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0. Introduction.

Classical statistical mechanics has commanded a modest but steady
amount of attention from philosophers of science. By contrast, there
has been an almost total neglect of relativistic statistical mechanics,
or more precisely, a neglect of the prospects and problems of pro-
ducing a relativistic version of classical statistical mechanics. The
neglect is undeserved, for this area offers a fascinating array of
case studies for those concerned with the history and sociology of
science, with the structure and dynamics of scientific theories, or
with foundations problems in physics. This paper Is dedicated to the
goal of ending the neglect. Towards this end, I will survey some of
the issues which arise in attempting to marry statistical-thermodynamics
with relativity theory. The choice of the issues to be discussed and
their treatment naturally reflect my own preferences and prejudices,
and I cannot hope for the reader's agreement on all points. But I do
hope to convey some sense of how rich a mine this area is for philoso-
phy of science.

In the present section I will briefly outline some of the stages of
development of this subject, giving enough references so that the
reader interested in the history can find his way into the literature.
Section 1 discusses the role of the Hamlltonian formalism in classical and
relativistic mechanics. Sections 2 and 3 describe how the concepts of
heat and work fare when carried from the classical to the relativistic
setting. Sections 4 and 5 deal with the relativistic version of the
classical First and Second Laws of Thermodynamics. Section 6 contrasts
the nature of equilibrium states in the classical and relativistic cases.
Section 7 describes some of the problems in obtaining a relativistic
version of the Fourier heat flow law. Section 8 details some of the impli-
cations of relativistic statistical mechanics for the Planck-Ott debate
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about the transformation properties of thermodynamic quantities.
And finally, Section 9 provides some concluding remarks. Various
mathematical details are to be found in the Appendix.

Once the special theory of relativity was accepted, the drive
began to make every branch of physics conform to the requirements of
relativity. Some branches proved to be recalcitrant; gravitation was
the most notable example, and It took Einstein many years of struggle
to create a satisfactory theory, a theory which burst the bounds of
special relativity. But thermodynamics seemed to present no great
challenge. Einstein [14] and Planck [27] set for themselves the
twin tasks of finding how thermodynamic quantities behave under
Lorentz transformations and demonstrating that the laws of thermo-
dynamics are Lorentz covariant. Their solution to the first task is
contained in the formulae

(0.1) T1 = I / l - v2/c2, AQ' = Aqjl-v^/c2 ,

AS1 = AS.

Where T, Q, and S are respectively the temperature, heat, and
entropy, and the primes indicate a moving inertial observer whose
velocity relative to the unprimed inertial observer is v^ (0.1) was
repeated in most of the standard texts on relativity theory (see, for
example, [24] and [38]). In 1963 Ott [26] questioned the validity of
(0.1), and proposed Instead

(0.2) T1 = r/Jl - v2/c2,' AQ1 = AQ/./. - v2/c2 ',

: AS' = AS,

so that a moving body should look hotter rather than cooler, and the
controversy has been raging ever since.

Subsequent developments came fitfully. In the teens, Juttner [18]
and Tolman [35] applied Maxwell-Boltzmann statistics to a relativistic
gas. Then little occurred until the late '20's when Tolman ([36] and
[37]) attempted to put thermodynamics in a general relativistic
setting. This was followed by a flurry of activity in the '30's and
'40's, with pioneering developments by Synge [32], Tolman [38],
van Danzig ([5] - [7]), and Eckart [9]. Much of the literature up to
this point contains an admixture of phenomenological thermodynamics,
statistical mechanics, and relativity theory, and relativistic
statistical mechanics was not developed from first principles without
taking for granted the so-called laws of thermodynamics. This pro-
cedure is understandable when it is remembered that through the early
part of this century, thermodynamics was seen as a subject whose
existence and validity is independent of any statistical interpretation.
This attitude Is in sharp contrast to the one taken here; namely, all
macro-thermodynamical quantities must be given a statistical interpre-
tation, and the Interpretation must explain to what extent and under what
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conditions the 'laws' of thermodynamics are valid. Thus, I am betting
that the lawlike behavior of thermodynamic processes does not turn on
any 'emergent' features of macro'^systems; and in so doing, I am putting
myself at risk since even this mild form of the unity of science could
turn out to be false. My motivation here stems from more than a love
of danger; for, as I will try to indicate in Section 8, there is a sense
in which thermodynamics is conceptually dependent upon statistical
mechanics.

•.
A notable exception to the trend of the '30's and '40's was Synge,

who introduced the key tool needed for a thorough going relativistic
statistical mechanics-—the statistical definition of the stress-
energy tensor (see [32] and the discussion in Section 2 below). Unfortun-
ately, Synge chose to work with the dynamical definition of macroscopic
velocity, a choice that does not easily lend itself to a treatment of
non-adlabatic processes (see Section 2 below). In any case, the relati-
vistic version of the Boltzmann equation and relativistic transport
theory did not develop until the '50 and '60's (see [10] - [13] and
the references given there), and the growth of these branches is far
from complete today. The unfinished nature of this subject commends
it all the more to those philosophers of science who want to witness
first-hand science in the making.

2
1. Hamiltonian Dynamics and Liouville's Theorem.

The main approach used in classical statistical mechanics is based
on ensemble theory, which in turn relies heavily on the Hamiltonian
formulation of Newtonian mechanics. The mathematical skeleton of
Hamiltonian dynamics can be quickly summarized. For a system with
configuration space M (dim (M),= n), the phase space is taken to be
the cotangent bundle T*(M). T*(M) comes equipped with a natural
symplectic structure, a closed 2-form Q of maximal rank. This defines

a volume element Q = Cl A Cl Au«A U (n times) on T*(M). The allowable
histories of a system with Hamiltonian H: T*(m) -> E is represented
by a flow on T*(M) whose tangent vector field is

L s (8H/3pi)3/3x
i-(3H/3xi)3/3p1 where x

1, 1 = 1, 2 n, are local

coordinates for M and the (x , p.) are local coordinates for T*(M).

