition (Y (0)
1 , Y

(0)
2 + X1, Y

(0)
3 , Y

(0)
4 + X2), and

H̄(X) =
∫ T

0

H1(ϕ0(t, (Y
(0)
1 , Y

(0)
2 + X1, Y

(0)
3 , Y

(0)
4 + X2))) dt, (2.10)

and consider the matrix

A = J

(
∂2H̄

∂Xi∂Xj

)
X=0

, (2.11)

where J =
(

0 I
−I 0

)
denotes the standard skew-symmetric matrix. Now, we are

ready to state our main result which provides sufficient conditions for the exis-
tence of Sj-symmetric periodic solutions (j = 1 or j = 2) of Hamiltonian (1.1) as
continuation of the elliptic solutions of the Kepler problem.

Theorem 2.3. Fix the energy level H0 = − 1
2L2

0
and the period T = 2πL3

0 of the
elliptic Kepler solution. Suppose that the Hamiltonian function H in (1.1) is Sj-
symmetric for j ∈ {1, 2}. Let ϕ0(t,Yj,k) be an elliptical solution of the Kepler
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problem as in (2.9). Assume that the following two conditions are satisfied:

(a)
∫ T/2

0

∂H1

∂G
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

dτ

=
∫ T/2

0

∂H1

∂G
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=(0,gj,k

0 ,L0,G0)
dτ = 0,

(b)
∫ T/2

0

∂2H1

∂G∂δG
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

dτ

=
∫ T/2

0

∂2H1

∂G∂δG
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=(0,gj,k

0 ,L0,G0)
dτ 	= 0.

(2.12)

(i) Then for ε sufficiently small there are 1-parameter families of initial conditions

Yj,k
ε = Yj,k

0 + Yj,k(ε), Yj,k(ε) = (0, 0, δLj,k(ε), δGj,k(ε)),

parametrized by ε such that ϕ(t,Yj,k
ε ; ε) = ϕ0(t,Y

j,k
0 ) + O(ε) is a Sj-symmetric

periodic solution of the Hamiltonian system associated with the Hamiltonian (1.1)
or (2.1) with fixed period T = 2πL3

0.
(ii) Moreover, under the assumptions (a) and (b) in (2.12), there are 2-parameter

families of initial conditions

Yj,k
δL,ε = Yj,k

0 + Yj,k(δL, ε) Yj,k(δL, ε) = (0, 0, δLj,k, δGj,k(δL, ε)),

parametrized by ε and δL sufficiently small, such that ϕ(t,Yj,k
δL,ε; ε) = ϕ0(t,Y

j,k
0 ) +

O(ε) is a Sj-symmetric periodic solution of the Hamiltonian system associated with
the Hamiltonian (1.1) or (2.1) with differentiable period T (δL, ε) = 2πL3

0 + O(εα).
Furthermore, if λ1, λ2 are the eigenvalues of A in (2.11), then the characteristic

multipliers of any of the periodic solutions ϕ(t,Yj,k
ε ; ε) or ϕ(t,Yj,k

δL,ε; ε) are 1, 1, 1 +
εαλ1 + O(εα+1), 1 + εαλ2 + O(εα+1).

Proof. Our proof works for each case of symmetry, that is, j = 1, or j = 2. Let
ϕ0(t,Yj,k) be a solution of the Kepler problem as in (2.9) and ϕ(t) = ϕ(t,Yj,k; ε)
(with the same initial condition) be a solution of the perturbed Hamiltonian system
associated with (2.1) in Delaunay variables. Since Yj,k ∈ Lj , the solution ϕ(t) will
be Sj-symmetric, if at the instant t = T/2, it intercepts orthogonally the subspaces
Lj . By lemmas 2.1 and (2.4), we must verify the following two conditions:

�(t, δL, δG, ε) = (L0 + δL)−3 t + O(εα) = π,

g(t, δL, δG, ε) = gj,k
0 + εαg(1)(t,Yj,k) + O(εα+1) = gj,k

0 + mπ,

at the instant t = T/2 for some m ∈ N. Taking m = 0, the previous system (called
periodicity equations) can be rewritten as

f j
1 (t, δL, δG, ε) = (L0 + δL)−3 t − π + O(εα) = 0,

f j
2 (t, δL, δG, ε) = g(1)(t,Yj,k) + O(ε) = 0,

(2.13)

at the instant t = T/2. A natural but not trivial way to solve (2.13) is to apply
the implicit function theorem. Under the choice of T and hypothesis (a), it is clear

https://doi.org/10.1017/prm.2023.46 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.46


Second-kind symmetric periodic orbits 969

that f j
1 (T/2, 0, 0, 0) = f j

2 (T/2, 0, 0, 0) = 0 for j = 1, 2. Moreover, by differentiating
the system (2.13) with respect to (δL, δG) and evaluating at t = T/2, Yj,k = Yj,k

0

and ε = 0, we obtain that the Jacobian matrix satisfies

∂(f j
1 , f j

2 )
∂(δL, δG)

∣∣∣
t= T

2 ,Yj,k=Yj,k
0 ,ε=0

=

⎛
⎝ −3L−4

0 T/2 0
∂g(1)

∂δL

∂g(1)

∂δG

⎞
⎠

t= T
2 ,Yj,k=Yj,k

0 ,ε=0

.

It follows that

det
∂(f j

1 , f j
2 )

∂(δL, δG)

∣∣∣
t= T

2 ,Yj,k=Yj,k
0 ,ε=0

= − 3T

2L4
0

∂g(1)

∂δG

∣∣∣
t= T

2 ,Yj,k=Yj,k
0 ,ε=0

	= 0, (2.14)

because by hypothesis (b)

∂g(1)

∂δG

∣∣∣
t= T

2 ,Yj,k=Yj,k
0 ,ε=0

=
∫ T/2

0

∂

∂δG

(
∂H1

∂G

)
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

dτ 	= 0.

Thus, by the implicit function theorem, we obtain unique differentiable functions
δLj,k = δL(ε) and δG = δG(ε) defined for ε sufficiently small, such that δL(0) =
0, δG(0) = 0 and f j

i (T/2, δL(ε), δG(ε), ε) = 0 for i, j = 1, 2. Thus, we obtain a 1-
parameter (on ε) family of initial conditions

Yj,k
ε = (0, gj,k

0 , L0 + δLj,k(ε), G0 + δGj,k(ε)) (2.15)

such that it gives rise to Sj-symmetric periodic solutions of the perturbed problem
(2.1) with fixed period T = 2πL3

0. This proves item (i).
To prove item (ii), we introduce the time as a new independent variable in

system (2.13). Again, for the hypothesis (a) it is clear that f j
1 (T/2, 0, 0, 0) =

f j
2 (T/2, 0, 0, 0) = 0. Moreover, by differentiating the system (2.13) with respect to

(t, δG) and evaluating at Yj,k = Yj,k
0 , t = T/2 and ε = 0, after some calculations,

we verify that the Jacobian matrix satisfies

∂(f j
1 , f j

2 )
∂(t, δG)

∣∣∣
t= T

2 ,Yj,k=Yj,k
0 ,ε=0

= L−3
0

∂g(1)

∂δG t= T
2 ,Yj,k=Yj,k

0 ,ε=0
.

Again the hypothesis (b) implies that det ∂(fj
1 ,fj

2 )
∂(t,δG)

∣∣∣
t= T

2 ,Yj,k=Yj,k
0 ,ε=0

	= 0. Thus, by

the implicit function theorem, we obtain unique differentiable functions δG =
δG(δL, ε) and τ = τ(δL, ε) = T/2 + O(εα) defined for ε and δL sufficiently small,
such that δG(0, 0) = 0 and τ(0, 0) = T/2 and f j

i (T/2, δL, δG(δL, ε), ε) = 0 for i,
j = 1, 2. Therefore, we obtain a periodic Sj-symmetric solution of the per-
turbed system associated with the Hamiltonian function (2.1) with initial
condition

Yj,k
δL,ε = (0, gj,k

0 , L0 + δLj,k, G0 + δGj,k(δLj,k, ε)), (2.16)

which is 2τ -periodic and close to T = 2πL3
0 which is T̄ = 2τ -periodic such that

T̄ = 2πL3
0 + O(εα). Thus, we have proved item (b).
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To study the type of stability of the previous periodic solutions, we are going to
calculate its characteristic multipliers. Let

Σ = {(�, g, L,G) : H(�, g, L,G) = h0, � = 0},

be a local cross-section on the level H = − 1
2L2

0
= h0 in a neighbourhood of the point

(Y (0)
1 , Y

(0)
2 , Y

(0)
3 , Y

(0)
4 ) given in (2.7). We denote by X = (X1,X2) the points in Σ.

