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Abstract

Background. Based on hubs of neural circuits associated with addiction and their degree cen-
trality (DC), this study aimed to construct the addiction-related brain networks for patients
diagnosed with heroin dependence undertaking stable methadone maintenance treatment
(MMT) and further prospectively identify the ones at high risk for relapse with cluster
analysis.
Methods. Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent
brain resting-state functional MRI data acquisition. The patients received 26-month follow-
up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen
to construct a user-defined network for the patients. Then the networks were discriminated
with K-means-clustering-algorithm into different groups and followed by comparative ana-
lysis to the groups and HC. Regression analysis was used to investigate the brain regions sig-
nificantly contributed to relapse.
Results. Sixty MMT patients were classified into two groups according to their brain-network
patterns calculated by the best clustering-number-K. The two groups had no difference in the
demographic, psychological indicators and clinical information except relapse rate and total
heroin consumption. The group with high-relapse had a wider range of DC changes in the
cortical−striatal−thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic
circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amyg-
dala were closely related with relapse.
Conclusion. MMT patients can be identified and classified into two subgroups with signifi-
cantly different relapse rates by defining distinct brain-network patterns even if we are blind to
their relapse outcomes in advance. This may provide a new strategy to optimize MMT.

Introduction

Heroin addiction is a chronic disease characterized by compulsive drug seeking and use. In
clinical practice, the maintenance of pharmacotherapy is a strong determinant of the outcome,
but adherence to treatment remains problematic due to that relapse is common (Volkow,
Jones, Einstein, & Wargo, 2019). A deep understanding of the mechanism of addiction is
important and may provide an opportunity of seeking new pharmacotherapeutic targets.

By means of neurobiological imaging, the procedure from hedonic drug use to compulsive
drug seeking has been well described and elaborated with a four-circuit addiction model com-
posed of reward circuit, motivation/drive circuit, memory/learning circuit, and control circuit
(Volkow, Fowler, & Wang, 2003). The reward circuit mainly comprises the ventral tegmental
area (VTA) and nucleus accumbens (NAc); the motivation/drive circuit comprises the orbito-
frontal cortex (OFC), thalamus, caudate and putamen; the memory/learning circuit comprises
hippocampus, amygdala; the control circuit comprises anterior cingulate cortex (ACC), infer-
ior prefrontal cortex (IPC), dorsolateral and prefrontal cortex (dlPFC). It was proved that
between the four circuits existed functional unbalance interplay, such as overactivating of
reward circuit and motivation/drive circuit and lack of interaction of control circuit with
reward circuit and motivation/drive circuit (Volkow et al., 2003; Volkow, Wang, Tomasi, &
Baler, 2013). Recently, studies supplemented that insular cortex was an essential structure
for addiction behavioral maintenance representing the interoceptive effects of drug taking
and making this information available to conscious awareness, memory and executive
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functions (Naqvi, Gaznick, Tranel, & Bechara, 2014). Overall, the
brain addiction-related topological organization model has been
proposed and it, as a network comprising a number of modules
made of nests sub-modules (circuits), is mediated by inter-
modular connections of hubs.

Although the four-circuit model provides a relatively compre-
hensive neural framework for understanding the main neurobio-
logical processes through which biological and sociocultural
factors contribute to resilience against or vulnerability to drug
use, it cannot completely explain the remarkable differences in
the outcomes among addicts with pharmacotherapy. Methadone
maintenance treatment (MMT), the most effective and accepted
therapy for heroin dependence, for example, has situations
reported like illicit drug use or retention rates altering widely
among clinics (Gauthier, Eibl, & Marsh, 2018; Zhou & Zhuang,
2014). Clinical neuropsychology studies demonstrated that mul-
tiple factors, e.g. age, gender, genetic variation, methadone dose,
social experience, stress, trauma and environmental factors, may
individually or combinedly contribute to the gap of MMT out-
comes and further suggested that those factors could be used as
predictors for MMT outcomes to a certain extent (Andersen,
2019; Coller, Barratt, Dahlen, Loennechen, & Somogyi, 2006;
Darker, Ho, Kelly, Whiston, & Barry, 2016; Jaremko, Sterling, &
Van Bockstaele, 2015; Lin, Hung, Peng, Chao, & Lee, 2015;
Lister, Brown, Greenwald, & Ledgerwood, 2019; Luo et al.,
2017; Proctor et al., 2015; Zhou, Li, Wei, Li, & Zhuang, 2017).
However, few of the predictors or strategies was applied into clin-
ical practice because of diversity, inconsistency and subjectivity of
the studies’ results.

