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ARTIN–SCHREIER EXTENSIONS AND COMBINATORIAL
COMPLEXITY IN HENSELIAN VALUED FIELDS

BLAISE BOISSONNEAU

Abstract. We give explicit formulas witnessing IP, IPn , or TP2 in fields with Artin–Schreier extensions.
We use them to control p-extensions of mixed characteristic henselian valued fields, allowing us most
notably to generalize to the NIPn context one way of Anscombe–Jahnke’s classification of NIP henselian
valued fields. As a corollary, we obtain that NIPn henselian valued fields with NIP residue field are NIP. We
also discuss tameness results for NTP2 henselian valued fields.

§1. Introduction. This paper started with a question: we know by [12] that
Fp((Γ)) has IP, since it has an Artin–Schreier extension; but what formula witnesses
it? We answer this question for IP, IPn, and TP2 (see Corollaries 3.7 and 4.8).

Theorem 1.1. Let K be an infinite field of characteristic p > 0. Then

ϕ(x, y1,..., yn) : ∃t x = y1...yn(tp – t)

has IPn iff K has an Artin–Schreier extension, and

�(x, yz) : ∃t x + z = y(tp – t)

has TP2 iff K has infinitely many distinct Artin–Schreier extensions.

We can use this formula to witness complexity in p-henselian valued fields of
mixed characteristic, allowing us to prove that NIPn p-henselian valued fields obey
the same conditions than NIP valued fields (see [1]).

Theorem 1.2. Let (K, v) be a p-henselian valued field. If K is NIPn, then either:
1. (K, v) is of equicharacteristic and is either trivial or SAMK, or
2. (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v)

satisfies condition 1 above, or
3. (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

Combining it with the original result by Sylvy Anscombe and Franziska Jahnke
from [1], this gives, among others, the following corollary:

Corollary 1.3. Let K be a NIPn pure field and let (K, v) be a henselian valued
field. If the residue field k is NIP, then (K, v) is NIP.
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2 BLAISE BOISSONNEAU

As for NTP2 p-henselian valued fields, we prove in Section 4, using again explicit
formulas, that NTP2 p-henselian valued fields obey strong tameness conditions:

Proposition 1.4. Let K be NTP2 and v be p-henselian. Then (K, v) is either:

1. of equicharacteristic and semitame, or
2. of mixed characteristic with (k0, v) semitame, or
3. of mixed characteristic with vp finitely ramified and (kp, v) semitame.

In particular, (K, v) is gdr.

1.1. Combinatorial complexity. Dating back to the 1970s and the work of Saharon
Shelah in [20], model theorists have found that more often than not, meaningful
dividing lines between somewhat easy-to-study theories and more complex ones
can be expressed in terms of combinatorial configurations that may or may not
be encoded in these theories. The prototypical example of this phenomenon is
stability: at first studied in terms of the number of different types a theory can have,
an equivalent definition is to say that stable theories can not encode an infinite linear
order.

This global–local duality between the behavior of the whole theory and the
combinatorial properties of individual formulas gives rise to different approaches to
study these notions of complexity. One of these approaches is to study the links with
algebraic structures. This goes both ways: given an algebraic structure, we want to
know how complex it is, a contrario, if we know that some structure has a certain
complexity, we want to describe it algebraically.

We like to think about all these notions as a ladder that we try to climb in order
to understand theories which are more and more complex. A nice example of this
ladder-climbing is the study of Artin–Schreier extensions, which starts in 1999 with
the following remarkable result:

Fact 1 [19]. Infinite stable fields of characteristic p > 0 have no Artin–Schreier
extensions.

It is in fact conjectured that infinite stable fields have no separable extensions
whatsoever; this result tells us that, in characteristic p, they at least have no separable
extension of degree p.

In 2011, this result was pushed up the ladder:

Fact 2 [12]. Infinite NIP fields of characteristic p > 0 have no Artin–Schreier
extensions; simple fields of characteristic p > 0 have finitely many distinct Artin–
Schreier extensions.

We see here a good example of ladder-climbing; starting with a result in the stable
context, it can be extended, sometimes exactly as it is, sometime to a slightly weaker
result.

But the ladder continues:

Fact 3 [7]. NTP2 fields of characteristic p > 0 have finitely many distinct Artin–
Schreier extensions.

Fact 4 [9]. Infinite NIPn fields of characteristic p > 0 have no Artin–Schreier
extensions.

https://doi.org/10.1017/jsl.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.34


A.S.-EXT. IN HENS. VAL. FIELDS 3

We will study in detail those results, explaining the proof strategy, and reduce
them to one formula (see Theorem 1.1).

1.2. Notations. Given a valued field (K, v), we write Γv for its value group and
kv for its residue field. When the context is clear, we omit the subscript v . When we
consider (K, v) as a first-order structure, we consider it as a 3-sorted structure, with
sorts K and k equipped with the ring language, Γ equipped with the ordered group
language, and (partial) functions between sorts v : K → Γ and · : K → k.

We let lowercase letters x, y, z...denote variables or tuples of variables and a, b,
c...denote parameters or tuples of parameters. We almost never use the overline to
denote tuples since we prefer to let x be the residue of x in a given valued field.

We call a valued field maximal if it does not admit any immediate extension.
Similarly, we call a valued field algebraically maximal, or separably algebraically
maximal, if it does not admit any algebraic or separable algebraic immediate
extension.

We call a valued field of residue characteristic p > 0 Kaplansky if its value group
is p-divisible and its residue field is Artin–Schreier-closed and perfect. We call all
valued fields of residue characteristic 0 Kaplansky for convenience.

We shorten (separably) algebraically maximal Kaplansky in (S)AMK.
We write “we” for “I”.

1.3. Complexity of henselian valued fields. In the spirit of the cornerstone
Ax-Kochen/Ershov transfer principle [10, Section 6], transfer theorems have been
established in different settings. They are of the form “if we know enough about the
residue field and the value group, then we also know a lot about the valued field”.

NIP transfer theorems have been established as early as 1980, and little by
little in more and more cases. They culminated in 2019, with Anscombe–Jahnke’s
classification of NIP henselian valued fields, that we repeat here:

Theorem 1.5 (Anscombe–Jahnke [1, Theorem 5.1]). Let (K, v) be a henselian
valued field. Then (K, v) is NIP iff the following holds:

1. k is NIP, and
2. either:

(a) (K, v) is of equicharacteristic and is either trivial or SAMK, or
(b) (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v)

satisfies condition 2a above, or
(c) (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

This is as good as it can get; since it is an equivalence, establishing NIP transfer
theorems in cases outside of this list is not needed.

Now that we know what the optimal NIP transfer theorem is, we aim to push
it up the ladder. There are two directions in this theorem; we study left-to-right
(what can be deduced from NIPn/NTP2) in this paper and will study right-to-left
(NIPn/NTP2 transfer) in a follow-up paper, namely, [4]. Some key ingredients of
the proof have already been pushed up, most notably the Artin–Schreier closure of
NIP fields, which we already mentioned.

One other key ingredient is Shelah’s expansion theorem, which fails wildly outside
of NIP theories. It is used in mixed characteristic together with the following
decomposition:
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4 BLAISE BOISSONNEAU

Definition 1.6 (Standard Decomposition). Let (K, v) be a valued field of mixed
characteristic. The standard decomposition around p is defined by fixing two convex
subgroups of Γv :

Δ0 =
⋂

v(p)∈Δ
Δ⊂Γ convex

Δ & Δp =
⋃

v(p) /∈Δ
Δ⊂Γ convex

Δ.