Hamiltonian flows conserve volume:

(1.1) ^Tfl = d(L'fl) + L»dfl

= d(L«O) (since 6D. = 0)

= d(dH) (definition of L and Q)

= 0 . .

This is the first and most basic form of Liouville's Theorem.
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In order to make things as parallel as possible with the
vistic ca.se, let us take H tq be Newtonian space^time. An appropri^
ate measure for a hypersurface S of ̂ ( M) which projects, down onto a
plane of simultaneity of M ism = L-Q since iu assigns a nonr-zero

measure to any such £ and since we again have Xoo = 0, Assume now that

there is a probability density function f such that .f̂ fu) is the

probability, at the 'time' corresponding to 2, of finding the system in

a state lying in £. Choosing a cylindrical region D of T*(M) with

walls A tangent to L and with bottom and top respectively the hyper-

surfaces £- and E. (see Fig. 1), we have

Fig. 1

(1.2)
3D

Jfio - Jim + !"&) .
2, S, A

The last term on the rhs vanishes since L-u) = 0, and if probability
is conserved, the first and second terms cancel out. Hence, we have

(1.3) 0
3D D

Xdf/Vu) =
D

(Stokes' Theorem)

(using du = 0 and
the definition of

From this we can conclude that

(1.4) L(f) = 0,
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which is another form of Liouyille's Theorem, This form i§ less
fundamental than the first, since when probability is not conserved
we will want the first but not the second form,

Actually things are a bit more complicated than indicated above
since the appropriate one^-particle phase space is not the eight
dimensional T*(M) but the seven dimensional subspace obtained by
imposing the condition that when the time coordinate is normalized so
as to coincide with the absolute time t, the fourth component of

momentum p = m = constant Cm = mass of the particle), But it is

easy to define the approprate £3 and cu for this seven dimensional

subspace, which corresponds to the more familiar augmented (x, £, t)

phase space. In the relativistic case we have a similar constraint
11 2

since gjjP P = -m (see Appendix 2),

This emphasis on Hamiltonian dynamics should not be taken to mean
that it is the Hamiltonian formalism itself which is essential to
classical statistical mechanics. But it is hard to see how statisti-
cal mechanics, at least in its ensemble form, can be done without the
help of certain features of the Hamiltonian dynamics; namely, a
natural phase space, a natural volume element for the phase space,
and a description of the dynamics that generates a measure preserving
flow. If a Hamiltonian formulation of the underlying particle mechan-
ics should prove not to be feasible, we could seek to preserve the
ensemble approach by preserving these features. But this preserva-
tion task may not be an easy one to perform; for even if we could
prove that there is an appropriate volume measure that is preserved
under the non-Hamiltonian dynamics, we cannot automatically proceed
with the statistics if the measure is not unique or if it cannot be
constructed without first having to solve the dynamics.

These worries are not merely academic, for it is not at all clear
how to construct a suitable Hamiltonian dynamics for relativistic
particle mechanics; indeed, the No-Interaction Theorems of Currie,
Jordan, Sudarshan [4] and Leutwyler [22], proved in the 1960's, were
thought to demonstrate that non-trivial particle interactions cannot
be given a Hamiltonian description in Minkowski space-time. However,
the folk version of these theorems, which emphasized the requirement
of canonical representations of the Lorentz group in deducing the
negative results, has turned out to be misleading. Also essential to
the no-interaction results is the requirement that the particle
coordinates are canonical or, equivalently, that their Poisson bracket
vanishes (Commutation Condition), And there is evidence that this
condition is the real culprit. Droz*-Vlncent [8] and Klinzle [20] have
shown that in certain situations, the Commutation Condition alone,
without any assumptions on the group structure of the lsometries of the
underlying configuration space, can lead to a kind of no-interaction
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in which the particle trajectories are independent (i.e., the
N-particle solution is obtain by taking a product of the 1-particle
solutions). This form of no-interaction is weaker than that of 1
Currie et^ _al., where the world lines of the particles are geodesies i
of Minkowski space-time, but it is still disturbing. j

On the other hand, if the Commutation Condition is dropped, there J
is an embarrass de riches since many different symplectic structures
then become available. Bel [1] proposes to get a unique symplectic
structure by imposing asymptotic conditions. Kunzle [20] has
recommended maintaining the Commutation Condition on a null surface.
The details of these and other proposals are too technical to review
here. j

I
To some extent, this problem can be side-stepped in general i

relativity. The gravitational interactions among the particles can be
viewed in terms of a background field while the short range inter-
actions can be treated in terms of instantaneous collisions. Thus,
the world lines of the particles will be broken geodesic segments in j
the background metric g. (Allowance can also be made for electro- j
magnetic interactions, but this complication will not be considered j
here; see [10]). The phase space, which can be taken to be either the I
tangent or cotangent bundle of the space-time, can be equipped with a i
natural volume measure which is invariant under the flow (see
Appendix 2). Though the idealizations involved in this side-stepping
maneuver are crude, quite good numbers can emerge from the theory.
But from the point of view of foundations, the idealizations are
severe since, in effect, we are restricted to a 1-particle probability
density function. Some of the implications of this restriction will
be discussed below in Section 5.

2. Heat.

For sake of simplicity, the discussion is restricted to systems
consisting of a single species of the particle with mass m > 0.

The fundamental tool of relativistic fluid mechanics is Synge's
statistical definition of the stress-energy tensor

(2.1) Tij a JpVfnm.