Considering that the fundamental neural activity pattern
underlies the relapse risk gap among MMT patients, scientists
applied neuroimaging techniques to search the neuronal sub-
strates associated with an eventual outcome to MMT. Li et al.,
studied the relationship between the percentage of positive
urine drug screens and the functional connectivity (FC) strength
between salience network, default mode network (DMN) and
executive control network in MMT patients, and suggested the
disrupted coupling between the salience network and DMN and
between the left executive control network and DMN was asso-
ciated with relapse behavior (Li et al., 2018). With independent
component analysis, Li and her colleagues compared the FC of
DMN between the relapsers and abstainers during MMT, reveal-
ing the potential predictive value of DMN concerning heroin
relapse under MMT (Li et al., 2015b). Some other neuroimaging
indexes were also addressed for the association with relapse to
heroin use in MMT, such as fractional anisotropy and axial diffu-
sivity in the posterior limb of the internal capsule (Li et al.,
2016c), regional homogeneity value in caudate (Chang et al.,
2016), and cue-induced activation in NAc/subcallosal cortex (Li
et al., 2015a).

Although several relapse-related brain regions and neuroima-
ging indices were identified by studying the neuronal activity
characteristics in the neuroimaging researches mentioned above,
the practicality of these results was restricted from their retro-
spective evaluation design which means that participants’ relapse
outcomes were known in advance. Thus, a well-designed pro-
spective cohort study using neuroimaging techniques at the con-
dition of being completely blind to relapse outcomes was
necessarily needed. Furthermore, an addiction-related brain net-
work should be a suitable index of analysis for predicting patients’
response to MMT, because the pathological alteration led by her-
oin use is wide at whole-brain level.

According to prior researches, the topological patterns in
addiction-related networks were made of a set of submodules-
neural circuits, consisting of some key nodes densely connected
to each other and inter-modular connector hubs mentioned
above. Degree centrality (DC), as topological features of graphs
meaning the number of functional relationships of a given voxel
with the rest of the network, can describe the addiction-related
graphical models of the brain better (Buckner et al., 2009; Guo
et al., 2016; Luo et al., 2017; Wang, Jiao, Zhang, & Lin, 2017;
Zhou et al., 2014; Zuo et al., 2012). And it was conceived as a
stable and sensitive parameter in test−retest in the face of
BOLD signal noise that was difficult to overcome by other meth-
ods (Zuo et al., 2012). So it has been widely applied to examine
node characteristics of intrinsic connectivity networks and the
topology of brain hub changes with the disease at the global
voxel level, for example, to investigate the association of alcohol
dependence with changed intrinsic functional hubs and to reveal
the attribution of several neural systems to the impaired motor
behavior (Luo et al., 2017). Even DC was suggested as an index
for attentional impulsivity in a recent study on codeine-
containing cough syrups dependence (Hua et al., 2018).

In this current study, based on the key nodes and inter-circuits
brain hubs disclosed by prior studies on addiction and those using
DC value, we constituted the addiction-related brain network of
MMT patients and identified the relapse-related brain network
organization pattern with cluster analysis. Our aim was to pro-
spectively identify the poor MMT responders with neuroimaging
data-driven method and reveal the brain regions contributing to
relapse behavior. It was to be expected that the prospective
identification of poor responders to MMT with cluster analysis
based on neuroimaging data would be useful in modifying
intervention strategies for improving the outcomes of MMT
patients in future.

Methods

Participants

This study was approved by the Institution Board of the Fourth
Military Medical University and conducted in accordance with
the Declaration of Helsinki. Sixty-two patients diagnosed with
heroin dependence receiving MMT (MMT patients) (male;
mean age, 35.8 years; age range, 22–53 years) and 30 matched
male healthy controls (HC) (mean age, 34.8 years; age range,
19–48 years) were recruited in this study. All participants were
fully informed about the details of the experiment and signed
the written consents for their involvement. Recruited from the
outpatient of Xi’an Methadone Substitution Treatment Center,
all the MMT patients met the DSM-IV criteria for heroin depend-
ence, received MMT for no less than 6 months, and had at least 1
month of stable daily methadone dose before entering the study.
Other inclusion criteria included: (1) right handed; (2) aged 18–
55 years old; (3) heroin use history of more than 12 months. They
were excluded if they had current or past psychiatric medical ill-
ness other than heroin dependence. HC were recruited from local
community by advertising and they were free of DSM-IV-TR Axis
I disorders and had no history of drug use. The exclusion criteria
for all participants included: (1) current or past major medical ill-
nesses or current use of prescription medications; (2) dependence
other than psychoactive substances (except nicotine); (3) head
trauma or neurological illness history; (4) MRI examination
contraindication.
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Evaluation measures

The demographics information (age, educational level), heroin
use history (lifetime use and use dosage per day) and methadone
treatment information (duration and methadone daily dosage) of
each participant were collected during the enrollment interview.
Before the MRI scan, all participants were asked to complete
the questionnaire survey under psychiatrist guidance, including
Beck depression inventory (BDI), Hamilton Anxiety Scale
(HAMA). Furthermore, subjective heroin craving was assessed
using a 0–10 visual analog scale, asking, “To what extent do
you feel the urge to use heroin?” (0 indicating the least craving
and 10 the strongest).

According to the reports from MMT fix-clinics in different cit-
ies of China, the MMT retention rate varied greatly (Cao et al.,
2014; Jiang et al., 2014; Zhang et al., 2013). It was notable that
studies on retention in MMT among opioid-dependent patients
in Xi’an revealed the dropout and relapse mostly occurred
between 12 and 60 months after MMT initiation (Wei et al.,
2013; Zhou & Zhuang, 2014). Thus, the follow-up duration in
this study was set as 26 months.