Thus, considering Y = (Y (0)
1 , Y

(0)
2 + X1, Y

(0)
3 , Y

(0)
4 + X2) the Poincaré map P on

Σ is given by P (X, ε) = (g(T , Y , ε), G(T , Y , ε)), where g and G were characterized
in (2.4) and T is the return time which is close to T . Using the form of Yj,k

0 and
(2.5)–(2.6), we arrive at

P (X, ε) = (gj,k
0 + X1, G0 + X2)

+ εα

(∫ T

0

∂H1

∂G
(ϕ0(t, Y )) dt,−

∫ T

0

∂H1

∂g
(ϕ0(t, Y )) dt

)
+ O(εα+1),

= (gj,k
0 + X1, G0 + X2)

+ εα

(∫ T

0

∂H1

∂G
(ϕ0(t, Y )) dt,−

∫ T

0

∂H1

∂g
(ϕ0(t, Y )) dt

)
+ O(εα+1).

(2.17)

Recalling (2.10), we have that the differential of P has the form

DP (X, ε) = I + εαDXH(X) + O(εα+1). (2.18)

Since the 1-parameter family of initial conditions of the T -symmetric periodic
solutions are Y j,k

0 + (0, 0, δL(ε), δG(ε)), then the respective points on the section
cross Σ will be Xε = (gj,k

0 , G0 + δG(ε)) with X0 = (gj,k
0 , G0). Therefore,

DP (Xε, ε) = I + εαA + O(εα+1), (2.19)

with A as in (2.11). Since, the nontrivial characteristic multipliers of the T -
symmetric periodic solutions are the eigenvalues of DP (Xε, ε), we obtain the result
to the periodic solutions generated by the 1-parameter family of initial conditions.
To study the type of stability for periodic solutions given by the 2-parameter fam-
ilies of initial conditions, we follow the same ideas as in the previous case. Again,
the return map P is given by P (X, ε) = (g(T , Y , ε), G(T , Y , ε)), where T is the
return time which is close to T (δL, ε) = 2πL3

0 + O(εα). From (2.5) to (2.6), it follows
that

P (X, ε) = (gj,k
0 + X1, G0 + X2)

+ εα

(∫ T

0

∂H1

∂G
(ϕ0(t, Y )) dt,−

∫ T

0

∂H1

∂g
(ϕ0(t, Y )) dt

)
+ O(εα+1),
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= (gj,k
0 + X1, G0 + X2)

+ εα

(∫ T

0

∂H1

∂G
(ϕ0(t, Y )) dt,−

∫ T

0

∂H1

∂g
(ϕ0(t, Y )) dt

)
+ O(εα+1)

= (gj,k
0 + X1, G0 + X2)

+ εα

(∫ T

0

∂H1

∂G
(ϕ0(t, Y )) dt,−

∫ T

0

∂H1

∂g
(ϕ0(t, Y )) dt

)
+ O(εα+1).

(2.20)

Since the initial condition of the T̄ -symmetric periodic solutions is Y j,k
0 +

(0, 0, δL, δG(δL, ε)), then the respective points on the local cross-section Σ will be
Xε = (gj,k

0 , G0 + δG(δL, ε))) with X0 = (gj,k
0 , G0). Then, the nontrivial character-

istic multipliers associated with the symmetric T -periodic solutions ϕ(t,Yj,k
δL,ε; ε),

given by the 2-parameter families of initial conditions, are the eigenvalues of (2.19).
Thus, we have proved the theorem. �

Remark 2.4. It is clear that we cannot obtain double-symmetric periodic solutions
as continuation of elliptic Keplerian solutions, unless it is circular.

Remark 2.5. Note that fixed j and the energy level H0 = − 1
2L2

0
< 0 of the Keple-

rian solution, then for each G0 (in fact, G0(L0), i.e., G0 is in general a function of L0)
solution of equation (a) of theorem 2.3 (such that (b) is verified) gives us two families
(distinct) of initial conditions such that each of them arises Sj-symmetric periodic
solution, one for k = 1 and the other for k = 2. In fact, introducing the invariants
a = (a1, a2, a3) space according to [22], it is known that different points a give us dif-
ferent orbits of the full system. For this purpose, let A be the Laplace–Runge–Lenz
vector, L0 = (−2h∗)−1/2 and a = G + L0A. One can check that ‖a‖ = L0 and the
vector a determines uniquely an orbit of the Kepler problem on the energy level h∗.
Each point of ‖a‖ = L0 with ‖a‖ 	= G0 	= 0 corresponds to an elliptic orbit of the
Kepler problem. Since, explicitly a1 = eL0 sin g, a2 = eL0 cos g and a3 = G0 evalu-
ating them in g = gjk

0 , we obtain different vectors a for k = 1 and k = 2 and j-fixed.
Thus, we have proved the affirmation.

The main difficulty imposed by the conditions (a) and (b) in theorem 2.3 is related
to the calculus of the partial derivatives and the integration. In some situations,
for practical problems, the main perturbation term H1 cannot be obtained in a
closed-form in Delaunay variables. One strategy in order to compute the partial
derivatives involved in the conditions given by theorem 2.3 consists of writing the
perturbed function H1 in mixed coordinates which involves the polar and Delaunay
elements (see [22] and references therein for more details about these coordinates).
For the integration, we can make an appropriate change of variables using the Kepler
equation so we integrate with respect to the eccentric anomaly. More precisely, to
compute the partial derivative ∂H1

∂G , we consider the Kepler equation

� = E − e sin E, (2.21)
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where e =
√

1 − G2/L2 is the eccentricity of the Keplerian orbit and E is the
eccentric anomaly.

The perturbed function H1, in the mixed polar and Delaunay elements, depends
on the variables r, f , g, L and G. First, we eliminate the dependence of H1 on the
variables r and f , using the auxiliary relations

r =
a(1 − e2)
1 + e cos f

, cos f =
cos E − e

1 − e cos E
, sin f =

√
1 − e2 sin E

1 − e cos E
e =

√
1 − G2/L2,

(2.22)
where a = L2. After these substitutions, the function H1 is simply a function of the
form

H1 = H1 (E(G), g, L,G) . (2.23)

Since ∂e
∂G = −G/(L2e), by differentiation of (2.21) with respect to G, we obtain

∂E

∂G
= − G sin E

L2e(1 − e cos E)
. (2.24)

Thus, ∂H1
∂G can be calculated using equation (2.23) and the chain rule. To integrate

equations (2.12), we introduce the change in the variables

t = L3
0(E − e0 sinE), (2.25)

where L2
0 and e0 correspond to the semi-major axis and the eccentricity of the

Keplerian orbit ϕ0(τ,Y
j,k
0 )), respectively.

2.1. Relationship with the averaging method

Here we intend to find some relations or comparisons between the periodic solu-
tions obtained by the continuation of the elliptic solutions (non-circular) of the
Kepler problem given in theorem 2.3 with those found by using the averaging theory
on Hamiltonian systems.

Initially, in order to apply the averaging method, let h∗ be a negative real constant
such that H0(L) = − 1

2L2 = h∗, so H−1
0 in a neighbourhood of h∗ is a diffeomorphism

and H−1
0 (h∗) is a compact connected circle bundle over the base space B(h∗) with

projection π : H−1
0 (h∗) → B(h∗) (see [36] for more details). Moreover, all the solu-

tions of the Hamiltonian system associated with the Hamiltonian (2.2) are periodic
and have periods depending smoothly on h∗, i.e., the period is a smooth function
T = T (h∗).

Next, we denote by H the averaging function with respect to the mean anomaly
� as

H =
1
2π

∫ 2π

0

H1(�, g, L,G)d� =
1
2π

∫ 2π

0

H1(E − e sin E, g, L,G)L(1 − e cos E) dE.

(2.26)
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Thus, at the energy level H = h∗ (h∗ < 0), the averaged system associated with
(2.26) is given by

dg

d�
= ε

1
(−2h∗)3/2

∂H
∂G

= ε
1

(−2h∗)3/2
F1(g,G),

dG

d�
= −ε

1
(−2h∗)3/2

∂H
∂g

= ε
1

(−2h∗)3/2
F2(g,G).

(2.27)

Next, for our problem, we have the following result as a consequence of averaging
theory or Reeb’s theorem for Hamiltonian systems [22, 30].

Theorem 2.6. Consider the averaged differential system (2.27) in Delaunay vari-
ables restricted to the energy level H = h (h < 0). If p̄ = (g0, G0) is a non-degenerate
critical point, then there are smooth functions p(ε) = (�0(ε), g(ε), L(ε), G(ε)) and
T (ε) for ε small with p(0) = (�0, g0, 1/

√
−2h∗, G0) and T (0) = T = 2πL3

0 such that
the solution of (2.1) through p(ε) is T (ε)-periodic.