In order to decompose T ^ into factors associated with pressure, shear,
etc., and to make contact with macroscopic observations, we also need
to define the notion of the average or macroscopic velocity of the
fluid. This definition and (2.1) justify the term 'fluid' since
together they affect a transition from the discrete-particle
description to a continuum description. This form of 'reduction'
deserves more attention than it has received thus far in the
philosophical literature.
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In the classical setting, the mean velocity can be defined as the
velocity of the center of mass of an element; but this concept does
not have an invariant relativistic counterpart. Alternatively, the
mean velocity can be defined by the condition that an observer who
is at rest with respect to the mean flow should see no net average
particle flux and no net average momentum flux. Each part of this
definition does have a suitable relativistic counterpart, but the
counterparts need not coincide. This leads to a distinction between
what Synge [34] has called the 'dynamic' and the 'kinematic'
concepts of macroscopic velocity.

With plausible regularity conditions on f, it can be shown that

(2.2) T1JU±U. > 0

for any timelike vector U . It then follows from a theorem of Synge1s

that T can be decomposed as

(2.3) T« = ̂ Vjvj + A«

where

(2.4) vJvDj = -1, AijVDj = 0

and \L is the energy density as measured by an observer with velocity
i • i

V_. If V is chosen to be future oriented, then the decomposition in

(2.3) is unique and, thus, defines the dynamic velocity. If the

momentum flux as measured by an observer whose velocity coincides

with V* is taken to be P* = -T±;iV = UpV* then it is obvious

that the observer sees no net momentum flux in his rest frame. Synge

[34], Landau and Lifshitz [21], and others recommend V as the

explication of the mean macroscopic velocity.

By contrast, Eckart [9] and his followers have proposed that the
mean velocity is best explicated by the concept of the kinematic
velocity. The particle current density is defined by

(2.5) N = J p in •

Using the first form of Liouville's Theorem, i t can be shown that
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(2.6) N-1^ =

so that the number of particles is conserved if and only if the second

form of Liouville's Theorem holds. Further, from the fact that N
is timelike, we can set

(2.7) N 1 = ILV* , vhvv. = -1, V* future oriented
r*. JS. JS. JN.X K

where n^ is the particle number density as measured by an observer

with the kinematic velocity \L. So an observer moving with velocity
i

V̂ . will see no net average particle flux in his rest frame.

The condition for V_ and VTjP to coincide is that V__ be an eigen-D Js. K
vector of I J ,

(2.

o r

(2 .

.8)

equivalently

9)

i .e.,

T %

, that

V[V].

=

V3

i K

One would like to know the necessary and sufficient conditions on the
probability function f for (2.8)-(2.9) to hold , but this is
apparently an open problem. When f characterizes equilibrium, then

V_ = V,, (see Sec. 6 below), but outside of equilibrium one cannot

expect the equality to hold in general. Thus, transport theory,
which is concerned with non-equilibrium processes, must face up to
a choice between these two possible definitions.

The point I want to emphasize here is that this choice has pro-
found consequences for the description of heat. Relative to any

normalized timelike vector, T •* can be split up as

(2.10) T ± j = p,vV + phiJ + S i j +2q(iVj)

where

(2.11) q V = S±iVi = S
±
± = 0

and p and p are interpreted respectively as the energy density and

pressure as measured by an observer with velocity V , q is the heat

flow vector, S is due to shear stresses (see below), and
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h - g + V V is the metric of the instantaneous three space

orthogonal to V . The interpretation of q as heat flow is justified

by the fact that the total momentum flow -T JV as measured relative

to V is nV + q so that q is the difference between the total flow

and the 'organized' flow p,V and, thus, is equal to the 'unorganized'
flow. It is an immediate consequence of the definitions that

q™ = 0 if and only if V,, = Vn. But by the same token, it follows that
Js. Js. D

q = 0 always. This appears to have the counter-intuitive consequence

that on the V description, there is never any heat flow. Landau and

Lifshitz tried to avoid this result by describing heat in terms of a

particle flux v in the rest frame of V , where

(2.12) N 1 = njjV1 + v1, V j ^ = 0 .

However, they go on to say that pure thermal conduction corresponds
to the case of an energy flux with no particle flux, and they take
the latter to mean that

(2.13) tf = nDV£ + v
a = 0 , a = 1,2,3 .

At best, this procedure can give only a coordinate effect since one

can always choose a coordinate system so that locally VT = 0,

which by (2.13) means that v* = 0 and by (2.12) that v 1 = 0;

consequently, \T = V , i.e., there is no heat flow.
D Js.

The proponent of the dynamic velocity description can, of course,
take the tough line and maintain that heat is forever banished.
Alternatively, if he is unwilling to assume such a radical stance, he
can follow Landau and Lifshitz part way by assimilating thermal con-
duction to particle diffusion but can part company with them in
refusing to draw a distinction between pure and impure thermal
conduction. While the latter option sounds less radical than the
former, it still involves a significant break with standard classical
theory where the essential role heat plays is in the law of conser-
vation of energy. And the fact that these options are available at
all is an interesting consequence of the application of relativistic
consideration.

But are these options really live ones? How, for example, can the

V description be applied to systems which are closed to particle
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transfer but not to heat transfer? In the present setting, this is
not really a fair question since the definition (2.1) of the stress
energy tensor is not designed to accommodate such cases. However,
the changes needed for the accommodation force a modification in

the VD description. The first and most radical option must now be
read as saying that there is never any heat flow unless there is,
say, radiative transfer, while the second option must now admit both
particle transfer and radiative transfer as sources of heat con-
duction; and both of these modified options are awkward in their

non-uniform treatment of heat. But the real test for the V descrip-

tion concerns how well it hooks up with the relativistic kinetic

theory of non-equilibrium processes. I will not put VR to this test

here, and in what follows I will work with the Vv description; for I

am less interested in the question of how far the concepts of
relativistic statistical mechanics can be made to depart from their
classical counterparts than in the opposite question of how closely
they can be made to parallel one another.