To Δ0 correspond a valuation v0 having value group Γv/Δ0, we name its residue
field k0. Similarly we have vp corresponding to Δp.

We write v as a composition of three valuations, namely, (K, v0), (k0, vp), and
(k, v). We summarize this informations as follows:

K
Γv/Δ0−−−→ k0

Δ0/Δp−−−−→ kp
Δp−→ kv.

We immediately remark that Δ0/Δp is of rank 1 and that char(k0) = 0 and
char(kp) = p.

This decomposition is externally definable, thus, adding it to the structure
preserves NIP by Shelah’s expansion theorem. We can then argue part by part
to obtain the result.

It is however possible to bypass this argument: instead of trying to prove that
each part is NIP, we can use the explicit formula witnessing IP in fields with Artin–
Schreier extensions, and lift complexity to the field. This way, there’s no need to
add intermediate valuations to the language, at least to prove that relevant part are
p-closed or p-divisible.

This strategy can then be adapted to NIPn and to NTP2 henselian valued fields.
We thus generalize one way of Anscombe–Jahnke to NIPn fields, see Theorem 1.2,
and we prove that NTP2 henselian valued fields obey tameness conditions.

§2. NIP fields. We summarize the proof of the following result by Itay Kaplan,
Thomas Scanlon, and Frank Wagner:

Theorem 2.1 [12]. Infinite NIP fields of characteristic p are Artin–Schreier closed.

Definition 2.2. Let K be a field of characteristic p > 0. An Artin–Schreier
extension or AS-extension of K is a separable extension of degree p. Such an
extension is always of the form K(α), where α is a root of a polynomial of the
form Xp – X – b (Artin–Schreier polynomial). We say that K is Artin–Schreier
closed (or AS-closed) if it has no Artin–Schreier extension.

Proof summary. In a NIP theory, definable families of subgroups check a certain
chain condition, namely, Baldwin–Saxl’s. In an infinite field of characteristic p > 0,
the family {a℘(K)|a ∈ K}, where ℘(X ) is the Artin–Schreier polynomial Xp – X ,
is a definable family of additive subgroups; thus it checks Baldwin–Saxl, and this is
only possible if ℘(K) = K . The complexity of this argument is mainly hidden in the
very last affirmation, we refer to the original paper for details. �

2.1. Baldwin–Saxl’s condition. We fix a complete theory T and a monster M � T .

Definition 2.3. A formula ϕ(x, y) is said to have the independence property
(IP) if there are (ai)i<�, (bJ )J⊂� such that M � ϕ(bJ , ai) iff i ∈ J .
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A.S.-EXT. IN HENS. VAL. FIELDS 5

A formula is said to be NIP if it doesn’t have IP, and a theory is called NIP if all
formulas are NIP.

Let (G, ·) be a group contained, as a set, in M. We do not assume it is definable.
Letϕ(x, y) be anL-formula such that for any a ∈ M,Ha = ϕ(M, a) is a subgroup

of G.

Proposition 2.4 (Baldwin–Saxl). ϕ is NIP iff the family (Ha)a∈M checks the BS-
condition: there is N < �(dependingonlyonϕ) such that for any finite B ⊂ M, there
is a B0 ⊂ B of size � N such that:

⋂

a∈B
Ha =

⋂

a∈B0

Ha.

That is, the intersection of finitely many H’s is the intersection of at most N of them.

This is a classical result first studied in [3]. Modern versions can be found in
many model theory textbooks, for example, [22]; however, it is usually not stated
as an equivalence, since “in a NIP theory, all definable families of groups check a
specific chain condition” is much more useful than “if a specific family checks this
hard-to-check chain condition, a specific formula is NIP, but some others might
have IP”. We give a proof here for convenience.

Proof. ⇒: Assume ϕ is NIP, and suppose that the family (Ha)a∈M fails to check
the BS-condition for a certain N, that is, we can find a0,..., aN ∈ M such that:

⋂

0�i�N
Hi�

⋂

0�i�N & i �=j
Hi

for all j � N , and where we write Hi for Hai . We take bj /∈ Hj but in every other
Hi and we define bI =

∏
j∈I bj , where the product denote the group law of G—the

order of operations doesn’t matter. We have M � ϕ(bI , ai) iff i /∈ I . Because ϕ is
NIP, there is a maximal such N, and thus the BS-condition is checked for some N
big enough.

⇐: Suppose that (Ha)a∈M checks the BS-condition for a given N, and suppose
that we can find a0,..., aN ∈ M and (bI )I⊂{0,...,N} ∈ G such that M � ϕ(bI , ai)
iff i ∈ I . Now by BS,

⋂
0�i�N Hi =

⋂
0�i<N Hi (maybe reindexing it). But now,

let b = b{0,...,N–1}; we know that M � ϕ(b, ai) for i < N , which means that
b ∈

⋂
0�i<N Hi , thus b ∈ HN , and thus M � ϕ(b, aN ), which contradicts the choice

of a and b. �

2.2. Artin–Schreier closure and local NIPity. We can now state the original result
by Kaplan–Scanlon–Wagner as an equivalence:

Corollary 2.5 (Local KSW). In an infinite field K of characteristic p > 0, the
formula ϕ(x, y) : ∃t x = y(tp – t) is NIP iff K has no AS-extension.

Proof. Apply previous result with (G, ·) = (K,+) and ϕ as given: ϕ is NIP iff
the family Ha = a℘(K) checks the BS-condition. This then implies that K is AS-
closed as discussed in the paragraph following Theorem 2.1. The opposite direction
is quite trivial: if K is AS-closed, then ℘(K) = K , so the BS-condition is obviously
checked. �
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6 BLAISE BOISSONNEAU

2.3. Lifting. The formula we obtained says “this separable polynomial of degree
p has a root”, so if it witnesses IP in the residue field of a p-henselian valued field,
we can lift this pattern to the field itself.

Definition 2.6. Let (K, v) be a valued field. Let P ∈ k[X ] be a polynomial and
P ∈ K [X ] a lift of P. Let K(p) be the p-closure of K, that is, the compositum of
all separable extensions of p-power degree. Assume that P splits inK(p) and that P
has a simple root α ∈ k.

We say that (K, v) is p-henselian if given any such polynomial, there is a ∈ K such
that a = α and P(a) = 0.

Remark 2.7. Usually, and historically, a valuation v on a field K is defined to be
p-henselian if it extends uniquely to K(p). The definition we give is equivalent (see
[13, Propositions 1.2 and 1.3]).

Lemma 2.8. Let (K, v) be p-henselian and suppose k is infinite, of characteristic p,
and not AS-closed; then K has IP as a pure field witnessed byϕ(x, y) : ∃t x = (tp – t)y.