After MRI scan, the MMT participants were followed for 26
months. During each appointment, the participant underwent a
monthly structured interview assessing illicit drug use and a
urine drug test. As opiates (mainly heroin, 38.1%) and synthetic
drugs (mainly methamphetamine, 60.5%) were the main drugs
of abuse in China (China Anti-Drug Network, annual report in
2017), relapse was defined as any use of heroin or methampheta-
mine identified by positive urine drug test (Morphine/
Methamphetamine Diagnostic Kit, Guangzhou Jianlun
Biological Technology Co., Ltd). In addition, the participants
who missed the appointments without any contact with the
study coordinator or who were loss of follow-up were considered
to be relapsed. Finally, the accumulative total amount of positive
urine tests and a missed interview was collected to calculate MMT
relapse rate. Our coordinator contacted MMT participants 3 days
before each appointment and encouraged them to continue the
MMT program. There were 3 MMT patients lost in the follow-up
period, two patients lost to follow up after MRI scan and one lost
after the first clinical structural interview. There were 451 relapse
counts totally, among them 216 were due to missing appoint-
ments and 139 due to loss to follow-up.

Brain imaging methodology and data analysis

Magnetic resonance imaging acquisition
MRI data were acquired with a 3.0T GE-Signa HDxt MRI scanner
using an eight-channel head coil (GE Healthcare, Milwaukee, USA)
in the Department of Radiology, Tangdu Hospital, the Fourth
Military Medical University. Alcohol, tea, caffeine, any drug or
medicine were prohibited in the 12 h before MRI scanning. All
the MRI scanning were conducted 4 h after the MMT patients
took their daily dosage (methadone peak plasma level) to avoid
drug withdrawal symptoms (Wolff, Hay, Raistrick, & Calvert, 1993).

Lying supine with the head fixed by a belt and foam pads, par-
ticipants were instructed to keep their heads still, close their eyes
and not to think anything specific. A routine structure MRI scan-
ning was conducted to exclude gross cerebral pathology. After
that, the resting-state fMRI (rs-fMRI) data were obtained using
a gradient-echo planar imaging (GRE-EPI) pulse sequence, set-
tings as: 30 axial slices, TR = 2000 ms, TE = 30 ms, flip angle =
90°, FOV = 256 mm × 256 mm, slice thickness = 5.0 mm, skip =

0 mm, matrix = 64 × 64. This session lasted for 5 min and 10 s,
including a 10-s dummy scan period at the beginning of the
scan. For each participant, 150 echo-planar volumes were col-
lected during the rs-fMRI scan. And then a high-resolution struc-
ture session was performed with contiguous slices to cover the
whole brain in a steady state using an axial fast spoiled gradient
recalled echo (3D-FSGPR) for spatial normalization of the data
sets to a standard atlas, scanning parameters: TR = 7.8 ms, TE =
3.0 ms, TI = 450 ms, FOV = 256 mm × 192 mm, slice thickness =
1.0 mm, skip = 0 mm, matrix = 256 × 256. After scanning, all par-
ticipants reported they were awake during all scans.

Imaging data processing

Data preprocessing was conducted with SPM 8 software (http://
www.fil.ion.ucl.ac.uk/spm) and DPABI (http://rfmri.org/dpabi).
Prior to data preprocessing, the first five volumes were discarded
to improve signal stabilization. Then, the remaining rs-fMRI data
were corrected for slice timing and realigned for motion correc-
tion. The standard Montreal Neurological Institute (MNI) tem-
plate was used for spatial normalization with a resampling voxel
size of 3 mm × 3mm × 3mm. Participants with head motion
more than 2 mm of translation and 2° of rotation in any of the
x, y and z axes or mean frame-displacement more than 0.2
were excluded. Next, nuisance signals (including Friston
24-head motion parameters, the white matter and cerebrospinal
fluid signals) were extracted and regressed out from the time ser-
ies of every voxel to reduce the effects of nonneuronal signals.
After a linear trend of the time course was removed, a band-pass
filter (0.01–0.1 Hz) was applied. Then, scrubbing signal spikes
based on the method of Power and colleagues was conducted
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012).
Specifically, a threshold of Frame-Wise Displacement = 0.5 mm
was used and the bad volume and the volumes including 2 before
and 1 after were removed. Two MMT participants and one HC
were excluded from the next analysis because of excessive head
motion or mean frame displacement.

Degree centrality (DC) calculation
Weighted DC measures were calculated using the “REST-DC”
toolkit in the REST V1.8 packages (Zuo et al., 2012) as previously
described (Di Martino et al., 2013; Liu et al., 2015). Briefly, to
obtain each participant’s graph, Pearson correlation coefficients
were computed between the time series of all pairs of brain voxels
within gray matter mask. Each voxel represented a node in the
graph, and each significant functional connection (i.e. Pearson
correlation) between any pair of voxels were the edges. As a result,
a N ×N undirected adjacency matrix (N was the count of all vox-
els within the gray matter mask) was obtained to construct the
whole-brain FC matrix for each participant, each element of the
matrix represents the Pearson correlation coefficient between
pairs of voxels. To eliminate the possible spurious connectivity
(Li et al., 2016b), the adjacency matrix was further thresholded
with each Pearson correlation coefficient at r > 0.25. The weighted
DC of a voxel was calculated as the sum of the connections’
strength between a given brain voxel and all other voxels.