3. Work.

The relativistic conservation law

(3.1) T i j . = 0

and the symmetry of T ^ imply that

(3.2) (T 1^)... = T«V ( i.. r

Using (2.10) and (2.11), this in turn implies that

(3.3) fovVi = -q1.. - T«V(1;j).

If the second term on the right hand side (hereafter abbreviated rhs)
of (3.3) is interpreted as the density of the rate of working, then (3.3)
looks like something which we may be able to integrate to give a relativ-
istic analogue of the classical First Law

(3.4) AE = AQ + AW

where AE is the change in the internal energy, AQ is the heat
absorbed, and AW is the work done by the system. Of course, (3.3)
could be used to define the work done, but that would give the
relativistic First Law a definitional status so it is worth investi-
gating whether an independent justification can be given for inter-

pretating -T V, .. as the rate of working.
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To simplify the investigation, let us assume in analogy with the
classical case that the stress term in (2.10) is given by '

(3.5) S i j = -21)a±j - C8hij

where 1) and £are respectively the coefficients of shear and bulk

viscosity, and the expansion 9 and shear a are defined by

(3.6) 9 = V1;.

aiJ H h i n h J V , - (l/3)hi:i9.(m;n)

Ultimately, the form of S •* must be derived from (2.1) and non-
equilibrium relativistic kinetic theory; while not an exact
expression, (3.5) can be justified as a first approximation (see
[30]). A calculation from (2.10) and (3.5) gives

(3.7) - T l J v ( i ; j ) = -P9 + 2Tp%±i + C62 - q \

V1 "k V1. .V-5 .

Each of the terms on the rhs of (3.7), except the last, has a

classical analogue. The final term, -q V , can be motivated by the

remark that, according to relativity theory, all forms of energy
have an inertia, so that work has to be done in accelerating the
heat energy. Such arguments, however, have to be handled with care.
By way of illustration, Tolman [38] and Miller [24] once maintained
that, on the same grounds, work has to be done to keep a system
moving at a constant velocity when heat is added; but no such effect
is contained in (3.7).

Unfortunately, such intuitive motivations are the best we can hope
to do since no satisfactory independent definition of work is
available in this context. For example, we might split off the
mechanical part of the stress-energy tensor

(3.8) M1J s phlj - 2T]aij - £e l j

and define the rate of working by the mechanical forces M ̂  .
ii ;j

a s M;jV
We find that

(3.9) k ^ =
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= ~P9 + C6 + 211a 3a . .

This is nice in that it gives back the first three terms on the rhs
of (3.7). To get the last term, we might try to add by analogy the

work generated by the heat tensor H •* = 2q V . We find

(3.10) H1^ V = q^Y - q1 + V V* .qJ .

Using the identities

(3.11) V ^ V . = 0, q 1.^ + qV.,, = 0

reduces (3.10) to

(3.12) HiJ;.Vi = -qH± -

But (3.12) contains not only the term we want but also the additional
divergence term which corresponds to the Tolman-M(6ller conception.
Alernatively, we could try to define the rate of working through

the momentum flow P = -T •'v. as

(3.13) P*V± = P 1 . ^ ^

Again using (3.11), (3.13) reduces to

(3.14) V±V± - |1 - qH±

which is even further from what we want, as can be seen from the
equation

(3.15) jl + tie + P9 - 2T)jiV, - £9 2 + q1., + q*V. = 0

which follows from (3.3) and (3.7). And even if one of these
calculations should produce a result which is in agreement with the
expression on the rhs of (3.7), it would provide only a numerological
justification for interpreting this expression as rate of working, for
the 'forces' involved are not true forces (see the discussion in [25]).
To obtain true forces, which are proportional to accelerations, it is
necessary to project onto the hyperplane orthogonal to the velocity.
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The result, which is obtained by writing our hk T J_. = 0 is
i 5J

(3.16) p,Vk - *£ + FJ
k k

where the mechanical force F and the heat force F are defined by

(3.17) Fk = hk Mi-' Fk = hk H ^
v J M i' ;j ' H i ;j

It appears then that we must simply accept (3.7) as defining the
rate of working. The upshot is a non-classical effect; because of

the term -q V., heat and work are inextricably bound up in a

manner not found in the classical case.

4. The Relativistic First Law.

In some of the early treatments, it was simply assumed that a
relativistic First Law could be written in the form (3.4) (see, for
example, Tolman [38]). According to the adequacy conditions
announced in Section 0, this is not an admissable assumption. We have
already derived the relativistic energy balance relation (3.15), and
this could be taken as the expression of the relativistic First Law.
But it is natural to go on to ask whether this relation can be
integrated to give something more closely resembling the classical
First Law.

Very special relativistic space-times admit a covariantly constant

unit timelike vector field U (see Appendix 3)

(4.1) U1. . = 0 4=^[U. . = 0 (Killing condition)

and (u.. = 0 (non-rotating)]

where the rotation tensor is defined by

(4.2) .« . fc^Vn]-

Such a field permits the integration of the divergence law (3.1) into
the more familiar conservation law in the form of the constancy of

the energy. With U 1 in place of V in (3.2), the Killing condition

implies that P_.. = 0, where P = -T ̂ U. is the momentum flow

as measured relative to U . The non-rotating condition means that

U is hypersurface orthogonal, so that if we choose a domain D of
space-time such that the bottom H. and top H consist of spacelike
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hypersurfaces orthogonal to U and the walls A are formed by a
timellke surface on which

u

Figure 2

P ' vanishes or to which P is tangent (see Fig. 2), then Stokes1

Theorem gives

(4.3)

= E(H2) - = AE 0 .