Proof. By assumption and by Corollary 2.5, there are (ai)i<� and (bJ )J⊂� such
that k � ϕ(bJ , ai) iff i ∈ J , that is, Pi,J (T ) = ai(Tp – T ) – bJ has a root in k iff
i ∈ J . But by p-henselianity, taking any lift αi , �J of ai and bJ , Pi,J (T ) = αi(Tp –
T ) – �J has a root in K iff i ∈ J , thus K � ϕ(�J , αi) iff i ∈ J . �

This lemma gives us an explicit formula witnessing IP in some fields; most
interestingly, in valued fields of mixed characteristic. For example, consider
K = Qp( p

√
p, p

√
p
√
p, ... ): this valued field has residue Fp and value group Z[ 1

p∞ ];
going to a sufficiently saturated extension, we can find a non-trivial proper
coarsening w of the p-adic valuation vp with residue characteristic p, thus (kw, vp)
is a non-trivial valued field of equicharacteristic p with residue Fp, thus it is not
AS-closed, and we apply the previous lemma to (K,w): K has IP as a pure field.

Let us note that bypassing valuations to witness IP in the pure field is not
something surprising, as such a result can be obtained in any henselian field, to
the cost of explicitness:

Lemma 2.9 (Jahnke [11]). Let K be NIP and v be henselian, then (K, v) is NIP.

Corollary 2.10. Let (K, v) be henselian, if (K, v) has IP, then K has IP as a pure
field. In particular, if k has IP, K has IP.

At heart of Jahnke’s result is Shelah’s expansion theorem, since her strategy was
to prove that, in most cases, v is externally definable. We refer to [11] for details.

So, in fact, the main interest of explicit Artin–Schreier lifting is that it skips
Shelah’s expansion theorem, which only works for NIP theories; moreover it also
allows us to slightly relax the henselianity assumption into p-henselianity, but only
in the specific case where the IPity comes from Artin–Schreier extensions of some
residue field.

§3. NIPn fields. NIPn theories are the most natural generalization of NIP. They
were first defined and studied by Shelah in [21]. Their behavior is erratic, sometimes
very similar to NIP theories, sometimes wildly different.
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Definition 3.1. Let T be a complete theory and M � T a monster model. A
formula ϕ(x; y1, ... , yn) is said to have the independence property of order n (IPn) if
there are (aki )1�k�n

i<� and (bJ )J⊂�n such thatM � ϕ(bJ , a1
i1
, ... , anin ) iff (i1, ... , in) ∈ J .

A formula is said to be NIPn if it doesn’t have IPn, and a theory is called NIPn if all
formulas are NIPn. We also write “strictly NIPn” for “NIPn and IPn–1”.

For any n � 2, strictly NIPn structures exist; for some of algebraic flavor, let us
mention pure groups obtained via the Mekler construction, see [5], or n-linear forms,
see [6]. However, strictly NIPn pure fields are believed not to exist:

Conjecture 3.2. For n � 2, strictly NIPn pure fields do not exist; that is, a pure
field is NIPn iff it is NIP.

This is for pure fields. Augmenting fields with arbitrary structure—for example
by adding a relation for a random hypergraph—will of course break this conjecture,
however, natural extensions of field structure such as valuations or distinguished
automorphisms are believed to preserve it. Let us state this conjecture:

Conjecture 3.3. For n � 2, strictly NIPn henselian valued fields do not exist.

It is clear that Conjecture 3.3 implies Conjecture 3.2 since the trivial valuation is
henselian; we will in fact later prove that they are equivalent (see Corollary 3.14).

We quote some results which make this conjecture somewhat believable:

Proposition 3.4 (Duret [8], Hempel [9]). Let K be PAC and not separably closed.
Then, K has IPn for all n.

Theorem 3.5 (Hempel [9]). Infinite NIPn fields of characteristic p are Artin–
Schreier closed.

Overall, as soon as interesting results are obtained about or in the context of NIP
fields, some people (mostly Nadja Hempel and Artem Chernikov) work hard to
sneakily add n after NIP in these results. They succeed most of the time, though
not always taking a straightforward route. Conjecture 3.2 arose naturally from their
work and can be attributed to Hempel, in duo with Chernikov.

Going back to Theorem 3.5, as for NIP fields, we want to know the formula
witnessing IPn in infinite fields with Artin–Schreier extensions; and, that is a promise,
this time there will be a nice application; namely, Theorem 3.9.

The proof of Theorem 3.5 is similar to Kaplan–Scanlon–Wagner’s argument,
as one expects: in a NIPn theory, definable families of subgroups check a certain
analog of Baldwin–Saxl’s condition. In characteristic p, {a1 ... an℘(K)|a ∈ Kn} is a
definable family of additive subgroups. In order for it to check the aforementioned
chain condition, we must have ℘(K) = K , by a similar argument as before.

3.1. Baldwin–Saxl–Hempel’s condition. Let T be a complete L-theory, M � T a
monster. Let (G, ·) be a group, with G contained in M.

Let ϕ(x, y1,..., yn) be an L-formula such that for all (a1,..., an) ∈ M, Ha1,...,an =
ϕ(M, a1,..., an) is a subgroup of G.

https://doi.org/10.1017/jsl.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.34


8 BLAISE BOISSONNEAU

Proposition 3.6 (Hempel). The formula ϕ is said to check the BSHn-condition
if there is N (dependingonlyonϕ) such that for any d greater or equal to N and any
array of parameters (aij)

1�i�n
j�d , there is k = (k1,..., kn) ∈ {0,..., N}n such that:

⋂

j

Hj =
⋂

j �=k

Hj

withHj = Ha1
j1
,...,anjn

.

The formula ϕ checks the BSHn condition iff ϕ is NIPn.

Proof. This is a very natural NIPn version of Baldwin–Saxl, first stated by
Hempel in [9]. However, as for Baldwin–Saxl, it is usually not stated as an
equivalence. We include a proof for convenience. �

⇐: Let ϕ be NIPn, and suppose that the BSHn condition is not checked for N, so
one can find (aij)

1�i�n
j�N ∈ M such that

⋂

j

Hj �
⋂

j �=k

Hj

for any k ∈ {0,..., N}n.
We take bj /∈ Hj but in every other Hk . Then for any J ⊂ {0,..., N}n, we define

bJ =
∏
j∈J bj , where the product denotes the group law of G – the order of operation

doesn’t matter. We have M � ϕ(bJ , a1
j1
,..., anjn ) iff bJ ∈ Hj (by definition of H), and

it is the case iff j /∈ J . If this were to hold for arbitrarily large N, we would have IPn
for ϕ. Thus, if ϕ is NIPn, there is a maximal such N.

⇒: Suppose that ϕ checks the BSHn condition for N, and suppose we can
find (aij)

1�i�n
j�N ∈ M and (bJ )J⊂{0,...,N}n ∈ G such that M � ϕ(bJ , a1

j1
,..., anjn ) iff

j ∈ J . Now by assumption, there is k such that
⋂
j Hj =

⋂
j �=k Hj . But now,

let b = b{0,...,N}n\{k}; we know that M � ϕ(b, a1
j1
,..., anjn ) iff j 
= k, which means

that b ∈
⋂
j �=k Hj . But this means b ∈ Hk , which yields M � ϕ(b, a1

k1
,..., ankn ) and

contradicts the choice of b.

3.2. Artin–Schreier closure of NIPn fields.

Corollary 3.7 (Local KSWH). In an infinite field K of characteristic p > 0, the
formula ϕ(x; y1,..., yn) : ∃t x = y1y2 ... yn(tp – t) is NIPn iff K has no AS-extension.