In addition, if the characteristic exponents of the critical point p̄ (i.e., the eigen-
values of the matrix A = JD2H̄(p̄)) are λ1, λ2, then the characteristic multipliers
of the periodic solution through p(ε) are

1, 1, 1 + ελ1T + O(ε2), 1 + ελ2T + O(ε2).

Next, we will discuss the relationship between both methods, theorem 2.3 using
Poincaré continuation and theorem 2.6 using the averaging theory. Our explanation
is performing under two points of view: the curve of initial conditions and the
properties of the family of periodic solutions obtained by each theorem.

Without loss of generality, we will assume that the Hamiltonian (1.1) [resp.
Hamiltonian (2.1)] is invariant with respect to the symmetry S2, i.e., the reflec-
tion with respect to the x-axis. The analysis of the other symmetry S1 follows
using similar arguments.

Since � = E − e sin E, then the function H1(�, g, L,G) assumes the form H1 = H1

(E, g, L,G). By the invariance of the function H1 with respect to the symmetry S2

it follows that

H1(E, g, L,G) = H1(2π − E, 2π − g, L,G). (2.28)

Differentiating both sides of the last equation with respect to g and evaluating at
g = kπ, k = 0, 1, we obtain

∂H1

∂g
(E, kπ, L,G) = −∂H1

∂g
(2π − E, kπ, L,G) k = 0, 1. (2.29)

Multiplying both sides of equation (2.29) by L3(1 − e cos E) and integrating in E
from 0 to 2π, we obtain∫ 2π

0

∂H1

∂g
(E, kπ, L,G)L3(1 − e cos E) dE

= −
∫ 2π

0

∂H1

∂g
(2π − E, kπ, L,G)L3(1 − e cos E) dE. (2.30)
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Making the change Ē = 2π − E on the right-hand side of equation (2.30), we obtain
(after removing the bar)

∫ 2π

0

∂H1

∂g
(E, kπ, L,G)L3(1 − e cos E) dE = 0.

Now, from (2.26), we have

∂H
∂g

|g=kπ =
∫ 2π

0

∂H1

∂g
(E, kπ, L,G)L3(1 − e cos E) dE = 0, k = 0, 1. (2.31)

Thus, F2(g = kπ,G) = 0 for k = 0, 1. In addition, from equation (2.31), it follows
that ∂2H

∂G∂g

∣∣∣
g=kπ

= 0.

Proposition 2.7. Suppose that the Hamiltonian function H given in (2.1) is
invariant with respect to the symmetry S2. Thus,

g(1)(t,Y2,k
0 ) = L3

0πF1(g = kπ,G0). (2.32)

Proof. For H1 given in (2.23) we have

g(1)(t,Y2,k)
∣∣∣
g=kπ

=
∫ π

0

∂H1

∂G
(E, g, L,G)

∣∣∣
g=kπ

L3(1 − e cos E) dE

= L3 ∂

∂G

(∫ π

0

H1(E, g, L,G)(1 − e cos E)
∣∣∣
g=kπ

dE

)

=
L3

2
∂

∂G

(∫ 2π

0

H1(E, g, L,G)(1 − e cos E)
∣∣∣
g=kπ

dE

)

=
L3

2

(
∂

∂G

∫ 2π

0

H1(E, g, L,G)(1 − e cos E) dE

) ∣∣∣
g=kπ

= πL3 ∂H1

∂G

∣∣∣
g=kπ

= πL3F1(g = kπ,G) (2.33)

Note that the equality

2
∫ π

0

H1(e,E, g, L,G)(1 − e cos E)
∣∣∣
g=kπ

dE

=
∫ 2π

0

H1(e,E, g, L,G)(1 − e cos E)
∣∣∣
g=kπ

dE,

follows from the fact that by equation (2.28), the function F (E) =
H1(e,E, g, L,G)(1 − e cos E)

∣∣∣
g=kπ

satisfies F (E) = F (2π − E). Finally, from (2.33)

we obtain (2.32). �

From the previous discussion, we can relate the S2-symmetric periodic solutions
obtained by theorem 2.3 with those obtained using the averaging method described
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in theorem 2.6. More precisely, from theorems 2.3 and 2.6 we obtain the following
result.

Theorem 2.8. Consider T = 2πL3
0 and let ϕ0(t,Y

j,k
0 ) = ( t

L3
0
, gj,k

0 , L0, G0) be a Sj-
symmetric elliptic Keplerian solution T -periodic such that the conditions (a) and
(b) of theorem 2.3 are satisfied.

Thus, p̄ = (gj,k
0 , G0) is a critical point of the differential system (2.27). Further-

more, if p̄ is an isolated critical point of (2.27) and ∂2H
∂g2 (p̄) 	= 0, then the elliptic

Keplerian orbit ϕ0(t,Y
j,k
0 ) (associated with the critical point p̄) can be continued

by Reeb’s theorem to a p(t, p̄(ε)), T (ε)-periodic solution.
Moreover, if 1 + εαλ1 + O(εα+1), 1 + εαλ2 are the nontrivial characteristic multi-

pliers of the periodic solutions ϕ(t,Yj,k
ε ; ε) given by theorem 2.3, then the nontrivial

multipliers characteristic of the periodic solutions p(t, p̄(ε)) are

1 + εαλ1T + O(εα+1), 1 + εαλ2T.

Proof. We give the proof for the S2-symmetric periodic solutions. Let ϕ0(t,Y2,k) be
an elliptic Keplerian solution near the elliptic solution ϕ0(t,Y

2,k
0 ) = ( t

L3
0
, 0, L0, G0)

such that the conditions (a) and (b) of theorem 2.3 are satisfied. By the previous
discussion and by proposition 2.7 it follows that p̄ = (g0 = kπ,G0) is a critical point
of the average function H̄ given in (2.26).

Since ∂2H̄
∂g∂G

∣∣∣
g=kπ

= 0, the non-degeneracy condition at the critical point p̄ is given

by

D = det JD2H(p̄) =
∂2H̄
∂G2

∂2H̄
∂g2

∣∣∣
g=kπ,G=G0

	= 0.

From (2.32) it follows that

∂2H̄
∂G2

(p̄) =
1

πL3
0

∂g(1)(t,Y2,k
0 )

∂G
(p̄),

and by condition (b) of theorem 2.3, we obtain ∂2H̄
∂G2 (p̄) 	= 0. Finally, since ∂2H

∂g2 (p) 	=
0 we obtain D 	= 0. The conclusion about the nontrivial multipliers characteristic
is immediate from theorems 2.3 and 2.6. Thus, we have concluded the proof. �

We finish this section with some remarks about the similarities/differences of the
periodic solutions obtained in theorem 2.3 and those given in theorem 2.8.

• Let ϕ0(t,Y
2,k
0 ) =

(
t

L3
0
, 0, L0, G0

)
be an elliptic Keplerian solution and assume

that the conditions (a) and (b) of theorem 2.3 are satisfied. By the previous
discussion it follows that p̄ = (g0 = 0, G0) is not necessarily a non-degenerate
critical point of the system (2.26). Thus, the condition (b) of theorem 2.3 is
a weaker condition when compared with the condition for the non-degeneracy
of the critical point p̄ given by theorem 2.8. For a concrete example of this
situation, see remark 3.5.
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• Note that the periodic (S2-symmetric) solutions obtained by theorem 2.3
item (i) have the same period T = 2πL3

0 that the elliptic orbit ϕ0(t,Y
2,k
0 ) of

the unperturbed system. The solutions obtained in theorem 2.8 have period
T = 2πL3

0 + O(ε).

• The approximation of the period of the periodic solutions given in theorems 2.8
and 2.3 item (ii) can be computed as follows. If �(0) = 0 and �(T ) = 2π, then
T (ε) must satisfy the equation

2π = �(T ) − �(0) =
∫ T

0

�̇(t) dt = L−3
0 T + εαL−3

0

2π∫
0

∂H1

∂L
(g, L,G) d� + O(εα+1)

= L−3
0 T + 2πL−3

0 εα ∂H1

∂L
(g, L,G)|L=L0,g=g0,G=G0 + O(εα+1)

= L−3
0

(
T + 2πεα ∂H̄

∂L
(g, L,G)|L=L0,g=g0,G=G0

)
+ O(εα+1).

By use of the implicit function theorem, it follows that T (ε) = 2πL3
0 + εT ∗ +

O(ε2), where T ∗ = −2π
∂H̄
∂L

(g, L,G)|L=L0,g=g0,G=G0 .