Because of the orthogonality of U to IL and H-, we are justified in

taking the defined AE as the change in the internal energy from the
'time' H1 to the 'time

1 H9 since the surface integrals do indeed give
ii'

the spatial integration of the energy density T U.U as measured
i •"

relative to U .

In the case we are interested in, the relevant velocity field

cannot be expected to satisfy the Killing condition; but from the

point of view of statistical thermodynamics, this does not cause any
Js.
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problems since the failure of the Killing condition is to be inter-
preted in terms of work. Nor is the failure of the energy-momentum
current to vanish on the spatial boundary disconcerting if this
failure can be interpreted as heat flow across the boundary. What
does cause problems is the failure of the non-rotating condition;
and a relativistic fluid can rotate even in equilibrium (see,
however, Section 6 below). The point is this: (3.3) can be integrated
to give an equation of the form (3.4), if the quantities in (3.4)
are interpreted as

(4.4) AE a J>H^vJda1 - > f H ^ d a i

AQ a -Jqjdo^ , AW a -Xl

But the resemblance to the classical First Law may be only a formal

one when \L. is rotating. For then AE as defined in (4.4) may not

be equal to the change in the internal energy density n, and AQ may
not be equal to the heat transferred across the spatial boundary A.

5. The relativistic Second Law.

One of the earliest investigations of the implications of general
relativity for statistical thermodynamics was undertaken by Tolman
([36] and [37]). He wrote the relativistic Second Law in the form

(5.1) S^.Atf- £ AQ/T

where AQ is the heat absorbed by the volume element A\7" at the
absolute temperature T, and the entropy current vector is defined by

(5.2) S 1 s sV1

where V is the macroscopic velocity and s is the proper entropy
density. Tolman1s presentation was incomplete in that it did not

supply independent statistical interpretations for AQ and V , and it
simply assumed the validity of the ordinary laws of thermodynamics.

Furthermore, if V is identified with V™, then the entropy current
will not satisfy (5.2) except in very special cases, e.g., equilibrium
where we should have AQ = 0.

The modern approach begins with the definition of the entropy
current as

(5.3) S1 = -jVflogf^.

Here we face exactly the same paradox which arises in classical
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statistical mechanics. Taking the covariant derivative of (5.3)
we find that

(5.4) S 1 ^ = -J(logf + l)L(f)nm.

And upon application of the Liouville Theorem (1.4), we have

(5.5) S 1 ^ = 0 ,

i.e., no entropy production.

One way to resolve the paradox in the classical case is to point
out that while L(f) = 0 for the N-particle probability density, it is
generally non-zero for various reduced densities. Indeed, the most
promising tack (and, one is tempted to say, the only legitimate tack
within the ensemble theory of isolated systems) for justifying the
Boltzmann equation is to show that L(f) = 0 for the N-particle
density, plus certain 'plausible' assumptions, entail the Boltzmann
equation for the 1-particle density.3 This tack is not available in
the present relativistic formalism since we are constrained from the
beginning to work with the 1-particle density.

Thus, it will have to be taken for granted here that the 1-particle
density f does not obey (1.4) but rather a relativistic Boltzmann
equation of the form

(5.6) L(f) = C(f)

where C(f) depends upon the nature of the collisions among the
particles. The problem for the relativist is to find an appropriate
relativistic expression for the collision term C(f) and to show that
the resultant equation leads to the 'relativistic H-Theorem'

(5.7) S 1 s 0 .

The problem has been solved (see [10] - [13] and [30]). (5.7) then
provides one expression of the relativistic Second Law.

The entropy current can be split up into components parallel and

orthogonal to the chosen mean velocity V

(5.8) S 1 = sV1 + s1, S±V± = 0

where s is the proper entropy density and s is the entropy diffusion
vector. If the diffusion is zero on the spatial boundaries of the
system, as will be the case for an isolated system, then (5.7) can
be integrated to give the classical form of the Second Law.
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(5.9) JS 1 «W = J s V
D ' 3D- ;± 3D

— Ps -do" — fs dcj
J i v i

H2 Hl

• = S(H2) - S ^ ) s AS 2: 0.

In the general case where s does not vanish on the walls A, we have

(5.10) AS £ -Js±do± .

And a crude first order calculation (see Appendix 4) based on an f
which is close to equilibrium shows that

; (5.1D

so that for constant T we recover the usual expression

(5.12) AS -Z. AQ/T

for the Second Law. But as we will see below, causes of entropy
production other than the absorption of heat must be countenanced.
Moreover, the T that appears in (5.12) is not the temperature of the
fluid in the non-equilibrium state f but rather the temperature in
the fictitious equilibrium state f which f approximates; and in fact,

no meaning has been assigned so far to temperature in non-equilibrium
states. One way to remedy this situation is to show that for an
equilibrium state is an 'equation of state' [i, = ti(s, n) which gives
the energy density (i, as a function of the entropy density s and the
particle density n and which obeys the Gibbs relation

(5.13) dp,' = Tds + constantxTdn.

Next, one argues that the equation of state remains valid to first
order in near equilibrium situations and that (5.13) can be used to
define the temperature for these cases. This remedy is somewhat con-
trary to the spirit of a thoroughgoing statistical foundation, and
there is obviously a need for more investigation of how the temperature
concept fares in non-equilibrium states.

<±. Equilibrium.