The formula is: DCi =
∑

aij
N

j=1
.

Where the DCi represents the weighted DC value for given
voxel i, and aij means the Pearson correlation coefficient between
voxel i and voxel j.
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Furthermore, standardized weighted DC (DC Z-score, zDC)
maps were acquired by subtracting the mean value, and then
divided by the standard deviation within the whole gray matter
mask (Takeuchi et al., 2015; Zuo et al., 2012) according to the
Z-score standardization formula below:

Zi = DCi − m

s
, 1 ≤ i ≤ N.

Where Zi represents the Z-scored DC value of voxel i, μ and σ are
the mean and standard deviation of the DC measures across all N
voxels. Finally, the resulting DC maps were spatially smoothed
with a 4-mm FWHM Gaussian kernel.

Addiction-related network constitution
Based on the current addiction neurobiological theoretical frame-
work, 10 pairs of brain nodes and hubs were chosen from “four
circuits model” and addiction theory of insula and set as regions
of interest (ROIs) to constitute brain addiction-related network
for MMT patients. These regions included the bilateral NAc,
amygdala, ACC, caudate, OFC, hippocampus, insular, putamen,
thalamus, and DLPFC. The ROIs were determined with FSL
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich
et al., 2009) according to Harvard–Oxford cortical and subcortical
structural atlases based on MNI 152 1 mm template. The thresh-
old probability was set as >50%. The DLPFC ROI was obtained by
merging BA9 and BA46 of WFU PickAtlas http://fmri.wfubmc.
edu/software/PickAtlas (Lancaster et al., 2000; Maldjian,
Laurienti, Kraft, & Burdette, 2003). All ROI masks were
resampled into 3 mm functional space. For characterizing the
topological properties of brain networks, the DC value was
extracted from the 10 pairs of ROIs of the 60 MMT patients
after regressed out total methadone consumption, and used to
make a 60 × 20 matrix M, representing the addiction-related net-
work for subjects.

Cluster analysis and cluster validation and stability test
The clustering analysis was used to classify MMT patients’ matrix
M into subgroups with R (https://www.R-project.org/) and several
R packages (factoextra, NbClust). The procedure included six pri-
mary steps: (1) assessing clustering tendency of the matrix M with
the Hopkins’ statistic and a visual approach; (2) identifying the
optimal number K of clustering with Euclidean distance of
ward D2 aggregation algorithm; (3) grouping the MMT partici-
pants according to K-means clustering algorithm; (4) clustering
efficiency test with Silhouette analysis (Sun et al., 2015); (5) clus-
tering stability test with Fowlkes–Mallows (FM) index; (6) group-
ing stability test with the method provided by Hening C (online
Supplementary-Materials).

Statistical analysis

To investigate the DC features coupling with subgroups, the dif-
ferences in DC between MMT subgroups and HC were conducted
with two-sample t test on the whole brain level (TFCE corrected
p < 0.05 and cluster size K > 10). The difference in relapse rate
between subgroups was calculated via Pearson’s χ2 test with
Yates’ continuity correction. The differences in age, education
level, smoking habit, heroin use information, methadone use
history and behavioral score between MMT subgroups were
calculated using two-sample t test or analysis of variance

(>2 subgroups). The results were considered as significant if p
value were less than 0.05.

Regression analysis

To explore which brain region contributed to relapse significantly,
a sphere ROIs with 3 mm radius was made according to the
coordination of peak voxel of brain region with significantly dif-
ferent inter-subgroup DC value. Robust Poisson regression (Tsou,
2006) was run to predict the relapse rate based on the z-scored
DC signal strength for each ROI in 60 MMT participants, in
which relapse count was set as dependent variable and only one
brain DC value as independent variable in the model at each
time. The statistical threshold was adjusted to 0.05/n after
Bonferroni correction (n = the number of brain regions with sig-
nificantly different inter-subgroup DC values).

Results

Clustering analysis

The results of clustering are shown as an ordered dissimilarity
image (ODI) of 60 × 20 matrix M (Fig. 1). According to the
index of clustering tendency, Hopkins statistic value for M was
0.38, far less than 0.5, indicating the clusterability of the matrix
M. Besides, it was also implied by the ODI that the matrix M
was of significant clusterability. The optimal clustering number
K was determined as 2 according to Wards’ algorithm and the cal-
culations of 7 clustering indices out of 26. Clustering efficiency
and stability tests also suggested the 2-cluster solution was the
most stable and efficient one (online Supplementary-Materials).
Finally, the 60 MMT participants were classified into two sub-
groups, 29 MMT patients (48.3%) in subgroup-1 and 31
(51.7%) in subgroup-2.