Figure 3. Illustration of the projection curves of initial conditions in a neighbourhood of the
point p̄ = (g0 = π, G0) parametrized by the coordinates (g, G). The blue curve (g(ε), G(ε))
represents the curve of initial conditions obtained by theorem 2.8. The red curve (π, G(ε))
is the projection of the curve of initial conditions given by theorem 2.3 over the reduced
space and it is associated with the S2-symmetric periodic solutions.
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We call attention for the initial conditions generating periodic solutions of the
full system on the reduced space B(h) (parametrized by the coordinates (g,G))
obtained in theorem 2.3 and those given by theorem 2.8. The curve of initial
conditions parametrized by ε at a fixed point p̄ = (gj,k

0 , G0) as in corollary 2.8
has the form (g(ε), G(ε)). On the other hand, the curve obtained in theorem
2.3 at the same point p̄ has the form (kπ,G(ε)). In figure 3, we illustrate these
two families of initial conditions in a neighbourhood of a fixed critical point p̄
on the reduced space.

• The periodic solutions given by theorem 2.8 are not necessarily symmetric.
The authors in reference [36] (see § 2.4) did the inverse process of this section,
i.e., they showed that the Keplerian solutions associated with the critical point
of the averaging system can be continued to a symmetric periodic solution
under some restrictions. In fact, the technique of these authors consists in
the use of the symmetries of the problem combined with averaging, reduction
theory and the use of the implicit function theorem of Arenstorf. But, the use
of the theorem of Arenstorf requires a suitable choice of the parameter ε. In
fact, the value of the parameter ε must be chosen in a discrete set. Thus, the
symmetric periodic solutions analysed in [36] have the following properties:
the existence of the symmetric solutions is conditioned only for some values of
the parameter ε; the period of these symmetric periodic solutions is very large
and is given by τ(ε) = βT + O(ε) (here, the parameter β is a positive and very
large integer and T is the period of the Keplerian orbit).

The last paragraph shows that there are important differences between the
symmetric solutions obtained in [36] and those obtained in § 2.4, since these
can be obtained for all values of ε (sufficiently small) and there is no restriction
on the period T .

3. Applications

3.1. Planar hydrogen atom with Stark and quadratic Zeeman effect

We consider a simple atomic system, namely hydrogen atom interacting with
time-independent and external fields that include electric and magnetic fields. In
this formulation, the magnetic field is usually applied perpendicular to the xy-plane,
while the static electric field is applied along the x-axis. See [11, 12, 15] or [24]
for more details on the formulation of this problem. We call this problem simply
by HCEM problem, whose Hamiltonian has the form

H(x, y, px, py) =
1
2
(p2

x + p2
y) − 1√

x2 + y2
+

B̃

2
(ypx − xpy) +

B2

8
(x2 + y2) − Fx.

(3.1)
This Hamiltonian function depends on two parameters B̃ and F . The term Fx is
the electrostatic potential describing the Stark effect while the other terms having
the parameter B̃ refer to the linear and quadratic Zeeman effect (see [12, 24] for
more details for definition of the physical constants). An important point in this
problem is that the angular momentum is not a conserved quantity. We pint out that
the Hamiltonian function (3.1) is invariant under (only) the symplectic reflection
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S2 : (x, y, px, py) → (x,−y,−px, py). We will consider the hydrogen atom in crossed
electric and magnetic field problem for weak magnetic and electric fields. This is
achieved scaling B̃ and F in the following way:

B̃ = 2Bε, F = γε,

where ε is a parameter sufficiently small. Considering this scaling, the Hamiltonian
function (3.1) assumes the form

H(x, y, px, py) =
1
2
(p2

x + p2
y) − 1√

x2 + y2
+ ε [B(ypx − xpy) − γx] + ε2

B

2
(x2 + y2).

(3.2)
To show the existence of symmetric periodic solutions, first as in the previous case,
we write the Hamiltonian function (3.2) in mixed variables involving polar and
Delaunay variables, so obtaining the Hamiltonian function

H = − 1
2L2

+ εH1(E, g, L,G) + O(ε2),

where

H1(E, g, L,G) = −BG − rγ cos(f + g),

= −BG + aγ
(√

1 − e2 sin E sin(g) + cos(g)(e − cos E)
)

, (3.3)

r = a(1 − e2)/(1 + e cos f) and e =
√

1 − (G2/L2). The main result about the exis-
tence of S2-symmetric periodic solutions for the HCEM problem (3.2) is the
following.

Theorem 3.1. Fix the energy level H0 = − 1
2L2

0
and the period T = 2πL3

0 of the
elliptic Kepler solution. Consider γ and B1 = −B/γ non null real constants and
ε sufficiently small. Thus, for the planar HCEM problem (3.2), there exist two
1-parameter (and two 2-parameter) families of initial conditions such that each of
them gives us a second-kind S2-symmetric periodic solutions. Two of these initial
conditions give us prograde solutions and the other two retrograde solution. All the
periodic symmetric solutions are linearly stable.

Proof. Maintaining the notation of § 2, first we use expression (2.24) for calculations
involving the derivative ∂H1

∂G . After some calculations, we obtain

∂H1

∂G
= −B + Gγ cos g

(
− sin2 E

e − ee2 cos E
− 1

e

)
− Gγ sin E sin g(e − cos E)

e
√

1 − e2(e cos E − 1)
. (3.4)

Next, we evaluate it in the solution ϕ0(τ,Y2,k), and after some simplifications,
we arrive at

∂H1

∂G
(ϕ0(τ,Y2,k))

=
Be + (−1)kGγ − e cos(E)(Be + (−1)k+1Gγ) + (−1)kGγ sin2(E)

e(e cos(E) − 1)
, (3.5)
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where e =
√

1 − G2/L2, G = G0 + δG, L = L0 + δL. For a fixed value of 0 < e < 1
the function given by (3.5) is continuous and differentiable with respect to E and
then the integral of (3.5) can be calculated explicitly. For the integration of equation
(3.5), we use the change of variables (2.25). After the integration of equation (3.5)
and some simplifications, we arrive at

g(1)(T/2,Y2,k
0 ) =

∫ π

0

∂H1

∂G
(ϕ0(τ,Y2,k))|Y2,k=Y2,k

0
L3

0(1 − e0 cos E) dE

= πL3
0

(
−B + (−1)k+1 3γG0L0

2
√

L2
0 − G2

0

)

= πL3
0γ

(
−B

γ
+ (−1)k+1 3G0L0

2
√

L2
0 − G2

0

)
. (3.6)

To find the solutions (in the variable G0) of g(1)(T/2,Y2,k
0 ) = 0, we define the

normalized parameter B1 = −B/γ. Moreover, we introduce the auxiliary functions

fk
1 (G0) = (−1)k+1 3G0L0

2
√

L2
0 − G2

0

, f2(G0) = B1, k = 0, 1, (3.7)

defined in (−L0, L0). Of course, g(1)(T/2,Y2,k
0 ) = 0, if and only if,

fk
1 (G0) = −f2(G0), (3.8)

for some G0 ∈ (−L0, L0). Due to straightforward properties of the function fk
1 , we

obtain the following possibilities for the solutions of (3.8):

• If k = 0 and B1 < 0 (resp. B1 > 0), then there is a unique solution G
(0)
0 =

2B1L0√
4B2

1+9L2
0

< 0 (resp. G
(0)
0 = 2B1L0√

4B2
1+9L2

0

> 0).

• If k = 1 and B1 < 0 (resp. B1 > 0), then there is a unique solution G
(1)
0 =

− 2B1L0√
4B2

1+9L2
0

> 0 (resp. G
(1)
0 = − 2B1L0√

4B2
1+9L2

0

< 0).

Observe that 0 < |G(0)
0 | = |G(1)

0 | < L0, whenever B1 	= 0 and γ 	= 0. Thus, we
have verified the condition (a) of theorem 2.3.

Now, we are going to verify the condition (b) given by theorem 2.3. Consider the
equation (2.24) and the chain rule to differentiate (3.5) with respect to δG. After

that, we evaluate
∂

∂δG

(
∂H1

∂G

)
on the solution ϕ0(τ,Y

2,k
0 )). Next, using the change

(2.25), after integration and simplification, we arrive at

∂g(1)

∂δG

∣∣∣
Y2,k=Y2,k

0

=
∫ π

0

∂

∂δG

(
∂H1

∂G
(ϕ0(τ,Y2,k))

) ∣∣∣
Y2,k=Y2,k

0

L3
0(1 − e0 cos E) dE

= − 3πγL6
0

2 (L2
0 − G2

0)
3/2

. (3.9)
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Of course, for all L0, γ 	= 0 we have ∂g(1)

∂δG

∣∣∣
Y2,k

0

	= 0 and the item (b) of theorem 2.3 is

verified. Thus, we obtain the existence of two 1-parameter (on ε) families of initial
conditions

Y2,k
ε =

(
0, kπ, L0 + δL(k)(ε), G(k)

0 + δG(k)(ε)
)

, k = 0, 1,

where G
(k)
0 = (−1)k 2B1L0√

4B2
1+9L2

0

, such that each of them gives us a S2-symmetric

of second-kind periodic solution with period T = 2πL3
0. In addition, we have two

2-parameters (on ε and δL) families of initial conditions

Y2,k
ε,δL = (0, kπ, L0 + δL(k), G

(k)
0 + δG(k)(ε, δL(k))), k = 0, 1,

such that, each of them gives us S2-symmetric periodic solution of second kind with
period T close to T = 2πL3

0.
Now, we discuss the stability of the previous periodic solutions. After some

algebraic manipulation, the averaging function H given in (2.10) here has the form

H(X1,X2) = πL3
0

(
3γL0 cos(g2,k

0 + X1)
√

L2
0 − (G0 + X2)2 + 2B(G0 + X2)

)
.