Classically, equilibrium is defined by the absence of entropy
production. Relativistically, this condition is expressed by

(6.1) S1., = 0 .
1
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Using the relativistic Boltzmann equation (5.6), it follows that for
binary collisions

( 6 . 2 ) S 1 ^ = - J 1 ( l o g f ) C ( f ) n m = 0 ,

i.e., logf is a collision invariant. Thus, in the case where only
binary collisions are taken into account, this leads to the relativis-
tic Maxwell-Boltzmann distribution

(6.3) fQ = Cexp(a(x) + Pi(x)p
±).

In order that f have finite moments, 0 must be a future directed
O O jO

timelike vector, so that we can write p. = pU. where U U. = -1.

Calculating the moments of f gives

(6.4) Tij = pXS^ + phij, N 1 = nU1, U 1 - V^ = V*
is. u

so that the behavior is that of a perfect fluid. From the analogy
with ordinary thermodynamics, we identify p with 1/KT, T being the
absolute temperature.

In classical setting, one often hears the assertion that tempera-
ture ̂ is mean kinetic energy. This cannot be true if the 'is' here
is the is of identity. For by symmetry of identity, mean kinetic
energy would be identical with temperature, but this is clearly not
the case since in states far from equilibrium the concept of tempera-
ture may not be well-defined while that of mean kinetic energy is.
Moreover, in the relativistic case temperature (or some multiple of
it) is not even coextensive with mean kinetic energy in equilibrium
states, though an approximate coincidence may hold for extreme
temperatures (see [33]). It seems to me that the best way to
accommodate these facts is to follow the lead of those mind-body
identity theorists who want to give a 'functional' characterization
of mental states; thus, temperature would be seen as 'the quantity
which plays such-and-such a role in the equilibrium distribution'.
One advantage of such a treatment is that it explains how we can make
cross-theoretical identifications of the quantity of temperature. j
I hope to work out this suggestion in detail in another place.

Returning to (6.3) and applying the condition L(f ) = 0 leads to

(6.5) p.. .. = 0, i.e., V^T is a Killing field.
li»JJ

Ehlers [11] has shown that in some circumstances, the move from (6.1)
to (6.5) can be reversed. Assume that the space-time admits a
group & of fixed-point free isometries, with timelike orbits, which
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leave f invariant. If X is the generating field, the conditions are

that d^g = £jt = 0. This implies that £ S = 0. Assume
A A A

further that for some G € & the walls A of the world tube in Fig. 2

are invariant under G, i.e., G(A) = A, and that 0(11.) = H-.

Then if all the flow lines of S are intersected by H and H-, we

can conclude that

(6.6) fS^a. =

Then if the system is isolated so that S vanishes on the walls,
Stokes1 Theorem together with the relativistic Second Law (5.7)
imply (6.1).

To see some of the consequences of the relativistic condition for
equilibrium, note that (see Appendix 3)

(6.7) vVl is a Killing fie Id 4=5 fe = 0 and a±. = 0 and

V. = -(logT) . and
1 9!

T s T V1 = 0].
> i

Thus, an expanding or contracting relativistic fluid cannot be in
equilibrium. This does not necessarily mean that equilibrium is not
possible in an expanding or contracting universe, though the implica-
tion is usually safe since only exceptional expanding or contracting
universes admit timelike Killing fields. Lichnerowicz [23] and
Carter [2] have further shown that in an asymptotically flat and
source free universe satisfying Einstein's field equations, the
rotation of the equilibrium fluid must vanish.

In a stationary coordinate system adapted to the Killing field

V /T we get the Tolman temperature law

(6.8) ty-8 ' = constant .

Here the g, , component of the metric is independent of time but may

depend upon the spatial coordinates; thus, in contrast to the
classical case, the temperature of a relativistic equilibrium fluid
need not be a constant.

It is sometimes said that since 9 3s 0 implies that S j6 0,
; i

adiabatlc expansion of a relativistic fluid is not possible (see [29]).
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This is not correct since, for example, in a closed expanding universe
the entropy production cannot be due to heat flow into the system from
an external source. But such an example raises the new problem of
accounting for the entropy production in terms of non-thermal causes.
This is a problem which is rarely, if ever, considered in the classi-
cal setting. Its solution depends upon the techniques of non-
equilibrium relativistlc kinetic theory mentioned in the next section.

7. The Relativistic Fourier Law.

As we saw in Sec. 6, relativistic equilibrium does not require that
T = constant; in fact, (6.7) says that T is constant if and only if
the fluid is in geodesic motion. This situation seems to lead to a
paradox since temperature gradients should set up a heat flow, imply-
ing that the fluid is not in equilibrium after all. What this
paradox shows is that the correct generalization of the Fourier
heat flow law

(7.1) £ = -RgradT

is not the most obvious relativistic analogue

(7.2) q1 = ->thijT
>J

Eckart [9] proposed instead

(7.3) ' q1 = -*h±J(T . + TV.).
>J J

This resolves the paradox since (7.3) implies that

(7.4) q1 = 0 4=>V, = -(logT) . - (T/T)V, .

And the application of (6.7) then guarantees that q = 0 in equili-
brium. In fact, the combination of (6.7) and (7.4) show that the

condition that V /T is a Killing field is equivalent to the more
intuitive definition of equilibrium

(7.5) No heat flow (q1 = 0) , no work (9 = 0,a.. = 0),
and T constant along the flow lines.