Differences in demographic data, clinical information between
MMT subgroups

There was a significant difference in the relapse rate between
subgroup-1 and subgroup-2 [χ2 = 22.578, df = 1, p = 2.018 ×
10−06; ϕ = 0.13, 95% confidence interval (CI) = (0.07–0.017)],
subgroup-1 higher than subgroup-2 (Fig. 2). Besides, subgroup-1
was significantly higher than subgroup-2 in the total heroin con-
sumption [ p = 0.047; Cohen’s d = 0.58, 95% CI = (0.06–1.11)]. No
significant differences existed in age, education level, methadone
use information, BDI, HAMA, craving score, smoking duration,
and daily cigarette number between the two subgroups ( p >
0.05) (Table 1).

Differences in DC value between MMT subgroups and HC group

As a result of circular analysis, the areas with significant differ-
ences in DC value between MMT subgroups and HC group
reported were almost the ROIs used for cluster analysis.
Compared with HC, MMT subgroup-1 had more and wider dis-
tribution of brain areas with changed DC, including the bilateral
caudate, putamen, thalamus, left amygdala, hippocampus, vACC,
and OFC with decreased DC, the bilateral paracentral gyrus and
right postcentral gyrus with increased DC. On the contrary,
subgroup-2 showed a less brain regions with altered DC, the bilat-
eral calcarine and lingual gyrus with decreased DC value. When
compared to subgroup-2, subgroup-1 had 17 brain regions with
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decreased DC, including the bilateral amygdala, caudate, OFC,
thalamus, hippocampus, NAc, putamen, vACC, and left insular
(TFCE corrected p < 0.05 and cluster size K > 10) (Fig. 3).

Regression analysis

The DC value of the bilateral vACC and NAc, hippocampus and
right amygdala of MMT patients had a significant negative rela-
tionship with relapse rate. For every unit increased in the DC
value of left vACC, right vACC, left NAc, right NAc, left hippo-
campus, right hippocampus and right amygdala, relapse rate
decreased by 53.57, 58.11, 55.47, 43.41, 42.69, 50.89 and 41.4%,
respectively ( p = 6 × 10−06, Exp(B) = 0.4643; p = 0, Exp(B) =

0.4189; p = 1 × 10−06, Exp(B) = 0.4453; p = 3 × 10−06, Exp(B) =
0.4659; p = 0.001 Exp(B) = 0.5731; p = 5.3 × 10−05 Exp(B) =
0.4911; p = 2 × 10−04, Exp(B) = 0.526) (Fig. 4).

Discussion

This present study constructed the addiction-related brain net-
work for MMT patients and at the condition of being completely
blind to relapse rate in advance, we, by clustering the data set of
the network, identified two MMT subgroups with different
relapse-level defined by distinct patterns of addiction-related
brain network abnormalities. The subsequent statistical analysis
of clinical information confirmed that no differences were

Fig. 1. Ordered dissimilarity image of matrix M. The color level is proportional to the value of the dissimilarity between observations. Objects belonging to the same
cluster are displayed in consecutive order. The dissimilarity matrix image confirmed that there is a cluster structure in the HD participants’ data set. Two main
subgroups (subgroup1 and subgroup2) were identified. Red: High similarity, Blue: Low similarity.
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found in the demographic characteristics, methadone use or BDI
and HAMA score between the two subgroups, and that
subgroup-1 was the poor responder to MMT because it had a
higher relapse rate. Here subgroup-1 was called as high relapse
group (HRG) and subgroup-2 low relapse group (LRG). We
think the prospective identification of HRG of MMT patients is
the highlight of this study, because it may provide an opportunity
for improved treatment tailoring and/or based on it, healthcare
providers can adjust more aggressive adjunct therapies for the
high-risk populations. In the following discussion part, we do not
discuss the areas with significant DC value between the MMT sub-
groups and HC group to avoid emphasizing circular analysis.

Our study demonstrated that HRG had a widespread altered
density of connectivity involving a cortical-striatal-thalamic cir-
cuit at the whole-brain level, whereas a limited one in the LRG.
This finding implied that the brain network pattern of HRG iden-
tified is characterized by alteration of the importance of hubs
extensively. Two factors may account for such global deficits.

The first one might be related to chronic heroin use. Heroin
exposure cause brain structural injuries, including cell apoptosis
(Tramullas, Martinez-Cue, & Hurle, 2008), mitochondrial dys-
function (Feng et al., 2013), synaptic defects (Garcia-Fuster
et al., 2008), spongiform leukoencephalopathy (Pirompanich &
Chankrachang, 2015), disturbance of neurogenesis development

(Bayer et al., 2015), neuronal loss (Feng et al., 2013). In line
with these findings, gray matter nucleus volume loss (Muller
et al., 2015), abnormal cortical thickness (Li et al., 2014) and
white matter structural connectivity damage (Liu et al., 2008;
Wollman et al., 2015) were discovered in morphological studies.
Correspondingly, disrupted activities of neuronal clusters, brain
regions, neuronal circuits and brain networks in heroin hijacked
brain were revealed in functional imaging studies (Chang et al.,
2016; Jiang et al., 2011; Li et al., 2016a; Wang et al., 2013;
Zhang et al., 2017). Actually, the pathological alterations resulted
from heroin use is not equally distributed over the brain, but pref-
erentially affect the hub regions (Volkow & Morales, 2015;
Volkow, Wang, Fowler, & Tomasi, 2012; Volkow, Wang, Fowler,
Tomasi, & Telang, 2011). Thus, the brain hubs with prominent
reduced DC in HRG may reflect the neuropathological features
associated with chronic heroin use.