Proof. Apply the previous result with (G, ·) = (K,+) andϕ as given:ϕ is NIPn iff
the family Ha1,...,an = a1a2 ... an℘(K) checks the BSHn condition. This then implies
that K is AS-closed, see [9]—again, this is the hard part of the proof. The opposite
direction is quite trivial: if K is AS-closed, then ℘(K) = K , so the BSHn condition
is obviously checked. �

3.3. Lifting. Ideally, we would like a NIPn version of Corollary 2.10. But this
relies on Lemma 2.9, the proof of which needs Shelah’s expansion theorem, which
fails in general for NIPn structures; notably, it fails for the random graph.
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However, thanks to the explicit formula obtained before and with the help of
p-henselianity, we can lift IPn in the case where it is witnessed by Artin–Schreier
extensions:

Lemma 3.8. Suppose (K, v) is p-henselian and has a residue field k infinite, of char-
acteristic p, and not AS-closed; then K has IPn witnessed by ϕ(x; y1,..., yn) : ∃t x =
y1 ... yn(tp – t).

Proof. By assumption and by Corollary 3.7, there are (aij)
1�i�n
j<� and (bJ )J⊂�n

such that k � ϕ(bJ , a1
j1
,..., anjn ) iff j ∈ J , that is, Pj,J (T ) = a1

j1
... anjn (T

p – T ) – bJ
has a root in k iff j ∈ J . But by p-henselianity, since roots of this polynomial are all
simple, taking any lift αij , �J of aij and bJ , Pj,J (T ) = α1

j1
... αnjn (T

p – T ) – �J has a
root in K iff j ∈ J , thus K � ϕ(�J , α1

j1
,..., αnjn ) iff j ∈ J . �

So, in this specific case, we don’t need the valuation to witness IPn. This fact will
have fruitful applications, most importantly Theorem 3.9.

3.4. NIPn henselian valued fields. Throughout this section, p will always equal the
residue characteristic of a valued field. When we say that (K, v) is p-henselian, we
mean p-henselian when p > 0 and we mean nothing when p = 0.

Our goal is now to prove the following, which is a direct generalization of [1,
Theorem 5.1]:

Theorem 3.9. Let (K, v) be a p-henselian valued field. If K is NIPn, then either:

1. (K, v) is of equicharacteristic and is either trivially valued or SAMK, or
2. (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v)

satisfies condition 1 above, or
3. (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

We refer to Section 1.2 and Definition 1.6 for notations and spend the rest of the
section on proving the theorem.

We do a case distinction depending on the characteristic. In equicharacteristic 0,
there is nothing to prove. We now do the equicharacteristic p case in the same way
as for NIP fields:

Lemma 3.10. Let (K, v) be a valued field of equicharacteristic p, we do not assume
any henselianity here. Assume K is NIPn as a pure field. Then (K, v) is SAMK or
trivial.

This is a NIPn version of [1, Proposition 3.1].

Proof. If v is trivial, then we’re done. Assume not. By Theorem 3.5, K is AS-
closed; this implies that it has no separable algebraic extension of degree divisible by
p (see [12, Corollary 4.4] and [9, Corollary 6.4]). This then implies that it is separably
defectless (see [1, Proposition 3.1]), has p-divisible value group [12, Proposition 5.4],
and AS-closed residue (since any AS-extension of k would lift to an AS-extension
of K). Remains to prove that the residue is perfect. Suppose α ∈ k has no pth-root
in k, and consider Xp – mX – a, where v(m) > 0 (but non-zero; remember than v
is non-trivial) and where a is a lift of α. Then this polynomial has no root, thus K is
not AS-closed. �
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Now, for the mixed characteristic case, we will follow Anscombe–Jahnke’s proof
for the most part, except we swap Shelah’s expansion for explicit Artin–Schreier
lifting (Lemma 3.8); while Anscombe–Jahnke’s argument works in arbitrary valued
fields, ours rely on lifting and thus can’t work if we do not assume at least
p-henselianity.

Lemma 3.11. Let (K, v) be a p-henselian valued field and assume K is NIPn. Then v
has at most one coarsening with imperfect residue field. If such a coarsening exists, then
p > 0, and this coarsening is the coarsest coarsening w of v with residue characteristic p.

This is a NIPn version of [1, Lemma 3.4].

Proof. If p = 0, no coarsening of v has imperfect residue field. Assume p > 0.
Let w be a proper coarsening of v, name kw its residue. Suppose kw is of characteristic
p. Then (kw, v) is a non-trivial equicharacteristic p valued field. If its residue is
imperfect, then kw is not AS-closed by the proof of Lemma 3.10; then K has IPn as
a pure field by explicit Artin–Schreier lifting.

So, if v has a coarsening with imperfect residue field, this coarsening can’t in turn
have any proper coarsening of residue characteristic p; thus the only coarsening of
v that could possibly have imperfect residue is the coarsest coarsening of residue
characteristic p (possibly trivial). �

Proposition 3.12. Let (K, v) be a p-henselian valued field of mixed characteristic
(0, p) and assume K is NIPn. Then either 1. (K, vp) is finitely ramified and (kp, v) is
SAMK or trivial, or 2. (k0, v) is AMK.

This is a NIPn version of [1, Theorem 3.5].

Proof. Consider (kp, v). If its valuation is non-trivial, kp must be AS-closed,
otherwise K would have IPn by explicit Artin–Schreier lifting. So, (kp, v) is either
SAMK or trivial by (the proof of) Lemma 3.10.

We now make the following case distinction: if Δ0/Δp is discrete, then (K, vp) is
finitely ramified, and since we already know that (kp, v) is SAMK or trivial, case
1 holds. Otherwise, Δ0/Δp is dense. We go to an ℵ1-saturated extension (K∗, v∗)
of (K, v), and redo the standard decomposition there. Δ∗

0/Δ
∗
p is still dense (see [1,

Lemma 2.6]), and by saturation, it is equal to R (see [2, “assertion”, p. 12]); in
particular, Δ∗

0/Δ
∗
p is p-divisible. Now, as before, if (k∗p, v∗) is non-trivial, then it is

SAMK. It is clearly non-trivial by saturation, since we assumed (K, vp) was infinitely
ramified. Thus, (k∗0 , v

∗) is Kaplansky. We can state this in first order by saying that
k is perfect and AS-closed (the valuation v is in our language for now), and that Γ
is roughly p-divisible, i.e., if � ∈ [0, v(p)] ⊂ Γ, then � is p-divisible.

Remains to prove that (k0, v) is algebraically maximal. First, we prove that kp
is perfect. Consider the p-henselian valued field (K∗, v∗p) (so this time we have
v∗p in the language, and not v∗) and an ℵ1-saturated extension (K ′, u′) of it.
Since (K∗, v∗p) is infinitely ramified, by saturation u′ admits a proper coarsening
of residue characteristic p, so by Lemma 3.11, its residue field is perfect; going down
to (K∗, v∗p), this means k∗p is perfect. Since we already know that (k∗p, v∗) is separably
algebraically maximal, because it is perfect we now know it is algebraically maximal.