(3.10)
By the definition of the matrix A in (3.10), we obtain

A =

⎛
⎜⎝ 0 −(−1)k 3πγL6

0

(L2
0 − G2

0)
3/2

(−1)k3πγL4
0

√
L2

0 − G2
0 0

⎞
⎟⎠ . (3.11)

Thus, the corresponding characteristic multipliers of the prograde and retrograde
S2-symmetric periodic solutions are

1, 1, 1 + ε
3iπγL5

0√
L2

0 − G2
0

+ O(ε2), 1 − ε
3iπγL5

0√
L2

0 − G2
0

+ O(ε2),

where G0 = G
(k)
0 . Thus, in any case the S2-symmetric periodic solutions are linearly

stable. �

3.2. Anisotropic two-body problem under Seeliger’s potential

The gravitational potential of the two-body problem due to Seeliger’s theory is
given by

V (q) = − A

‖q‖ e−K‖q‖, (3.12)

where q is the vector between the two masses m1 and m2, A and K are positive
constants. See [23, 26, 29] for more details on the formulation of this problem. We
mention that a field featured by a (3.12)-like potential has larger physical implica-
tions. London’s theory of superconductivity involves an electromagnetic potential
of this form. Debye–Huckel’s theory of screening in electrolytes leads to a similar
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screened potential. See [26] and references therein for more physical implications
of this problem.

In this paper, following the formulation given in [26], we consider the Seeliger
potential in an anisotropic space, where the potential function (3.12) depends on the
parameter μ that measures the strength of anisotropy. More precisely, we consider
the Hamiltonian

H(x, y, px, py) =
1
2
(p2

x + p2
y) − A√

μx2 + y2
e−K

√
μx2+y2

. (3.13)

We call this problem as anisotropic Seeliger’s Hamiltonian or shortly ASH. It is
clear that the Hamiltonian function (3.13) is invariant under the symmetries S1

and S2.
To obtain a convenient approach of the Hamiltonian (3.13), we introduce the

scaling μ = 1 − μ0ε
2 and K = εξ for ε small. In addition, we make the change

p = 3
√

Ap, q = 3
√

Aq, that is, a 1/A2/3−symplectic change. After this scaling, we
develop the resulting Hamiltonian in a Taylor series in ε around ε = 0. Thus,
eliminating the constant terms and setting κ = ξA1/3, ending up with

H(x, y, px, py) =
1
2
(p2

x + p2
y) − 1√

x2 + y2

− ε2

(
1
2
κ2
√

x2 + y2 +
x2μ0

2 (x2 + y2)3/2

)
+ O(ε3). (3.14)

Remark 3.2. Note that the Hamiltonian function (3.14) depends on two parame-
ters κ and μ0. The parameter μ0 determines the direction of the predominant force.
In the case in which μ0 > 0 (μ < 1), the attraction is weakest in the direction of
the x-axis and strongest in that of the y-axis. The situation is reversed if μ0 < 0
(μ > 1).

In the mixed polar and Delaunay coordinates, the Hamiltonian (3.14) assumes
the form

H = − 1
2L2

+ ε2H1(r, ϕ, g, L,G) + O(ε3), (3.15)

where

H1(r, f, L,G) = −1
2
κ2r − cos2(f + g)

2r
, (3.16)

with as customary r = a(1 − e2)/(1 + e cos f) and e =
√

1 − (G2/L2).
Applying theorem 2.3, we obtain the following result about the existence of

symmetric periodic solutions of second kind for the anisotropic Seeliger problem
(3.14).

Theorem 3.3. Fix the energy level H0 = − 1
2L2

0
and the period T = 2πL3

0 of the
elliptic Kepler solution. Consider κ ∈ R+ and μ0 ∈ R+ (resp. μ0 ∈ R−). If L0 >
4
√

μ0/
√

2κ ( resp. L0 > 4
√−μ0/

√
2κ), then for the 2-DOF anisotropic Seeliger’s

Hamiltonian (3.14) for all positive ε sufficiently small, there exist at least two
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1-parameter or 2-parameters families of initial conditions such that each of them
gives us a second-kind S1 (resp. S2) symmetric periodic solutions. Moreover, the
periodic solutions are unstable.

Proof. We continue maintaining the notation of theorem 2.3. First, we eliminate
the dependence of H1 given in (3.16) in the variables r and f using the auxiliary
expressions (2.22). We infer that

H1(E, g, L,G) =
1

8a(e cos E − 1)3
[
2(e cos E − 1)2

(
a2
(
e2 + 2

)
κ2

+ a2eκ2(e cos(2E) − 4 cos E) + μ0

)
+ 2e

√
1 − e2μ0 cos(E − 2g) −

√
1 − e2μ0 cos(2(E − g))

+
√

1 − e2μ0 cos(2(E + g))

+μ0 cos(2g)
(
−
(
e2 − 2

)
cos(2E) + 3e2 − 4e cos E

)
− 2e

√
1 − e2μ0 cos(Ec + 2g)

]
. (3.17)

Next, for the calculations involving the derivative ∂H1
∂G , we use expression (2.24)

and the chain rule. We obtain

∂H1

∂G
=

G

4a2e(e cos E − 1)5

[
3

2
cos E(e cos E − 1)

(
2(e cos E − 1)2

(
a2
(
e2 + 2

)
κ2 + μ0 + a2eκ2

× e cos(2E) − 4 cos E) + μ0 cos(2g)
(− (e2 − 2

)
cos(2E) + 3e2 − 4e cos E

)
+ μ0

√
1 − e2 [e cos(E − 2g) − cos(2(E − g)) + cos(2(E + g)) − 2e cos(E + 2g)]

)

+ sin E

(
1

2

(−2e(e cos E − 1)2
(
a2
(
e2 + 2

)
κ2 + a2eκ2(e cos(2E) − 4 cos E) − μ0

)
+ μ0 cos(2g)

((
8 − 12e2

)
cos E + e

((
2e2 − 1

)
cos(2E) + 8e2 − 5

)))
sin E + 3e

(
e2 − 1

)
μ0

×
√

1 − e2μ0 cos(E) sin(2g)
(
2
(
e2 + 1

)
cos E − e(cos(2E) + 3)

)
+ sin3(E) cos(2g)

− 2
√

1 − e2μ0 sin2(E) sin(2g)
(−3e2 + 2e cos E + 1

)) − (e cos E − 1)2

× (8a2e3κ2 cos4 E − 24a2e2κ2 cos3 E + 2e cos2 E
(
12a2κ2 + μ0

)
−eμ0(cos(2E) − 3) cos(2g)

+ 2 cos E

(
−4a2κ2 + μ0

(
e sin E sin(2g)√

1 − e2
+ sin2(g) − cos2(g)

)
− μ0

)

+
2
(
1 − 2e2

)
μ0 sin E sin(2g)√
1 − e2

)]
. (3.18)

Next, we evaluate (3.18) on the solution ϕ0(τ,Yj,k). After some simplifications,
we arrive at

∂H1

∂G
(ϕ0(τ,Y1,k)) =

G0(−e + cos E)
16a2e(e cos E − 1)5

[
4e cos E

(
μ0 − 2a2

(
3e2 + 4

)
κ2
)

+ a2
(
3
(
e2 + 8

)
e2 + 8

)
κ2
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+ 4(3e2 − 5)μ0 + 4 cos(2E)
(
e2
(
a2
(
e2 + 6

)
κ2 − 3μ0

)
+ 5μ0

)
− 4e cos(3E)

(
2a2e2κ2 + μ0

)
+ a2e4κ2 cos(4E)

]
, (3.19)

∂H1

∂G
(ϕ0(τ,Y2,k)) =

G0(−e + cos E)
16a2e(e cos E − 1)5

[
4e cos E

(
3μ0 − 2a2

(
3e2 + 4

)
κ2
)

+ a2
(
3
(
e2 + 8

)
e2 + 8

)
κ2

+ 4
(
3 − 4e2

)
μ0 + 4 cos(2E)