From the view of neurodevelopment, the large-scale changed
DC in hubs of high relapse risk network pattern could be inter-
preted as the consequence of complex interactions between gen-
etic, epigenetic and environmental factors. Genetic factor
accounts for approximately half of the risk for addiction
(Volkow & Li, 2005), and a series of gene variants are associated
with addiction vulnerability by impacting on synaptic plasticity
(Oliver et al., 2018; Randesi et al., 2018), receptor binding affinity

Fig. 2. Violin plot of relapse rate of HD subgroups. HD subgroup1 had a significant higher relapse rate than subgroup2 ( p < 0.05).
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Table 1. Demographic and clinical information of study subjects and subgroups

Characteristics

Group; Mean ± S.D. T value p value

HC (N = 29) HD (N = 60) S1 (N = 29) S2 (N = 31) HD-HC S1-HC S2-HC S1–S2 HD-HC S1-HC S2-HC S1–S2

Age (years) 34.86 ± 8.88 35.78 ± 8.56 37.24 ± 8.62 34.42 ± 8.41 0.46 1.04 −0.2 1.28 0.6443 0.3049 0.8437 0.205

Education (years) 9.79 ± 1.8 9.24 ± 2.35 9.59 ± 2.2 8.92 ± 2.48 −1.22 −0.39 −1.57 1.10 0.2263 0.6963 0.1228 0.274

Nicotine (no. cigarette /day) 17.38 ± 10.64 18.2 ± 8.73 18.55 ± 7.97 17.87 ± 9.50 0.36 0.47 0.19 −1.18 0.7199 0.6369 0.8513 0.245

Duration of nicotine use (years) 16.24 ± 8.47 17.75 ± 8.95 18.69 ± 9.13 16.87 ± 8.83 0.77 1.06 0.28 0.78 0.4425 0.2941 0.7791 0.437

Daily heroin dosage (g) NA 0.38 ± 0.35 0.45 ± 0.43 0.32 ± 0.24 NA NA NA 1.41 NA NA NA 0.165

Duration of heroin use (months) NA 85.2 ± 77.2 105.2 ± 85.5 66.4 ± 64.4 NA NA NA 1.98 NA NA NA 0.053

Total heroin consumption (g) NA 915.3 ± 1201.08 1265.26 ± 1518.54 587.85 ± 675.06 NA NA NA 2.06 NA NA NA 0.047*

Daily methadone dosage (mg) NA 42.87 ± 15.83 43.41 ± 13.11 42.35 ± 18.21 NA NA NA 0.26 NA NA NA 0.796

Duration of methadone use (months) NA 19.78 ± 15.00 22.44 ± 16.45 18.32 ± 13.24 NA NA NA 1.33 NA NA NA 0.190

Total methadone consumption (mg) NA 27 169.97 ± 24 418.8 29 116.66 ± 21 844.64 25 348.87 ± 26 836.8 NA NA NA 0.60 NA NA NA 0.552

Craving score 0.31 ± 1.04 1.14 ± 1.27 1.38 ± 1.45 0.9 ± 1.01 3.25 3.23 2.19 1.46 0.0018* 0.0022* 0.0326* 0.150

BDI 4.17 ± 6.1 8.79 ± 8.16 7.41 ± 7.21 10.29 ± 8.63 2.96 1.73 3.09 −1.41 0.0041* 0.0902 0.0032* 0.1633

HAMA 5.62 ± 6.72 8.41 ± 9.09 7.31 ± 6.39 9.52 ± 10.79 1.62 0.91 1.66 −0.99 0.11 0.3662 0.1039 0.3287

Note: HC, healthy control; HD, patients diagnosed with heroin dependence; S1, subgroup-1; S2, subgroup-2; NA, not applicable; S.D., standard deviation; *, statistically significant; HD-HC, HD v. HC, and so on.
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(Shi et al., 2002), dopamine receptor density (Noble, 2000), neuron
cell sensitivity to the substance of abuse (Alia-Klein et al., 2011),
cortical neurotransmission and neurogenesis (Crews & Vetreno,
2011), and gray matter volume shrinkage in chronic substance
use (Gitik et al., 2016). In addition, the epigenetic factors also con-
tribute to the risk for addiction. People who experienced early life
stress are at significantly high risk for the development of addiction
caused by stress-induced neuro-plastic changes (Nestler, 2014).
Other factors associated with addiction vulnerability include neuro-
development imbalance between circuits supporting reward-seeking
behaviors and self-control during adolescence (Giedd, 2008), early
exposure to drugs of abuse (Nestler, 2014) and psychological traits
of impulsivity, excitement seeking and stress reactivity (Bickel,
Jarmolowicz, Mueller, Gatchalian, & McClure, 2012; Holmes,
Hollinshead, Roffman, Smoller, & Buckner, 2016; Jasinska, Stein,
Kaiser, Naumer, & Yalachkov, 2014). Consistent with the results,
the longer heroin use duration in HRG indicated a younger heroin
use age relative to LRG, which might imply the influence of gene
and environment (Su et al., 2015).