Now by saturation (k∗0 , v
∗
p) is maximal; in particular it is defectless (see [2, Section

4]). Now v∗ is a composition of defectless valuations, thus it is defectless (see [1,
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Lemma 2.8]). By [1, Lemma 2.4], defectlessness is a first-order property, so (K, v) is
also defectless, and thus (k0, v) is defectless. Because defectlessness implies algebraic
maximality, we conclude. �

Lemma 3.10 and Proposition 3.12 together give a proof of Theorem 3.9.
Our theorem, coupled with Anscombe and Jahnke’s classification [1, Theorem

5.1], gives us the following:

Corollary 3.13. Let (K, v) be henselian and assume K is NIPn. If kv is NIP, then
(K, v) is NIP.

Proof. If (K, v) is henselian, it is in particular p-henselian, and so we can apply
Theorem 3.9 to it. But in all the cases of the theorem, we know that we have NIP
transfer by Anscombe–Jahnke’s classification; this means that if kv is NIP, so is
(K, v). We need henselianity and not just p-henselianity for transfer to happen. �

Corollary 3.14. Conjecture 3.2⇔Conjecture 3.3; that is, if no strictly NIPn pure
field exist, no strictly NIPn henselian valued field exist.

In particular, both conjectures hold in algebraic extensions of Qp.

Proof. Indeed, if no strictly NIPn pure field exist, the residue field of a NIPn
henselian valued field must be in fact NIP, and we conclude by Corollary 3.13.

Now consider algebraic extensions of Fp. They are either finite, algebraically
closed, or PAC and not separably closed; in the first two cases they are NIP—even
stable—, in the last case they have IPn for all n by Proposition 3.4. So they are NIP iff
they are NIPn, and any henselian valued field with one of these extensions as residue
field is NIPn iff it is NIP.

Since any algebraic extension of Qp admits a henselian valuation of which the
residue is an algebraic extension of Fp, we conclude. �

In our follow-up paper [4], we will study transfer theorems and complete the proof
of Anscombe–Jahnke’s classification in the NIPn context.

§4. NTP2 fields.

4.1. The tree property of the second kind. Let L be a language, T a complete
theory and M a monster model of T.

Definition 4.1. An L-formula ϕ(x, y) is said to have the tree property of the
second kind (TP2) inM if there are (aij)(i,j)∈�2 ∈ M and k < � such that for any i <
�, {ϕ(x, aij)}j < � is k-inconsistent, but for any f : � → �, {ϕ(x, aif(i))}i < � is
consistent.

A formula is NTP2 if it doesn’t have TP2, and a theory is NTP2 if all its formulas
are NTP2.

Note that NIP implies NTP2, but that NIPn doesn’t: the random graph is NIP2

and NTP2, the triangle-free random graph is NIP2 and TP2. Also, NTP2 is not
preserved under boolean combinations.

Example 4.2. Bounded PAC, PRC, and PpC fields are NTP2 (see [16]).
As pure rings, Z and thus also Q have TP2: in Z, the formula “x divides y and

x 
= 1” has TP2. However its negation does not, since rows can’t be k-inconsistent.
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φ(x, a00) φ(x, a01) ···
φ(x, a10) φ(x, a11) ···
...

...
consistent

k-inconsistent

Figure 1. A TP2 pattern.

4.2. NTP2 fields.

Theorem 4.3 [7, Theorem 3.1]. NTP2 fields of characteristic p are AS-finite, also
called p-bounded—they have only finitely many distinct Artin–Schreier extensions.

Chernikov–Kaplan–Simon’s argument is very similar to Kaplan–Scanlon–
Wagner’s. First, one needs to find a suitable chain condition for definable families
of subgroups in NTP2 theories, and then apply it to the Artin–Schreier additive
subgroup. Namely, instead of saying that the intersection ofN + 1 subgroups is the
same as just N of them, this condition is saying that the intersection of all but one
of them is not quite the whole intersection, but is of finite index in it. Then, one
shows that in a field K with infinitely many Artin–Schreier extensions, the family
a℘(K) fails this condition.

4.3. Chernikov–Kaplan–Simon condition for NTP2 formulas.

Theorem 4.4 [7, Lemma 2.1]. Let T be NTP2, M � T a monster and suppose that
(G, ·) is a definable group1. Let ϕ(x, y) be a formula, for i ∈ � let ai ∈ M be such that
Hi = ϕ(M, ai) is a normal subgroup of G. Let H =

⋂
i∈� Hi and H�=j =

⋂
i �=j Hi .

Then there is an i such that
[
H�=i : H

]
is finite.

It turns out that, once again, we do not need T to be completely NTP2: the proof
goes by contradiction and shows that if this finite index condition is not respected,
the formula �(x; y, z) : ∃w (ϕ(w, y) ∧ x = w · z) has TP2. Thus we need only to
assume NTP2 for this �. As in the NIP case for Baldwin–Saxl, we establish an
equivalence between one specific formula being NTP2 and this condition.

Remark 4.5. This condition says that in a given family of subgroups, one of them
has finitely many distinct cosets witnessed by elements which lie in the intersection of
every other subgroup. By compactness, we can cap this finite number, and consider
only finite families: there is k and N, depending only on ϕ, such that given k many
subgroups defined by ϕ, one of them has no more than N cosets witnessed by
elements in the intersection of the k – 1 other subgroups.

Porism 4.6 (CKS-condition for formulas). Let T be anL-theory,M � T a monster
and (G, ·) a definable group. Let ϕ(x, y) be a formula such that for any a ∈ M,
Ha = ϕ(M, a) is a normal subgroup of G. Let�(x; y, z) be the formula ∃w (ϕ(w, y) ∧
x = w · z). We will suppose for more convenience that ·, or rather, the formula defining

1In fact, as before, we do not care whether G is a definable set, however, we need the group law to be
definable, as it appears in the formula �.
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{x, y, z|x · y = z} contains, or at least implies, x, y, z ∈ G ; thus � doesn’t hold if
z /∈ G . Then �(x; y, z) is NTP2 iff the CKS-condition holds: for any (ai)i∈� , there is
i such that [H�=i : H ] is finite, where H =

⋂
i∈� Hi and H�=j =

⋂
i �=j Hi .

Note that since –1 is definable, �(x; y, z) is equivalent to ϕ(x · z–1, y).

Proof. The formula �(x; y, z) holds iff x ∈ Hy · z. Also, we use Hi to denote
Hai and later Hji to denoteHaij because it is much more convenient.

We work in four steps, but truly, only the fourth step is an actual proof, and it is
technically self-sufficient. The raison d’être of steps 1 to 3 is to—hopefully—make
the proof strategy clearer. �

Step 1: True equivalence, from CKS. In their paper, Chernikov, Kaplan, and
Simon prove that given some (ai)i∈� , if the family Hi does not check the
CKS-condition, then � has TP2. They do this by explicitly witnessing TP2 by
cij = (ai , bij), with a for y and b for z, and with bij ∈ H�=i . Reversing their argument,
we prove the following equivalence:
� has TP2 witnessed by some cij = (ai , bij) with bij ∈ H�=i iff the family Hi does

not check the CKS-condition.
Right-to-left is exactly given by the original paper. Now let ai and bij be as wanted.

�(x; cij) says that x ∈ Hi · bij . So the TP2-pattern is as follows:

H0b00 H0b01 H0b02 H0b03 ...
H1b10 H1b11 H1b12 H1b13 ...
H2b20 H2b21 H2b22 H2b23 ...
...

...
...

...