(
e2
(
a2
(
e2 + 6

)
κ2 + 2μ0

)
− 5μ0

)
− 4e cos(3E)

(
2a2e2κ2 − μ0

)
+ a2e4κ2 cos(4E)

]
, (3.20)

where a2 = L, G = G0 + δG and L = L0 + δL. Note that for 0 < e < 1 the functions
in (3.19)–(3.20) are continuous and differentiable with respect to the variable E and
it can be integrated on E. Next, for the integration of the previous two equations,
we use the change (2.25). Therefore, after integration of (3.19)–(3.20) in the new
variable E and some simplifications, we get

g(1)(T/2,Yj,k
0 ) =

∫ π

0

∂H1

∂G
(ϕ0(τ,Yj,k))|Yj,k=Yj,k

0
L3

0(1 − e0 cos E) dE

=
1
2
πG0L

3
0

⎛
⎝κ2 − (−1)j

(
e2
0 + 2

√
1 − e2

0 − 2
)

μ0

a2e4
0

√
1 − e2

0

⎞
⎠ . (3.21)

Replacing e0 =
√

L2
0 − G2

0/L0 on equation (3.21), we obtain

g(1)(T/2,Yj,k
0 )

=
πG0L

2
0

(
G4

0|G0|κ2L0 − 2G3
0κ

2L3
0 + |G0|κ2L5

0 − (−1)jμ0(G2
0 + L2

0 − 2L0|G0|)
)

2|G0|(G0 − L0)2(G0 + L0)2
.

(3.22)

Now, we must search the solutions G0 of the equation g(1)(T/2,Yj,k
0 ) = 0,

separately, in the two domains

D1 = {(L0, G0) ∈ R
2; 0 < G0 < L0}, D2 = {(L0, G0) ∈ R

2 ∈ R;−L0 < G0 < 0}.
(3.23)

First, in the domain D1( G0 > 0) we need to solve the equation

g(1)(T/2,Yj,k
0 ) =

πL2
0

[
L0κ

2G3
0 + 2L2

0κ
2G2

0 + L3
0κ

2G0 + (−1)jμ0

]
2(G0 + L0)2

= 0. (3.24)

The solutions of equation (3.24) are the roots of the polynomial equation

pj(G0) = L0κ
2G3

0 + 2L2
0κ

2G2 + L3
0κ

2G0 + (−1)jμ0, (3.25)

in the interval Ip = [0, L0]. Initially, we consider the case j = 1. If μ0 < 0, then
equation (3.25) has no solution. A simple inspection shows that

p′1(G0) = L0κ
2(3G2

0 + 4L0G0 + L2
0) > 0, for all G0 ∈ Ip.
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Moreover, if μ0 > 0 and L0 > μ
1/4
0 /

√
2κ, then p1(0) = −μ0 < 0 and p1(L0) =

−μ0 + 4κ2L4
0 > 0. Thus, for j = 1, μ0 > 0 and L0 > μ

1/4
0 /

√
2κ, there exists only

one solution G0,1 = G0,1(κ,L0, μ0) ∈ (0, L0) of the polynomial equation p1(G0).
On the other, for the case j = 2, μ0 < 0 and L0 > (−μ0)1/4/

√
2κ, there exists only

one solution G0,2 = G0,2(κ,L0, μ0) ∈ (0, L0) of the polynomial equation p2(G0).
Next, we verify the condition of non-degeneracy (b) of theorem 2.3. Again, we

use the auxiliary expression (2.22) and the chain rule for the calculus involving the
derivative of equations (3.19)–(3.20) with respect to δG. After that, we evaluate

∂
∂δG

(
∂H1
∂G

)
on the solution ϕ0(t,Y

j,k
0 )). Making the change of variable t = L3

0(E −
e0 sinE), after the integration ∂2H1

∂G∂δG (ϕ0(t,Y
j,k
0 )) and some simplification, we arrive

to

∂g(1)

∂δG
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

=
∫ π

0

∂

∂δG

(
∂H1

∂G
(ϕ0(τ,Yj,k))

) ∣∣∣
Yj,k=Yj,k

0

L3
0(1 − e0 cos E) dE

= π
L3

0

2a3e6
0

⎛
⎝a3e6

0κ
2 + (−1)j+1

a
(
e2
0 + 2

√
1 − e2

0 − 2
)

e2
0μ0√

1 − e2
0

(−1)j+1

(
3e4

0 + 4
(
2
√

1 − e2
0 − 3

)
e2
0 − 8

√
1 − e2

0 + 8
)

G2
0μ0

(1 − e2
0)

3/2

⎞
⎠ (3.26)

Replacing a = L2
0 and e0 =

√
L2

0 − G2
0/L0 on equation (3.26), we obtain

∂g(1)

∂δG
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

=
∫ π

0

∂

∂δG

(
∂H1

∂G
(ϕ0(τ,Yj,k))

) ∣∣∣
Yj,k=Yj,k

0

L3
0(1 − e0 cos E) dE

=
πL3

0

2 (L2
0 − G2

0)
3

[
(−1)j+1 μ0

(
G2

0 − L2
0

) (
G2

0 + L2
0 − 2L0|G0|

)
|G0|L0

+ (−1)j μ0

(
6G2

0L
2
0 − 8G2

0L0|G0| + 3G4
0 − L4

0

)
|G0|L0

−κ2
(
G2

0 − L2
0

)3]
(3.27)

Considering G0 > 0 in (3.27) we infer that

∂g(1)

∂δG
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

=
πL2

0

[
(−1)j−12μ0 + κ2L0(G0 + L0)3

]
2(G0 + L0)3

. (3.28)

Now, if μ0 >0 (resp. μ0 <0), then ∂g(1)

∂δG (ϕ0(τ,Y
1,k
0 ))>0 (resp. ∂g(1)

∂δG (ϕ0(τ,Y
2,k
0 ))>0)

for all G0 ∈ (0, L0). Therefore, by theorem 2.3, we obtain the existence of a 1-
parameter (on ε) family (and a 2-parameter on ε and δL) of initial conditions [as
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in (2.15) and (2.16)] such that each of them gives rise to Sj-symmetric (prograde)
periodic solution.

Second, for the study of the retrograde solutions (G0 < 0), for each j = 1, 2, we
need to search solutions of (3.22) in the domain D2. Equation (3.22) for G0 < 0
assumes the form

g(1)(T/2,Yj,k
0 ) =

πL2
0

[
L0κ

2G3
0 − 2L2

0κ
2G2

0 + L3
0κ

2G0 + (−1)j−1μ0

]
2(G0 − L0)2

. (3.29)

The negative solutions on the variable G0 of g(1)(T/2,Yj,k
0 ) = 0 are the solutions

of the polynomial equation

qj(G0) = L0κ
2G3

0 − 2L2
0κ

2G2 + L3
0κ

2G0 + (−1)j−1μ0 = 0. (3.30)

It is easy to check that qj(G0) = −pj(−G0), −L0 < G0 < 0 and j = 1, 2. Thus, for
each j = 1, 2, there exists a unique negative solution

G0,j = G0,j(κ,L0, μ0) = −G0,j(κ,L0, μ0),

defined in the interval (−L0, 0), since for j = 1, L0 > μ
1/4
0 /

√
2κ and for j = 2,

L0 > (−μ0)1/4/
√

2κ.
Now, we analyse the condition (b) given in theorem 2.3. To calculate

∂
∂δG

(
∂H1
∂G

)
(ϕ0(t,Y

j,k
0 )), we proceed as in the previous case and after some

manipulation we get

∂g(1)

∂δG

∣∣∣
Yj,k=Yj,k

0

=
∫ π

0

∂

∂δG

(
∂H1

∂G

)
(ϕ0(t,Yj,k))

∣∣∣
Yj,k=Yj,k

0

L3
0(1 − e0 cos E) dE

=
πL2

0

[
(−1)j−12μ0 + κ2L0(L0 − G0)3

]
2(L0 − G0)3

. (3.31)

If μ0 > 0 (resp. μ0 < 0), then ∂g(1)

∂δG (ϕ0(t,Y
1,k
0 )) > 0 (resp. ∂g(1)

∂δG (ϕ0(t,Y
2,k
0 )) > 0)

for all G0 ∈ (−L0, 0). Thus, the conditions (a) and (b) of theorem 2.3 are satisfied
and it is guaranteed of the existence of a 1-parameter (on ε) (resp. a 2-parameter on
ε and δL) family of initial conditions such that each of them gives us Sj-symmetric
retrograde periodic solution of the Hamiltonian (3.14).