Alas, the Eckart Law cannot be quite correct', for it is a parabolic
equation and, thus, allows arbitrarily great velocities of heat wave
propagation. This consequence led some physicists to simply neglect
heat conduction (see [39]) while others treated heat flow by means of
(7.3) despite, the apparent inconsistency with relativity theory
(see [16]). Still others proposed to modify (7.3) by adding a time
derivative term that converts the equation into a hyperbolic one
(see [3] and [19]). Kranys proposed
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(7.6) ^ = -\¥ - Kh1J(T , + TVj.
>J J

This modification is ad^ hoc^ and further, unless it is assumed that

qv. = 0, q cannot be identified with the heat flow vector q

defined in (2.10)-(2.11). Kranys did not impose this assumption and,

thus, he was led to identify q as the heat flow and q as the compo-

nent of q orthogonal to V . This treatment is somewhat awkward

since only q enters into conservation laws.

What is needed then is a derivation of the relativistic heat flow
law from relativistic kinetic theory. A good deal of progress has
been made on this and related problems in the past few years, most
notably by Israel [17] and Stewart [31]. They obtain transport
equations for a dilute relativistic gas and show that these equations
form a hyperbolic system in which the propagation velocities do not

exceed ,/3/5 the velocity of light. The details are too technical to
report here.

8. The Planck-Ott Debate.

The relativistic statistical mechanics sketched above does not
justify either side in the Planck-Ott debate; in fact, it tends to
show that both sides are wrong. In relativistic kinetic theory, the
temperature T does not transform either by the Planck law (0.1) or
by the Ott law (0.2); rather, it enters into the equilibrium distri-
bution (6.3) as a scalar parameter.

Once the alleged transformation law for T or AQ was decided upon,
both sides in the debate used the same method to fix the transfor-
mation law for the other quantity. The idea was to make use of
situations where AS = AQ/T and to appeal to the fact that entropy,
because of its statistical interpretation, is an 'invariant quantity'.
Then, the argument went, AQ and T must transform in the same manner
in order that the Second Law be relativistically invariant. Now in
exactly what sense is entropy an invariant? On the kinetic theory

approach, the entropy current S as defined in (5.3) in an invariant
in that it is a 4-vector, and further, every observer associates the
same current vector with the system. On the other hand, the entropy

change AS computed by integrating S will be the same for two
observers only if they both use the same domain of integration. But
assuming a fixed domain, not only is AS an 'invariant' but so is AQ

as computed from integration of the 4-vector heat flow q . Thus, it
would seem that all the thermodynamic quantities are 'invariants'.
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It might be objected that there is an important difference between
AS and AQ; for the decomposition (2.10) of the stress-energy tensor

and, hence, the value of q depends on the choice of the velocity

field V . So it might seem that the resultant AQ could transform in
a manner prescribed by Planck or Ott, or perhaps in some even more
complicated fashion. While this objection ultimately fails, it does

serve to raise some valuable points. T •* can be mathematically

decomposed relative to any unit timelike vector field V , but for

purposes at hand, only those decompositions in which V can be inter-
preted as the mean velocity of the fluid will allow contact to be
made with thermodynamics. To emphasize this point, let us assume that

we are in the context of special relativity where a timelike Killing V

is always available. Then the rate of working -T V,. .. as computed

relative to this field is identically zero. This is a wholly mis-
leading result since from the macro-thermodynamical point of view, the
fluid is performing work if it is expanding or shearing. Of course,
we have seen that there are different ways of defining the mean
velocity of the fluid and that these different definitions lead to
different values for heat and work. But once the definition is
chosen, there is a preferred way to evaluate AW and AQ, and the
evaluation does not conform to law of Planck, or Ott, or any similar
law. It is also instructive to compare the implications of relati-

vistic kinetic theory for q with those for pressure p, which is
often held to be an 'invariant' par excellance; but I will leave this
exercise to the reader.

The pioneers of 'relativlstic thermodynamics' were led astray by
two attitudes. First, they acted as if thermodynamics were a self-
contained subject, existing independently of any statistical mechani-
cal interpretation. Within this setting, many different 'transfor-
mation laws' for the thermodynamical quantities are possible. But
the attitude was never carried through consistently since, for
example, appeal was made to the probabilistic interpretation of
entropy in order to determine: its transformation law. Second, in
attempting to demonstrate that thermodynamics can be made to conform
to the requirements of relativity, they adopted a passive view of
relativity principles according to which relativity transformations
connect different descriptions of the same physical system. Thus,
their program consisted in finding how thermodynamic quantities trans-
form under Lorentz coordinate transformations and showing that the
laws of thermodynamics are covariant under these transformation rules.
Finding the transformation properties of thermodynamic quantities is
an admirable task if it is taken to mean finding what geometrical
objects underlie thermodynamics. But this is a task which has an
unambiguous solution only when the statistical mechanical interpre-
tation is employed. Furthermore, the passive view of symmetry tends
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to obscure the fact that the rest frame of the fluid provides a pre-
ferred way of defining thermodynamic quantities like heat and work
and a preferred domain of integration for evaluating total changes
in these quantities.

In closing this section, I want to make explicit a thesis which
is lurking in the above remarks; namely, the thesis that meaningful
physical quantities correspond to geometric object fields in space-
time. 4 If this thesis is correct then, as I believe this paper
illustrates, almost all Of the standard presentations of classical
thermodynamics are non-perspicuous because they fail to make clear
what geometric objects underlie the thermodynamic quantities. In a
way, one can view the work on 'relativistic thermodynamics' by
Einstein, Planck, Tolman, M«Sller, Ott, etc., as attempts to fill this
gap. But, as I have argued, their attempts were failures; and it
seems that success can be achieved only when we know the statistical
mechanical basis for thermodynamics. If this is so, we have the
somewhat paradoxical situation that thermodynamics cannot even be
properly stated without being micro-reduced.