For a given i, k-inconsistency of the rows says that a given coset ofHi might only
appear k – 1 times. So there are infinitely many cosets ofHi , witnessed by elements
bij ∈ H�=i . This means that H · bij = H · bij′ iff Hi · bij = Hi · bij′ . But that gives
infinitely many cosets of H in H�=i , for any i, proving that CKS-condition is not
checked.

Note that we did not use at any time consistency of the vertical paths. We can use
it to loosen our assumption. Let’s keep in mind that our final goal is to prove this
equivalence with a depending on i and j (right now it depends only on i) and with
bij not necessarily lying inH�=i .

Step 2: Going outsideH �=i . We now want to prove:
� has TP2 witnessed by some cij = (ai , bij) iff the family Hi does not check the

CKS-condition.
We already know right-to-left. Let cij = (ai , bij) witness TP2 for �. Consistency

of the vertical paths implies that there is 
 ∈
⋂
i∈� Hi · bi0. Now write b′ij = bij · 
–1.

Replacing b by b′ won’t alter TP2, but will ensure that Hibi0 = Hi . So we might as
well take b′i,0 to be the neutral element of G.

Fix i, j. Consider the vertical path f = �ij : � → � such that �ij(i) = j and
�ij(i ′) = 0 for i ′ 
= i . Consistency yields: Hi · b′ij ∩

⋂
i′ �=i Hi′ = Hi · b′ij ∩H�=i 
= ∅.

Thus we can witness this coset of Hi by an element b′′ij ∈ H�=i . Thus c′′ij = (ai , b′′ij)
still witnesses TP2.
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H 0 H0b01 ...
...

...
Hi Hibi1 ... Hibij ...
...

...
...

...

Thus, we reduced to the case in step 1, and we can drop the assumption on b. We
still have to drop the assumption on a. We used k-inconsistency of rows in step 1,
we used consistency of (some) vertical paths in step 2, we didn’t yet use normality.

Step 3: Arbitrary a, 2-inconsistency. An example of such a TP2 pattern in Z:

2Z 4Z + 1 8Z + 3 16Z + 7 ...
3Z 9Z + 1 27Z + 4 81Z + 13 ...
5Z 25Z + 1 125Z + 6 625Z + 31 ...
...

...
...

...

Note that none of these subgroups have infinitely many cosets, let alone in the
intersection of the others! But, for any N, some of them will have more cosets than N.

We aim to prove the following, of which once again we know right-to-left:
There is some cij = (aij , bij) forming a TP2 pattern for�, with rows 2-inconsistent,

iff the familyHi does not check the CKS-condition.
Let Hji be the subgroup ϕ(M,aij). Suppose � has TP2, witnessed by cij =

(aij , bij). As noted before, by compactness we do not need to find an infinite family
such that every subgroup has infinitely many cosets in the intersection of the rest,
but merely for each finite m and N, a family of m subgroups such that each of them
has at least N cosets in the intersection of the rest.

First, we apply the reduction as before: by consistency of vertical paths, we may
take bi0 to be the neutral element for each i. Then, looking at the path f = �ij , we
may assume bij ∈ H 0

�=i .

Claim. Let N ∈ �. For each i, there is j such that (bij′)j′<� witnesses at least N
cosets of Hji : #{Hji bij′ |j′ ∈ �} � N .

Before proving this claim, let’s see why it is enough for our purpose: let N ∈ �.
For a fixed i, we find ji such thatHjii has � N cosets witnessed by some bij . Now by
vertical consistency, considering the path �iji , we find an element 
 ∈ H 0

�=i ∩H
ji
i biji .

Compose everything by 
–1, re-index the sequence by switching ci0 and ciji ; this
makes it so we can assume thatH 0

i has � N many cosets inH 0
�=i . When we compose

by 
, nothing changes: b and b′ generate the same coset of H iff b′b–1 ∈ H iff
(b′
)(b
)–1 ∈ H . So we do this row by row, and we might assume that for any i,
H 0
i has � N many cosets witnessed by elements from H 0

�=i . This implies that some
family will fail the CKS condition by compactness.

Now to prove the claim, fix i and N. If there is j such thatHji has infinitely many
cosets, witnessed in the row i, then we’re done. Otherwise, for each j, all Hji have
finitely many cosets. We will reduce the problem in the following way:
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H 0
i has finitely many cosets in an infinite row, so by pigeonhole, one of them

appears infinitely many times. Ignore all the rest, rename them; we may thus assume
that H 0

i bij = H 0
i bi1 for any j � 1. We can do the same thing with any j, ensuring

thatHji bik = Hji bi,j+1 for any k > j ∈ �. Note that we only assume that cosets of a
givenHji witnessed by b appearing after j are identical, not before, since we already
modified things before. In short, we have bijb–1

ik ∈ Hj–1
i for any i, j, andk > j.

Up to this point, we didn’t use 2-inconsistency, so everything will still hold for the
k-inconsistent case.

Because of 2-inconsistency, cosets of Hji appearing before j cannot be the same:
let j1 < j2 < j3. By our reduction, we have bij3b

–1
ij2

∈ Hj1i . Suppose furthermore

that bij2b
–1
ij1

∈ Hj3i , so 2 cosets of Hj3i appearing before j3 are the same. Now

bij3b
–1
ij2
bij1 = (bij3b

–1
ij2

)bij1 ∈ Hj1i bij1 on one hand, and bij3b
–1
ij2
bij1 = bij3 (b–1

ij2
bij1 ) ∈

bij3H
j3
i = Hj3i bij3 by normality on the other hand, contradicting 2-inconsistency.

Thus, if we take j � N , we are sure that Hji has � N many cosets witnessed in
the row i, proving the claim.

Step 4: k-inconsistency. We now are ready to prove Porism 4.6. We already know
one direction, so we now prove that if � has TP2 witnessed by some cij = (aij , bij),
then the familyHi does not check the CKS condition.

We follow the argument of step 3 until the point where 2-inconsistency enters the
party. Precisely, we reduce to the case where bi0 is the neutral element, bij ∈ H 0

�=i ,

and bijb–1
il ∈ Hj–1

i for all i < � and all j < l < �.
As in step 3, it will suffice to prove the claim: for allN < � and for all i < �, there

is j < � such that (bij′)j′<� witnesses at least N cosets of Hji .
First, we fix i; since the argument now does not depend on i, we stop writing the

subscripts i; readers attached to formal correctness are invited to take a pen and
scribble them back in place.

We first prove, using k-inconsistency and by contradiction, the following fact: let
j1 < j2 < ··· < j2k–1 < �. Then there exists n and n′ such that n + 1 < n′ < 2k – 1,
n is odd, and bjnH

jn′ 
= bjn+1H
jn′ .

Indeed, let j1 < j2 < ··· < j2k–1 ∈ �, and suppose that bj1 and bj2 spawn the
same coset of Hj3 , Hj5 ,..., Hj2k–1 , so bj1b

–1
j2

∈ Hj3 ∩Hj5 ∩ ··· ∩Hj2k–1 . Similarly,
suppose bj3 and bj4 spawn the same coset of all the odd indexed groups above
them, and again for all the rest. Let b = bj1b

–1
j2
bj3b

–1
j4
... bj2k–3b

–1
j2k–2
bj2k–1 . We claim

that b ∈ Hj1bj1 ∩Hj3bj3 ∩ ··· ∩Hj2k–1bj2k–1 , contradicting k-inconsistency: Fix
n ∈ {1, 3,..., 2k – 1}. By the reduction, all the products b–1

j bj′ on the right of bjn are
inHjn , and by assumption, all the products on the left also. Thus b = hbjnh

′, where
h, h′ ∈ Hjn . So b ∈ HjnbjnHjn , and by normality we conclude.