Now, we analyse the type of stability of the previous symmetric periodic solutions.
After some algebraic manipulation, the averaging function H given in (2.10) for the
Hamiltonian problem (3.14), in Delaunay variables, has the form

H(X1,X2) =
−π

2
L0

[
μ0

cos(2(gj,k
0 + X1))

(
(G0 + X2)2 − 2L0|G0 + X2| + L2

0

)
L2

0 − (G0 + X2)2

+κ2L2
0

(
3L2

0 − (G0 + X2)2
)

+ μ0

]
. (3.32)

First, we consider equation (3.32) for prograde solutions (G0 > 0). Therefore, the
matrix A defined in (2.11) takes the form

A
(j)
P = J

(
∂2H̄

∂Xk∂Xl

)
X=0
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=

⎛
⎜⎜⎝

0 L2
0π

(
L0κ

2 +
2(−1)j−1μ0

(G0 + L0)3

)
2πL0(−1)j−1μ0(L0 − G0)

G0 + L0
0

⎞
⎟⎟⎠ , (3.33)

for j = 1, 2, whose eigenvalues are

λ
(j)
1,2 = ±

√
2πL

3/2
0

√
(−1)j−1μ0(L0 − G0)

√
κ2L0(G0 + L0)3 + 2(−1)j−1μ0

(G0 + L0)2
.

Since 0 < G0 < L0, then κ2L0(G0 + L0)3 + 2(−1)j−1μ0 > 0 and (−1)j−1μ0

(L0 − G0) > 0 for j = 1 and μ0 > 0 or j = 2 and μ0 < 0. So, the prograde periodic
solutions have multipliers characteristic

1, 1, 1 + ελ
(j)
1 + O(ε2), 1 + ελ

(j)
2 + O(ε2),

and therefore these Sj-symmetric periodic solutions are unstable.
On the other, considering equation (3.32) with G0 < 0 implies that the matrix A

takes the form

A
(j)
R = J

(
∂2H̄

∂Xk∂Xl

)
X=0

=

⎛
⎜⎜⎝

0 L2
0π

(
L0κ

2 +
2(−1)j−1μ0

(L0 − G0)3

)
2πL0(−1)j−1μ0(L0 + G0)

L0 − G0
0

⎞
⎟⎟⎠ , (3.34)

for j = 1, 2. The eigenvalues of the matrix A
(j)
R are given by

ρ
(j)
1,2 = ±

√
2πL

3/2
0

√
(−1)j−1μ0(L0 + G0)

√
κ2L0(L0 − G0)3 + 2(−1)j−1μ0

(G0 − L0)2
.

Since −L0 < G0 < 0, then κ2L0(L0 − G0)3 + 2(−1)j−1μ0 > 0 and (−1)j−1

μ0(L0 + G0) > 0 for j = 1 and μ0 > 0 or j = 2 and μ0 < 0. So, the eigenvalues
ρ
(j)
1,2 are reals and the retrograde periodic solutions have characteristic multipliers

1, 1, 1 + ερ
(j)
1,2 + O(ε2), 1 − ερ

(j)
1,2 + O(ε2).

Thus, we conclude that the retrograde symmetric periodic solutions are
unstable. �

3.3. The planar generalized Størmer problem

This problem consists in the study of the dynamics of a charged particle around
rotating magnetic planets. More specifically, the generalized Størmer problem
describes the dynamics of a dust particle of mass m and charge q orbiting a rotat-
ing magnetic planet of mass M . The magnetic field of the planet is supposed to be
a perfect magnetic dipole of strength aligned along the north–south poles of the
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planet (see [17–19] for more details on the formulation of this problem). Moreover,
the planet magnetosphere is taken as a rigid conducting plasma which rotates with
the same angular velocity Ω as the planet, in such a way that the charge q is subject
to a co-rotational electric field. Furthermore, the gravitational interaction in this
model takes into account the non-sphericity of the planet which is given by means
of the so-called J2 term. See [19] for a complete discussion of the Størmer problem
with J2 effect. We will consider the planar generalized Størmer problem which is
given through the following two-degree-of-freedom Hamiltonian

H(x, y, px, py) =
1
2
(p2

x + p2
y) − 1√

x2 + y2
− δ(xpy − ypx)

(x2 + y2)3/2
+

δβ√
x2 + y2

− J2

2(x2 + y2)3/2
+

δ2

2(x2 + y2)2
. (3.35)

It is easy to check that the Hamiltonian function (3.35) is invariant under the two
symmetries S1 and S2. The planar generalized Størmer problem (3.35) depends also
on three external parameters, namely, δ, β and J2. The parameter δ indicates the
ratio between the magnetic and the Keplerian interaction (i.e., the charge–mass
ratio q/m of the particle). The parameter β is the ratio between the electrostatic
and the Keplerian interactions (i.e., the ratio Ω/wk, where wk =

√
M/R and R is

the equatorial radius of the planet). Finally, J2 is the oblateness of the planet taken
into consideration.

For our purpose, we introduce the small parameter ε by means of the following
relations δ = εb and J2 = αε with b, α real numbers. So, the Hamiltonian function
(3.35) becomes

H =
1
2
(p2

x + p2
y) − 1√

x2 + y2

+ ε

[
−b(xpy − ypx)
(x2 + y2)3/2

+
bβ√

x2 + y2
− α

2(x2 + y2)3/2

]
+ O(ε2). (3.36)

The next step is to express (3.36) in the mixed coordinates involving polar and
Delaunay elements. Then, we arrive at

H = − 1
2L2

+ H1(r, ϕ, g, L,G) + O(ε2), (3.37)

where (r, θ) are the classical polar coordinates, θ = f + g and f is the true anomaly.
The perturbed function H1 is given by

H1 = −bG

r3
+

bβ

r
− α

2r3
= −−2bβL2(1 − e cos E)2 + α + 2bG

2L2(1 − e cos E)3
, (3.38)

where r = a(1 − e2)/(1 + e cos f) and e =
√

1 − (G2/L2) is the eccentricity of the
unperturbed elliptic orbit.

To obtain symmetric periodic solutions, we must verify the conditions (a) and
(b) in theorem 2.3. We have the following result for the existence of the symmetric
periodic solutions of second kind for the generalized Størmer problem (3.36).
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Theorem 3.4. Fix the energy level H0 = − 1
2L2

0
and the period T = 2πL3

0 of the
elliptic Kepler solution. Given α and b non null real constants, for the 2-DOF
generalized Størmer problem (3.36) for all ε and δL positive and sufficiently small,
the following statement holds:

If αb < 0 (resp. αb > 0) and L0 > 3
4

∣∣−α
b

∣∣, then there exist two 1-parameter (ε)
families and two 2-parameter (ε and δL) families of initial conditions such that
each of them gives rise to a prograde (resp. retrograde) second-kind Si-symmetric
periodic solution.

The S1-symmetric periodic solutions are obtained as continuation of the elliptic
Keplerian solution with initial conditions

Y 1,k
0 =

(
0, (2k + 1)

π

2
, L0, G0

)
, k = 0, 1,

where G0 = − 3α
4b . On the other, the S2-symmetric periodic solutions are obtained

as continuation of the elliptic Keplerian solution with initial condition

Y 2,k
0 = (0, kπ, L0, G0) , k = 0, 1.

Moreover, the families of symmetric periodic solutions generated by the 1-parameter
families of initial conditions have fixed period T = 2πL3

0 and those generated by
the 2-parameter families of initial conditions have period T = T (1 − εT ∗) + O(ε2)
where T ∗ = 4

9πbL0(9β − 8b2L0
α2 ). All these symmetric periodic solutions are close to

elliptic Keplerian solutions with eccentricity e0 =
√

16b2L2
0 − 9α2/4bL0.