The areas with significantly reduced DC in the primary and sec-
ondary visual cortex in the HRG might reflect the target of action
of methadone. The previous study has demonstrated that metha-
done can depress visual function by acting on the visual parts,
including midbrain and thalamic visual nuclei (Rothenberg, Peck,
Schottenfeld, Betley, & Altman, 1979). Then, the relationship
between the disrupted neural activity of occipital and long-term
methadone use is confirmed by electroencephalograph techniques
(McGlone et al., 2008; Wang, Kydd, & Russell, 2016). Although

we did not observe the similar DC change of visual cortex in the
LRG, we still think it is worth exploring the possible
methadone-associated alteration of visual cortex function with
imaging technology in the future. The increased DC value of para-
central and postcentral lobe in the HRG is inconsistent with those
of prior opiate study, such as decreased glucose metabolism,
reduced response to heroin-related cue and GO/NOGO task in
paracentral and/or postcentral lobe (London et al., 1990; Mei,
Zhang, & Xiao, 2010; Ye et al., 2018). It might be a reflection of
methadone playing its therapeutic role in addicted brain by increas-
ing regional blood cerebral flow (Danos et al., 1998; Jiang et al.,
2011). In an early study performed in heroin addicts, postcentral
gyrus showed a reduced response to drug-related cue along with
a decreased craving after buprenorphine dose (Mei et al., 2010).
Another study on positive therapeutic effect of acupuncture on
alcohol use disorder revealed that several brain regions including
postcentral gyrus were activated (Yang et al., 2017). Thereupon,
we speculate the increased DC could be a reflection that treatment
works. However, this phenomenon of increased DC of paracentral
and postcentral region was not observed in LRG, which still calls
for further investigations to understand the neuropathology under-
lying it.

Our regression analysis revealed that several hubs of addiction-
related circuits, such as NAc, vACC, hippocampus and amygdala,
were closely related to relapse. It raises the possibility of the
potential therapeutic targets for addiction treatment.

NAc as a crucial hub in the network of reward, motivation and
craving has rich and extensive interconnections with the VTA,

Fig. 3. DC differences between HD and control and between subgroup 1 and subgroup 2 (TFCE corrected p < 0.05 and cluster size K > 10). Subgroup1 had a wide-
spread altered density of connectivity involving in cortical–striatal–thalamic circuit at the whole-brain level, whereas a limited alteration in the subgroup2. As a
result of circular analysis, the areas with significant differences in DC value between MMT subgroups and HC group reported were almost the ROIs used for cluster
analysis (the upper, middle, and lower rows, respectively).
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amygdala, thalamus, prefrontal cortex, etc. Because of the key role
in the process from voluntary drug use to compulsive drug-
seeking behavior, NAc has been identified as a predictor for
abstinence period following cession and a common target of
pharmacological and cognitive-based interventions (Konova,
Moeller, & Goldstein, 2013; Luigjes et al., 2012; Owens et al.,
2017). In an earlier clinical study, a prominent improvement of
5-year retention rate was observed in former heroin addicts
with bilateral NAc ablation stereotactic surgery (Li et al., 2013).
Furthermore, animal studies revealed that the possible way to
attenuate drug reinstatement by manipulating NAc is local activa-
tion/or activation of GABAergic interneurons in the medial pre-
frontal cortex via antidromic stimulation of cortico-accumbal
afferents (Vassoler et al., 2013).

Hippocampus is involved in the formation of associations
between drug use and special events and the regulation of
reinstatement of drug-reinforced response (Francis, Chaudhury,
& Lobo, 2014; Koob & Volkow, 2010; Pascoli et al., 2014).
Exposure to drug-associated contextual cue contributes signifi-
cantly to relapse, which is mediated by drug-induced synaptic
plasticity change in the ventral hippocampus (Alvandi,
Bourmpoula, Homberg, & Fathollahi, 2017; Borjkhani, Bahrami,
& Janahmadi, 2018). Therefore, there has been diverse and effi-
cacy interventions targeting the hippocampus to prevent recurrent
relapse in drug-dependent animal models. Wright, V. L. success-
fully used alpha7 nicotinic acetylcholine receptor antagonist to
block the rats’ reinstatement of morphine-conditioned place
preference which was mediated by the retrieval of associative
drug memories in ventral hippocampus (Wright et al., 2018).
Another experiment proved the reinstatement induced by stress
or combination of stress and primer dose of morphine was atte-
nuated by antagonist administration targeting D1- and D2-like
receptor in CA1 region of the hippocampus, addressing the role
of hippocampal structures in treatment (Nazari-Serenjeh,
Rezaee, Zarrabian, & Haghparast, 2018). In addition, several stud-
ies implicated that the drug-induced increase in synaptic plasticity
in hippocampus projections to NAc shell played role in the
contextual-mediated associations with drug-taking, and manipu-
lation on hippocampus influenced drug reinstatement and drug-
seeking behavior (Britt et al., 2012; Pascoli et al., 2014).