Using this fact, we will now construct a sequence, starting with j2k–1 big enough
and choosing j2k–2, j2k–3...one by one, until we encounter an Hj with at least N
many different cosets, thus proving the claim.

Fix N. Let C = N +R2(N ) +R3(N ) + ··· +Rk(N ), where Rr(s) is the smallest
numberV ∈ N such that if a complete colored graph with r many colors has at least
V many vertices, there’s a monochromatic s-clique. Rr(s) is guaranteed to exist for
any r, s ∈ N by Ramsey’s theorem (see [18]).
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.
.

.
.
.
.
.
.

.
. . . . . . .

j2k–5 – R3(N )

j2k–5 – 1

j2k–5 – 2

j2k–5 – 3

j2k–5 – 4

j j′

Hj2k–1bj 
= Hj2k–1bj′

j j′

Hj2k–3bj 
= Hj2k–3bj′

j j′

Hj2k–5bj 
= Hj2k–5bj′

Figure 2. After finding j2k–5,..., j2k–1, we connect the R3(N ) many points j2k–5 –
1,..., j2k–5 – R3(N ) with edges colored as indicated; we seek either a monochromatic
N-clique or two non-connected points that we then name j2k–6 and j2k–7.

Take j2k–1 > C . We construct a graph with N vertices, which are the j such
that j2k–1 – (N + 1) < j < j2k–1, and j, j′ are connected iff bj and bj′ generate
different cosets of Hj2k–1 . If it is a complete graph, then Hj2k–1 has at least N many
pairwise disjoint cosets, so we are done. Otherwise, there are j2k–1 – (N + 1) <
j2k–3 < j2k–2 < j2k–1 such that bj2k–3 and bj2k–2 generate the same coset of Hj2k–1 .

We now “look back” R2(N ) points before j2k–3: we construct a bi-colored graph
withR2(N ) vertices, which are the j such that j2k–3 – (R2(N ) + 1) < j < j2k–3. j, j′

are connected by a blue edge iff bj and bj′ generate two different cosets of Hj2k–3 ,
and they are connected by a red edge iff they generate different cosets of Hj2k–1 .
They might be connected by both a red and blue edge at the same time. As before, if
this graph is complete, then by Ramsey’s theorem, there must be a monochromatic
N-clique, ensuring that one ofHj2k–1 orHj2k–3 have at least N many different cosets.
Otherwise, we find a pair j2k–5 < j2k–4 which are not connected, thus they generate
the same coset of bothHj2k–1 and Hj2k–3 . We fix them, and continue.

We now construct a tri-colored graph with R3(N ) vertices, corresponding to
the R3(N ) indices preceding j2k–5, connected by blue edge between vertices if they
generate different cosets of Hj2k–1 , red if they generate different cosets of Hj2k–3 ,
green if they generate different cosets of Hj2k–5 . Again, by Ramsey’s theorem, we
either can find an N-clique, in which case we stop here, or we can find j2k–7 and
j2k–6 not connected, hence generating the same coset of all of the previously fixed
groups. This construction is illustrated in Figure 2.

We continue doing this strategy for as long as we can; either we stop when we
find a monochromatic N-clique, or we end up with j1 < j2 < ··· < j2k–1 such that
all consecutive pairs generate the same coset of all subgroups above them; but this
contradicts our previously proven fact. Therefore, this process must stop before
reaching j1, which means we found an N-clique at some point, which means we
found a subgroup with at least N many different cosets.

Remark 4.7. In [7, Problem 2.2], the authors ask whether normality is a necessary
assumption. In our proof as well as in theirs, it is useful to assume it, and doesn’t
seem avoidable. It seems to us that this assumption is necessary, but as of yet, no
argument exists to assert or refute this claim.
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4.4. Artin–Schreier finiteness of NTP2 fields.

Corollary 4.8 (Local CKS). In a field K of characteristic p > 0, the formula

�(x; y, z) : ∃t x – z = y(tp – t)

is NTP2 iff K has finitely many AS-extensions.

Proof. Apply Porism 4.6 with (G, ·) = (K,+) and with ϕ(x, y) : ∃t x =
(tp – t)y, which means “x ∈ y℘(K)”. If the formula is NTP2, then it checks CKS
and thus K has finitely many AS-extensions, by the original CKS argument—which
goes by contraposition, and again, takes a whole paper to be properly done. Now
if K has finitely many AS-extensions, then

[
K : ℘(K)

]
, as additive groups, is finite.

Thus any additive subgroup of the form a℘(K) has finitely—and boundedly—many
cosets in the whole K, so in particular in any intersection of any family. Thus CKS
is checked and � is NTP2. �

Remark 4.9. This is optimal, in the sense that NTP2 fields with an arbitrarily
large number of Artin–Schreier extensions exist: given a profinite free group with n
generators, there exists a PAC field of characteristic p having this group as absolute
Galois group. Such a field will have finitely many Galois extension of each degree,
that is, it is bounded and hence simple; but if one takes n large enough, it will have
an arbitrarily large number of Artin–Schreier extensions.

On the other hand, fields with finitely many Artin–Schreier extensions can have
TP2: consider a PAC field of characteristic p which is unbounded for some n 
= p,
and take its p-closure—the compositum of all separable algebraic extensions of
degree p-divisible; still PAC, still unbounded, thus TP2; however, it has no Artin–
Schreier-extension.

We now discuss the main application of local CKS, which is, as for NIPn
p-henselian valued fields, lifting complexity.

4.5. Lifting. Let (K, v) be p-henselian of residue characteristic p > 0. Shelah’s
expansion doesn’t work in general in NTP2 theories, so adding coarsenings to the
language might disturb NTP2. Note however that some weaker versions hold, for
example [17, Annex A], where one needs to ensure that the value group is NIP and
stably embedded before adding coarsenings to the theory. Meanwhile, we can apply
the same trick as above to lift complexity and derive some conditions on NTP2
fields.

Lemma 4.10. Let (K, v) be p-henselian of residue characteristic p and suppose k
has infinitely many AS-extensions, then K has TP2 witnessed by �(x; y, z) : ∃t x –
z = y(tp – t).

Proof. Since k has infinitely many AS-extensions, we know by Corollary 4.8
that there are (aij , bij)i,j<� in k witnessing TP2 for �. More precisely, for any
f : � → �, {�(x; aif(i), bif(i))}i<� is consistent (in k); and, for some fixed m < �,
{�(x; aij , bij)}j<� is m-inconsistent (in k) for any i < �. Let αij , �ij ∈ K be any lift
of aij , bij ; we claim that they witness a TP2 pattern for � in K. �
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Vertical consistency: Let f : � → � be a vertical path. We know that there is c
in k such that k � �(c; aif(i)bif(i)) for all i.2 This means aif(i)(Tp – T ) – c – bif(i)
has a root in k. Take any lift � of c, then αif(i)(Tp – T ) – � – �if(i) has a root in K
by p-henselianity, which means K � �(�;αif(i), �if(i)).