9. Concluding Remarks.

Some of the foundations problems reviewed here, like that of
finding a satisfactory relativistic Hamiltonian formalism, belong to
the upper reaches of mathematical physics. But many of the interpre-
tations problems are ones to which philosophers of science can contrib-
ute. If this paper helps to stimulate such contributions, I will
count it as a success.

While it would be premature to draw any positive morals for the
philosophy of scientific methodology, I feel safe in reaching a
negative conclusion; namely, none of the standard views about the
meaning of theoretical terms, the reduction of scientific theories,
the nature of scientific revolutions, etc., do justice to the cases
treated here. This may have something to do with the special nature
of relativistic statistical thermodynamics, or it may be a more
general reflection on the current state of philosophy of science.
Only time and a lot more study will tell.
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Appendices

1. Notation and Conventions.

The signature of the metric tensor g is chosen to be (+ + + - ) .
Latin indices run from 1 to 4 while Greek indices run from 1 to 3.
The Einstein summation convention on repeated indices is used
throughout. The comma denotes ordinary derivatives and the semi-colon
denotes covariant derivatives. Units are chosen so that c = 1.

2. The Relativistic Phase Space.

Let (M, g) be a relativistic space-time. Because the metric g
gives a correspondence between tangent and cotangent vectors, there
is a canonical isomorphism between the tangent bundle T(M) and the
cotangent bundle T*(M). And for a particle free falling in the gravi-
tational field described by g, we can pass freely between the

Lagrangian description with Lagrangian £, = (1/2)g.x x and the

Hamiltonian description with Hamiltonian H = (l/2)g V p , . The

Liouville operator is

where T are the components of the unique affine connection compatible

with g. A volume element can be obtained either by taking the canoni-
cal 8-form on T*(M) or, equivalently, by taking the natural measure
on T(M) consisting of the exterior product '() A TT of the space-time

volume measure 1] = >/-& dx A dx A dx A dx , £ = det(g) , and the

volume measure TT — V-g_ dp A dp A dp A dp on a tangent space.
The physical phase P , however, is not T*(M) but the 7-dimensionalm
subspace consisting of future directed timelike momentum vectors with

constant mass m = «/-e..p p . The volume element for P is 11 A TT with
*• •• m m

n = 2H(p1)6(p2 + m2),/^[ dp1 A dp2 A dp A dp where 6 is the Dirac

function and H(p ) is 1 if p is future directed and 0 otherwise.
Since L(m) = 0 , L is tangent to P , and the restriction L to p

m mm
is the physical Liouville operator. . The unique (up to a numerical
factor) volume element which gives a non-zero measure to any hyper-
surface of P not tangent to L is u) = L * (T) A TT ) . For a hyper-

m m m m m
surface S which projects down onto a spacelike hypersurface of
(M, g), this reduces to the form
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(A2.2) % = Pida1/Vlln

where da. is the usual surface element.

3. Reference Frames.

A reference frame is a unit future directed timelike vector field.

The frame V is said to be stationary iff there is a positive function

f and a Killing field X* such that V 1 = fX*. To derive some conse-
quences of stationarity, we write out the stationarity condition

( A 3 a ) V;j) = f,(ixj) + fxd;j)

" f,(iXJ) = ( 1° 8 f\(xV

Contracting with VJ and using the identities

(A3.2) v V = -1, V. V1 = 0
1 1 j K

we get

(A3.3) A = V Vj = -(logf) + (f/f)V,.
x x,j ,x x

Contracting once again and using A V = 0 gives

(A3.4) 0 = -2f/f

with the result that

(A3.5) A t = -(logf) ±.

This shows that the curl of the acceleration vanishes. Moreover, if
(A3.5) is substituted back into (A3.1) and comparison is made with
the identity

(A3.6) v (. ; j ) - a y + (1/3)9^. - A ( 1V j }

we see that stationarity requires rigidity, i.e., 9 = a = 0. The

argument can also be reversed: A. , = 9 = c = 0 implies station-
l x, j J iJ

arity. The proof is left as an exercise.

A frame V is covariantly constant iff V _. = 0. This obviously
»J

entails that V, .. = 0 and V,. ., = 0. Further, it follows that
1.x,j; Li»JJ

A = V. .V̂  = V,, ..VJ = 0. Then from the decomposition of the
x x,j \J-13)
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rotation tensor as

(A3-7) »« = VUJ] + V j ]
it is seen that covariant constancy is equivalent to V,

V

4. Entropy and Heat Flow.

Consider a fluid not far from equilibrium; in particular, suppose

that the probability density is f = f (1 + g) where f is the equilib-

rium density and g is 'small1. We impose the matching conditions

(A4.1) Vj = vj, N* = N *

and for ease of calculation, we assume that Vr. . = 0; this means
Li»jJ ^

that we can choose a coordinate system such that V,, = (0, 0, 0, 1),
CY4

g . = g = 0, and g44 = -1. Then using the equations (5.3), (5.8),

and (6.3) and neglecting terms multiplied by log(l + g), we have

(A4.2) -aJ-O, *% = (T*4 - T<*4)/T.

Then substituting from (2.10) and (6.4), we have

.(A4.3) 1* - «£/T.

This calculation is very crude, and a more detailed treatment shows
that entropy production can result from factors neglected here.

Notes

There are many people whom I would like to thank for help and
encouragement on this project; but so far, they have not given any.

2
Comprehensive reviews of the relevant mathematics and physics are

to be found in Ehlers ([10],[11],[12],[13]), Havas [15], and Stewart
[30]., In this section and the Appendices I present only the minimal
amount of technical apparatus needed for an understanding of the foun-
dations problems.

The reason for the scare quotes is that the assumptions turn out
to involve conditions very similar to Boltzmann's molecular chaos
hypothesis.

4
For a characterization of geometric objects, see Schouten [28].
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