vACC is associated with relapse vulnerability and therapeutic
outcomes (Forster, Dickey, & Forman, 2018). A study demon-
strated that the abstinent time-related FC pattern of vACC and
frontopolar cortex in a group of recently abstinent stimulant use
disorder patients had a shift from strengthened FC first to a
greatly reduced FC afterwards, implicating the patients’ relapse
risk (Camchong et al., 2014). And it was found in cocaine depen-
dents that their increasing impulsivity and higher relapse rate was
associated with the aberrant FC between ventral caudate and sub-
genual ACC (Contreras-Rodriguez et al., 2015). It was confirmed
that the drug-induced neuroadaptation causing an imbalance
between emotional processing and cognitive processing did also
exist in the vACC (Shapira-Lichter et al., 2018; Wang et al.,
2010). In view of this, it is reasonable to presume that vACC
could be a potential medical interference target for addiction
treatment.

Compelling evidence demonstrated that the amygdala, specif-
ically the basolateral nucleus appears to play a critical role in
relapse related to exposure to reminders of drug consumption,
drug withdraw, fear or stress (Goode & Maren, 2019; Koob,
2009). The neuronal substrates underlying it is the afferents
from the VTA to the basolateral nucleus that increase its activity
and the reciprocal connections with the NAc involved with the
information of seeking behavior (Ambroggi, Ishikawa, Fields, &
Nicola, 2008; Ford, Mark, & Williams, 2006; Grace &
Rosenkranz, 2002). As the potential mediator of the conditioned
cue reinstatement, the amygdala has been chosen as the target
of medication in the context of relapse. Disruption of neural activ-
ity in the basolateral nucleus or central nucleus of the amygdala in
a rat model of relapse after chronic cocaine or ethanol self-
administration blocks the initial acquisition of cue conditioning
and the subsequent relapse, as well as withdrawal-induced drink-
ing (Bale & Vale, 2004; See, Fuchs, Ledford, & McLaughlin, 2003).
These findings are also strong evidence supporting the opinion
about the negative correlation between amygdala and relapse
rate proposed by our study.

Although we successfully divided the MMT patients into two
subgroups with statistically different relapse rate according to
the distinct addiction-related network patterns, the classification
could not be as good enough as we had expected. Several MMT

Fig. 4. Estimates for signal of six brain ROIs in the
models showed by Robust Poisson regression coeffi-
cient plot with 95% confidential intervals.
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patients might be arranged into the wrong subgroup. We think
the limitations of this study may contribute to this.

The first limitation should be originated from the selection
strategy of ROIs for constructing Matrix M representing
addiction-related network. We were mainly based on classical
addiction neurobiological theories to determine the ROIs.
Despite it is relatively simpler, the ROIs we selected, perhaps,
could not be the best for constructing an addiction-related
brain network. It is believed that the more specific the brain net-
work reflecting neuronal activity associated with addiction, the
better the clustering analysis results. There could be other meth-
ods to select the ROIs more sensitive to relapse, which deserves
our more attemptation in future. The second one that might influ-
ence the clustering results is the sensitivity of MRI index describ-
ing ROIs neuronal activity. The reason we chose DC as the MRI
index was that it had stability and sensitivity when as a topological
feature of graphics and few MRI indicators were suitable for clus-
tering analysis reportedly. As for whether DC is the most suitable
for clustering analysis, it is still unclear and needs more investiga-
tions. To explore the impact of other MRI parameters on cluster
results is valuable. The third one is the relatively longer interval of
a structured interview and a urine drug test for assessing illicit
drug use, which may lead to a bias of relapse rate. Moreover,
we confess that the final results could be impacted by the limita-
tion of only having male subjects. It is necessary to use a more
appropriate interview plan and gender-matched group to verify
the reliability and repeatability of our findings in future.

In summary, we prospectively classified the former heroin
addicts with stable MMT into a high or low relapse risk group
by grouping their brain neural activity patterns with a neuroima-
ging data-driven method. The two groups shared the same demo-
graphic information, methadone use history and smoking use
except total heroin consumption and relapse rate. In addition, it
was found that HRG was more extensive in the neuropathological
changes in the brain, and that NAc, vACC, hippocampus and
amygdala had a role in the contribution to illegal drug use.
These brain hubs may be selected as potential psychological
and pharmacotherapeutic targets in future. Importantly this
new strategy of identifying HRG with a data-driven approach
measuring addiction-related network pattern rather than clinical
phenomenology would suggest a great possibility of medication
pathway and benefit the MMT patients in the optimizing treat-
ment plan and improving therapeutic effect.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721003937
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