Proof. Maintaining the notation of § 2, we will verify the hypotheses (a) and (b) of
theorem 2.3. For the condition (a), we need to find the solutions of

g(1)(T/2,Yj,k)
∣∣∣
Yj,k=Yj,k

0

=
∫ T/2

0

∂H1

∂G
(ϕ0(τ,Yj,k))

∣∣∣
Yj,k=Yj,k

0

dτ = 0, (3.39)

for j = 1 and j = 2. Observe that the perturbed function H1 in (3.38) does
not depend on the variable g, and therefore, we have ∂H1

∂G (ϕ0(τ,Y
1,k
0 )) =

∂H1
∂G (ϕ0(τ,Y

2,k
0 )) for k = 1, 2. Using expression (2.24) for calculations involving the

derivative ∂H1
∂G , we arrive at

∂H1

∂G
=

1
4a4e(e cos E − 1)5

[
cos E

(
a2bβ

(
11e2 + 4

)
G − 8abe2 − 6G(α + 2bG)

)
+ e
(
4ab + 2abe2 − 2a2bβe2G − 8a2bβG − 2ab cos(2E)

(
e2(aβG − 1)

+ 2aβG) + 12bG2 + 6αG + a2bβeG cos(3E)
)]

. (3.40)

where a = L2. Next, we evaluate (3.40) on the solution ϕ0(t,Y
j,k
0 ). It follows that

g(1)(T/2,Yj,k
0 ) =

∫ T/2

0

∂H1

∂G
(ϕ0(τ,Y

j,k
0 )) dτ

=
∫ π

0

∂H1

∂G
(ϕ0(τ,Y

j,k
0 ))L3

0(1 − e0 cos E) dE, (3.41)
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Therefore, after integration of (3.41) we arrive at

g(1)(T/2,Yj,k
0 ) =

L3
0

(
2ab

(
e2
0 − 1

)
+ 3G0(α + 2bG0)

)
2a4 (1 − e2

0)
5/2

=
π(3α + 4bG0)

2G3
0|G0|

. (3.42)

We must find the solutions G0 of the g(1)(T/2,Yj,k
0 ) = 0, in the two domains

given in (3.23). Observe that in both domains, the solution of the equation
g(1)(T/2,Yj,k

0 ) = 0 is given by

G0 = −3α

4b
. (3.43)

Thus, in the region D1 (prograde solutions), we need to impose that αb < 0 and
L0 > − 3α

4b . While, in the region D2 (retrograde solutions), we must have αb > 0
and L0 > 3α

4b .
Now, we verify the condition (b) of theorem 2.3. To compute the partial derivative

∂
∂δG

(
∂H1
∂G

)
, we use the chain rule and expressions (2.24) to differentiate (3.40) with

respect to δG. Thus, again using the change of variables t = L3
0(E − e0 sin E), after

integration, we obtain

∂g(1)

∂δG

∣∣∣
Yj,k=Yj,k

0

=
∫ π

0

∂

∂δG

(
∂H1

∂G

) ∣∣∣
Yj,k=Yj,k

0

L3
0(1−e0 cos E) dE = −6π(α + bG0)

G4
0|G0|

.

(3.44)
Evaluating expression (3.44) on the solutions G0 = − 3α

4b , we get

∂g(1)

∂δG

∣∣∣
Yj,k=Yj,k

0

=
512πb5

81α4
	= 0,

since b 	= 0. Therefore, we have verified the conditions given in (2.12). Thus, we
conclude that every Keplerian elliptic orbit with initial condition

Yj,k
0 =

(
0, gj,k

0 , L0,±G0

)
, G0 = −3α

4b
, k = 1, 2,

can be continued to a Sj-symmetric periodic solution of the generalized Størmer
problem. Therefore, we conclude the proof. �

We point out that in the previous theorem, we cannot give information about the
linear stability of the symmetric periodic solutions, because the matrix A (2.11) is

given by
(

0 ∗
0 0

)
, so their eigenvalues are all null.
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Remark 3.5. A simple calculation shows that the averaged function of (3.38) in
Delaunay variables is

H =
−α + 2bβL|G|3 − 2bG

2L3|G|3 .

Moreover, the averaged system associated with the Hamiltonian (3.36), for prograde
solutions is given by

dG

d�
= −ε

1
(−2h∗)3/2

3α + 4bG
2G4L3 ,

dg

d�
= 0.

(3.45)

Therefore, system (3.45) has no non-degenerate critical points. The same conclusion
is valid for retrograde solutions, and Reeb’s Theorem or Averaging theory does not
give us information about the existence of periodic solutions.

4. Concluding remarks

In this work, we have considered the problem of existence of periodic solutions of
symmetric Hamiltonian systems which are perturbation of the integrable Kepler
problem with 2-DOF using an analytic approach. The method of analysis depends
on the appropriated use of Delaunay coordinates, because they permit us to get
the first approximation of the solutions of the full Hamiltonian system. This is
achieved as solution of a variational system. Next, we give the sufficient conditions
for the existence of second-kind symmetric periodic solutions for problem (1.1) as
continuation of an elliptic Kepler solution (the so-called continuation Poincaré’s
method). Moreover, we get an estimate of the characteristic multipliers of the sym-
metric periodic solutions, thus allowing us to determine the type of stability of such
solutions.

We complement our study considering the connection between the solutions
obtained in this paper and the procedure that allows to get symmetric periodic
solutions applying the averaging theory for Hamiltonian systems and symplectic
reduction. For this last approach, the main result can be found in [36], here the
authors derive a method to get symmetric periodic solutions from a more general
class of periodic solutions that are obtained from the analysis of relative equilibria
after performing the process of averaging and reduction. In this work, we determine
when an elliptic Keplerian solution that can be continued by theorem 2.3 to a sym-
metric periodic solution of the perturbed problem (1.1) can also be continued from
the process of the averaging (Reeb’s Theorem). As we saw in § 3.3, some degenerate
elliptic Keplerian solutions (associated with a degenerate critical point in the sense
of Reeb’s theorem) can be continued by theorem 2.3. In addition, if a Keplerian
elliptic solution can be continued by theorem 2.3 and by Reeb’s Theorem to a peri-
odic solution of the full problem, then we showed that these periodic solutions have
the same linear stability.

As applications of our theoretical results, we study the existence of periodic
solutions of three different problems: the perturbed hydrogen atom with stark and
quadratic Zeeman effect, for the anisotropic Seeligers two-body problem and to
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the planar generalized Størmer problem. We proceeded with providing care when
carrying out our analysis, providing many but necessary details to apply theorem
2.3. After checking the literature on the subject, we emphasize that our result stated
on theorems 3.1, 3.3 and 3.4 are new.

In a future work, we intend to study the existence of second-kind symmetric
periodic solutions for spatial perturbed Kepler problems. In addition, we want to
establish the connection between the solutions obtained by the classical analytical
continuation method of Poincaré and the procedure to obtain symmetric peri-
odic solutions applying averaging theory of Hamiltonian systems and symplectic
reduction for three degrees of freedom.
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16 M. Hénon. Generating families in the restricted three-body problem. Lecture Notes in
Physics Monographs, vol. 52 (Berlin: Springer, 1997).

https://doi.org/10.1017/prm.2023.46 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.46


992 A. Alberti and C. Vidal
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20 M. A. López, R. Mart́ınez and J. A. Vera. Periodic orbits of the anisotropic Kepler problem
with quasihomogeneous potentials. Int. J. Bifurcation Chaos 25 (2015), 1540025.

21 K. R. Meyer, G. R. Hall and D. Offin. Introduction to Hamiltonian dynamical system
and the N-body problem, 3rd edn. Applied Mathematical Sciences, vol. 90 (New York:
Springer-Verlag, 2017).

22 K. R. Meyer, J. F. Palacián and P. Yanguas. Geometric averaging of Hamiltonian systems:
periodic solutions, stability, and KAM tori. SIAM J. Appl. Dyn. Syst. 10 (2011), 817–856.

23 D. Mioc and M. Rusu. Seeliger’s two-body problem: collision, escape, symmetries. Rom.
Astron. J. 16 (2006), 177–191.

24 J. F. Palacián. Normal forms for perturbed Keplerian systems. J. Differ. Equ. 180 (2002),
471–519.

25 J. F. Palacián, C. Vidal, J. Vidarte and P. Yanguas. Dynamics in the charged restricted
circular three-body problem. J. Differ. Equ. 30 (2018), 1757–1774.
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Acad. R. Sci. Lett. et Beaux-Arts de Belgique. Cl. des Sci. Mém. in 8° Ser. 2 27 (1952),
1–49.

31 M. Santoprete. Symmetric periodic solutions of the anisotropic Manev problem. J. Math.
Phys. 43 (2002), 3207.

32 C. Siegel and J. Moser. Lectures on celestial mechanics (New York: Springer-Verlag, 1971).

33 V. Szebehely. Theory of orbits (New York: Academic Press, 1967).

34 C. Vidal. Periodic solutions for any planar symmetric perturbation of the Kepler problem.
Celestial Mech. Dyn. Astron. 80 (2001), 119–132.

35 C. Vidal. Periodic solutions of symmetric perturbations of gravitational problems. J. Differ.
Equ. 17 (2005), 85–114.

36 P. Yanguas, J. F. Palacián, K. R. Meyer and H. S. Dumas. Periodic solutions in Hamiltonian
systems, averaging, and the Lunar problem. SIAM J. Appl. Dyn. Syst. 7 (2008), 311–340.

https://doi.org/10.1017/prm.2023.46 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.46

	1 Introduction
	2 Second-kind symmetric periodic solutions
	2.1 Relationship with the averaging method

	3 Applications
	3.1 Planar hydrogen atom with Stark and quadratic Zeeman effect
	3.2 Anisotropic two-body problem under Seeliger's potential
	3.3 The planar generalized Størmer problem

	4 Concluding remarks
	References