Horizontal m-inconsistency: Let’s name Pij(T, x) = aij(Tp – T ) – bij – x. Now
the residue field k � �(c; aij , bij) iff Pij(T, c) has a root. Fix i and j1,..., jm. m-
inconsistency means that for any choice of t1,..., tm and c, one of Pijl (tl , c) is not 0.
Instead of fixing x and pondering at T, let’s fix t1 to tm and namefl (x) = Pijl (tl , x).
m-inconsistency is equivalent to saying that for any choice of tl , the family (fl )1�l�m
of polynomials can’t have a common root.

Since k is not AS-closed, we can find a separable polynomial d with no root in k.
Write d (z) = rnzn + ··· + r1z + r0, and fix a lift �(z) = �nzn + ··· + �1z + �0 to K. �
also has no root in K. LetD(z1, z2) = rnzn1 + rn–1z

n–1
1 z2 + ··· + r1z1zn–1

2 + r0zn2 be the
homogenized version of d and similarly Δ(z1, z2) be the homogenized version of �.

Now D(z1, z2) = 0 iff z1 = 0 = z2 by the choice of d, and same goes for Δ.
Let f, g be two polynomials. Then f, g have a common root iff D(f(x), g(x))
has a root. Thus we have m-inconsistency in k iff the family (fl )1�l�m has no
common root in k iffD(f1(x), D(f2(x), ... )) has no root in k iff, by p-henselianity,
Δ(f1(x),Δ(f2(x, ... )) has no root in K iff the family (fl )1�l�m has no common
root in K, the latter exactly giving m-inconsistency of the pattern in K.

Thus, given an NTP2 p-henselian field (K, v), if we take a coarsening of v with
residue characteristic p, we know its residue field has finitely many AS-extensions,
without having to ponder at external definability or anything.

4.6. Semitameness. Recently, Franz–Viktor Kuhlmann proved in [14] that valued
fields of characteristic p with finitely many Artin–Schreier extensions are semitame,
which is a notion he studied in detail in a joint paper with Anna Rzepka, namely
[15]. In particular, contrary to the NIP case, where AS-closure implies defectlessness,
NTP2 fields could have defect, only, no dependent defect:

Definition 4.11. Let (L,w)/(K, v) be a purely defect Galois extension of degree
p. This is equivalent to saying that w is the unique way to extend v to L, that
(L,w)/(K, v) is immediate, and L/K is a Galois extension of degree p.

Let  ∈ Gal(L/K) \ {id}. Consider the set Σ = {w( (x)–x
x )|x ∈ L×}. If there is

a convex subgroup Δ ⊂ Γ such that Σ = {� ∈ Γ|� > Δ}, we call (L,w)/(K, v) an
independent defect extension. Otherwise, we call it a dependent defect extension.

Definition 4.12. A non-trivially valued field (K, v) of residue characteristic p
is called semitame if Γ is p-divisible, k is perfect, and (K, v) has no dependent
defect extension. Valued fields of residue characteristic 0 are always called semitame.
Here we will furthermore let trivially valued fields, of any characteristic, be called
semitame.

If the reader is familiar with tame valued fields, they will easily notice that a valued
field is tame iff it is semitame, henselian, and defectless. For readers unfamiliar with

2This is only true if K is ℵ1-saturated, so let’s assume it is.
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tame valued fields, this fact can be used, for the purposes of this paper, as a definition
of tame.

Semitameness is a first-order property, though this might not be clear when
defined as we did; equivalent definitions can be found in [14], as well as a proof of
the following result:

Theorem 4.13. Let (K, v) be a valued field of equicharacteristic p. If K is AS-finite,
then (K, v) is semitame.

We will also need the following lemma:

Lemma 4.14 [15, Proposition 1.4]. A composition of two semitame henselian
valuations, each of residue characteristic p, is semitame.

Note that the statement by Kuhlmann and Rzepka that we reference is
formulated for “generalized deeply ramified” fields (gdr) without restricting to
residue characteristic p, and is then claimed to also hold in the semitame context;
as stated, it is slightly wrong, as one needs to avoid some silly counterexample: if
(K, v) is of equicharacteristic 0 with a non-divisible value group, say, Z, and (kv, w)
is mixed-characteristic tame; then (K,w ◦ v) is not tame, nor semitame, because its
value group is not p-divisible. Thus, Kuhlmann and Rzepka’s proof appears to have
a hidden assumption, namely, residue characteristic p, that we made explicit here.

In fact, the definition of gdr fields is precisely made in order to be well behaved
under composition, as well as to include finitely ramified fields which aren’t tame
but are still very well behaved. We will not define this notion here, instead, we refer
to the aforementioned paper [15].

We prove a quick but very useful NTP2 version of Lemma 3.11:

Lemma 4.15. Let K be NTP2, let (K, v) be p-henselian of residue characteristic p,
and suppose kv is imperfect; then v is the coarsest valuation with residue characteristic
p. In particular, there is at most one imperfect residue of characteristic p.

Proof. Suppose w is a non-trivial proper coarsening of v with residue
characteristic p. Then (kw, v) is a non-trivial equicharacteristic p valued field with
imperfect residue. By Theorem 4.13, since semitame fields have residue perfect, kw
is not semitame and thus has infinitely many AS-extensions. But, by AS-lifting
(Lemma 4.10), that means K has TP2. Thus v can’t have any proper coarsening of
residue characteristic p. �

We combine all this with the standard decomposition around p, written in terms

of places K
v0−→ k0

vp−→ kp v−→ kv as in Definition 1.6, and obtain:

Proposition 4.16. Let K be NTP2 and (K, v) be p-henselian, where p = char(k).
Then (K, v) is either:

1. of equicharacteristic and semitame, or
2. of mixed characteristic with (k0, v) semitame, or
3. of mixed characteristic with vp finitely ramified and (kp, v) semitame.

In particular, (K, v) is gdr.

Proof. Most cases follow directly from Theorem 4.13 and Artin–Schreier lifting
as for the NIPn case, we only give details for case 2.
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Let (K, v) be of mixed characteristic such that vp is infinitely ramified, that is,
Δ0/Δp is dense. This is an elementary statement, that is, going to (K∗, v∗) � (K, v)
sufficiently saturated and doing the standard decomposition in this new structure,
Δ∗

0/Δ
∗
p remains dense (see [1, Lemma 2.6]). Furthermore, (k∗0 , v

∗
p) is defectless and

has value group R. These facts come directly from saturation (see [2]).
By Artin–Schreier lifting, kp is AS-finite, and thus (kp, v) is semitame. Finally,

an argument similar to the aforementioned proof allows us to obtain perfection
of kp: going to yet another sufficiently saturated elementary extension (L, u) of
(k0, vp)—in a language of valued fields—, we know that the value group has a
proper convex subgroup below u(p); thus there is a non-trivial coarsening of u
with residue characteristic p, and by Lemma 4.15 ku is perfect. This is a first-order
statement, so kp is also perfect.

So, (k0, vp) is defectless, has divisible value group, and perfect residue, thus
it is semitame; and (kp, v) is semitame. By Lemma 4.14, (k0, v) is semitame, as
wanted. �

Corollary 4.17. Let (K, v) be p-henselian, of mixed characteristic, and infinitely
ramified. If K is NTP2, then (K, v) is roughly p-divisible, of perfect residue, and has
no dependent defect extension.
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